VHDL IMPLEMENTATION OF SYStoLIC MODULAR
MULTIPLICATIONSON RSA CRYPTOSYSTEM

THESS

Submitted in partid fulfillment of
The requirement for the degree

Masgter of Science (Computer Science)
a
The City College
of the

City Universty of New York

by
Chinuk Kim

Jan. 2001

Approved:

Professor |zidor Gertner, Thesis Advisor

Professor Douglas Troeger, Chair

Department of Computer Science

TOMY PARENTSAND WIFE

Abstract

A VHDL implementation of sygstolic modular multiplication for RSA cryptographic system is
presented based on the work on systolic aray of C. D. Wdter and the agorithm of the modular
multiplication proposed by P. L. Montgomery. The rightmost cells of Wate’'s paper are adso
condructed in VHDL. A ample modd of 3 by 3-sydolic aray was tested by usng waveform
samulators and then by a fidd programmable logic device. The test shows correct outputs of the
implementation. The abitrary numbers of cdls need to be tested for the evduaion of the
performance of the systolic array.

Contents

PN 01 1 = o A

1. Introduction of RSA crypto systemcooovvvvviviiennnnn
1-1. Modular Arthmetic ..o
1-2. Fermat’'slittletheorem ...
1-3. RSA Algorithm ...

2. Montgomery’s Algorithm ...

3. Systolic Modular Multiplicationcovcvviiiiiiiiienenen,

4. VHDL Implementation of Systolic Arraycccccevvenene.
4-1. VHDL Languagecccoieiiniiiiiiiin e,
4-2. DesgnUnit ...,

4-3. Wave Form SImulationsScccevevviiiniiniinnnnnnnnnn.
4-4. Hardware EXperimentc....vvvieiiiiiiiiiiiiii e

ST 000103 1015 o] I

RE B ONCES ..ot e e e

Appendices
Appendix A. VHDL code of systolic array for modular
multiplication - Maxplus2 Versioncccc.ocoienneenn.
Appendix B. VHDL code of systolic array for modular
multiplication - Xilinx Versioncccceeeeevien e innnn,

aa w N P

List of Figures

Fig. 31 Thearangement of modular multiplication cdls (3 by 3 bits)
Fig. 3-2 Thetypicd cdl of thesystolicarrayccoooveveveiiiiiininnn.
Fig. 4-1 Waveform Smulation A (Maxplus2 verson)
Fig. 4-2 Hierarchica structureof VHDL project cccovveiviviniiennnns
Fig. 4-3 Wave Form Smulaion A result (Xlinx verson)
Fig. 4-4 Wave Form Smulation B result (XIinx version)
Fig. 4-5 Xs40 board 3-bit input and output (LED)eovvvvvviiieenn e,

List of Tables

Table4-1. Wave Form Simulation A Input Parameters (Maxplus2)
Table4-2. Wave Form Simulation A Input Parameters (Xilinx)
Table 4-3. Wave Form Smulation B Input Parameters (Xilinx)
Table4-4. Xilinx PAD SpecifiCationcoovviviiieiiiiiiiie e

12
13
18
19
21
23
27

17
20
22
26

1. Introduction of RSA crypto system

The network security problem for an increasing traffic of Internet transactions has been
emerged and there have been lots of researches in cryptographic dgorithms. RSA [1] sysemis
among them and widdly used today. The system requires fast modular multiplication of integer
numbers containing severd hundred bits. The agorithm discussed here is that of providing
hardware to perform modular multiplication usng the agorithm proposed by P. L. Montgomery
[2] and further developed by the S. E. Eldridge [3] and Dussé and Kdiski [4]. As cryptography
becomes more widespread, fast cryptographic implementations are becoming important.
Experience with hardware tools has shown that speed often cannot fully be redized unlessdl
cryptographic methods of interest are implemented in hardware. VHDL language provides good

design tools for congtructing systolic arrays as well as graphical ones.

Even though RSA system is not a perfect solution, it provide reasonable security feature over
the Internet with hundred bits of encryption standard. Fast processing of the modular
multiplication is one of the most important key issues on the RSA technology. Asdatasize
demanded over the network grows larger and larger every year, faster processors as well as
sophigticated dgorithm which is more effective for the hardware and software are dwaysin high
demand.

In addition to the development of the dgorithm in cryptographic software, hardware
implementation of the calculaions is desirable for most crypto systems due to its high speed

performance.

1-1. Modular Arithmetic

Two numbers are the modular inverse of each other if their product equals 1.
If (AB) modN =1 mod N, then B = A
The advantage of modular arithmetic is that it is no need to manipulate any huge numbers. The
Sze of the number is depends on the modular base.
AB mod N = ((A mod N) (B mod N)) mod N,
ABC mod N = ((AB mod N) (C mod N)) mod N,
ABCD mod N = ((AB mod N) (CD mod N)) mod N,
And etc.
This agorithm never looks at any product larger than (N-1)2.
Above multiplication agorithm can be directly gpplied to compute
C™ mod N, where C=A=B=D=E...
If C"mod N =1 mod N, then C"™+1 mod N = C.
With a number C and some power d modulo N,
A =C%mod N.
By taking the result of the above exponentiation, A, it is possible to raise it to some other power e,

Aemod N = (C%®mod N = C*®* mod N.

