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Abstract 

 

 

A VHDL implementation of systolic modular multiplication for RSA cryptographic system is 

presented based on the work on systolic array of C. D. Walter and the algorithm of the modular 

multiplication proposed by P. L. Montgomery.  The rightmost cells of Walter’s paper are also 

constructed in VHDL. A simple model of 3 by 3-systolic array was tested by using waveform 

simulators and then by a field programmable logic device. The test shows correct outputs of the 

implementation.   The arbitrary numbers of cells need to be tested for the evaluation of the 

performance of the systolic array.  
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1.  Introduction of RSA crypto system    

 

The network security problem for an increasing traffic of Internet transactions has been 

emerged and there have been lots of researches in cryptographic algorithms. RSA [1] system is 

among them and widely used today. The system requires fast modular multiplication of integer 

numbers containing several hundred bits. The algorithm discussed here is that of providing 

hardware to perform modular multiplication using the algorithm proposed by P. L. Montgomery 

[2] and further developed by the S. E. Eldridge [3] and Dussé and Kaliski [4].  As cryptography 

becomes more widespread, fast cryptographic implementations are becoming important. 

Experience with hardware tools has shown that speed often cannot fully be realized unless all 

cryptographic methods of interest are implemented in hardware.  VHDL language provides good 

design tools for constructing systolic arrays as well as graphical ones. 

 

Even though RSA system is not a perfect solution, it provide reasonable security feature over 

the Internet with hundred bits of encryption standard. Fast processing of the modular 

multiplication is one of the most important key issues on the RSA technology.  As data size 

demanded over the network grows larger and larger every year, faster processors as well as 

sophisticated algorithm which is more effective for the hardware and software are always in high 

demand.   

In addition to the development of the algorithm in cryptographic software, hardware 

implementation of the calculations is desirable for most crypto systems due to its high speed 

performance. 
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1-1. Modular Arithmetic 

 
Two numbers are the modular inverse of each other if their product equals 1. 

If (AB) mod N = 1 mod N, then B = A-1 

The advantage of modular arithmetic is that it is no need to manipulate any huge numbers. The 

size of the number is depends on the modular base. 

AB mod N = ((A mod N) (B mod N)) mod N, 

ABC mod N = ((AB mod N) (C mod N)) mod N,  

ABCD mod N = ((AB mod N) (CD mod N)) mod N, 

And etc. 

This algorithm never looks at any product larger than (N-1)2.  

Above multiplication algorithm can be directly applied to compute  

Cm mod N, where C=A=B=D=E… 

If Cm mod N = 1 mod N, then Cm+1 mod N = C. 

With a number C and some power d modulo N, 

A = Cd mod N. 

By taking the result of the above exponentiation, A, it is possible to raise it to some other power e, 

Ae mod N = (Cd)e mod N = Cde mod N. 
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1-2.  Fermat’s little theorem. 

Leonhard Euler described ϕ (n), phi-function, which is the “exponential period” modulo n for 

numbers relatively prime that means it shares only one common factor, namely 1 with n. 

For example, ϕ (6) = 2 because only 1 and 5 are relatively prime with 6. 

ϕ (7) = 6 because any number less than 7 can share with 7 only 1 as a common factor and they 

(1,2,3,4,5 and 6) are all relatively prime with 7. Clearly this result will extend to all prime 

numbers. Namely, if p is prime, ϕ (p) = p-1. 

For example, if n = 5, a prime number, then ϕ (n) = 4. Set  a be 3. 

aϕ (n) mod n = 34mod 5 

32mod 5 = 4 

33mod 5 = 4*3 mod 5 = 2 

34mod 5 = 2*3 mod 5 = 1 

Fermat’s little theorem is a statement about powers in modular arithmetic in the special case 

where the modular base is a prime number. Pohlig and Hellman[5] study a scheme related to 

RSA, where exponentiation is done modulo a prime number. 

a(p-1) =1 mod p 

unless a is a multiple of p which must be a prime number. 

Rivest, Shamir, and Adelman[1] designed a fascinating encryption algorithm with Fermat’s little 

theorem. Decryption is only possible for the chosen few who have extra information. 

For given d, p and computed A = Cd mod p, to find e such that Ae mod p = 1, we can simply find 

e such that de = ϕ (p) which equals to p-1. Because then 

 

Ae mod p = Cde mod p = Cϕ (p) mod p = 1 mod p. 
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For given d,  p and computed A = Cd mod p, to find e such that Ae mod p = C, we need to find e 

such that de = ϕ (p) + 1. Because then 

Ae mod p = Cde mod p = Cϕ (p) + 1mod p = C mod p. 

From the fact that  

(ϕ (p) + 1) mod ϕ (p)  = (ϕ (p) + 1) - ϕ (p) = 1 mod ϕ (p), 

Therefore, finding e such that de = ϕ (p) + 1 is equivalent to finding e such that de = 1 mod ϕ (p), 

which is known as the modular inverse. There is a method known as extended Euclidean 

algorithm for computing the modular inverse. 
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1-3.  RSA Algorithm 

After picking a public exponent d and by finding a prime p, make those two values public. Using 

the extended Euclidean algorithm, determine e, the inverse of the public exponent modulo ϕ (p) = 

p-1. When people want to send someone a message C, they can encrypt and produce cipher text A 

by computing A = Cd mod p. To recover the plain text message, someone compute C = Ae mod p. 

