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Abstract

Local part-based human detectors are capable of han-

dling partial occlusions efficiently and modeling shape ar-

ticulations flexibly, while global shape template-based hu-

man detectors are capable of detecting and segmenting hu-

man shapes simultaneously. We describe a Bayesian ap-

proach to human detection and segmentation combining lo-

cal part-based and global template-based schemes. The ap-

proach relies on the key ideas of matching a part-template

tree to images hierarchically to generate a reliable set of de-

tection hypotheses and optimizing it under a Bayesian MAP

framework through global likelihood re-evaluation and fine

occlusion analysis. In addition to detection, our approach is

able to obtain human shapes and poses simultaneously. We

applied the approach to human detection and segmentation

in crowded scenes with and without background subtrac-

tion. Experimental results show that our approach achieves

good performance on images and video sequences with se-

vere occlusion.

1. Introduction

Human detection is a fundamental problem in video

surveillance. It can provide an initialization for human seg-

mentation. More importantly, robust human tracking and

identification are highly dependent on reliable detection and

segmentation in each frame, since better segmentation can

be used to estimate more accurate and discriminative ap-

pearance models.

Previous approaches to human detection can be classi-

fied into two categories: shape-based approaches and blob-

based approaches. Shape-based approaches are mostly

developed for human detection in still images or moving

videos. The shapes are modeled as local curve segments in

[19, 11, 4, 20], modeled directly as a global shape model

hierarchy in [5, 22], or implicitly represented by local or

global descriptors in [10, 9, 13, 3, 21]. For highly articu-

lated objects like humans, part-based representations have

been shown to be very efficient for detection. For exam-

ple, Mikolajczyk et al. [10] use local features for part de-

tection and assemble the part detections probabilistically.

Wu et al. [19] introduce edgelet part features for human

detection. They extend this approach to a general object

detection and segmentation approach by designing local

shape-based classifiers [20]. One problem with these part-

based detection approaches is that in very cluttered images

too many detection hypotheses may be generated, and a

robust assembly method (e.g. boosting) is thus needed to

combine these detections. Recently, Shet et al. [14] pro-

pose a logical reasoning-based method for efficiently as-

sembling part detections. On the other hand, Gavrila et

al. [5] propose a more direct hierarchical template match-

ing approach for global shape-based pedestrian detection.

These shape-based detection methods can also be combined

with appearance-based clustering for simultaneous detec-

tion and segmentation [8, 22, 18]. Shape-based approaches

have the advantage that they do not require background sub-

traction, but they need to scan whole images and can gener-

ate many false alarms in cluttered regions.

In contrast, blob-based approaches are computation-

ally more efficient but have a common problem that the re-

sults depend crucially on background subtraction. These

approaches are mostly developed for detecting and track-

ing humans under occlusion. Some earlier methods [16, 7]

model the human tracking problem by a multi-blob obser-

vation likelihood given a human configuration. Zhao et

al. [24] introduce an MCMC-based optimization approach

to human segmentation from foreground blobs. They detect

heads by analyzing edges surrounding binary foreground

blobs, formulate the segmentation problem in a Bayesian

framework, and optimize by modeling jump and diffusion

dynamics in MCMC to traverse the complex solution space.

Following this work, Smith et al. [15] propose a similar

trans-dimensional MCMC model to track multiple humans

using particle filters. Later, an EM-based approach is pro-

posed by Rittscher et al. [12] for foreground blob segmen-

tation. Recently, Zhao et al. [23] use a part-based human

body model to fit binary blobs and track humans.

We propose a hierarchical part-template matching ap-

proach for human detection and segmentation. The ap-

proach takes advantages of both local part-based and global



template-based human detectors by decomposing global

shape models and constructing a part-template tree to model

human shapes flexibly and efficiently. Edges are matched to

the part-template tree efficiently to determine a reliable set

of human detection hypotheses. Shape segmentations and

poses are estimated automatically through synthesis of part

detections. The set of detection hypotheses is optimized

under a Bayesian MAP framework based on global likeli-

hood re-evaluation and fine occlusion analysis. For meet-

ing the requirement of real-time surveillance systems, we

also combined the approach with background subtraction to

increase efficiency, where region information provided by

foreground blobs is combined with shape information from

the original image in a generalized joint likelihood model.