1-2. Fermat’slittle theorem.
Leonhard Euler described j (n), phi-function, which is the “exponentid period” modulo n for
numbers releively prime that means it shares only one common factor, namely 1 with n.
For example,) (6) = 2 because only 1 and 5 are relaivey prime with 6.
J (7) = 6 because any number less than 7 can share with 7 only 1 as a common factor and they
(1,2,3/4,5 and 6) are dl rdatively primewith 7. Clearly thisresult will extend to al prime
numbers. Namdly, if pisprime, j (p) = p-1.
For example, if n =5, aprime number, thenj (n) =4. Set abe 3.

a@ ™ modn=3'mod5

3Pmod5=4

3®mod5=4*3mod 5= 2

3'mod5=2*3mod5=1
Fermat’ s little theorem is a statement about powersin modular arithmetic in the specia case
where the modular base is a prime number. Pohlig and Hellman[5] study a scheme related to
RSA, where exponentiation is done modulo a prime number.

a®Y =1 mod p

unlessa isamultiple of p which must be a prime number.
Rivest, Shamir, and Ademan[1] designed a fascinating encryption agorithm with Fermat’ s little
theorem. Decryption is only possible for the chosen few who have extra information.
For given d, p and computed A = C% mod p, to find e such that A® mod p = 1, we can Smply find

esuchthat de=j (p) which equasto p-1. Because then

A®modp=C%®modp=C ®modp=1modp.

For given d, p and computed A = C? mod p, to find e such that A° mod p = C, we need to find e
suchthat de=j (p) + 1. Because then

A®modp=C®modp=C ®*'modp=Cmodp.
From the fact that

G P+Ymodj (p) =((P+1)-j (p=1modj (p),
Therefore, finding e such that de=j (p) + 1isequivdent tofinding e suchthat de=1modj (p),
which is known as the modular inverse. There is amethod known as extended Euclidean

agorithm for computing the modular inverse.

1-3. RSA Algorithm
After picking apublic exponent d and by finding a prime p, make those two vaues public. Using
the extended Euclidean agorithm, determine e, the inverse of the public exponent moduloj (p) =
p-1. When people want to send someone amessage C, they can encrypt and produce cipher text A
by computing A = C* mod p. To recover the plain text message, someone compute C = A® mod p.
But the private key e istheinverse of d modulo p-1. Since p is public, anyone can compute p-1
and therefore determine e.
RSA dgorithm solves the above problem by using an Euler’ s multiplicative phi-function. If p and
g aerdativeprime thenj (pa)=j (p)j (). Hence, for primesp and g and n = pq,

j (M =(@E-HaD).
The problemisfinding e that satisfies

d*e=1mod (p-1)(g-1)
where the pair (n,d) isthe public key and e is the private key. The prime p and g must be kept
secret or destroyed. To compute cipher text A from aplain text message C, find A = C% mod n. To
recover origina message, compute C = A° mod n . Only the entity that knows e can decrypt.
Because of the relationship between d and e, the agorithm correctly recovers the origind message
C, snce

A®modn = C*®modn=C'modn=Cmodn.
Toknow j (n) onemust know p and g. In other words, they must factor n. Multiplying big prime
numbers can be a one-way function. Factoring takes a certain number of steps, and the number of
steps increases sub-exponentialy asthe Sze of the number increases. Extended Euclidean

agorithm can be used to find private key e.

Using thisfact, it is natura to build the private key using two primes and the public key usng

their product. There is one more condition, the public exponent d, must be relatively prime with
(p-1)(0-1) to exit amodular inverse e.

In practice, one would generdly pick d, the public exponent firgt, then find the primesp and g
such that d isrdatively primewith (p-1)(g-1). Thereis no mathematical requirement to do o, it
samply makes key pair generation alittle easer. In fact, the two most popular d’sin use today are

FO =3 and F4 = 65,537. The F in FO and F4 stands for Pierre de Fermat.

2. Montgomery’s Algorithm

In RSA cryptography system, it requires lots of modular multiplication. Montgomery proposed an
agorithm that conducts the modular multiplication without tria division but produces some
resdue. Thisagorithm is suitable for hardware or software implementation.

Let N be an integer (the modulus) and let R be an integer relatively primeto N. We represent the

resdue classA mod N as AR mod N and redefine modular multiplication as

Mont_Product (A, B, N, R) = ABR mod N.

It is not hard to verify that Montgomery multiplication in the new representation isisomorphic to

modular multiplication in the ordinary one:

Mont_Product (AR mod N, BR mod N, N, R) = (AB)Rmod N.

Since AR mod N and BR mod N are both less than N, their product islessthan NN that isless
than RN, so it formsalega input for Mont_Product. A drawback of the gorithm isthe
redundant factor of R for the desired result, (AB) mod N.
We can smilarly redefine modular exponentiation as repeated Montgomery multiplication. This
“Montgomery exponentigtion” can be computed with al the usua modular exponentiation
speedups.
Montgomery’stheorem

Let N and R berdativey primeintegers(RR NN’ =1, 0< N’ <R), and let N’ =-N-1mod

R.

Then for dl integers T, (TH+MN)/R is an integer satisfying
(T+MN)/R = TR-1 mod N

whereM = TN’ mod R.

If we choose theright R, a power of base in which we represent multiple- precision integers, then
divison by R and reduction modulo R are trivid. With such an R Montgomery reduction is no
more expensve than two multiple- precision products.
The method represents as a function:
Function REDC(x) //x=AB
m=(xmodR) * N" mod R
t=(x+m*N)/R
Ift<N
return t
esereturnt-N.
we need x+m*N to bedivisbleby R. mN = ((x mod R) N' mod R) N = xNN’ mod R = -x mod
R. x+mN=(x+ -x)ymodR=0modR. ThusR dividesx + mN.
Next, X + mN =x mod N
tR =xmod N
t =xR modN (whereR = R* mod N)
Thust is congruent mod N to the desired result. If X < RN, thent < 2N, so ether t or t-N isthe
answer.
m<R

x+mN <RN + RN

(x+mN)/R< 2N
Thus REDC(x) returns xR'mod N given O £ X <RN.
In hardware implementation, use ny’ = -N™* mod by instead of using —N’mod R for basebi. R = by,
The program becomes
Mont_Product (A, B, N, R)
fori =0ton1dobegin
T.=T+A[i] * B* b;
M: =TJi]*ny’ mod by,;
T:=T+m*N* by;
end;
return T/R;
end;
The procedure divides only by R = by, 0 dl divisons can be done by shifting out low order bits.