But the private key e is the inverse of d modulo p-1. Since p is public, anyone can compute p-1 

and therefore determine e.  

RSA algorithm solves the above problem by using an Euler’s multiplicative phi-function. If p and 

q are relative prime, then ϕ (pq) = ϕ (p) ϕ (q). Hence, for primes p and q and n = pq,  

ϕ (n)  = (p-1)(q-1). 

The problem is finding e that satisfies 

  d*e = 1 mod (p-1)(q-1) 

where the pair (n,d) is the public key and e is the private key. The prime p and q must be kept 

secret or destroyed. To compute cipher text A from a plain text message C, find A = Cd mod n. To 

recover original message, compute C = Ae mod n . Only the entity that knows e can decrypt.   

Because of the relationship between d and e, the algorithm correctly recovers the original message 

C, since  

Ae mod n  = Cde mod n = C1mod n = C mod n. 

To know ϕ (n) one must know p and q. In other words, they must factor n. Multiplying big prime 

numbers can be a one-way function. Factoring takes a certain number of steps, and the number of 

steps increases sub-exponentially as the size of the number increases.     Extended Euclidean 

algorithm can be used to find private key e. 
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Using this fact, it is natural to build the private key using two primes and the public key using 

their product. There is one more condition, the public exponent d, must be relatively prime with 

(p-1)(q-1) to exist a modular inverse e. 

In practice, one would generally pick d, the public exponent first, then find the primes p and q 

such that d is relatively prime with (p-1)(q-1). There is no mathematical requirement to do so, it 

simply makes key pair generation a little easier. In fact, the two most popular d’s in use today are 

F0 = 3 and F4 = 65,537. The F in F0 and F4 stands for Pierre de Fermat. 
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2. Montgomery’s Algorithm 

In RSA cryptography system, it requires lots of modular multiplication. Montgomery proposed an 

algorithm that conducts the modular multiplication without trial division but produces some 

residue. This algorithm is suitable for hardware or software implementation.  

Let N be an integer (the modulus) and let R be an integer relatively prime to N. We represent the 

residue class A mod N as AR mod N and redefine modular multiplication as 

 

Mont_Product (A, B, N, R) = ABR-1mod N. 

 

It is not hard to verify that Montgomery multiplication in the new representation is isomorphic to 

modular multiplication in the ordinary one: 

 

Mont_Product (AR mod N, BR mod N, N, R) = (AB)R mod N. 

 

Since AR mod N and BR mod N are both less than N, their product is less than NN that is less 

than RN, so it forms a legal input for Mont_Product. A drawback of the algorithm is the 

redundant factor of R for the desired result, (AB) mod N. 

We can similarly redefine modular exponentiation as repeated Montgomery multiplication. This 

“Montgomery exponentiation” can be computed with all the usual modular exponentiation 

speedups. 

Montgomery’s theorem 

Let N and R be relatively prime integers (RR’  NN’ = 1, 0 < N’ <R), and let N’ = -N-1mod 

R.  
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Then for all integers T, (T+MN)/R is an integer satisfying 

(T+MN)/R = TR-1 mod N 

where M = TN’ mod R. 

 

If we choose the right R, a power of base in which we represent multiple-precision integers, then 

division by R and reduction modulo R are trivial. With such an R Montgomery reduction is no 

more expensive than two multiple-precision products. 

The method represents as a function: 

Function REDC(x)    //x = AB 

 m = (x mod R) * N’ mod R 

 t = (x + m*N) / R 

 If t < N 

   return t 

   else return t-N. 

we need x+m*N to be divisible by R.   mN = ((x mod R) N’ mod R) N = xNN’ mod R = -x mod 

R.    x +mN = (x +  -x) mod R = 0 mod R.     Thus R divides x + mN. 

Next, x + mN = x mod N 

          tR  = x mod N 

            t   = x R’ mod N (where R’ = R-1 mod N) 

Thus t is congruent mod N to the desired result.   If x < RN, then t < 2N, so either t or t-N is the 

answer. 

  m < R 

        x + mN < RN + RN 
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(x + mN) /R < 2N 

Thus REDC(x) returns xR’mod N given 0 ≤ x <RN. 

In hardware implementation, use n0’ = -N-1 mod bi instead of  using –N’mod R for base bi. R = bn.   

The program becomes 

  Mont_Product (A, B, N, R) 

  for i = 0 to n-1 do begin 

   T: = T + A[i] * B* bi; 

   M: = T[i]*n0’mod bn; 

   T: = T + m*N* bi; 

   end; 

   return T/R; 

  end; 

The procedure divides only by R = bn, so all divisions can be done by shifting out low order bits. 

The time consuming part is the two multiplications. 
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3. Systolic Modular Multiplication  

Koç and Hung [6], is the first attempt at a systolic algorithm for modular  multiplication. 

