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Abstract—Partial 3D shape matching refers to the process
of computing a similarity measure between partial regions of
3D objects. This remains a difficult challenge without a priori
knowledge of the scale of the input objects, as well as their
rotation and translation. This paper focuses on the problem of
partial shape matching among 3D objects of unknown scale.
We consider the problem of face detection on arbitrary 3D
surfaces and introduce a multiscale surface representation for
feature extraction and matching. This work is motivated by the
scale-space theory for images. Scale-space based techniques have
proven very successful for dealing with noise and scale changes
in matching applications for 2D images. However, efficient and
practical scale-space representations for 3D surfaces are lacking.
Our proposed scale-space representation is defined in terms
of the evolution of surface curvatures according to the heat
equation. This representation is shown to be insensitive to
noise, computationally efficient, and capable of automatic scale
selection. Examples in face detection and surface registration are
given.

Keywords - 3D shape matching, mesh signal processing,
heat equation, 3D face detection, surface registration

I. INTRODUCTION

3D shape matching refers to the process of computing a
similarity measure between 3D objects [1]. The main applica-
tions of shape matching are 3D shape registration, recognition,
retrieval, and classification. These applications, in turn, are
used in higher-level processing tasks, such as 3D search
engines [2] and automatic 3D model generation from physical
objects [3].

Partial 3D shape matching refers to a more difficult sub-
problem that deals with measuring the similarity between
partial regions of 3D objects. Despite a great deal of attention
drawn to 3D shape matching in the fields of computer vision
and computer graphics, partial shape matching applied to
objects of arbitrary scale remains a difficult problem. In this
case, the similarity is measured between partial regions of
input objects, where the relative position, orientation, scale,
and the extent of overlap may be unknown. Although various
algorithms exist in the literature for 3D partial shape matching
[3], [4], they do not handle shapes of arbitrary scale. We ad-
dress this problem by introducing a new 3D surface matching
approach based on the scale-space theory of signals.

The scale-space representation of a signal in Rn is defined
in terms of its evolution according to the heat (diffusion)
equation (Sec. II). The scale-space theory is concerned with
the study and analysis of the properties of this representation

of signals. The need for scale-space representations of signals
arises when estimating derivatives for shape matching. Most
shape matching applications require the estimation of the first
few derivatives of the input signals [5]. A major difficulty with
this estimation problem is that differentiation is highly sensi-
tive to noise. Most techniques attempt to achieve resilience
to noise by defining the differential operators in a multiscale
fashion, with the scale determining the amount of low-pass
filtering applied to the input. A difficulty with this approach is
determining the proper spatially-varying scale for the operators
[5], which is a process referred to as automatic scale selection
[6]. This process served as the principle motivation for the
development of the scale-space theory [5].

Scale-space techniques are now widely used for signals in
Rn [7], with the theory having become quite mature over the
past few decades, especially for 2D images. Beyond having
nice theoretical properties, the scale-space representation of
images has been shown to be realized efficiently with impres-
sive practical results [8], [9]. Currently, scale-space matching
techniques, such as SIFT [8] and SURF [10], are the de
facto standards in many 2D matching applications. Despite
finding widespread use in 2D signal processing, scale-space
techniques have not been widely applied to 3D surfaces.

There are two major difficulties with extending scale-space
representations to 3D surfaces. These difficulties are due to
representation issues and the estimation of the scale parameter
necessary for automatic scale selection. The lack of grid-
like structures that are present in 2D images and the non-
Euclidean geometry of surfaces make development of precise
and efficient representations difficult. The scale parameter,
which in the case of signals in Rn is defined in terms of the
variance of the smoothing kernel, may not be readily available
for 3D surfaces.

The goal of this work is to extend the use of scale-space the-
ory to 3D surfaces for the purpose of partial shape recognition.
The main contribution is a new scale-space representation for
3D surfaces that addresses the two major difficulties outlined
above. The new representation is shown to be insensitive
to noise, computationally efficient, and capable of automatic
scale selection.

The few current scale-space based surface representations
can be categorized into two classes based on how a signal
is derived from the surface and consequently evolved. First,
surface positions may be treated as the signal and therefore
the surface geometry is modified during the evolution process.



Fig. 1. Examples of possible inputs to our face detection system.

Second, a signal may be defined and evolved over the surface
while the geometry of the surface remains unchanged. It is
well-known that the evolution of surface positions generally
leads to geometric problems such as shrinkage and foldovers
[11], [12]. Therefore, we opt for the second approach whereby
we define our scale-space representation in terms of the
evolution of the surface curvatures.