The time consuming part is the two multiplications.

3. Systolic Modular Multiplication

Kog and Hung [6], isthe firgt attempt a a systolic dgorithm for modular multiplication.
However, their systolic design suffers from excessive latency and adow clock, the result of the
unsuitability of the naturd agorithm [7] which isbased on Horner’ s nested multiplication
method. It involves repeated additions of the multiplicand and repeated subtractions of the
modulus. Shand, Bertin, and Vuillemin[8], describes a pipdine smilar to one row of the array
presented here which programmed into the hardware array. In McCanny and McWhirter[9]'s
work, the firgt digit of the output appears after about 13n/ 2 clock cycles, where nisthe
maximum number of digitsin any input. Moreover, the clock cycle needs to be dow enough to
dlow for cdculation the multiple of the modulus. The problem of the movement of the carries
and that of the multiple modulusis resolved by usng Montgomery [2]’ sagorithm. With
Montgomery’ swork and McCanny and McWhirter’ swork on systolic multiplication, Colin D.
Walter [10] congtructed a systolic array of modular multiplication for hardware implementation.
His verson of Montgomery’sdgorithm is
/I Precondition: No common factor between r and M to ensure the existence of
/I multiplicative inverse (r-M[0]) ™ mod r.

P.=0;

Fori:=0ton1do

Begin

Qli] := ((PL0] + A[i] * B[0] * (r—M[0])™") mod;
P =(P+A[]*B+Q[i]*M) divr; //P, Patia product
End

There arefallowing relations

10

RP = A * B+Q*M

R'P= A*B +Q*M
So P = (r"" AB) mod M with extra power of r. To remove the factor, do extra application of the
same operation with inputs P and r*" mod M.
A key property of Montgomery’s dgorithm is that the choice of modulus multiple is based on the
lowest digit P[0] of the partid product. With this multiple Q[i] determined, the digits of thei + 1t
partia product P .1 can be computed in order starting with the lowest.
With Q[i] known, digits output from one addition cycle enable the corresponding digits for the
next cycleto be found. In Fig. 3-1, each row performs an iteration of the loop and columns
compute successive vaues for asngle digit podtion. Thetypica cdl performsasng digit

caculation of the assgnment P, and generates a carry in the norma way.

Pia[j-1] + r*CarryOut = Ri[j] + A[i]*B[j] + Q[i]*M[i] + Carryn.

The cdlsare dl identica with the exception of the rightmaost column which does not need carry in

and Q[i]. Thefirst output digit of amodular multiplication appears after 2n + 2 clock cycle. A

depth of 5 gates suffices for the typica cdl shownin Fig. 3-2, and less for the right most cdlls,

which do not need carries and inputs of QJi].

11

|
Ffi+l] ; Pli]
MF+11 l B+ M1

_ Efi-l1 ,
Bﬁ\‘ MF-11 BFi-11
[
C C [
AR i AR - AR - Af]
Qi Qnl faliyl
P -1
l Mp+1] E[+11 b MR Efil b1l ME-11 Eli-11
\ b
=l
AL Cagg A[i+1] Cany A[+1] Cany A[+]]
QG QLi+1] QLi+1]
Fh T3
Mp+1] Bh+1] bl Mp] Bh] e M[p-1] B[i-11
¥ k.
ol & -
AL eans AL S A7) Sanr AL
QI QL+E] QL+E]
Py P Fy

12

Fig. 3-1. The Arrangement of modular multiplication cells (3 by 3 bits)

Fi[i] Mi] Bl
] 1 | Carry 1
Carry 1 =
Earmz—_@_l_ ”;gﬁ : éﬁ:ﬁ: | . Carmy 2
'@J Qe
ROR2 If:t E : |V AHDZ
AHDZ ___ ORE
(0
[l B ——]
AJi] ROk —;ﬁ Al
Q] o[i]
] Bli] Fi+1[-1]

Fig. 32 Thetypica cdl of the systolic array

13

4. VHDL Implementation of Systolic Array

4-1. VHDL language
VHDL[11] isahardware description language intended for documenting and moddling digital
systems ranging from asmal chip to alarge system. It can be used to mode adigita system

at any levd of abstraction raging from the architectura level down to the gate level.

The language was initidly developed specificaly for Department of Defense VHSIC
(Very High Speed Integrated Circuits) contractors. However, due to an overwheming need in
the industry for a standard hardware description language, the VHSIC Hardware Description
Language (VHDL) was selected and later gpproved to become an |EEE standard [12] called
the |IEEE Std 1076-1987.

The language was updated again in 1993 to include a number of clarificationsin addition to a
number of new features like report statement and pulse rgjection limit. The codes of the
VHDL implementation are based on this verson of the language cdled the IEEE Std 1076-

1993.

4-2. Design Units
VHDL has severa subunitsin order to provide organized frame structure of the

programming. The followings are basic units of VHDL.

14

A. Entity declaration
An entity declaration describes the interface of the design to its external environments,
that is, it describes the ports (inputs, outputs, etc.) through which the design communicates

with other designs.

