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Abstract

We study superradiant amplification in a pressure-broadened three-level cascade system. The effects of the system initial
coherence, degree of atomic inversion, and the length of the sample on the spatio-temporal distributions of the emitted fields
from the upper and lower transitions are computed for a slab geometry. q 2000 Elsevier Science B.V. All rights reserved.

1. Introduction

The study of cooperative cascade emission from
three-level atomic systems, E )E )E , was ini-c b a

w xtially undertaken by Okada et al. 1–3 . In a series of
w xfurther studies by Brownell and co-workers 4,5 and

w xby ourselves 6,7 , further experimental and numeri-
cal analysis of this problem were obtained for the
case of low gas densities, i.e. the case where the
atomic dephasing time is much longer than the su-
perradiant time. In this paper, we generalize our
previous work to incorporate theoretically the back-
ward radiation from a slab geometry. In particular,
we consider the exact problem dynamics when the

w xgas is in the pressure-broadened regime 8,9 . Here,
the medium is optically dense, i.e. the absorption
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1 Dedicated to Marlan O. Scully, in honor of his 60th birthday.

length for a weak signal resonant with the lower
transition and propagating in the gas system initially
in the ground state is much shorter than the corre-
sponding radiation wavelength. In this regime, the
backward wave, from each layer inside the active
medium, has to be properly incorporated at each step
of the calculation. Furthermore, local field correc-

w xtions 8,9 to the electromagnetic field, due to the
difference between the microscopic Lorentz field and
the macroscopic Maxwell field, in Bloch equations
become important.

In this paper, we solve numerically the coupled
integro-differential Maxwell–Bloch equations de-
scribing the electromagnetic radiation interaction with
the pressure broadened three-level cascade medium.
We do not assume, in Maxwell equations, the slowly
varying envelope approximation in space, and we
make, in Bloch equations, the distinction between
the Maxwell and Lorentz fields. We compute for the

w xcascade system, in the superradiant regime 10 , the
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fields resulting from the atomic upper and lower
transition and the atomic density matrix elements
spatio-temporal characteristics. We show that for an
incoherently prepared system, the same kind of spa-
tial symmetries in the fields distributions for the
respective transition are present as found in two-level
resonant systems, i.e. the pressure induced cavity

w xfield structure 11 , which results from the interfer-
ence between the forward and backward waves in
the optically dense medium. Furthermore, we show
that the bursts associated with the upper and lower
transitions are sequential and the time delay between
them is larger than the duration of the upper transi-
tion radiation burst. On the other hand, for a coher-
ently prepared system, we show that the fields distri-
butions, the transmitted and reflected fluxes, and the
time-delay of the bursts from different components
of the emitted radiation are substantially modified. In

Ž .particular, we find: i the threshold for the onset of
superradiance for the different radiation fields com-

Ž .ponents; ii the regime for the upper transition
Ž .forward radiation inhibition; iii the condition for

w x Ž .yoked superradiance 5 ; iv the superradiance over-
Ž .all efficiency; and v the extent of superbroadening

for the respective spectral distributions. We obtain
the detailed dynamics as function of the initial atomic
population inversion and of the sample length.

Our analysis does not include the effects of the
gas collision with the walls of the container, which,
if kept hot to prevent condensation, can be neglected
in the considered dense gas regime.

2. Maxwell–Bloch equations

The dynamics of the interaction of the electro-
magnetic field with the pressure-broadened three-
level atoms system is described by the coupled
Maxwell–Bloch equations. Neglecting the counter-
rotating term in the Hamiltonian, Bloch equations,
including the local field corrections, in the presence
of the upper and the lower Maxwell fields, f andcb

f , are given by:b a

Eraa
) )sG r y if r q if r 1Ž .b a bb b a b a b a b aEt

Erbb
) )syG r qG r q if r y if rb a bb cb cc b a b a b a b aEt

y if r ) q if ) r 2Ž .cb cb cb cb

Ercc
) )syG r q if r y if r 3Ž .cb cc cb cb cb cbEt

Ercb
sy g q iD rŽ .cb cb cbEt

y if L r yr y if L)

