

Assisting the Visually Impaired Using Depth Inference on Mobile Devices via Stereo Matching

Benjamin Chidester, Minh N. Do 7/15/2013

Desired Elements of a Navigation Assistance Tool

Qualities:

• Light, comfortable, convenient, non-intrusive, avoids negative social side-effects, inexpensive

Functionality:

- Obstacle detection and avoidance
- Environment enrichment features
 - Beacons or waypoints
 - Object recognition and scene description

Desired Elements of a Navigation Assistance Tool

Qualities:

• Light, comfortable, convenient, non-intrusive, avoids negative social side-effects, inexpensive

Functionality:

- Obstacle detection and avoidance ^l
- Environment enrichment features
 - Beacons or waypoints
 - Object recognition and scene description

We focus on this essential element \mathbb{I}

Desired Elements of a Navigation Assistance Tool

Qualities:

• Light, comfortable, convenient, non-intrusive, avoids negative social side-effects, inexpensive

Functionality:

- Obstacle detection and avoidance
- Environment enrichment features
 - Beacons or waypoints
 - Object recognition and scene description

We focus on this essential element \mathbb{I}

Requires depth information

Related Tools for Navigation Assistance

- SWAN: System for Wearable Audio Navigation
 - Beacons and waypoints guide user toward destination
 - Voice recordings and GPS allow user to save notes about a particular location on the route
 - Object recognition describes elements of scene to user
- The vOICe
 - Captured image is described to user through
 - sound

http://www.seeingwithsound.com

http://sonify.psych.gatech.edu/rese arch/swan/index.html

- Listen2dRoom
 - Elements of room are identified and spoken to user

Related Tools for Navigation Assistance

- SLAM Univ. of Southern California
 - Depth is detected from stereo cameras
 - Wearable motors provide cues to user for directions
- BrainPort
 - Images are described to user using a touch device on the tongue

http://www.scientificamerican.com/article.cfm? id=device-lets-blind-see-with-tongues

V. Pradeep, G. Medioni, and J. Weiland, "Robot vision for the visually impaired,"

Ĩ

Mobile Devices as a Platform for Depth Inference

Benefits:

- Convenient user may already own a mobile device
- Non-intrusive, light, comfortable no additional hardware required, avoids negative social side-effects
- Computational power enough computational power housed within the device to perform computer vision tasks

Trend in Mobile Imaging:

- Camera arrays
 - Thinner devices
 - Computational photography applications
 - 3D video

http://www.pelicanimaging.com/

Ĩ

Mobile Devices as a Platform for Depth Inference

Benefits:

- Convenient user may already own a mobile device
- Non-intrusive, light, comfortable no additional hardware required, avoids negative social side-effects
- Computational power enough computational power housed within the device to perform computer vision tasks

Trend in Mobile Imaging:

- Camera arrays
 - Thinner devices
 - Computational photography applications
 - 3D video

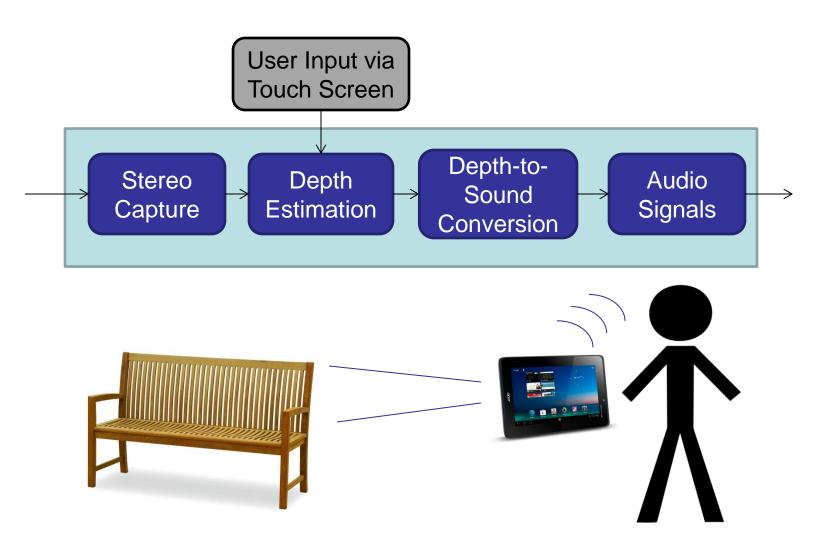
Camera arrays provide depth information

http://www.pelicanimaging.com/

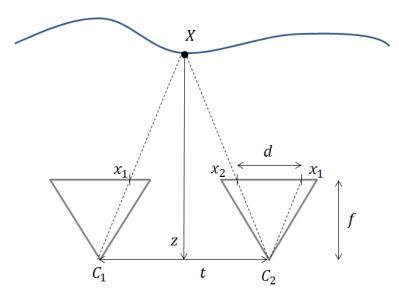
NVIDIA Tegra 3 Developer Tablet

2 CDECIEICATION

FCam API provides access to camera parameters



TEGRA 3 SPECIFICATIONS		
	Tegra 3 on Android	
Processor		
CPU	Quad-core, with 5th battery-saver core	
Max Frequency	Up to 1.7 GHz single core /1.6 GHz quad-core	
L2 Cache	1 MB	
L1 Cache (I/D)	(32KB / 32KB) per core	
Memory		
Frequency	DDR3-L 1500 LPDDR2-1066	
Memory Size	Up to 2 GB	
GPU		
Architecture	ULP GeForce	


http://www.nvidia.com/object/tegra-3-processor.html

Proposed Mobile System

Depth Resolution from Stereo

Depth:
$$z = \frac{tf}{d}$$

t: baseline (m)

f: focal length (in pixels)

z: depth (m)

d: disparity (in pixels)