B. Architecture body
An architecture body describes the compostion or functionaity of adesign. This could be
described as amix of sequentid behavior, concurrent behavior, and components. A design
may have more than one architecture body, each describing a different composition, that

IS, usng a different behavior of design.

C. Configuration declaration
A configuration declaration is used to specify the bindings of components present in an
architecture body to other design entities. An entire hierarchy of design, that is, the
bindingsthat link al the design entitiesin a hierarchy, can aso be specified using the

configuration declaration.

D. Package declaration

A package declaration is arepository to store commonly used declaration.

E. Package body

15

A package body is aways associated with a package declaration and contains subprogram

bodies, dong with other declarations.

F. Generate statement [13]
This statement is executed at elaboration time. The execution elther causes replication of

concurrent satements or causes conditiona salection of concurrent statements.

G. Loop statement
The execution of the loop causes the statements within the loop to be iterated the specified
number of times. A loop statement can be afor-loop, awhile-1oop or a repeat-forever-

loop.

16

4.3 Wave Form Simulations

4-3-1. Experiment with Maxplus2 software

1. Smulation A.

To verify the systalic array design model, with Maxplus 2 software made by Altera Corporation,
smulation of VHDL code has been carried out prior to the hardware implementations. First oneis

type A smulaion with the following parameters shown in Teble 4-1.

Table4-1. Wave Form Smulation A Input Parameters (Maxplus 2)

Pre-conditions Pre-defined Inputs Outputs
(R) (P) = AB (mod M)
P=PI2=0 A=Al2=7 P=POUT2=7

rR—-nM =1
wherer isradix,

nis number of
hits,

R=r"=2%=8
O<r<M CLOCK =CLB5 |B=BI2=3

=CLM5

O<M<r" M=MI2=5

17

i MAX+plug 1l - c:Amax2workikchinukhzystolicichip3 - [chip3.zcf - Wawveform Editor]

)Q? Méx+plus [I File Edit Miew Mode Assign Utiliies Options MWindow Help =18 x|
MEE Time: ntenal -
B800.0ns
o alue: | B00[0ns 900 (Ons 1C
|- v T 1
= M1 i
= M0 1
g9 EiI2 i
9= El1 1
g B 1
= AL 1
= Al 1
g All 1
POUT2 1
POUTI 1
POUTO 1
r .
4 i -

Fig 4-1. Waveform Smulation A (Maxplus 2 verson)

18

4-3-2. Experiment with Xilinx software
Fig 4.2 shows generd procedure from VHDL programming to the hardware implementations.
The smulation has been done by Xilinx Foundation software with Lab book. VHDL codes are

check by compiler and bit stream file that isfit to the specific FLGA device, X C4010E.

Fig. 42 Hierarchical structure of VHDL project

19

1. Smulation A.
To verify the systolic array design modd, with Xilinx software made by Xilinx Corporation,

smulation of VHDL code has been carried out prior to the hardware implementations. Second oneis
type A amulation with the following parameters shown in Table 4-2.

Table 4-2. Wave Form Smulation A Input Parameters (Xilinx)

Pre-conditions Pre-defined Inputs Outputs
(R) (P) ° AB (mod M) P=PI2=0 A=AlI2=7 P=POUT2=7
rR-—nM =1
wherer isradix,

N is number of bits,

R=r"=23=38
0o<r<M CLOCK =CLB5 |B=BI2=3

=CLM5

o<M<r" M=MI2=5

20

& Logic Simulator - Xilink Foundation F1.5 [starray] - [#Waveform Yiewer 0 - d:\indt.. [H[=]E3
File Signal ‘Wavefom Device Options Tool: Yiew Window Help =] x|

=@ 8| kS A [Fociord =] & 29 [0 =] @] [pex =] @]
I e fc—=n—l[== _t=9 | =] e || 134. 82us

iy | 10ussdiv | LLLLI

184 7m= 184 Sm= 1285 lm= 185 3m=
| 1284 cems JII|II.J[|IIII|]1I|III.JI1III|I.Jl-lllIIr]l-III|II.J[|IIII|]l.ll|III-JI1III|I.JLII|
BICLMS . _<hin>ii6 BAL11
BICLBS . _.<hin>#i6 BA11
BRIZ._.._ <dec>itdp [7
BEBIZ2._ . _<{dec>i3 @ 3
BHMIZ...(decol3pc &

BIPIZ2...<dec?it3 | A
BFOUTZ . Cdec >#t3 s
T T 2]
e o T T e e

DOOD PDDO DODD DOOD| - 251.69ms

Fig 4-3. Wave Form Smulation A result (Xlinx verson)

21

2. Simulation B.
To veify the systolic array design modd, with Xilinx software made by Xilinx Corporation,

smulation of VHDL code has been carried out prior to the hardware implementations. Third one
istype B amulation with the following parameters shown in Table 4-3.

Table 4-3. Wave Form Smulation B Input Parameters (Xilinx)

Pre-conditions Pre-defined Inputs Outputs
(R) (P) ° AB (mod P=PI2=0 A=Al2=6 P=POUT2=3
M)
rR—nM =1
wherer isradix,

N is number of
bits,

R=r"=23%=8
O<r<M CLOCK =CLB5 B=Bl2=4

=CLM5

O<M<r"n M=MI2=5

22

=" Logic Simulator - Xilinx Foundation F1.5 [starray] - [Waveform ¥iewer 0 - d:\fndin\active\project... [N =1 E3
= File Signal ‘waveform Device DOptions Tools Miew ‘Window Help = |ﬂ|5|