r 4Ž . Ž .cb cc bb b a ca

Erb a
sy g q iD rŽ .b a b a b aEt

y if L r yr q if L)

r 5Ž . Ž .b a bb aa cb ca

Erca
sy g q iD q iD rŽ .ca cb b a caEt

y if L r q if L r 6Ž .b a cb cb b a

where t is the retarded time normalized to the
Ž .classical Lorentzian shift v , tsv tyzrn , vL L L

Ž 2 . Ž .s Nd r 6"´ , N is the atomic number density, d
is the dipole transition matrix element for the upper
and lower transitions assumed here for simplicity to
be equal, the deltas corresponding to the normalized
detuning of the fields frequencies from that of the
upper and lower transition resonance frequencies, the
G ’s are the normalized natural decay constants,
which will be neglected here, as compared to the
g ’s, the transverse decay times, due to collisions, the
L superscripted fields are the Lorentz fields, and the
normalized fields are the Rabi frequencies of the
corresponding fields normalized to v , i.e.L

dEcb
f s .cb

"vL

More specifically, and in order to study the pre-
sent problem without the effects of additional com-
plications due to the particular atomic structures
details, we assume here the model where the atomic
transition frequencies are separated by values much
larger than the pressure broadened width, but in-
finitely smaller than the transition frequencies, and
such that the spin structures of the upper and ground
states are the same. Under such assumptions, we
have:

f L sf qr 7Ž .cb cb cb
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f L sf qr 8Ž .b a b a b a

g sa r qr 9Ž . Ž .cb cc bb

g sa r qr 10Ž . Ž .b a bb aa

g s0. 11Ž .ca

Neglecting the effects of quantum modifications to
the local field corrections, the constant a, for exam-
ple, for a Js0™Js1 transition is equal to 1.7293.
We shall use this value in subsequent calculations
for illustrative purposes.

Ž .Assuming that the transit time in the slab Lrc is
much smaller than any of the problem time con-
stants, and, as pointed earlier, that the pressure
broadened width is much smaller than the transitions
natural frequencies, the slowly-varying envelope ap-
proximation in time in Maxwell equation is justified.
However, and as was also pointed earlier, the
slowly-varying envelope approximation in space will
not be made. This leads to the following form for
Maxwell equations:

E 2fcb
qf sy3r 12Ž .cb cb2E z

E 2fb a
qf sy3r 13Ž .b a b a2E z

where zskz, and k is the wavenumber correspond-
ing to the atomic transitions, taken here for simplic-
ity to be the same for both the upper and lower
transitions.

Using the Green’s function for the Helmholtz
equation, the above differential forms of Maxwell
equations can be also written in an integral form
w x12,13 :

inf z ,t sf zs0,t exp i zŽ . Ž . Ž .cb cb

3 L X X X< <q i d z exp i zyz r z ,tŽ .Ž .H cb2 0

14Ž .

inf z ,t sf zs0,t exp i zŽ . Ž . Ž .b a b a

3 L X X X< <q i d z exp i zyz r z ,tŽ .Ž .H b a2 0

15Ž .

where the incoming fields are the external fields to
the present atomic-field system. We shall use the
above integral form of Maxwell wave-equation in
subsequent numerical calculations.

