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Abstract

We compute, under conditions of electromagnetically induced transparency, the frequency dependence of the

transmission coe�cient and the group velocity of a probe pulse resonant with the lower transition of a three-level

cascade system in the presence of a cw pump ®eld resonant with the systemÕs upper transition. We show that the

presence of local ®eld corrections can substantially modify the pro®le of both these transmission-related quanti-

ties. Ó 2000 Published by Elsevier Science B.V.

Keywords: Local ®elds; Electromagnetically induced transparency; Pulse propagation

1. Introduction

The main characteristic of an optically dense
medium is the short absorption length of light and
the presence of local ®eld corrections (LFC) to the
Maxwell ®eld, resulting, inter alia, in a shift in the
absorption spectral pro®le [1±3]. However, due to
the strong absorption of light in such medium,
re¯ectivity measurement [4,5] was among the few
experimental techniques available to probe these
frequency shifts and other nonlinear dynamics
induced by the Lorentz corrections. Furthermore,

the dependence of these shifts on the population of
the di�erent levels could be inferred only indi-
rectly. An interesting question then arises, namely:
can we use electromagnetically induced transpar-
ency (EIT) [6,7] present in a driven cascade system
[7±10] to probe the details of the spectral pro®le
dynamics in a transmission experiment?

In this paper, we consider a cascade medium
which is optically dense, i.e. the absorption length
for a weak signal resonant with the lower transi-
tion and propagating in the gas system initially in
the ground state, is much shorter than the corre-
sponding radiation wavelength. In the presence of
a pump ®eld, resonant with the upper transition,
the phenomenon of EIT acts catalytically on
the probe ®eld and leads to a suppression of its
absorption coe�cient near the lower transition
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resonance frequency while greatly decreasing the
value of its group velocity. In e�ect, we show that
this technique does not allow us only the means to
measure the position of the maximum of the ab-
sorption curve, but also provide us with the means
to measure the derivatives of the index of refrac-
tion in this neighborhood.

We solve numerically the coupled integro-
di�erential Maxwell±Bloch equations describing
the electromagnetic radiation propagation in the
pressure broadened three-level cascade medium.
We do not assume, in Maxwell equations, the
slowly varying envelope approximation in space,
and we make, in Bloch equations, the distinction
between the Maxwell and Lorentz ®elds.

Our analysis does not include the e�ects of the
gas collision with the walls of the container, which,
if kept hot to prevent condensation, can be ne-
glected in the considered dense gas regime.

2. Maxwell±Bloch equations

The dynamics of the interaction of the electro-
magnetic ®eld with the pressure-broadened three-
level atoms system is described by the coupled
Maxwell±Bloch equations. Neglecting the counter-
rotating term in the Hamiltonian, Bloch equations,
including the local ®eld corrections, in the presence
of both the upper and the lower Maxwell ®elds, ucb

and uba, are given by [11]:
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where s is the time normalized to the classical
Lorentz shift xL, s � xLt, xL � Nd2=6�he, N is the
atomic number density, d is the dipole transition
matrix element for the upper and lower transi-
tions assumed here for simplicity to be equal, the
deltas corresponding to the normalized detuning
of the ®elds frequencies from that of the upper
and lower transition resonance frequencies �Dcb �
�xcb ÿ xpump�=xL, Dba � �xba ÿ xprobe�=xL�, Cs
are the normalized natural decay constants, which
will be neglected here, as compared to the cs, the
normalized transverse decay times, due to colli-
sions, the L superscripted ®elds are the Lorentz
®elds, and the normalized ®elds are the Rabi fre-
quencies of the corresponding ®elds normalized to
xL, i.e. ucb � dEcb=�hxL.