2. Bayesian Problem Formulation

We model the detection and segmentation problem as a

Bayesian MAP optimization:

c∗ = arg max
c

P (c|I), (1)

where I denotes the image observation, c = {h1,h2, ...hn}
denotes a human configuration (a set of human hypotheses),

and n denotes the number of humans in the configuration.

{hi = (xi, θi)} is an individual hypothesis which consists

of foot position1 xi and corresponding human model pa-

rameter θi which are explained in Section 3. Using Bayes

Rule, Equation 1 can be decomposed into a joint likelihood

P (I|c) and a prior P (c) as follows:

P (c|I) =
P (I|c)P (c)

P (I)
∝ P (I|c)P (c). (2)

We assume a uniform prior, hence the MAP problem re-

duces to maximizing the joint likelihood.

2.1. Joint Likelihood Model

Previous approaches [16, 7, 24] model the human detec-

tion and tracking problem by a multi-blob observation like-

lihood based on object-level and configuration-level likeli-

hood. In [19], the joint likelihood is modeled as the prob-

ability of part-detection responses given a set of human hy-

potheses.

We decompose the image observation, I , into shape ob-

servation Is (edge image) and region observation Ir (binary

foreground image from background subtraction) assuming

independence between the shape and region information.

Then, the joint likelihood P (I|c) is modeled as:

P (I|c) = P (Is|c)P (Ir|c), (3)

1Here, we choose the foot point as a reference to represent and search

for human shapes. A foot point is defined as the bottom center point of a

human bounding box.

where P (Is|c) and P (Ir|c) denote shape likelihood and re-

gion likelihood respectively. The region observation is op-

tional and we set P (Ir|c) = 1 or equivalently P (I|c) =
P (Is|c) when background subtraction is not used.

3. Hierarchical Part-Template Matching

3.1. Tree-Structured Part-Template Hierarchy

We take advantages of local part-based and global shape

template-based approaches by combining them in a unified

top-down and bottom-up search scheme. Specifically, we

extend the hierarchical template matching method in [5]

by decomposing the global shape models into parts and

constructing a new part template-based hierarchical tree as

shown in Figure 1(b).

We first generate a flexible set of global shape mod-

els by part synthesis (Figure 1(a)). For modeling human

side views and front/back views individually, we repre-

sent the body with six part regions - (head, torso, pair of

upper-legs, pair of lower-legs). Each part region is mod-

eled by a horizontal parallelogram (five degrees of free-

dom) characterized by its position, size and orientation pa-

rameters. Thus, the total number of degrees of freedom

is 5 × 6 = 30. For simplicity, we use only six degrees

of freedom (head position, torso width, orientations of up-

per/lower legs) given the torso position as the reference.

Heads and torsos are simplified to vertical rectangles (with

rounded shapes at corners). The selected six parameters are

discretized into {3, 2, 3, 3, 3, 3} values. Finally, the part

regions are independently collected and grouped to form

3 × 2 × 3 × 3 × 3 × 3 = 486 global shape models (Figure

1(a)).

Next, silhouettes and boundaries are extracted from the

set of generated global shape models and decomposed into

three parts (head-torso, upper legs and lower legs) as shown

in Figure 1(a). The parameters of the three parts ht, ul, ll
are denoted as θht, θul and θll, where each parameter rep-

resents the index of the corresponding part in the part-

template tree. Then, the tree-structured part-template hier-

archy is constructed by placing the decomposed part regions

and boundary fragments into a tree as illustrated in Figure

1(b). The tree has four layers denoted as L0, L1, L2, L3,

where L0 is the root node which is set to be empty, L1 con-

sists of side-view head-torso templates L1,i, i = 1, 2, 3 and

front/back-view head-torso templates L1,i, i = 4, 5, 6, and

similarly, L2 and L3 consists of upper and lower leg poses

for side and front/back views.