However, their systolic design suffers from excessive latency and a slow clock, the result of the 

unsuitability of the natural algorithm [7] which is based on Horner’s nested multiplication 

method. It involves repeated additions of the multiplicand and repeated subtractions of the 

modulus. Shand, Bertin, and Vuillemin[8], describes a pipeline similar to one row of the array 

presented here which programmed into the hardware array. In McCanny and McWhirter[9]’s 

work, the first digit of the output appears after about 13n / 2  clock cycles, where n is the 

maximum number of digits in any input. Moreover, the clock cycle needs to be slow enough to 

allow for calculation the multiple of the modulus. The problem of the movement of the carries 

and that of the multiple modulus is resolved by using Montgomery [2]’s algorithm.  With 

Montgomery’s work and McCanny and McWhirter’s work on systolic multiplication, Colin D. 

Walter [10] constructed a systolic array of modular multiplication for hardware implementation. 

His version of Montgomery’s algorithm is 

// Precondition: No common factor between r and M to ensure the existence of 

// multiplicative inverse (r-M[0])-1 mod r.  

P: = 0; 

For i := 0 to n-1 do 

Begin 

  Q[i] := ((P[0] + A[i] * B[0] * (r – M[0])-1) mod r; 

  P  := (P + A[i]*B + Q[i]*M) div r;    //P, Partial product 

End 

There are following relations: 
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RiPi = Ai * B + Qi*M 

RnP =  A*B + Q*M 

So P = (r-n AB) mod M with extra power of r. To remove the factor, do extra application of the 

same operation with inputs P and r2n mod M. 

A key property of Montgomery’s algorithm is that the choice of modulus multiple is based on the 

lowest digit P[0] of the partial product. With this multiple Q[i] determined, the digits of the i + 1st 

partial product P i+1 can be computed in order starting with the lowest. 

With  Q[i] known, digits output from one addition cycle enable the corresponding digits for the 

next cycle to be found. In Fig. 3-1, each row performs an iteration of the loop and columns 

compute successive values for a single digit position.  The typical cell performs a sing digit 

calculation of the assignment P, and generates a carry in the normal way. 

 

Pi+1[j-1] + r*CarryOut = Pi[j] + A[i]*B[j] + Q[i]*M[j] + CarryIn. 

 

The cells are all identical with the exception of the rightmost column which does not need carry in 

and Q[i]. The first output digit of a modular multiplication appears after 2n + 2 clock cycle. A 

depth of 5 gates suffices for the typical cell shown in Fig. 3-2, and less for the right most cells, 

which do not need carries and inputs of Q[i]. 
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Fig. 3-1. The Arrangement of modular multiplication cells (3 by 3 bits) 
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Fig. 3-2  The typical cell of the systolic array 
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4. VHDL Implementation of Systolic Array 

 
4-1.  VHDL  language 

VHDL[11] is a hardware description language intended for documenting and modeling digital 

systems ranging from a small chip to a large system. It can be used to model a digital system 

at any level of abstraction raging from the architectural level down to the gate level.  

 

The language was initially developed specifically for Department of Defense VHSIC 

(Very High Speed Integrated Circuits) contractors. However, due to an overwhelming need in 

the industry for a standard hardware description language, the VHSIC Hardware Description 

Language (VHDL) was selected and later approved to become an IEEE standard [12] called 

the IEEE Std 1076-1987. 

 The language was updated again in 1993 to include a number of clarifications in addition to a 

number of new features like report statement and pulse rejection limit. The codes of the 

VHDL implementation are based on this version of the language called the IEEE Std 1076-

1993. 

 

 

4-2. Design Units 

VHDL  has several subunits in order to provide organized frame structure of the 

programming. The followings are basic units of VHDL. 
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A. Entity declaration 

An entity declaration describes the interface of the design to its external environments, 

that is, it describes the ports (inputs, outputs, etc.) through which the design communicates 

with other designs. 

 

B. Architecture body 

An architecture body describes the composition or functionality of a design. This could be 

described as a mix of sequential behavior, concurrent behavior, and components. A design 

may have more than one architecture body, each describing a different composition, that 

is, using a different behavior of design. 

 

C. Configuration declaration 

A configuration declaration is used to specify the bindings of components present in an 

architecture body to other design entities. An entire hierarchy of design, that is, the 

bindings that link all the design entities in a hierarchy, can also be specified using the 

configuration declaration. 

 

 

D. Package declaration 

A package declaration is a repository to store commonly used declaration. 

 

E. Package body 
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A package body is always associated with a package declaration and contains subprogram 

bodies, along with other declarations. 

 

F. Generate statement [13] 

This statement is executed at elaboration time. The execution either causes replication of 

concurrent statements or causes conditional selection of concurrent statements. 

 

G. Loop statement 

The execution of the loop causes the statements within the loop to be iterated the specified 

number of times. A loop statement can be a for-loop, a while-loop or a repeat-forever-

loop. 
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4.3 Wave Form Simulations 

4-3-1.  Experiment with Maxplus2 software  

1. Simulation A. 
 
To verify the systolic array design model, with Maxplus 2 software made by Altera Corporation, 
simulation of VHDL code has been carried out prior to the hardware implementations. First one is 
type A simulation with the following parameters shown in Table 4-1. 
 