=8 Bl 4l &) o8 [=] @ [pex =] 8]
[e l[== 2 |~ mum || 51516

'-'-'-'-m-ul los/div |'—‘-'-U1 91 _27= [F1.28= [21.29s |91.3= [|91.3[ls |91.32= |91.33= [91.34s |31. 35z |
| 9l.ZE6E= |II|IIII|IIII|IIIIIIII|IIIIIIII|IIIIIIII|IIII|IIII||lHIIIII|IIIIIIII|IIIIIIII|IIIIIIII|IIII.
BICLMS . Chin>it6 [BA[] [DO000) Il (000000 LI LD 00000 DL Lll(Do0oon DLl LD D 000ee- - -—-----
B (CLES . Chin 46 [B0|1 | N N S S SO S S Se———
BRIZ. .<Cheslt3 < K| e e e e
BBIZ2. . hex>#3 @ 4 e e T
BMIZ. .<hexO3 0 5|
BPIZ. <hesot3 2 0|
BPFOUT2 . chex>#] [B([2 = o BE 1 JE] s T

&
=
=
i
=

1.35s

Fig 4-4. Wave Form Smulation B result (Xlinx verson)

4.4 Hardware Experiment

4-4-1. Field Programmable Logic Device

Computer-aided design and programmable logic architecture have been developed to
remove the drudgery from building digital circuits and make flexibility on the designing the
sysems. In practica engineering, the details of the logic circuit needed to redize the truth
table are worked out by alogic-synthesis program. Then, the operation of the logic circuit is
checked usng asmulation program. If the circuit Smulates correctly, the gates and wires are
mapped into a field programmable gate array (FPGA) or complex programmable logic device
(CPLD) IC using specidized place & route or fitter programs.

These field programmable logic devices (FPLD) contain logic gates and the means for
interconnecting them within a sngle integrated circuit. The software programs determine how
the gates in the device can be connected to build the logic circuit. The program’s output isa
bit-stream configuration file that is downloaded into the FPLD to make it act like logic circuit.
The FPLD can then be placed into alarger circuit where it will perform its functions after

some possible debugging.

4-4-2. Experiment Procedure

Following is the experimental procedure using XC40 FLGA board, XESS software tools and
Xilinx CAD tool [14].

A. General procedure

1. Generate bit stream file and port specification file in the design program

2. Download to the FLGA board

3. Connect wires to the specified port number for FLGA

24

. Check and debug the design using the LED outputs

. Detail procedure

. Copy hit stream file(.bit) and port specification file(.pad) generated by Xilinx VHDL
implementation step into the XESS tool directory.

E.g.) copy c\fndtm\Active\Projects\starray\xproj\ver10\rev2\starray.bit c\xstool\bin
. Disconnect the al the wires previoudy connected to FLGA on the board

. Connect DC9V power adapter with female-center positive to the board.

. Connect the paralel cable between PC LPT1 port and XC40 board.

. Test theinitid board status with X ESS software, XSTEST .exe

E.g.) c\xstool\bin\xstest xs40-010e

If the board shows blinking signd on the LED display, then the board is reedy.

. Download hit-gtream file to the board and build the circuit in the FLGA.

. Find the negative port number (52) and connect the wire.

. Put the LED lights on the board

. Connect al the wires on the board based on the port numbers of the starray.pad file. Port numbers
with input 1 represent positive polarity and numbers with input O represent negative one on the

board.

10. Check the series of LED lights as aresuilt.

11. For the new wiring as adebugging, go to step 2 again.

25

Table 4-4. Xilinx PAD Specification

PAR: Xilinx Place And Route M1.5.19.

Xilinx PAD Specification File

Input file: map -ncd
Output file: starray.ncd
Part type: xc4010e
Speed grade: -1
Package: pc84
Pinout by Pin Name:
o - Fom e Sy +
| Pin Name | Direction | Pin Number |
e o ——— Fom e ———— +
Al<0> INPUT P7
Al<1> INPUT P16
Al<2> INPUT P82
B1<0> INPUT P40
Bl<1> INPUT P20
Bl1<2> INPUT P84
CLB<0> INPUT P44
CLB<1> INPUT P23
CLB<2> INPUT P81
CLB<3> INPUT P50
CLB<4> INPUT P62
CLB<5> INPUT P35
CLM<0> INPUT P66
CLM<1> INPUT P65
CLM<2> INPUT P27
CLM<3> INPUT P10
CLM<4> INPUT P3
CLM<5> INPUT P71
MI<0> INPUT P67
MI<1> INPUT P68
MI<2> INPUT P18
P1<0> INPUT P24
PI<1> INPUT P19
PI1<2> INPUT P5
POUT<0> OUTPUT P4
POUT<1> OUTPUT P6
POUT<2> OUTPUT P83
e Fom e o +

26

Parallel
R P

100 MHz. Prog. Dsc.

Serial EEPROM Sochket

FPGA
fosiLLD

Fig. 4-5. X$40 board with Xilinx XC4010E FPGA

27

5. Conclusion

Sysalic array design with the Montgomery’ s dgorithm has been smulated by VHDL
language and software smulators. The three smulations of VHDL implementations showed
desired results of modular multiplications. The VHDL implementation has shown that the
language provides auseful tool of practicing the dgorithms without drawings of large amounts of
logic gates. And it aso gives effectiveness on designing and simulations of microprocessor.
Fipeining cgpability of design with clock cyclesand VHDL coding of arbitrary size of input and

output bitswith ‘Generate statement are remained as a further study.

