Csc343:
Assignment for 9/30/05.

a). I did a two inputs (each input) with 4 bits multiplexor, you are responsible for
 1. a two inputs (each input) with 32 bits multiplexor.
 2. a three inputs (each input) with 32 bits multiplexor.
 3. a four inputs (each input) with 32 bits multiplexor.
 4. a thirty-two inputs (each input) with 32 bits multiplexor.
b). get to understand the 2-4 decoder and design your 3-8 decoder.
c). write a report and print the wave forms and discuss what you have learned from the assignment.

Example of multiplexors:

Example of decoders:
library ieee;
use ieee.std_logic_1164.all;

entity Multiplexor is
port(I1: in std_logic_vector(3 downto 0);
 I0: in std_logic_vector(3 downto 0);
 S: in std_logic;
 O: out std_logic_vector(3 downto 0)
);
end Multiplexor;

architecture behv of Multiplexor is
begin
 process(I1,I0,S)
 begin
 case S is
 when '0' => O <= I0;
 when '1' => O <= I1;
 when others=> O <="ZZZZ";
 end case;
 end process;
end behv;

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use work.all;

entity test_multiplexor is
end test_multiplexor;
end test_multiplexor;

architecture TB of test_multiplexor is

 component multiplexor
 port(
 I1: in std_logic_vector(3 downto 0);
 I0: in std_logic_vector(3 downto 0);
 S: in std_logic;
 O: out std_logic_vector(3 downto 0)
);
 end component;

 signal T_I1: std_logic_vector(3 downto 0):="0000";
 signal T_I0: std_logic_vector(3 downto 0):="0000";
 signal T_O: std_logic_vector(3 downto 0);
 signal T_S: std_logic;

 begin

 U_multiplexor: multiplexor port map (T_I1, T_I0, T_S, T_O);

 process

 variable err_cnt: integer :=0;

 begin

 T_I1 <= "0101";
 T_I0 <= "1111";

 -- case s ='0'
 wait for 30 ns;
 T_S <= '0';
 wait for 1 ns;

end TB;
assert (T_O="1111") report "Error Case 0" severity error;
 if (T_O/="1111") then
 err_cnt := err_cnt+1;
 end if;

-- case s = '1'
wait for 30 ns;
T_S <= '1';
wait for 1 ns;
assert (T_O="0101") report "Error Case 1" severity error;
 if (T_O/="0101") then
 err_cnt := err_cnt+1;
 end if;

-- case S = 'U'
 wait for 30 ns;
 T_S <= 'U';

-- summary of all the tests
if (err_cnt=0) then
 assert (false)
 report "Testbench of multiplexor completed sucessfully!"
 severity note;
else
 assert (true)
 report "Something wrong, try again!"
 severity error;
end if;

wait;

end process;

end TB;
configuration CFG_TB of test_multiplexor is
 for TB
 end for;
end CFG_TB;

library ieee;
use ieee.std_logic_1164.all;

entity decoder is
 port(I: in std_logic_vector(1 downto 0);
 O: out std_logic_vector(3 downto 0)
);
end decoder;

architecture behv of decoder is
begin
process (I)
begin

 case I is
 when "00" => O <= "0001";
 when "01" => O <= "0010";
 when "10" => O <= "0100";
 when "11" => O <= "1000";
 when others => O <= "XXXX";
 end case;

end process;
end behv;

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use work.all;

entity test_decoder is
end test_decoder;

architecture TB of test_decoder is

 component decoder
 port(I: in std_logic_vector(1 downto 0);
 O: out std_logic_vector(3 downto 0))
);
 end component;

 signal T_I: std_logic_vector(1 downto 0):="00";
 signal T_O: std_logic_vector(3 downto 0);

begin

 U_decoder: decoder port map (T_I, T_O);

process

 variable err_cnt : integer := 0;

begin

 -- case I="00"
 wait for 20 ns;
 T_I <= "00";
 wait for 1 ns;
 assert (T_O="0001") report "Error Case 0" severity error;
 if (T_O/="0001") then
 err_cnt := err_cnt + 1;
 end if;

 -- case I="01"
 wait for 20 ns;
 T_I <= "01";
 wait for 1 ns;
 assert (T_O="0010") report "Error Case 1" severity error;
 if (T_O/="0010") then
 err_cnt := err_cnt + 1;
 end if;

 -- case I="10"
 wait for 20 ns;
 T_I <= "10";
 wait for 1 ns;
 assert (T_O="0100") report "Error Case 2" severity error;
 if (T_O/="0100") then
 err_cnt := err_cnt + 1;
 end if;

 -- case I="11"
wait for 20 ns;
T_I <= "11";

wait for 1 ns;
assert (T_O="1000") report "Error Case 3" severity error;
if (T_O="/1000") then
 err_cnt := err_cnt + 1;
end if;

-- case I="UU"
wait for 20 ns;
T_I <= "UU";

-- summary of all the tests
if (err_cnt=0) then
 assert false
 report "Testbench of decoder completed successfully!"
 severity note;
else
 assert true
 report "Something wrong, try again"
 severity error;
end if;

wait;

end process;

end TB;

configuration CFG_TB of test_decoder is
 for TB
 end for;
end CFG_TB;