 
 
 
 
 

Table 4-1.  Wave Form Simulation A Input Parameters (Maxplus 2) 
 

 
Pre-conditions Pre-defined Inputs Outputs 

 
(R) (P) = AB (mod M) 
 
rR – nM = 1 
 where r is radix, 
        n is number of 
bits, 
        R = r n = 2 3 = 8 
 

 
P  = PI2 = 0 

 
A = AI2= 7 

 
P = POUT2 = 7 
 

 
0 < r < M 

 
CLOCK = CLB5 
               = CLM5 

 
B = BI2 = 3 
 

 

 
0 < M < r n 

  
M = MI2 = 5 
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     Fig 4-1.  Waveform Simulation A (Maxplus 2 version) 
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4-3-2. Experiment with Xilinx software 

Fig 4.2 shows general procedure from VHDL programming to the hardware implementations. 

The simulation has been done by Xilinx Foundation software with Lab book. VHDL codes are 

check by compiler and bit stream file that is fit to the specific FLGA device, XC4010E.    

  

 

Fig. 4-2 Hierarchical structure of VHDL project 
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1. Simulation  A. 

 
To verify the systolic array design model, with Xilinx software made by Xilinx Corporation, 
simulation of VHDL code has been carried out prior to the hardware implementations. Second one is 
type A simulation with the following parameters shown in Table 4-2. 

 
 

 
 

Table 4-2.  Wave Form Simulation A Input Parameters (Xilinx) 
 

 
Pre-conditions Pre-defined Inputs Outputs 

 
 
(R) (P) ≡ AB (mod M) 
rR – nM = 1 
 where r is radix, 
        n is number of bits, 
        R = r n = 2 3 = 8 
 

 
P  = PI2 = 0 

 
A = AI2= 7 

 
P = POUT2 = 7 
 

 
0 < r < M 

 
CLOCK = CLB5 
               = CLM5 
 

 
B = BI2 = 3 
 

 

 
0 < M < r n 

 

  
M = MI2 = 5 
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                       Fig 4-3. Wave Form Simulation A result (Xlinx version) 
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2. Simulation B. 

To verify the systolic array design model, with Xilinx software made by Xilinx Corporation, 
simulation of VHDL code has been carried out prior to the hardware implementations. Third one 
is type B simulation with the following parameters shown in Table 4-3. 
 
 

 

     Table 4-3.  Wave Form Simulation B Input Parameters (Xilinx) 

Pre-conditions Pre-defined Inputs Outputs 
 

 
(R) (P) ≡ AB (mod 
M) 
rR – nM = 1 
 where r is radix, 
        n is number of 
bits, 
        R = r n = 2 3 = 8 
 

 
P  = PI2 = 0 

 
A = AI2= 6 

 
P = POUT2 = 3 
 

 
0 < r < M 

 
CLOCK = CLB5 
               = CLM5 
 

 
B = BI2 = 4 
 

 

 
0 < M < r n 

 

  
M = MI2 = 5 
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                  Fig 4-4. Wave Form Simulation B result (Xlinx version) 
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4.4 Hardware Experiment 

4-4-1. Field Programmable Logic Device 

Computer-aided design and programmable logic architecture have been developed to 

remove the drudgery from building digital circuits and make flexibility on the designing the 

systems.  In practical engineering, the details of the logic circuit needed to realize the truth 

table are worked out by a logic-synthesis program. Then, the operation of the logic circuit is 

checked using a simulation program. If the circuit simulates correctly, the gates and wires are 

mapped into a field programmable gate array (FPGA) or complex programmable logic device 

(CPLD) IC using specialized place & route or fitter programs.  

These field programmable logic devices (FPLD) contain logic gates and the means for 

interconnecting them within a single integrated circuit. The software programs determine how 

the gates in the device can be connected to build the logic circuit. The program’s output is a 

bit-stream configuration file that is downloaded into the FPLD to make it act like logic circuit. 

The FPLD can then be placed into a larger circuit where it will perform its functions after 

some possible debugging. 

 

4-4-2. Experiment Procedure 

Following is the experimental procedure using XC40 FLGA board, XESS software tools and 

Xilinx CAD tool [14]. 

A. General procedure 

1. Generate bit stream file and port specification file in the design program  

2. Download to the FLGA board 

3. Connect wires to the specified port number for FLGA 
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4. Check and debug the design using the LED outputs 

 

B. Detail procedure 

1. Copy bit stream file(.bit) and port specification file(.pad) generated by Xilinx VHDL 

implementation step into the XESS tool directory. 

 E.g.) copy c:\fndtm\Active\Projects\starray\xproj\ver10\rev2\starray.bit c:\xstool\bin 

2. Disconnect the all the wires previously connected to FLGA on the board 

3. Connect DC9V power adapter with female-center positive to the board. 

4. Connect the parallel cable between PC LPT1 port and XC40 board. 

5. Test the initial board status with XESS software, XSTEST.exe 

 E.g.) c:\xstool\bin\xstest xs40-010e 

 If the board shows blinking signal on the LED display, then the board is ready. 