References

28

1. R L.Rives, A. Shamir, and L. Adleman, “ A method for obtaining digita signatures and
public key cryptosystems,” Communication, ACM. Val. 21, pp. 120- 126, 1978

2. P.L.Montgomery, “Modular multiplication without trial divison,” Mathematics of
Computation, Vol. 44, pp. 519 — 521, 1985

3. SE. Eldridge and C.D. Wadter “ Hardware implementation of Montgome
multiplication agorithm,” IEEE Trans. Compt., Vol. 42, no 6, pp. 693, 1993

4. SR.DussandB. S. Kdiski J., “A cryptographic library for the Motorola DSP 5600,” in
Advancesin Cryptology — EUROCRY PT '90, Vol. 473, 1991, pp. 51-60.

5. Pohlig, SC., and Hellman, M.E., “An improved agorithm for computing logarithms over
GF(p) and its cryptographic significance.” |EEE Trans. Inform. Theory, 1978.

6. C.K.Ko¢andC.Y.Hung, “Bit-leve systdlic arays for modular multiplication’, J. VLS
Sgnd Processing.” Val. 3, pp. 215-223, 1991.

7. E.F. Brickd, “A fast modular multiplication agorithm with gpplication to tow-key
cryptography”, in Advances in Cryptology-Proc. of CRYPTO 82, Chaum et d., Eds. New

York: Plenum, 1983, pp. 51-60.

8. M. Shand, P. Bertin, and J. Vuillemin, “Hardware speedups in long integer multiplication”,
ACM Sigarch, Val. 19, pp. 106-113, 1991.

9. JV.McCanny and J. G. McWhirter, “Implementation of Sgnd processing functions using 1-
bit systolic arrays’, Electron, Letters, Vol. 18, pp. 241-243, 1982.

10. Calin D. Wadlter, “Systolic Modular Multiplication”, IEEE Transactions on Computers, Vol.
42, No. 3, pp. 376, March 1993.

29

11. J. Bhasker, A VHDL synthesis primer, Star Galaxy Publishing, New Y ork, 1996

12. Zoran Sdcic, Adm Smallagic, Digitd System Design and Prototyping using Field
Programmabd Logic, Kluwer Academic Publishers, 1997

13. Peter J. Ashenden, The Designers guide to VHDL, Morgan Kaufmann Publishers, Inc. pp.
351, Netherlands, 1996

14. David Van den Bout, The practica Xilinx designer lab book, version 1.5, Prentice-Hall, New
York, 1999

Appendices

Appendix A.

30

VHDL code of sygadlic array for modular multiplication - Maxplus2 version

Typicd Cell (Cell.vhd)

LIBRARY ieeg
USE ieeestd logic 1164.ALL;

LIBRARY uglib;
USE ustlib.cdlunit.ALL;

ENTITY cdlIS
PORT (A1, B1, C1, D1, M1, P1, QLin STD_LOGIC;
A2,B2, C2, D2, M2, P2, Q2:out STD_LOGIC);
END cdl;

ARCHITECTURE A OF cdll IS
SIGNAL X1, X2, X3, X4, Y1,Y2,Y3, 71, 72, Z3, Z4: STD_LOGIC;
BEGIN
andl: andGate PORT MAP (A1, B1, A2, B2, X1);
and2. andGate PORT MAP (M1, Q1, M2, Q2, X2);

hal: hAdder PORT MAP (X1, X2, X3, X4);
ha2: hAdder PORT MAP (P1, C1, Y2, Y1);
orl: orGate PORT MAP (D1, Y1, Y3);

ha3: hAdder PORT MAP (Y2, X3, P2, Z1);
had: hAdder PORT MAP (X4, Y3, Z2, Z4);
hab: hAdder PORT MAP (Z1, Z2, C2, Z3);
or2: orGate PORT MAP (Z3, Z4, D2);

END A;

Right most Cells (Cél_right.vhd)

LIBRARY ieee
USE ieeestd logic 1164.ALL;

LIBRARY uglib;
UsE uglib.cdlunit ALL;

ENTITY cdl_right 1S
PORT (A1, B1, M1, PLin STD_LOGIC;
A2, B2, C2,D2, M2, P2, Q2:out STD_LOGIC);
END cdl_right;

ARCHITECTURE A OF cdl_right IS

31

SIGNAL Q1, X1, X2, X3, X4, Y1, Z1: STD_LOGIC;
BEGIN
andlL; andGate PORT MAP (A1, B1, A2, B2, X1);
Q1 <= P1 XOR X1;
and2: andGate PORT MAP (M1, Q1, M2, Q2, X2);

hal: hAdder PORT MAP (X1, X2, X3, X4);
ha3: hAdder PORT MAP (P1, X3, P2, Z1);
hab: hAdder PORT MAP (Z1, X4, C2, D2);

END A;

The Systalic Array (sys3.vhd)

LIBRARY ieeg
USE ieeedd logic 1164.ALL;

LIBRARY uglib;
USE uglib.cdlunit ALL;
USE uglibffunit ALL;

ENTITY sys31S
PORT (CLK: IN STD_LOGIC;

Al: IN STD_LOGIC_VECTOR (2 DOWNTO 0);

Bl: IN STD_LOGIC_VECTOR (2 DOWNTO 0);

MI: IN STD_LOGIC_VECTOR (2 DOWNTO 0);

Pl: IN STD_LOGIC_VECTOR (2 DOWNTO 0);

POUT:OUT STD_LOGIC_VECTOR (2 DOWNTO 0));
END sysi3;

ARCHITECTURE aOF syst3 IS
SIGNAL BL: STD_LOGIC_VECTOR(5 DOWNTO 0);
SIGNAL ML: STD_LOGIC_VECTOR(5 DOWNTO 0);