We show an application of our approach to a partial shape
matching task involving the detection of human faces on 3D
models without any assumptions about the scale of the models.
To provide insight into our approach, we first present the
problem of automatic 3D face detection on arbitrary models.
Fig. 1 shows examples of input surfaces on which we seek
to find the location and extent of a human face. Note that
these surfaces come from different sources, have arbitrary
scale, and contain various facial expressions. In Fig. 2, we
show the general steps involved in the detection task. First,
a set of interesting keypoints are extracted on the surface of
the model (Fig. 2(b)). Using these extracted keypoints, the
relative location, orientation, and scale of the model (Fig. 2(c))
is obtained with respect to a reference face model (Fig. 2(f)).
Using this information, the locations of other important facial
features are identified (Fig. 2(d)). Finally, using the new set
of facial features in Fig. 2(d), the face region is extracted
from the input model (Fig. 2(e)). The face extraction process
generates a remeshed version of the cropped face in a manner
consistent between all models. Therefore, the output of the
face detection process can be directly fed into a 3D face
recognition algorithm. Unlike the majority of automatic 3D
face detection systems [13], [14], the proposed detection
scheme does not make any assumptions about the relative pose
or scale of the input models.

A. Related Work

Various scale-space representations have been proposed over
the past decade. The most straightforward approaches for
3D surfaces include parameterization [15] and voxelization
[16]. These two approaches, however, result in new surface
representations that suffer from distortions or loss of precision,
respectively.

As mentioned earlier, smoothing signals defined on the sur-
face may be performed instead of smoothing surface geometry.
For example, in [17], surface mean curvatures on a triangulated
surface are repeatedly smoothed with a Gaussian filter. The
proposed representation is then used to define a measure of
mesh saliency over the surface and its applications in mesh

simplification and viewpoint selection are shown in that paper.
Mean curvature flow, which is closely related to surface

diffusion, may also be used to smooth the surface. Under mean
curvature flow, each surface point is moved along its normal
proportional to its mean curvature. [18] uses a modification
of this approach to obtain a scale-space representation for
surfaces and shows how it can be used to perform feature
extraction and automatic scale selection on closed 3D models.
A major problem with this approach, however, is the geometric
degeneracies that generally arise from smoothing. In addition,
computation times of more than 2 hours were reported for
meshes with more than 2K vertices.

More recently, the Heat Kernel Signature (HKS) [19] has
been used in global shape matching tasks involving 3D models
that may have undergone isometric deformations. In this
approach, the properties of the heat kernel of a surface are used
to infer information about the geometry of the surface. A scale-
invariant version of HKS was also introduced in [20] and used
for non-rigid 3D shape retrieval. The main drawbacks of HKS-
based techniques are computation times and their inability to
perform automatic scale selection, which is required in most
partial shape matching tasks. In [19], it is reported that the
overall time required to compute the HKS on a surface with
100K vertices is approximately 90 minutes on a 2.4 GHz
CPU. This seriously limits the practical applications of the
approach.

The scale-space approach presented in this paper is capable
of automatic scale selection and is shown to be efficient to
compute. For instance, the scale-space representation of a
surface with approximately 113.5K vertices can be obtained
in 32 seconds on a 2.4 GHz CPU.

II. SCALE-SPACE REPRESENTATION OF SIGNALS IN Rn

The scale-space representation of a continuous signal f :
Rn → R is defined as the solution to the heat (diffusion)
equation [7]:

∂tF = ∆F , (1)

where ∆ denotes the Laplacian, and F (x; 0) = f(x) is
the initial condition. It can be shown that the Gaussian is
the fundamental solution to Eq. (1) [7]. The scale-space
representation of f can therefore be expressed as

F (x; t) = g(x; t) ∗ f(x) , (2)

where ∗ denotes convolution, g : Rn → R is the n-dimensional
normalized Gaussian: g(x; t) = 1

(πt)n/2
e−‖x‖

2/t, and t is
known as the scale parameter.

The non-enhancement property [7] of the scale-space rep-
resentation of signals, in general, guarantees that the values of
the local maxima (minima) decrease (increase) as the signal
is smoothed. However, the amplitude of the spatial derivatives
of the signal may be scale-normalized using the change of
variable v = x

tγ/2
, for γ > 0. This results in the following

scale-normalized spatial derivatives of the signal:

∂vmF
∗(v; t) = tmγ/2∂xmF (x; t) , (3)



(a) (b) (c) (d) (e) (f)
Fig. 2. Multiscale 3D face detection pipeline. (a) original model; (b) extracted keypoints; (c) detected location, orientation, and scale of the face region; (d)
auxiliary facial features extracted from the face region; (e) cropped and remeshed face region; (f) reference face.

where m denotes the order of differentiation. It can be shown
that the amplitudes of the scale-normalized derivatives of a
signal first increase and then decrease, and the scale at which
the maximum amplitude is reached is proportional to the
frequency of the signal. The process of finding this scale is
known as automatic scale selection [7]. We seek the same
type of scale-normalization in a scale-space representation of
a surface signal, and employ it to infer information about the
size of structures on the surface.