6. Download bit-stream file to the board and build the circuit in the FLGA. 

7. Find the negative port number (52) and connect the wire. 

8. Put the LED lights on the board 

9. Connect all the wires on the board based on the port numbers of the starray.pad file. Port numbers 

with input 1 represent positive polarity and numbers with input 0 represent negative one on the 

board. 

10. Check the series of LED lights as a result. 

11. For the new wiring as a debugging,  go to step 2 again. 
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Table 4-4. Xilinx PAD Specification 
 
 
 
PAR: Xilinx Place And Route M1.5.19. 
 
Xilinx PAD Specification File 
***************************** 
 
Input file:       map.ncd 
Output file:      starray.ncd 
Part type:        xc4010e 
Speed grade:      -1 
Package:          pc84 
 
Pinout by Pin Name: 
+------------------------------------------------+-----------+--------------+ 
|                    Pin Name                    | Direction |  Pin Number  | 
+------------------------------------------------+-----------+--------------+ 
| AI<0>                                          |  INPUT    | P7           | 
| AI<1>                                          |  INPUT    | P16          | 
| AI<2>                                          |  INPUT    | P82          | 
| BI<0>                                          |  INPUT    | P40          | 
| BI<1>                                          |  INPUT    | P20          | 
| BI<2>                                          |  INPUT    | P84          | 
| CLB<0>                                         |  INPUT    | P44          | 
| CLB<1>                                         |  INPUT    | P23          | 
| CLB<2>                                         |  INPUT    | P81          | 
| CLB<3>                                         |  INPUT    | P50          | 
| CLB<4>                                         |  INPUT    | P62          | 
| CLB<5>                                         |  INPUT    | P35          | 
| CLM<0>                                         |  INPUT    | P66          | 
| CLM<1>                                         |  INPUT    | P65          | 
| CLM<2>                                         |  INPUT    | P27          | 
| CLM<3>                                         |  INPUT    | P10          | 
| CLM<4>                                         |  INPUT    | P3           | 
| CLM<5>                                         |  INPUT    | P71          | 
| MI<0>                                          |  INPUT    | P67          | 
| MI<1>                                          |  INPUT    | P68          | 
| MI<2>                                          |  INPUT    | P18          | 
| PI<0>                                          |  INPUT    | P24          | 
| PI<1>                                          |  INPUT    | P19          | 
| PI<2>                                          |  INPUT    | P5           | 
| POUT<0>                                        |  OUTPUT   | P4           | 
| POUT<1>                                        |  OUTPUT   | P6           | 
| POUT<2>                                        |  OUTPUT   | P83          | 
+------------------------------------------------+-----------+--------------+ 
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Fig. 4-5.    XS40 board with Xilinx XC4010E FPGA 
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5. Conclusion 

 Systolic array design with the Montgomery’s algorithm has been simulated by VHDL 

language and software simulators. The three simulations of VHDL implementations showed 

desired results of modular multiplications. The VHDL implementation has shown that the 

language provides a useful tool of practicing the algorithms without drawings of large amounts of 

logic gates. And it also gives effectiveness on designing and simulations of microprocessor. 

Pipelining capability of design with clock cycles and VHDL coding of arbitrary size of input and 

output bits with  ‘Generate’ statement are remained as a further study. 
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VHDL code of systolic array for modular multiplication - Maxplus2 version  

 

Typical Cell (Cell.vhd) 
 
LIBRARY ieee; 
USE  ieee.std_logic_1164.ALL; 
 
LIBRARY usrlib; 
USE           usrlib.cellunit.ALL; 
 
ENTITY cell IS 
    PORT (A1, B1, C1, D1, M1, P1, Q1:in   STD_LOGIC; 
               A2, B2, C2, D2, M2, P2, Q2:out STD_LOGIC); 
END cell; 
 
ARCHITECTURE A OF cell IS 
 SIGNAL X1, X2, X3, X4, Y1, Y2, Y3, Z1, Z2, Z3, Z4: STD_LOGIC; 
 BEGIN 
   and1:   andGate PORT MAP (A1, B1, A2, B2, X1); 
   and2:  andGate PORT MAP (M1, Q1, M2, Q2, X2); 
   ha1:  hAdder  PORT MAP (X1, X2, X3, X4); 
   ha2:  hAdder  PORT MAP (P1, C1, Y2, Y1); 
   or1:  orGate   PORT MAP (D1, Y1, Y3); 
   ha3:  hAdder   PORT MAP (Y2, X3, P2, Z1); 
   ha4:  hAdder   PORT MAP (X4, Y3, Z2, Z4); 
   ha5:  hAdder   PORT MAP (Z1, Z2, C2, Z3); 
   or2:  orGate   PORT MAP (Z3, Z4, D2); 
END A; 
 
 
Right most Cells (Cell_right.vhd) 
 
LIBRARY ieee; 
USE  ieee.std_logic_1164.ALL; 
 
LIBRARY usrlib; 
USE           usrlib.cellunit.ALL; 
 
ENTITY cell_right IS 
    PORT (A1, B1, M1, P1:in  STD_LOGIC; 
               A2, B2, C2, D2, M2, P2, Q2:out STD_LOGIC); 
END cell_right; 
 