3. Initializing the system dynamics

The problem of interest in this paper is the super-
radiance of a system excited through a two-photon
process by a short pulse, i.e. the initial population of
only the upper and ground states are nonzero, while
that of the intermediate state is zero:

r z ,ts0 sxŽ .cc

r z ,ts0 s0Ž .bb

r z ,ts0 s1yx . 16Ž . Ž .aa

Coherent excitation refers to the instance that the
initial value for the off-diagonal matrix element rca

is nonzero, i.e:

(r z ,ts0 s x 1yx exp 2i z 17aŽ . Ž . Ž . Ž .ca

while for incoherent excitation:

r z ,ts0 s0. 17bŽ . Ž .ca

To describe superradiant emission, we need to con-
sider, in principle, the stochastic differential equa-
tions for the atom-field system. Instead, we simplify
the problem here and replace the quantum fluctua-

w xtions 14–19 of the Maxwell fields by external cw
fields of magnitude equal to the square root of the
expectation value of the quantum electrodynamics
fields’ fluctuations. This artifice will have the effect
of initializing the spontaneous emission of the sys-

Ž y9 .tem We use the value 10 for these fields . This
approximation is valid when the number of photons
is large, i.e. when we have classical fields, which is
the case under consideration here.

4. Conservation laws

The above simplified system of coupled equations
will be solved numerically through a similar algo-

w xrithm to that described in Ref. 13 . Therefore, it is
imperative that, at each step of the calculation, we
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verify the accuracy of our results by comparing the
results from the algorithm with those obtained from
rigorous conservation integrals. Next, we shall derive
these conservation laws:

Ž . Ž .1. Combining Eqs. 1 – 3 , while neglecting the
longitudinal relaxation times, we can derive the
atomic number conservation law, specifically:

E
r z ,t qr z ,t qr z ,t s0Ž . Ž . Ž .Ž .aa bb ccEt

or

r z ,t qr z ,t qr z ,t s1. 18Ž . Ž . Ž . Ž .aa bb cc

Ž . Ž . Ž .2. Combining Eqs. 1 – 3 and Eqs. 12 and
Ž .13 , and noting that:

Ef z ,tŽ .cb
syif zs0,t 19aŽ . Ž .cbE z zs0

Ef z ,tŽ .cb
s if zsL,t 19bŽ . Ž .cbE z zsL

Ž .with similar expressions for the f z,t field atb a

the boundaries, we can derive the energy conserva-
tion laws, specifically:

`
2 2< < < <f zs0,t q f zsL,t dtŽ . Ž .H cb cb

0

3 L
s r z ,ts0 yr z ,ts` d z 20Ž . Ž . Ž .H cc cc2 0

`
2 2< < < <f zs0,t q f zsL,t dtŽ . Ž .H b a b a

0

3 L
s r z ,ts0 yr z ,ts` d z .Ž . Ž .H aa aa2 0

21Ž .

3. Combining the above equations with the initial
conditions, specified in Section 3, we can deduce for
the total flux from all the emitted radiation fields, the
expression:

`
2 2< < < <f zs0,t q f zsL,tŽ . Ž .H cb cb

0

2 2< < < <q f zs0,t q f zsL,t dtŽ . Ž .b a b a

3 L
s3x Ly 2 r z ,ts`Ž .H cc2 0

qr z ,ts` d z . 22Ž . Ž .bb

Noting that the second term of the right hand side of
this equation is always non-negative, then the upper
limit to the total flux is 3x L. The efficiency of
superradiance is defined as the ratio of the total flux
from the reflected and transmitted parts of both
fields to this upper limit.

In our numerical computations, the computational
window size and the grid finesse are adjusted for

Ž .each set of parameters such that Eq. 22 is, at each
step, verified to an accuracy of better than 1%.

5. Results

The spatio-temporal distributions for the ampli-
tudes of the upper and lower fields, for incoherent
initial excitation of the system and for a sample
length that admits the point zsLr2 as a center of
spatial inversion symmetry in the case of the two-
level system are plotted in Fig. 1. We note the
following features:

Ž .i The invariance, also for the cascade three-level
system, of the amplitudes of the fields with respect
to a spatial inversion centered at zsLr2. This
symmetry leads, of course, to equal transmitted and
reflected signals for each of the fields. A situation
comparable to the two-level dynamics.