3.2. Part-Template Likelihood

A part template T is characterized by its boundary and

coverage region (Figure 1(a)). We match individual part-

templates using both shape and region information (when

region information is available from background subtrac-



(a) Generation of global shape models by part synthesis, decomposition of

global silhouette and boundary models into region and shape part-templates

(b) Part-template tree characterized by both shape and region information

(c) Shape segmentation by synthesizing matched part-templates (designated

by a path from L0 to L3)

Figure 1. An illustration of the part-template tree and its construc-

tion process.

tion). Shape information is measured by chamfer matching

and region information is measured by part foreground cov-

erage density.

For a foot candidate pixel x in the image, the likelihood

P (I|x, θj) for a part template-Tθj
, j ∈ {ht, ul, ll} is de-

composed into the part-shape likelihood P (Is|x, θj) and the

part-region likelihood P (Ir|x, θj) as follows:

P (I|x, θj) = P (Is, Ir|x, θj) = P (Is|x, θj)P (Ir|x, θj).
(4)

The part-shape likelihood is modeled by the chamfer

score in an exponentially scaled distance transform image

as follows:

P (Is|x, θj) = Dchamfer(x, Tθj
), (5)

Dchamfer(x, Tθj
) =

1

|Tθj
|

∑

t∈Tθj

d
′

I(x + t), (6)

where Tθj
represents the part-template defined by parame-

ter θj , t ∈ Tθj
represents the individual pixels in the tem-

plate, and Dchamfer(x, Tθj
) represents the average cham-

fer distance for foot candidate pixel x. d
′

I is a scaled dis-

tance transform image obtained by the following exponen-

tial transformation:

d
′

I(y) = exp(−βdI(y)), (7)

where dI is the Euclidean distance transform image and β
is a constant factor.

When region information is not available, we set the

part-region likelihood as P (Ir|x, θj) = 1, otherwise, it is

calculated by the part foreground coverage density γ(x, θj)
which is defined as the proportion of the foreground pixels

covered by the part-template Tθj
at pixel x.

We find the maximum likelihood estimate θ∗j (x) as fol-

lows:

θ∗j (x) = arg max
θj∈Θj

P (I|x, θj), (8)

where Θj denotes the parameter space of part-template

Tθj
, and P (I|x, θj) denotes the part-template likelihood for

pixel x and part-template Tθj
.

3.3. Hierarchical Part-Template Matching

Given ground plane homography information (see Sec-

tion 5.1), we match the off-line constructed part-template

tree to the edge map hierarchically.

Hierarchical part-template matching provides estimates

for the model parameters θ∗(x) for every foot candidate

pixel x in the image. We define a flexible likelihood func-

tion (a function of weight vector w) here for evaluating like-

lihood for any parts or part combinations. The object-level

likelihood function P (I|x) for foot candidate pixel x is now

expressed as follows:

Pw(I|x) =
∑

j

wjP (I|x, θ∗j (x)), (9)

where w = {wj , j = ht, ul, ll} is an importance weight

vector to calculate a likelihood value for different parts or

part combinations. For example, {wht = wul = wll =
1/3} corresponds to a full body detector and {wht =
0, wul = wll = 1/2} corresponds to a leg detector. The

importance weights are normalized to satisfy
∑

j wj = 1.



(a) (b) (c) (d)

Figure 2. An example of detection process without background subtraction. (a) Initial set of human detection hypotheses, (b) Human shape

segmentations, (c) Detection result, (d) Segmentation result (final occlusion map).

Algorithm 1 Hierarchical Part-Template Matching

For each pixel x in the image, we adaptively search over

scales distributed around the expected human size (w0, h0)
estimated by foot-to-head plane homography and an aver-

age aspect ratio ∆.

1) We match the set of head-torso shape templates in layer

L1 with the image and estimate the maximum likelihood

solution θ∗ht.

2) Based on the part-template estimate θ∗ht (either side or

frontal view template), we match the upper leg template

models and the lower leg template models to find the max-

imum likelihood solution for leg layers, the estimated leg

part-template parameters are denoted as θ∗ul and θ∗ll.
3) We estimate human shapes by combining the maximum

likelihood estimates of the local part-templates, and return

the synthesized model parameters θ∗ = {θ∗ht, θ
∗

ul, θ
∗

ll}.

We have seven part or part-combination detectors, and if the

head-torso is decomposed further into head-shoulder and

torso, the number of detectors can be as high as 15.