ARCHITECTURE A OF cell_right IS 
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 SIGNAL  Q1, X1, X2, X3, X4, Y1, Z1: STD_LOGIC; 
 BEGIN 
   and1:   andGate PORT MAP (A1, B1, A2, B2, X1); 
   Q1 <= P1 XOR X1; 
   and2:  andGate PORT MAP (M1, Q1, M2, Q2, X2); 
   ha1:  hAdder  PORT MAP (X1, X2, X3, X4); 
   ha3:  hAdder   PORT MAP (P1, X3, P2, Z1); 
   ha5:  hAdder  PORT MAP (Z1, X4, C2, D2); 
END A; 
 
 
The Systolic Array (sys3.vhd) 
 
LIBRARY ieee; 
USE     ieee.std_logic_1164.ALL; 
 
LIBRARY usrlib; 
USE     usrlib.cellunit.ALL; 
USE     usrlib.ffunit.ALL; 
 
 
ENTITY  syst3 IS 
                        PORT (CLK: IN  STD_LOGIC; 
     AI:   IN  STD_LOGIC_VECTOR (2 DOWNTO 0); 
                              BI:   IN  STD_LOGIC_VECTOR (2 DOWNTO 0); 
                              MI:  IN  STD_LOGIC_VECTOR (2 DOWNTO 0); 
                              PI:    IN  STD_LOGIC_VECTOR (2 DOWNTO 0); 
                              POUT:OUT STD_LOGIC_VECTOR (2 DOWNTO 0));                                                
END syst3; 
 
 
ARCHITECTURE a OF syst3 IS 
       SIGNAL  BL:  STD_LOGIC_VECTOR(5 DOWNTO 0); 
                           SIGNAL  ML: STD_LOGIC_VECTOR(5 DOWNTO 0);   
                           SIGNAL  A:    STD_LOGIC_VECTOR(8 DOWNTO 0); 
                           SIGNAL  B:    STD_LOGIC_VECTOR(8 DOWNTO 0); 
                           SIGNAL  C:    STD_LOGIC_VECTOR(8 DOWNTO 0); 
                           SIGNAL  D:    STD_LOGIC_VECTOR(8 DOWNTO 0); 
                           SIGNAL  M:   STD_LOGIC_VECTOR(8 DOWNTO 0); 
                           SIGNAL  P:    STD_LOGIC_VECTOR(8 DOWNTO 0); 
                           SIGNAL  Q:    STD_LOGIC_VECTOR(8 DOWNTO 0);  
                  
BEGIN 
            cell0: cell_right  PORT MAP (AI(0), BI(0), MI(0), PI(0),   
                   A(0),  B(0),  C(0),  D(0),  M(0),  P(0),  Q(0)); 
            cell1: cell  PORT MAP (A(0),  BI(1), C(0),  D(0),  MI(1), PI(1), Q(0),   
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            A(1),  B(1),  C(1),  D(1),  M(1),  P(1),  Q(1)); 
            cell2: cell  PORT MAP (A(1),  BI(2), C(1),  D(1),  MI(2), PI(2), Q(1),   
             A(2),  B(2),  C(2),  D(2),  M(2),  P(2),  Q(2)); 
 
       lch0b: latch1    PORT MAP (CLK,   B(0),  BL(0));  
  lch1b: latch1     PORT MAP (CLK,   B(1),  BL(1)); 
  lch2b: latch1    PORT MAP (CLK,   B(2),  BL(2));  
  lch0m: latch1     PORT MAP (CLK,   M(0),  ML(0));  
  lch1m: latch1     PORT MAP (CLK,   M(1),  ML(1)); 
  lch2m: latch1     PORT MAP (CLK,   M(2),  ML(2)); 
 
           cell3: cell_right  PORT MAP (AI(1), B(0),  M(0),  P(1),    
                A(3),  B(3),  C(3),  D(3),  M(3),  P(3),  Q(3)); 
           cell4: cell   PORT MAP (A(3),  B(1),  C(3),  D(3),  M(1),  P(2),  Q(3),   
                 A(4),  B(4),  C(4),  D(4),  M(4),  P(4),  Q(4)); 
           cell5: cell   PORT MAP (A(4),  B(2),  C(4),  D(4),  M(2),  C(2),  Q(4),   
                  A(5),  B(5),  C(5),  D(5),  M(5),  P(5),  Q(5)); 
  lch3b: latch1     PORT MAP (CLK,   B(3),  BL(3));  
  lch4b: latch1    PORT MAP (CLK,   B(4),  BL(4)); 
  lch5b: latch1     PORT MAP (CLK,   B(5),  BL(5));  
  lch3m: latch1     PORT MAP (CLK,   M(3),  ML(3));  
  lch4m: latch1     PORT MAP (CLK,   M(4),  ML(4)); 
  lch5m: latch1     PORT MAP (CLK,   M(5),  ML(5)); 
 
            cell6: cell_right  PORT MAP (AI(2), B(3),  M(3),  P(4),   
             A(6),  B(6),  C(6),  D(6),  M(6),  P(6),  Q(6)); 
            cell7: cell    PORT MAP (A(6),  B(4),  C(6),  D(6),  M(4),  P(5),  Q(6),   
              A(7),  B(7),  C(7),  D(7),  M(7),  P(7),  Q(7)); 
            cell8: cell     PORT MAP (A(7),  B(5),  C(7),  D(7),  M(5),  C(5),  Q(7),   
               A(8),  B(8),  C(8),  D(8),  M(8),  P(8),  Q(8)); 
            POUT(0) <= P(7); 
            POUT(1) <= P(8); 
            POUT(2) <= C(8);      
END a; 
 
 
 
 
 
 
 
 
Appendix B.     