III. SCALE-SPACE REPRESENTATION FOR 3D SURFACES

In this section, we formulate a similar representation for
surfaces that is as close as possible to the scale-space repre-
sentation of signals in Rn. Our proposed approach is similar
to the HKS-based techniques, in the sense that we derive the
scale-space formulation of the surface in terms of the evolution
(diffusion) of signals on the surface with the help of the
Laplace-Beltrami operator. However, we analyze the surface
structures by directly studying the behavior of the signal as it
evolves on the surface. More specifically, we take the signal to
be the surface curvatures, which are derived from the surface
geometry. The main advantages of this approach over HKS are
gains in computational efficiency and the ability to estimate the
size of the surface structures. Additionally, our representation
enables us to robustly and efficiently estimate the Laplacian of
surface curvatures that results in a rich set of features, which
is useful in subsequent matching tasks.

Therefore, the scale-space representation, F :M×R→ R,
of 3D surface M, is defined as the solution to the diffusion
equation:

∂tF = ∆MF , (4)

with the initial condition F (p; 0) = f(p), where f(p) denotes
the mean or Gaussian curvature at point p ∈ M, and ∆M is
the Laplace-Beltrami operator.

From the above formulation, a stack of Gaussian-smoothed
surface curvatures is obtained, which can be used directly
in multiscale feature extraction and descriptor computations.
However, to make the best use of the representation for
automatic scale selection, the value of the scale parameter at
each level must also be estimated. The smoothed curvatures
together with the associated scales at each level define our
multiscale surface representation, which we refer to as the
Curvature Scale-Space 3D (CS3), as depicted in Fig. 3.

In Sec. III-A, we describe how a discrete surface signal may
be efficiently smoothed in a manner consistent with the scale-
space representation of signals. In Sec. III-C, we show how the
representation may be used for feature point extraction with
an automatic scale selection mechanism.

A. Gaussian Smoothing of a Surface Signal

Let our discrete surface be represented by the polygo-
nal mesh M = (V, E), where V = {v1, . . . , vN}, and
E = {eij |vi is connected to vj} are the vertex and edge
sets, respectively. Let F l : V → R denote the smoothed
discrete surface signal (curvatures) at level l, and define
Fl =

(
F l(v1) · · · F l(vN )

)>
. We employ the implicit

surface smoothing scheme of [12] to obtain the smoothed
surface signal Fl+1, at level l + 1, by solving the following
sparse system of linear equations

(I− λlL)Fl+1 = Fl , (5)

where λl > 0 is a time step, and L and I denote the N ×N
Laplacian and identity matrices, respectively. The elements of
the Laplacian matrix L = (wij)N×N are given as

wij =


−1 for i = j ,

1
|N (i)| for j ∈ N (i) ,

0 otherwise,
(6)

where N (i) denotes the 1-ring neighbor set of vertex vi.
The Laplacian matrix may also be populated with other types
of weights, such as cotan weights [12]. The linear system
in Eq. (5) can be efficiently solved using the Biconjugate
Gradient method.

The scale-space representation of the surface signal f is
then given by the sequence (F0, . . . ,FL−1), which is obtained
recursively using

Fl =

{
(I− λl−1L)−1Fl−1 if l > 0
f if l = 0 ,

(7)

for l = 0, . . . , L− 1.
The resulting transfer function of the implicit Laplacian

smoothing in Eq. (5) is

h(ω) = (1 + λnω
2)−1 , (8)

where ω denotes surface signal frequency [12]. When a stack
of smoothed signals with L levels is constructed according



(a) (b) (c)
Fig. 3. The CS3 representation of the Bimba model at scales (b) t = 3.0,
(c) t = 7.5, (d) t = 13.8.

to Eq. (7), with corresponding time steps (λ0, . . . , λL−2), the
transfer function of the filter at level L− 1 is given by

hL−1(ω) =
L−2∏
l=0

(1 + λlω
2)−1 . (9)

Note that the representation needs to be defined in a recur-
sive manner, since the transfer function of the filter defined
by Eq. (5) is not a Gaussian. On the other hand, the transfer
functions of our recursive formulation approach Gaussians, as
L grows.

The time steps are picked as λl = λl−1δ = λ0δ
l, where

λ0 denotes an initial time step and δ > 1 is a constant. It is
important to note that the time steps λl are not equivalent to
the scale parameter t in the original scale-space representation
of signals given by Eq. (2). Fig. 3 shows a 3D model and its
corresponding CS3 representation at various scales.