Ž .ii The sequential nature of the superradiance
bursts associated with the upper and lower transi-
tions. Physically, the system emits the upper transi-
tion burst first, bringing the population of the inter-
mediate state to a macroscopic value, then this inter-
mediate state superradiates in turn to the ground state
Ž .a cascade process . The validity of this physical
interpretation for the process can be verified by

Žfollowing the spatio-temporal behavior of r notbb
.shown here . Further confirmation for this process’

simple mechanism is obtained by noting that the
lower transition superradiance is absent when xF

Ž .1r2: In that case, r ts0 G1r2 everywhere andaa

the population of the intermediate state can never
build up, even following complete upper level transi-
tion superradiance, to a value larger than 1r2 thus
inhibiting any lower transition superradiance since
the system will then be an absorber at this frequency.

In Fig. 2, we plot the spatio-temporal distributions
of the fields amplitudes for the same parameters as
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Fig. 1. The spatio-temporal dependence of the magnitude of the electric fields are plotted for an incoherently excited system Ls9.75l.

in Fig. 1, but this time assuming that the system was
initially coherently excited. In Fig. 3, we plot the
time dependence of the amplitudes of reflected and
transmitted fields for the cases shown in Figs. 1 and
2. We note the following:

Ž .i The spatio-temporal distributions of the upper
and lower transitions fields are temporally overlap-
ping, i.e. we have channels mixing. This can be
understood by noting that the time-development of
the off-diagonal density matrix elements r andcb

r , the source terms for the f and f fields,b a cb b a

have their dynamics now modified. In effect, their
time development are now governed not only by the

Ždiagonal matrix elements the terms that represent
. Žthe population in the levels but also by r seeca

Ž . Ž ..Eqs. 4 and 5 .
Ž .ii There is asymmetry between the transmitted

and reflected fields for each of the transition. Fur-
thermore, there is an inhibition in the upper transi-
tion transmission field, with the inhibition more pro-
nounced for lower values of x . This phenomenon

w xhas previously been predicted in Refs. 1–3 , in the
context of the linear theory as due to the preparation
of the system in a two-photon coherence state.

Ž .iii The yoked superradiance between the upper
lower and upper transmitted fields observed in Ref.
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Fig. 2. The spatio-temporal dependence of the magnitude of the electric fields are plotted for a coherently excited system Ls9.75l.

w x5 is present. This phenomenon refers to the simulta-
neous emission of the upper and lower transmitted
bursts, while leaving a lagging and smaller burst in
the lower reflected channel. The dynamics of this
phenomenon can be easily understood, in the linear
regime, if we decompose r into a forward andca

backward components. As the system begins its time
development, the envelope of the forward component
of r is nonzero, while the envelope of the back-ca

ward component averages to zero. The smaller am-
plitude for the lower reflected pulse which is also
lagging is due to the depletion of the intermediate

state population, resulting from the enhancement of
the lower transmitted burst. This depletion leads to a
delay and reduction of the source term responsible
for the on-set of the reflected lower burst. Finally, it
is worth noting that the yoked-superradiance process
is manifest by the identical temporal profiles of the
two transmitted fields, in the regime of the linear
theory.

The normalized fluxes for the different radiation
channels as function of the upper state initial popula-
tion for both the incoherently and coherently pre-
pared systems are plotted in Fig. 4. All the fluxes are
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normalized to 3x L, i.e. the total normalized flux is
-1. We observe the following:

Ž .i The results of the linear theory previously
mentioned are more detailed here.

Ž .ii The thresholds for the onset of superradiance
vary, as noted earlier, with the initial state of coher-
ence of the system.

Ž .iii The overall increase in the total superradiance
efficiency for the coherently prepared system with
the initial increase of x . This can be understood by
noting that the saturation effects observed in the
incoherently prepared system and which is due to the
buildup of the intermediate state population, will not
be a constraint in the coherently prepared system,

Fig. 3. The magnitude of the transmitted and reflected normalized fields, for the cases shown in Figs. 1 and 2, are plotted as function of the
normalized time.
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Ž .Fig. 3 continued .

since the yoked-superradiance depletes the interme-
diate level population through the simultaneous
emission corresponding to the transmitted lower
transition. This process increases, in the coherently
prepared system, the differential between the upper
and intermediate levels population which of course
leads to a more efficient emission process.