More speci®cally, and in order to study the
present problem without the e�ects of additional
complications due to the particular atomic struc-
tures details, we assume, here, the model where the
atomic transition frequencies are separated by
values much larger than the pressure broadened
width, but in®nitely smaller than the transition
frequencies, and such that the spin structures of
the uppermost and ground states are the same.
Under such assumptions, we have:

uL
cb � ucb � aqcb �7�

uL
ba � uba � aqba �8�

ccb � a�qcc � qbb� �9�

cba � a�qbb � qaa� �10�

cca � 0 �11�
Neglecting the e�ects of quantum modi®cations to
the LFC, the constant a is equal to one and the
constant a, for example, for a J � 0! J � 1
transition is equal, as was shown in Refs. [1,2], to
1.7293. We shall use for illustrative purposes, this
value of a in subsequent calculations, and vary the
value of a, the measure of the Lorentz e�ects
strength, to investigate the e�ects of LFC on EIT.
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Maxwell equations for the ®elds are given by:

o2ucb
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V 2
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o2uba

oz2
ÿ 1

V 2

o2uba

os2
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where z � k0z, and k0 is the wave number corre-
sponding to the atomic transitions, taken here for
simplicity to be the same for both the upper and
lower transitions, and where V is the velocity of
light in vacuum, equal in the present units to
V � �x0=xL� � X0.

Using the GreenÕs function for the Helmholtz
equation, the above di�erential forms of Maxwell
equations can be also written in an integral form
[12±14]:

ucb�z; s� � uin
cb�z � 0; s�exp�iz�

� i
3

2

Z L

0

dz0 exp�ijzÿ z0j�

� qcb z0; s
�

ÿ jzÿ z0j
V

�
�14�

uba�z; s� � uin
ba�z � 0; s�exp�iz�

� i
3

2

Z L

0

dz0 exp�ijzÿ z0j�

� qba z0; s
�

ÿ jzÿ z0j
V

�
�15�

where the incoming ®elds are the external ®elds to
the present atomic-®eld system. We shall use the
above integral form of Maxwell wave equation in
subsequent numerical calculations.

3. Probe ®eld dispersion relation in the absence of

local ®eld corrections

In this section, we compute, using the disper-
sion relation for the probe ®eld (i.e. the relation
that relates its wave vector with its frequency),
approximate expressions for the group velocity
and the absorption coe�cient of the probe signal
propagating in a medium consisting of driven
three-level cascade-structure atoms, neglecting the
LFC. This will help us determine the choice of

parameters that we will utilize in the numerical
solutions of Section 4, where we will solve the
complete Maxwell±Bloch system of equations, in-
cluding LFC.

In the absence of LFC, and under the as-
sumption that jubaj � jucbj, the o�-diagonal ma-
trix element qba, the source term for the probe
®eld, is approximately linear in the ®eld uba, and is
given by:

qba �
iuba

cba � iDba � u�cbucb

cca�i�Dcb�Dba�

� � �16�

Combining Eqs. (13) and (16), we can write the
following dispersion relation:

K2 � X2
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0
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24 �X2
0
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� �
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0
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The real and imaginary part of the index of re-
fraction n�X� give respectively the linear dispersion
and the absorption coe�cients. The group velocity
is given by:

vg � X0

Re�m�X�� �18�

where

m�X� � n�X� � X
on�X�
oX

� n�Dba� ÿ �X0 ÿ Dba� on�Dba�
oDba

�19�

In Fig. 1, we plot respectively the imaginary and
real parts of n�Dba� and m�Dba� as function of Dba,
for a moderate value of the ucb ®eld. Noting that
the spectral width of these quantities is of the order
of xL=1000 (in ordinary units), it is then possible
to have a probe pulse propagate in this medium
over few wavelength with little absorption and
with a group velocity a million time smaller than
the velocity of light in vacuum. The delay in the
pulse envelope in the present normalized units will
be given by:

sd � xL

L
c

Re�m� �20�
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Fig. 1. The absorption coe�cient and the group velocity reduction factor are plotted as function of the probe detuning in a driven

optically dense cascade ladder three-level atom system. Dcb � 1, X0 � 104, uin
cb � 0:1, a � 0.
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The above estimates for the weak pulse propaga-
tion coe�cients in the driven medium were de-
duced through an analysis of the dispersion
relation. As we pointed earlier, we shall consider,
in Section 4, the exact propagation problem with
the same parameters as those of the above ®gure
and study the modi®cations to the transmission
coe�cients of interest as function of the magnitude
of the LFC. But before we go into that, and to
gain an insight into the orders of magnitude of the
quantities that we are investigating, it is worth-
while computing the propagation parameters, for
the case of even smaller values of the ucb pump
®eld as that considered in Fig. 1.