SIGNAL A: STD_LOGIC_VECTOR(8 DOWNTO 0);
SIGNAL B: STD _LOGIC VECTOR(8 DOWNTO 0);
SIGNAL C: STD_LOGIC_VECTOR(8 DOWNTO 0);
SIGNAL D: STD_LOGIC_VECTOR(8 DOWNTO 0);
SIGNAL M: STD_LOGIC_VECTOR(8 DOWNTO 0);
SIGNAL P. STD_LOGIC_VECTOR(8 DOWNTO 0);

SIGNAL Q: STD_LOGIC_VECTOR(8 DOWNTO 0);

BEGIN
cell0: cell_right PORT MAP (AI(0), BI(0), MI(0), PI(0),

A(0), B(0), C(0), D(0), M(0), P(0), Q(0));
cdlll: cdl PORT MAP (A(0), BI(1), C(0), D(0), MI(1), PI(1), Q(0),

32

A(D), B(1), C(1), D(1), M(D), M(1), Q(1));

odl2: cdl PORT MAP (A(1), BI(2), C(1), D(1), MI(2), PI(2), Q(1),
A(2), B(2), C(2), D(2), M(2), P(2), Q(2);

IchOb: latchl ~ PORT MAP (CLK, B(0), BL(0)):

lchib: lachl ~ PORT MAP(CLK, B(1), BL(2)):

Ich2b: lachl ~ PORT MAP(CLK, B(2), BL(2));

lchOm: lachl ~ PORT MAP (CLK, M(0), ML(0));

lchim: lachl PORT MAP (CLK, M(1), ML(L);

lch2m: lachl ~ PORT MAP (CLK, M(2), ML(2);

cdl3: cdl_right PORT MAP (Al(2), B(0), M(0), P(),

A(3), B(3), C(3), D(3), M(3), P3), Q(3));
cdl4: cdl PORT MAP (A(3), B(1), C(3), D(3), M(1), P(2), Q(3),
A(4), B(4), C(4), D(4), M(4), P(4), Q4));
cdl5: cell PORT MAP (A(4), B(2), C(4), D(4), M(2), C(2), Q(4),
A(5), B(5), C(5), D(5), M(5), P(5), Q(5));

Ich3b: laichl PORT MAP (CLK, B(3), BL(3));
Ichdb: lachl ~ PORT MAP (CLK, B(4), BL(4));
Ichsb: laichl ~ PORT MAP (CLK, B(5), BL(5));
lch3m: lachl ~ PORT MAP (CLK, M(3), ML(3));
lchdm: laichl ~ PORT MAP (CLK, M(4), ML(4));
Ichsm: latchl ~ PORT MAP (CLK, M(5), ML(5));

cdll6: cdll_right PORT MAP (AI(2), B(3), M(3), P(4),
A(6), B(6), C(6), D(6), M(6), P(6), Q(6));

cdi7:cdl PORT MAP (A(6), B(4), C(6), D(6), M(4), P(5), Q(6),
A(7), B(7), C(7), D(7), M(7), P(7), Q(7));
cdigcdl PORT MAP (A(7), B(5), C(7), D(7), M(5), C(5), Q(7),
A(8), B(8), C(8), D(8), M(8), P(8), Q(8));
POUT(0) <= F(7);

POUT(1) <= P(8);
POUT(2) <= C(8);
END &

Appendix B.

VHDL codeof sysadlic array for modular multiplication - Xilinx verson

33

syst.vhd — the main program

library |EEE, us;
use |IEEE.std logic_1164.4dl;
use usr.cdlsALL;

entity syst is
port(CLB: in STD_LOGIC_VECTOR (5 downto 0);
CLM: in STD_LOGIC_VECTOR (5 downto 0);

Al: in STD_LOGIC VECTOR (2 downto 0);
Bl: in STD_LOGIC_VECTOR (2 downto 0);
MI: in STD_LOGIC VECTOR (2 downto 0);
Pl: in STD_LOGIC_VECTOR (2 downto 0);
POUT: out STD_LOGIC_VECTOR (2 downto 0));

end sys;

architecture syst_arch of syst is

COMPONENT cdl_right
PORT (ARL, BR1, MR1, PR1L:iin STD_LOGIC;
AR3, BR3, CR3, DR3, MR3, QR3:0ut STD_LOGIC);
END component;
COMPONENT cdll
PORT (A1, B1, C1, D1, M1, P1, QLin STD_LOGIC;
A2, B2, C2,D2, M2, P2, Q2:.out STD_LOGIC);
END component;

COMPONENT latchl
PORT(CLK: IN STD_LOGIC;
D :IN STD_LOGIC;
Q : OUT STD_LOGIC);
END component;

SIGNAL BL: STD_LOGIC_VECTOR(5 DOWNTO 0);
SIGNAL ML: STD_LOGIC_VECTOR(5 DOWNTO 0);
SIGNAL A: STD_LOGIC_VECTOR(8 DOWNTO 0);
SIGNAL B: STD_LOGIC_VECTOR(8 DOWNTO 0);
SIGNAL C: STD_LOGIC VECTOR(8 DOWNTO 0);
SIGNAL D: STD_LOGIC_VECTOR(8 DOWNTO 0);
SIGNAL M: STD_LOGIC_VECTOR(8 DOWNTO 0);
SIGNAL P STD_LOGIC VECTOR(8 DOWNTO 0);
SIGNAL Q: STD_LOGIC_VECTOR(8 DOWNTO 0);

34

BEGIN
cdll0: cell_right PORT MAP (AI(0), BI(0), MI(0), PI(0),
A(0), B(0), C(0), D(0), M(0), Q(0));

calll: cdl PORT MAP (A(0), BI(1), C(0), D(0), MI(1), PI(1), Q(0),
A(1), B(1), C(1), D(1), M(1), P(1), Q(1));

odl2: cdl PORT MAP (A(1), BI(2), C(1), D(1), MI(2), PI(2), Q(1),
A2, B(2), C(2), D(2), M(2), P(2), Q(2);