Suppose we use K part detectors, Dk, k = 1, 2...K cor-

responding to K weight vectors wk, k = 1, 2...K for each

foot candidate pixel x in the image. The likelihoods for

these part detectors are calculated with the object-level like-

lihood function (Equation 9). We choose the final object-

level likelihood P (I|x) for foot candidate pixel x by maxi-

mizing the K detector responses:

P (I|x) = max
k

Pwk(I|x), (10)

We threshold the final likelihood map by a detection

threshold T and merge nearby weak responses to strong re-

sponses and adaptively select modes. This step can also

be performed by local maximum selection after smoothing

the likelihood image. Then, the generated set of human hy-

potheses is denoted as:

O = {o1, o2, ...oN} =

{(x1, θ
∗(x1)), (x2, θ

∗(x2)), ...(xN , θ∗(xN ))}, (11)

and the corresponding likelihoods are denoted as L(oi), i =

1, 2...N .

4. Optimization: Maximizing the Joint Likeli-

hood

Suppose we have an initial set of human hypotheses

O = {o1, o2, ...oN} obtained from hierarchical part tem-

plate matching. The remaining task is to estimate its best

subset through optimization. This is equivalent to maxi-

mize the joint likelihood P (I|c) (Equation 3) with respect

to the configuration c.

4.1. Modeling the Joint Likelihood

If region information is not available, we set the region

likelihood as P (Ir|c) = 1, otherwise, it is calculated by the

global coverage density of the binary foreground regions:

P (Ir|c) =
Γ(c)

Γfg

, (12)

where Γfg denotes the area of the foreground regions and

Γ(c) denotes the area of the foreground regions covered by

the configuration c. Intuitively, the more the foreground is

covered by the configuration c, the higher the probability

P (Ir|c). Areas covered by the hypotheses and located out-

side the foreground regions are not penalized here but con-

sidered in foot candidate region detection in Section 5.2.

In fact, the region likelihood (Equation 12) has a bias to-

wards more detections, but the bias is compensated for by

the shape likelihood (Equation 13) (which involves a di-

rect multiplication of individual likelihoods), since adding

redundant hypotheses will decrease the shape likelihood.

The shape observation Is now can be reduced to

o1, o2, ..., oN since we only select the best subset from this

initial set of hypotheses. This allows us to further decom-

pose the shape likelihood as a product of likelihoods (as-

suming independence between each observation oi given

the configuration c):

P (Is|c) = P (o1, o2, ..., oN |c) =

N∏

i=1

P (oi|c). (13)



For evaluating the conditional probability P (oi|c), we

need to model the occlusion status between different hy-

potheses in the configuration c. For simplicity, we assume

a known or fixed occlusion ordering for c. Directly us-

ing the object-level likelihood L(oi) to model P (oi|c) will

have problems since it only represents the strongest part re-

sponse. We need to globally re-evaluate the object-level

likelihood of each hypothesis oi based on fine occlusion

analysis; that is, we calculate the global shape likelihood

only for the un-occluded parts when calculating the chamfer

scores. This occlusion compensation-based likelihood re-

evaluation scheme is effective in rejecting most false alarms

while retaining the true detections.

Since we aim to select the best subset of O as our opti-

mization solution c∗, we assume hj ∈ O, j = 1, 2...n. We

can treat the individual conditional probability P (oi|c) as a

decision likelihood with oi as the observation and c as the

decision. Suppose the set of hypotheses O consists of ntp

true positives (tp), ntn true negatives (tn), nfp false posi-

tives (fp), and nfn false negatives (fn). The decision rules

(for the detection threshold T ) for each observation oi are

defined as follows:

1. P (oi|c) = ptp if oi ∈ c and L(oi|Iocc) ≥ T ;

2. P (oi|c) = pfp if oi ∈ c and L(oi|Iocc) < T ;

3. P (oi|c) = ptn if oi /∈ c and L(oi|Iocc) ≥ T ;

4. P (oi|c) = pfn if oi /∈ c and L(oi|Iocc) < T ,

where Iocc denotes the occlusion map generated from

the configuration c and L(oi|Iocc) denotes the occlusion-

compensated (re-evaluated) object-level likelihood. The

probabilities ptp, pfn, pfp, and ptn are set to ptp = pfn = α
and pfp = ptn = 1 − α (where α > 0.5) for the current

implementation. Finally, the shape likelihood (Equation

13) can be expressed as: P (Is|c) = p
ntp

tp p
nfp

fp pntn

tn p
nfn

fn =

α(ntp+nfn)(1 − α)(nfp+ntn).