VHDL code of systolic array for modular multiplication - Xilinx version 
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syst.vhd – the main program 

library IEEE, usr; 
use IEEE.std_logic_1164.all; 
use usr.cells.ALL; 
 
 
entity syst is 
   port(CLB:  in  STD_LOGIC_VECTOR (5 downto 0); 
     CLM:  in  STD_LOGIC_VECTOR (5 downto 0); 
        AI:   in  STD_LOGIC_VECTOR (2 downto 0); 
        BI:   in  STD_LOGIC_VECTOR (2 downto 0); 
        MI:   in  STD_LOGIC_VECTOR (2 downto 0); 
        PI:   in  STD_LOGIC_VECTOR (2 downto 0); 
        POUT: out STD_LOGIC_VECTOR (2 downto 0)); 
end syst; 
 
 
architecture syst_arch of syst is 
 
 COMPONENT cell_right  
          PORT (AR1, BR1, MR1, PR1:in  STD_LOGIC; 
                AR3, BR3, CR3, DR3, MR3, QR3:out STD_LOGIC); 
          END       component;  
 COMPONENT cell 
    PORT (A1, B1, C1, D1, M1, P1, Q1:in  STD_LOGIC; 
                A2, B2, C2, D2, M2, P2, Q2:out STD_LOGIC); 
         END       component; 
 
 COMPONENT latch1 
   PORT(CLK: IN  STD_LOGIC; 
               D  : IN  STD_LOGIC; 
               Q  : OUT STD_LOGIC); 
             END    component; 
 
        SIGNAL  BL: STD_LOGIC_VECTOR(5 DOWNTO 0); 
       SIGNAL  ML: STD_LOGIC_VECTOR(5 DOWNTO 0);   
       SIGNAL  A:  STD_LOGIC_VECTOR(8 DOWNTO 0); 
       SIGNAL  B:  STD_LOGIC_VECTOR(8 DOWNTO 0); 
       SIGNAL  C:  STD_LOGIC_VECTOR(8 DOWNTO 0); 
       SIGNAL  D:  STD_LOGIC_VECTOR(8 DOWNTO 0); 
       SIGNAL  M:  STD_LOGIC_VECTOR(8 DOWNTO 0); 
       SIGNAL  P:  STD_LOGIC_VECTOR(8 DOWNTO 0); 
       SIGNAL  Q:  STD_LOGIC_VECTOR(8 DOWNTO 0);  
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BEGIN 
        cell0: cell_right  PORT MAP (AI(0), BI(0), MI(0), PI(0),   
                  A(0),  B(0),  C(0),  D(0),  M(0),  Q(0)); 
        cell1: cell   PORT MAP (A(0),  BI(1), C(0),  D(0),  MI(1), PI(1), Q(0),   
         A(1),  B(1),  C(1),  D(1),  M(1),  P(1),  Q(1)); 
        cell2: cell     PORT MAP (A(1),  BI(2), C(1),  D(1),  MI(2), PI(2), Q(1),   
         A(2),  B(2),  C(2),  D(2),  M(2),  P(2),  Q(2)); 
 lch0b: latch1    PORT MAP (CLB(0),   B(0),  BL(0));  
 lch1b: latch1     PORT MAP (CLB(1),   B(1),  BL(1)); 
 lch2b: latch1    PORT MAP (CLB(2),   B(2),  BL(2));  
 lch0m: latch1     PORT MAP (CLM(0),   M(0),  ML(0));  
 lch1m: latch1     PORT MAP (CLM(1),   M(1),  ML(1)); 
 lch2m: latch1     PORT MAP (CLM(2),   M(2),  ML(2)); 
        cell3: cell_right  PORT MAP (AI(1), BL(0), ML(0), P(1),    
         A(3),  B(3),  C(3),  D(3),  M(3),  Q(3)); 
        cell4: cell       PORT MAP (A(3),  BL(1), C(3),  D(3),  ML(1), P(2),  Q(3),   
         A(4),  B(4),  C(4),  D(4),  M(4),  P(4),  Q(4)); 
        cell5: cell       PORT MAP (A(4),  BL(2), C(4),  D(4),  ML(2), C(2),  Q(4),   
         A(5),  B(5),  C(5),  D(5),  M(5),  P(5),  Q(5)); 
 lch3b: latch1     PORT MAP (CLB(3),   B(3),  BL(3));  
 lch4b: latch1    PORT MAP (CLB(4),   B(4),  BL(4)); 
 lch5b: latch1     PORT MAP (CLB(5),   B(5),  BL(5));  
 lch3m: latch1     PORT MAP (CLM(3),   M(3),  ML(3));  
 lch4m: latch1     PORT MAP (CLM(4),   M(4),  ML(4)); 
 lch5m: latch1     PORT MAP (CLM(5),   M(5),  ML(5)); 
      cell6: cell_right  PORT MAP (AI(2), BL(3), ML(3), P(4),   
                             A(6),  B(6),  C(6),  D(6),  M(6),  Q(6)); 
      cell7: cell  PORT MAP (A(6),  BL(4), C(6),  D(6),  ML(4), P(5),  Q(6),   
         A(7),  B(7),  C(7),  D(7),  M(7),  P(7),  Q(7)); 
      cell8: cell  PORT MAP (A(7),  BL(5), C(7),  D(7),  ML(5), C(5),  Q(7),   
         A(8),  B(8),  C(8),  D(8),  M(8),  P(8),  Q(8)); 
      POUT(0) <= P(7); 
      POUT(1) <= P(8); 
      POUT(2) <= C(8);         
           