Ž .iv The transmitted and reflected fluxes for each
channel converge to the same value when x™1,
because for complete inversion there is no difference
between coherently and incoherently prepared sys-
tems.

The normalized fluxes as function of the sample
length for those values of the sample length, where
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Fig. 4. The output fields normalized energy flux are plotted as function of the initial degree of upper-level excitation, for the different initial
coherent state. Ls9.75l. In these and the following graphs, we use the following symbols to denote the different fields components: U

reflected cb; q transmitted cb; = transmitted ba; ( reflected ba.

for incoherent excitation, we have exact spatial sym-
Ž Žmetry with respect to the point zsLr2 i.e.s nq

. Ž . .1r4 l and nq3r4 l are plotted in Fig. 5. We
note that:

Ž .i The normalized fluxes become substantial only
for samples already longer than a wavelength.

Ž .ii The rate of increase of the total flux rises
initially exponentially as function of the sample

length, the linear or Beer’s law regime, but then
almost linearly in the deep nonlinear regime.

The normalized fluxes for a range of lengths
corresponding in the two-level system to a transition

Ž Ž .domain i.e. the domain defined by nq1r4 l-L
Ž . .- nq3r4 l are plotted in Fig. 6. This is the

domain over which the field amplitude changes from
one parity eigenstate to another with respect to the

Fig. 5. The output fields normalized energy flux are plotted for xs0.8, for values of the sample length at the discreet points
Ž . Ž .Ls nq1r4 l and Ls nq3r4 l.
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Fig. 6. The output fields normalized energy flux are plotted for
x s0.8 for length values in a transition domain.

operator corresponding to the spatial inversion around
the mid-point of the sample. In this region, we have
competition between the effects of the geometrical
cavity and the pressure induced cavity. This competi-

tion leads for the case of the upper transition to the
possibility of the enhancement of the transmitted
radiation over the reflected radiation; while for the
lower transition, the differential between the trans-
mitted and the reflected radiation widens.

In Fig. 7, we plot the spectral distributions for the
radiation in the different channels. We note the
following:

Ž .i The asymmetry in the spectral distribution of
the transmitted and reflected channels for each tran-
sition.

Ž .ii The additional confirmation for the yoked
superradiance between the transmitted radiations
from both transitions. In the linear regime, for every

Ž .photon red blue shifted in the upper transition there
Ž .will be one photon blue red shifted by the same

amount in the lower transition, so as the total energy
of both photons is constant and correspond to the
energy difference between the upper and ground
states. This translates in the mirror symmetry be-
tween the spectra of the two forward channels. It is
to be observed that, as noted earlier, while the

Fig. 7. The spectral distribution of the output fields are plotted for the different channels. Ls9.75l and xs0.5.
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amplitudes of the two fields have the same time-de-
pendence, their phases are large in magnitude but
opposite in sign.

Ž .iii The spectral distribution is superbroadened
from the spectral width it would command from a
measurement of the amplitude temporal distribution.

Ž .Large phase-modulation not shown here is at the
source of the observed large spectral width.

6. Conclusion

In this paper, we studied the superradiance from a
ladder three-level pressure-broadened gas. We found
that the state of initial coherence between the ground
state and the upper state can dramatically modify the
spatial and temporal dynamics of the superradiance
in the different channels. The forward radiation inhi-
bition from the upper transition, the yoked superradi-
ance of the forward radiation for both transitions, the
enhanced superradiance and different thresholds for
superradiance in the different channels for a coher-
ently prepared system were considered numerically
in detail, and the validity of the associated physical
pictures for these effects was verified.
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