4.2. Optimization based on Likelihood Re-
evaluation

We order the hypotheses in decreasing order of vertical

(or y) coordinate as in [19]. This is valid for many surveil-

lance videos with ground plane assumption, since the cam-

era is typically looking obliquely down towards the scene.

For simplicity, we assume o1, o2, ..., oN is such an ordered

list. Starting from an empty scene, the optimization is per-

formed based on iterative filling of humans based on occlu-

sion compensation and likelihood re-evaluation.

An example of the detection and segmentation process

is shown in Figure 2. Note that initial false detections

are rejected in the final detection based on likelihood re-

evaluation, and the occlusion map is accumulated to form

the final segmentation.

Algorithm 2 Optimization algorithm

Given an ordered list of hypotheses o1, o2, ..., oN ,

initialize the configuration as c = φ, the occlusion map

Iocc as empty (white image), and the joint likelihood as

P (I|c) = 0.

for i = 1 : N
1. re-evaluate the object-level likelihood of hypothesis

oi based on the current occlusion map Iocc, i.e. calculate

L(oi|Iocc).
2. if L(oi|Iocc) ≥ T and P (I|oi ∪ c) > P (I|c), oi 7→ c.

3. update the occlusion map Iocc using the current configu-

ration c.

endfor

return the configuration c and occlusion map Iocc.

5. Combining with Calibration and Back-

ground Subtraction

We can also combine the shape-based detector with

background subtraction and calibration in a unified system.

5.1. Scene-to-Camera Calibration

If we assume that humans are moving on a ground plane,

ground plane homography information can then be esti-

mated off-line and used to efficiently control the search for

humans instead of searching over all scales at all positions.

A similar idea has been explored by Hoiem et al. [6] com-

bining calibration and segmentation. To obtain a mapping

between head points and foot points in the image, i.e. to

estimate expected vertical axes of humans, we simplify the

calibration process by estimating the homography between

the head plane and the foot plane in the image [12]. We as-

sume that humans are standing upright on an approximate

ground plane viewed by distant camera relative to the scene

scale, and that the camera is located higher than a typical

person’s height. We define the homography mapping as

f = Ph
f : F 7→ H , where F,H ∈ P

2. Under the above

assumptions, the mapping f is one-to-one correspondence

so that given an off-line estimated 3 × 3 matrix Ph
f , we can

estimate the expected location of the corresponding head

point ph = f(pf ) given an arbitrary foot point pf in the

image. The homography matrix is estimated by the least

squares method based on L >> 4 pairs of foot and head

points pre-annotated in some frames. An example of the

homography mapping is shown in Figure 3.

5.2. Combining with Background Subtraction

Given the calibration information and the binary fore-

ground image from background subtraction, we estimate

the binary foot candidate regions Rfoot as follows: we first

find all foot candidate pixels x with foreground coverage

density γx larger than a threshold ξ. Given the estimated



Figure 3. Simplified scene-to-camera calibration. Left: Interpre-

tation of the foot-to-head plane homography mapping. Right: An

example of the homography mapping. 50 sample foot points are

chosen randomly and corresponding head points and human verti-

cal axes are estimated and superimposed in the image.

(a) (b)

(c) (d)

(e) (f)

Figure 4. An example of the detection process with background

subtraction. (a) Adaptive rectangular window, (b) Foot candidate

regions Rfoot (lighter regions), (c) Object-level (foot-candidate)

likelihood map by the hierarchical part-template matching (where

red color represents higher probabilities and blue color represents

lower probabilities), (d) The set of human hypotheses overlaid on

the Canny edge map in the augmented foreground region (green

boxes represent higher likelihoods and red boxes represent lower

likelihoods), (e) Final human detection result, (f) Final human seg-

mentation result.

human vertical axis −→v x at the foot candidate pixel x, γx is

defined as the proportion of foreground pixels in an adap-

tive rectangular window W (x, (w0, h0)) determined by the

foot candidate pixel x. The foot candidate regions Rfoot

are defined as: Rfoot = {x|γx ≥ ξ}. The window cov-

erage is efficiently calculated using integral images [17].