end syst_arch; 
usr.vhd  - contains component packages - cell, cell_right and latch1 

-- USR.VHD 
 
LIBRARY ieee; 
USE ieee.std_logic_1164.ALL; 
 
PACKAGE cells IS 
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 COMPONENT latch1 
 PORT(CLK, D: IN  STD_LOGIC;  
         Q  : OUT STD_LOGIC); 
 END COMPONENT; 
 
 COMPONENT cell 
 PORT (A1, B1, C1, D1, M1, P1, Q1:in  STD_LOGIC; 
       A2, B2, C2, D2, M2, P2, Q2:out STD_LOGIC); 
 END COMPONENT; 
  
 COMPONENT cell_right 
 PORT (AR1, BR1, MR1, PR1:in  STD_LOGIC; 
       AR3, BR3, CR3, DR3, MR3, QR3: OUT STD_LOGIC); 
 END COMPONENT; 
END cells; 
 
 
LIBRARY IEEE; 
USE     IEEE.std_logic_1164.ALL; 
 
 
ENTITY latch1 IS 
  PORT(CLK, D: IN  STD_LOGIC; 
          Q  : OUT STD_LOGIC); 
END latch1; 
 
ARCHITECTURE latch1_arch OF latch1 IS 
 
BEGIN 
 PROCESS(clk, d) 
      BEGIN 
    IF CLK = '1' THEN 
             Q <= D; 
                END IF; 
        END PROCESS; 
END latch1_arch; 
 
 
LIBRARY ieee; 
USE ieee.std_logic_1164.ALL; 
 
 
ENTITY cell IS 
  PORT (A1, B1, C1, D1, M1, P1, Q1:in  STD_LOGIC; 
        A2, B2, C2, D2, M2, P2, Q2:out STD_LOGIC); 
END     cell; 



 37

 
ARCHITECTURE cell_arch OF cell IS 
 
 SIGNAL X1, X2, X3, X4, Y1, Y2, Y3, Z1, Z2, Z3, Z4: STD_LOGIC; 
 BEGIN 
   and1:    
           X1 <= A1 AND B1; 
           A2 <= A1; 
           B2 <= B1; 
   and2:   
           X2 <= M1 AND Q1; 
           M2 <= M1; 
           Q2 <= Q1; 
   ha1:   
    X3 <= X1 XOR X2; 
    X4 <= X1 AND X2; 
   ha2:   
    Y2 <= P1 XOR C1; 
    Y1 <= P1 AND C1; 
    Y3 <= D1 OR Y1; 
   ha3:   
    P2 <= Y2 XOR X3; 
    Z1 <= Y2 AND X3; 
   ha4:   
    Z2 <= X4 XOR Y3; 
    Z4 <= X4 AND Y3; 
   ha5:   
    C2 <= Z1 XOR Z2; 
    Z3 <= Z1 AND Z2; 
    D2 <= Z3 OR Z4; 
END cell_arch; 
 
 
 
LIBRARY IEEE; 
USE IEEE.std_logic_1164.ALL; 
 
ENTITY cell_right IS 
 PORT (AR1, BR1, MR1, PR1:in  STD_LOGIC; 
       AR3, BR3, CR3, DR3, MR3, QR3: OUT STD_LOGIC); 
END cell_right; 
 
ARCHITECTURE cell_right_arch OF cell_right IS 
 
  
 SIGNAL  QR1, XR1, XR2, XR3, XR4, ZR1: STD_LOGIC; 



 38

 BEGIN 
    
   XR1 <= AR1 AND BR1; 
   AR3 <= AR1; 
   BR3 <= BR1; 
 
   QR1 <= PR1 XOR XR1; 
    
   XR2 <= MR1 AND QR1; 
   MR3 <= MR1; 
   QR3 <= QR1; 
    
    
   XR3 <= XR1 XOR XR2; 
   XR4 <= XR1 AND XR2; 
    
   ZR1 <= PR1 AND XR3; 
    
    
   CR3 <= ZR1 XOR XR4; 
   DR3 <= ZR1 AND XR4; 
    
END cell_right_arch; 