IchOb: lachl ~ PORT MAP (CLB(0), B(0), BL(0)):

lchib: lachl ~ PORT MAP (CLB(1), B(1), BL(2)):

lch2b: lachl PORT MAP (CLB(2), B(2), BL(2)):

IchOm: laichl ~ PORT MAP (CLM(0), M(0), ML(0));

lchim: lachl PORT MAP (CLM(1), M(1), ML(2));

Ichem: lachl PORT MAP (CLM(2), M(2), ML(2));

odl3: cdll_right PORT MAP (Al(1), BL(0), ML(0), P(1),
A@R), B(3), C(3), D(3), M(3), Q(3));

cdl4: cell PORT MAP (A(3), BL(1), C(3), D(3), ML(1), P(2), Q(3),
A(4), B(4), C(4), D(4), M(4), P(4), Q(4);
odI5; cdl PORT MAP (A(4), BL(2), C(4), D(4), ML(2), C(2), Q(4),

A(5), B(5), C(5), D(5), M(5), P(5), Q(5));
Ich3b: latchl PORT MAP (CLB(3), B(3), BL(3));
Ichdb: laichl PORT MAP (CLB(4), B(4), BL(4));
[ch5h: latchl PORT MAP (CLB(5), B(5), BL(5));
Ich3m: latchl PORT MAP (CLM(3), M(3), ML(3));
[chdm: laichl PORT MAP (CLM(4), M(4), ML(4));
[ch5m: laichl PORT MAP (CLM(5), M(5), ML(5));
cdl6: cdl_right PORT MAP (Al(2), BL(3), ML(3), P(4),
A(6), B(6), C(6), D(6), M(6), Q(6));
cel7: cel PORT MAP (A(6), BL(4), C(6), D(6), ML(4), P(5), Q(6),
A(7), B(7), C(7), D(7), M(7), P(7), Q(7));
cdl8: cdl PORT MAP (A(7), BL(5), C(7), D(7), ML(5), C(5), Q(7),
A(8), B(8), C(8), D(8), M(8), P(8), Q(8));
POUT(0) <= P(7);
POUT(1) <= P(8);
POUT(2) <= C(8);

end syst_arch;
usr.vhd - contains component packages - cdl, cdl_right and latchl

-- USRVHD

LIBRARY iece
USE ieeedd logic 1164.ALL,;

PACKAGE cdls 1S

35

COMPONENT latchl
PORT(CLK, D: IN STD_LOGIC;
Q : OUT STD_LOGIC);

END COMPONENT;

COMPONENT cell

PORT (A1, B1, C1, D1, M1, P1, QLin STD_LOGIC;
A2,B2, C2,D2, M2, P2, Q2:out STD_LOGIC);

END COMPONENT;

COMPONENT cdl_right
PORT (AR1, BR1, MRL, PRLin STD_LOGIC;
AR3, BR3, CR3, DR3, MR3, QR3: OUT STD_LOGIC);
END COMPONENT;
END cdls

LIBRARY |EEE;
USE IEEESd logic 1164.ALL;

ENTITY lachl 1S
PORT(CLK, D: IN STD_LOGIC;
Q : OUT STD_LOGIC);
END lachl;

ARCHITECTURE latchl_arch OF latchl IS

BEGIN
PROCESS(clk, d)
BEGIN
IFCLK ="1' THEN
Q<=D;
END IF;
END PROCESS,
END latchl arch;

LIBRARY ieee
USE ieeedd logic 1164.ALL,;

ENTITY odlIS
PORT (A1, B1, C1, D1, M1, P, QLin STD_LOGIC;
A2, B2, C2, D2, M2, P2, Q2:out STD_LOGIC);
END odl;

36

ARCHITECTURE cdl_arch OF cdl IS

SIGNAL X1, X2, X3, X4,Y1,Y2,Y3,71, 72,23, Z4. STD_LOGIC;
BEGIN
andl:
X1<=A1AND B1;
A2<=A1;
B2 <=B1;
and2:
X2<=M1AND Q1,
M2 <=M1;

Q2<=Ql;

X3 <=X1XOR X2;
X4 <=X1AND X2;
ha2:
Y2<=P1 XORC1;
Y1<=P1AND C1;
Y3<=D1ORY],
ha3:
P2 <=Y2 XOR X3;
Z1<=Y2AND X3;
had:
Z2<=X4XORY3;
Z4<=X4 AND Y3;
hab:
C2<=Z7Z1XO0ORZ2;
Z3<=Z7Z1AND Z2;
D2<=Z30OR Z4,
END cdl_arch;

hal

LIBRARY |EEE;
USE IEEE.sd logic 1164.ALL;

ENTITY cdl_right IS
PORT (AR1, BR1, MR1, PRLin STD_LOGIC;
AR3, BR3, CR3, DR3, MR3, QR3: OUT STD_LOGIC);
END cdl_right;

ARCHITECTURE cdll_right_arch OF cdl_right IS

SIGNAL QR1, XR1, XR2, XR3, XR4, ZR1: STD_LOGIC;

37

BEGIN
XR1 <= AR1 AND BR1;
AR3 <= AR1;
BR3 <=BR1;
QR1<=PR1 XOR XR1,
XR2 <= MR1AND QR1;

MR3 <= MR1;
QR3 <= QR1;

XR3 <= XR1 XOR XR2;
XR4 <= XR1 AND XR2;
ZR1<=PR1 AND XRS;
CR3 <=ZR1 XOR XR4;
DR3 <=ZR1 AND XR4;

END cdl_right_arch;