In Fig. 2, we plot respectively the real and
imaginary parts of n�Dba� and m�Dba� as function
of Dba, for a small value of the ucb ®eld. We note
that, in this case, the group velocity of light can be
slowed down by another factor of 100 than for the
previous parameters, however this reduction in the
group velocity can only be achieved for an in-
coming probe pulse whose spectral width is 100
times smaller than that associated with the previ-
ous ®gure, i.e. having a duration 100 times longer
than in the previous ®gure. This trade-o� between
a reduction in the group velocity of the probe and
a reduction in the probeÕs permissible spectral
width is a general feature common to many in-
stances of systems with EIT features.

4. Dependence of the transmission coe�cients on the

magnitude of the local ®eld correction

Next, we solve numerically, with no simpli®ca-
tions, the coupled Maxwell±Bloch equations for
the parameters of Fig. 1, through an algorithm
similar to that previously detailed [14]. Our goal is
to obtain directly, through direct integration of
the system of equations, the shape and the position
of a probe propagating, under the general condi-
tion of EIT. In particular, we desire to investigate
the stability of EIT in the presence of LFC and the
modi®cations that these corrections bring to the
coe�cients of the probeÕs propagation.

We assume here, that the pump ®eld is a cw
®eld, and chose the incoming probe pulse param-
eters such that the pulseÕs spectral width falls

within the low absorption coe�cient window, as
estimated in Fig. 1. In Fig. 3, we summarize the
results of the propagation calculations for di�erent
values of the parameter a.

We note, in particular that for a � 0, i.e. the
case that the LFC are neglected, the exact results
di�er, at exact resonance, by less than 5% from
those obtained from those estimated in the previ-
ous section, using uniquely the imaginary part of
n�Dba� and the real part of m�Dba�. The small de-
viation between the two sets of results is due to the
fact that we are neglecting the dispersion and
chirping e�ects induced by the real part of n�Dba�
and the imaginary part of m�Dba�, which have the
e�ect of modifying the pulse shape. These e�ects
are small here due to the important fact that both
neglected quantities have odd symmetry near the
spectral maximum and thus tend to modify only
slightly the pulse shape.

The other values of a corresponding to the
other traces in the ®gure, i.e. 1 and 4, correspond
respectively to those values obtained for the clas-
sically determined (i.e. no quantum corrections)
frequency shift [1,2], and the enhanced but below
the LFC induced intrinsic bistability value [3,15].

As can be deduced from the above ®gures, the
present technique for measuring LFC, based on
EIT, gives a sharper determination for the posi-
tion of the maximum of the absorption coe�cient
than through a re¯ectivity experiment because the
transmission coe�cient dependence on the ab-
sorption coe�cient is exponential (BeerÕs law)
while in a re¯ectivity experiment, the dependence
is almost linear.

Furthermore, note that an examination of Fig.
3 reveals that, the dependence of the group ve-
locity on a can be substantial which suggests a
promising novel experimental technique for in-
vestigating LFC, supplementary to the usual direct
spectral technique.

5. Conclusion

In this paper, using the EIT e�ect, we investigated
the modi®cations to the transmission coe�cient and
to the group velocity of a probe propagating in a
driven ladder cascade three-level atom due to the
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Fig. 2. Same as Fig. 1, but for a smaller driving ®eld: Dcb � 1, X0 � 104, uin
cb � 0:1, a � 0.
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Fig. 3. The uba probe ®eld transmission coe�cient and the pulse group delay for a driven dense ladder system having the following

parameters: Dcb � 1, X0 � 104, uin
cb � 0:1, L � 2:25k. The pump ®eld is a cw ®eld while the in coming probe ®eld envelope is:

uin
ba�z � 0; s� � �0:001�exp�ÿ�sÿ 3000�2=106� �: a � 0; �: a � 1; �: a � 4.
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presence of LFC. Our results suggest a possible new
experimental technique for investigating LFC.
Furthermore, the computational simulations show
clearly that the EIT e�ect is stable in a dense gas
medium, in spite of LFC, i.e. the collisional dephas-
ingdoesnotdestroythecoherence e�ects responsible
for the establishment of EIT.
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