Conversion of Disparity to Depth for NVIDIA Tablet

Disparity (pixels)	Depth (meters)
1	38.15
2	19.08
5	7.63
10	3.82
30	1.27
50	0.76

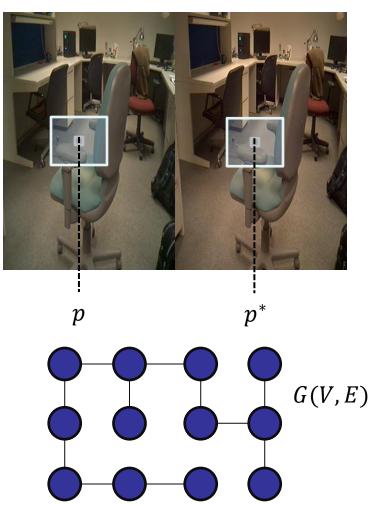
Can infer depth of several meters, which is appropriate for navigation

Ĩ

ECE ILLINOIS

Depth Inference via Stereo Matching

Local Methods

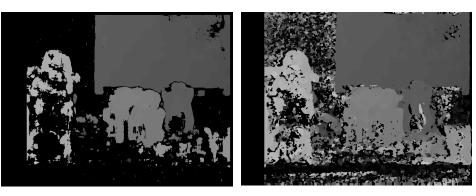

- window-based correspondence search on an individual pixel basis
- least computationally demanding approaches
- less robust

Semi-Global Methods

 optimization includes global smoothness penalty:

 $E(\mathcal{D}) = E_{data}(\mathcal{D}) + \lambda E_{smooth}(\mathcal{D})$

- more accurate inference
- computationally demanding

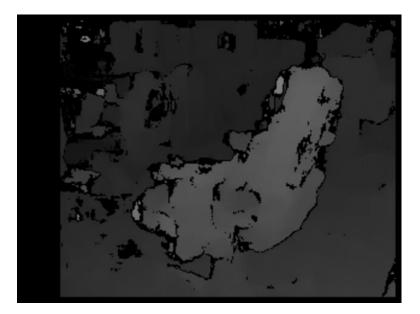

Mobile Stereo Matching Potential

Local Method

320x480

- ~5 frames per second
- depth-to-sound (or depth-totouch) mapping will reduce dimension, so some inaccuracies can be tolerated
- timing can be reduced
- Semi-Global Method
- ~1.5 frames per second
- Accuracy might not be worth the speed trade-off

)	Local Method	Semi-Global Method
	202 ms	672 ms



]

Another Real-World Example

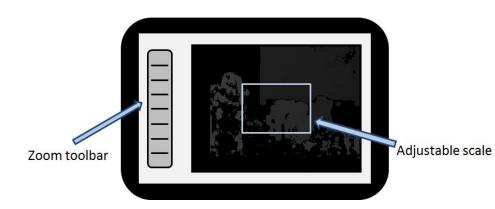
Conveying Depth Information to the User

- Depth-to-Sound
 - interferes with sounds from surroundings
 - only required additional hardware are headphones

- Depth-to-Touch
 - limited resolution
 - does not interfere with sound
 - discomfort to user

Both can require extensive training. Unclear which is more effective.

http://www.seeingwithsound.com


http://www.scientificamerican.com/article.cf m?id=device-lets-blind-see-with-tongues

User Interface and Depth-to-Sound

Philosophy:

Do not over-interpret the data; Leave the interpretation to the user.

- Depth-to-Sound
 - Average depth over window modulates pitch of output tone or frequency of beep pulse

- Zoom toolbar
 - User defines the scale of the region of interest of the scene over which to aggregate depth information
- Shift-able window
 - User designates the location in the image of the windowed aggregation by touching the screen

close object

Conclusion

- Reliable depth inference in real-time (~5 fps and greater) is achievable with stereo matching
- System demonstrates the viability of depth inference on mobile devices to assist the visually impaired
- Benefits of system:
 - Convenient, non-intrusive, no additional hardware
 - Could be easily deployed in the near future for widespread use as an app
 - A variety of depth-to-sound (or potentially depth-to-touch) mappings could be tested by owners of tablets and smart phones with camera arrays
 - GPS and 3G connectivity allow for easy integration of other possible enhancements, such as GPS waypoints, street name notifications
 - Other computer vision inference tools, such as scene understanding

I

Thank You