We detect edges in the augmented foreground regions Rafg

which are generated from the foot candidate regions Rfoot

by taking the union of the rectangular regions determined

by each foot candidate pixel pf ∈ Rfoot, adaptively based

on the estimated human vertical axes. Figure 4 shows an

example.

6. Experimental Results

In order to quantitatively evaluate the performance of our

detector, we use the overlap measure defined in [9]. The

overlap measure is calculated as the smaller value of the

area ratios of the overlap region and the ground truth an-

notated region/detection region. If the overlap measure of

a detection is larger than a certain threshold η = 0.5, we

regard the detection as correct.

6.1. Results without Background Subtraction

We compared our human detector with Wu et al. [19] and

Shet et al. [14] on USC pedestrian dataset-B [19] which

contains 54 grayscale images with 271 humans. In these

images, humans are heavily occluded by each other and par-

tially out of the frame in some images. Note that no back-

ground subtraction is provided for these images. Figure 5

shows some example results of our detector and Figure 6

shows the comparison result as ROC curves. Our detector

obtained better detection performance than the others when

allowing more than 10 false alarms out of total of 271 hu-

mans, while detection rate decreased significantly when the

number of false alarms was reduced to 6 out of 271. Proper

handling of edge sharing problem would reduce the num-

ber of false alarms further while maintaining the detection

rates. The running time of [19] for processing an 384×288
image is reported as about 1 frame/s on a Pentium 2.8GHz

machine, while our current running time for a same sized

image is 2 frames/s on a Pentium 2GHz machine.

6.2. Results with Background Subtraction

We also evaluated our detector on two challenging

surveillance video sequences using background subtraction.

The first test sequence (1590 frames) is selected from the

Caviar Benchmark Dataset [1] and the second one (4836

frames) is selected from the Munich Airport Video Dataset

[2]. The foreground regions detected from background sub-

traction are very noisy and inaccurate in many frames. From

example results in Figure 7, we can see that our pro-

posed approach achieves good performance in accurately

detecting humans and segmenting the boundaries even un-

der severe occlusion and very inaccurate background sub-

traction. Also, from the results, we can see that the shape es-

timates automatically obtained from our approach are quite



Figure 5. Detection and segmentation results (without background subtraction) for USC pedestrian dataset-B.
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Figure 6. Evaluation of detection performance on USC pedestrian

dataset-B (54 images with 271 humans). Results of [19] and [14]

are copied for the comparison purpose.

accurate. Some misaligned shape estimates are generated

mainly due to low contrast and/or background clutter.

We evaluated the detection performance quantitatively

on 200 selected frames from each video sequence. Fig-

ure 8 shows the ROC curves for the two sequences. Most

false alarms are generated by cluttered background areas

incorrectly detected as foreground by background subtrac-

tion. Misdetections (true negatives) are mostly due to the

lack of edge segments in the augmented foreground re-
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Figure 8. Evaluation of detection performance on two test se-

quences from Munich Airport dataset and Caviar dataset.

gion or complete occlusion between humans. Our sys-

tem is implemented in C++ and currently runs at about 2

frames/s (without background subtraction) and 5 frames/s

(with background subtraction) for 384 × 288 video frames

on a Pentium-M 2GHz Machine.

7. Conclusions

A hierarchical part-template matching approach is em-

ployed to match human shapes with an edge map to de-



Figure 7. Detection and segmentation results (with background subtraction) for Caviar data [1] and Munich Airport data [2].

tect and segment humans simultaneously. Local part-based

and global shape-template based approaches are combined

to detect human hypotheses reliably and optimize them

through likelihood re-evaluation and fine occlusion analysis

under a unified Bayesian MAP framework. In addition to

detection, human shapes and poses are segmented automati-

cally through the detection process. The approach is applied

to human detection and segmentation in crowded videos

with and without background subtraction. The results

demonstrate that the proposed part-template tree model cap-

tures the articulations of the human body, and detects hu-

mans robustly and efficiently. We are currently combing the

approach with appearance-based segmentation to improve

the result of shape segmentations.
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