B. Estimating the Scale Parameter

To recover the scale parameter t at each level l, we fit a
Gaussian to the transfer function of the smoothing filter for that
level, and define the scale of the smoothed signal as the scale
of the fitted Gaussian. This is done by sampling the transfer
function hl in Eq. (9) over the range [0, 2]. This range is chosen
since the frequency content of the signal is defined in terms
of the eigenvalues of the Laplace-Beltrami operator L and the
choice of weights used to construct L in Eq. (6) guarantees
that −L has real eigenvalues 0 ≤ ω0 ≤ · · · ≤ ωN−1 ≤ 2 [11].
As a result, we obtain a set of pairs Γ = {(ωj , hl(ωj))}J−1

j=0 ,
which is used to estimate the scale tl of a fitted Gaussian
gl(ω, tl) = e−ω

2tl , in the least-squares sense:

tl =

∑j<|Γ|
j=0 ω2

j

∑k<l−1
k=0 ln(1 + λkω

2
j )∑j<|Γ|

j=0 ω4
j

. (10)

The scale parameter tl for each level l can alternatively
be defined in terms of the variance of the transfer function
at that level. Since the transfer function at each level is
analytic and only depends on the known sequence of time
steps, λl, its variance can be precomputed numerically. The
obtained sequence of scales, (t0, . . . , tL−1), together with the
stack of smoothed signals, (F0, . . . ,FL−1), define the CS3
representation of the surface.

(a) (b) (c) (d)
Fig. 4. Extracted features on (a) original, and (c) noisy Bimba models at
t = 21.7; the false-colors in (b) and (d) reflect the response of the ∆si

(Eq. (16)) at each vertex on the original and noisy models, respectively. The
models in (c) and (d) contain 80% Gaussian noise.
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(a) original (b) noisy
Fig. 5. Plots of LoC values of a few vertices on the surfaces in Fig. 4. The
vertical black lines indicate the location of the displayed scale (t = 21.7) in
Fig. 4.

C. Feature Extraction with Auto Scale Selection

The CS3 representation of a 3D surface may be used directly
for feature extraction. Let Φ(M) = (F0, . . . ,FL−1) and
Ψ(M) = (t0, . . . , tL−1) correspond to the CS3 representation
of surfaceM. The difference between the smoothed signals at
two consecutive levels l and l+ 1 can be used to approximate
the Laplacian of the signal at level l. This difference can be
expressed as a convolution of the original signal with Gaussian
filters:

Fl+1 − Fl ≈ F0 ∗ (g(·; tl+1)− g(·; tl)) , (11)

where ∗ denotes convolution defined over the surface and
g(·; tl) is a Gaussian with scale tl. Noting that ∂g

∂t = 0.5∆g,
we have

∂g

∂t
= 0.5∆g ≈ g(·; tl+1)− g(·; tl)

tl+1 − tl
, (12)

and consequently,

Fl+1 − Fl ≈ 0.5(tl+1 − tl)F0 ∗∆g . (13)

Therefore, the estimated Laplacian of F0, at level l, which we
denote by ∆Fl, is approximated by

∆Fl ≈ 2(Fl+1 − Fl)

tl+1 − tl
. (14)

We define the scale-normalized Laplacian of the surface signal
at scale tl as

∆normFl = tl∆Fl =
2tl(F

l+1 − Fl)

tl+1 − tl
. (15)
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Fig. 6. Plots of the scale-invariant LoC values of a few vertices on the
surfaces in Fig. 4.

Throughout this work, we assume that the surface signal
corresponds to the surface mean curvatures. ∆normF then
corresponds to the scale-normalized Laplacian of mean Cur-
vatures (LoC).

The local extrema of ∆normF could be used to define
feature points on a 3D model. For example, Fig. 4 depicts
the computed scale-normalized Laplacian of mean curvatures
on a 3D model and its noisy counterpart, at level l = 20 (scale
t = 21.7); the red spheres indicate the locations where LoC
is locally maximum or minimum at the displayed level. As
seen in the figure, the detected locations of the extrema of
LoC, despite their high differential order, are robust to noise
and may be used for extraction of stable and well-localized
feature points.

The plots in Fig. 5 show the computed LoC values at a
few selected vertices on the original and noisy models in
Fig. 4 as a function of scale. As expected, the values for both
of these models converge at the higher scales. However, the
corresponding LoC values of the vertices at the scale shown
in Fig. 4 are not the same between the two models due to the
noise. To alleviate this, we introduce the scale-invariant LoC
as

∆siFl =
∆Fl − F̄l

σl
, (16)

where

F̄l =
1

N
1>∆Fl1, σl =

1√
N
‖∆Fl − F̄l‖ , (17)

denote the vector-form mean, and standard deviation of the
LoC values at level l, respectively; N is the total number of
vertices in M, and 1 is an N -dimensional vector of all 1’s.

Fig. 6 shows the scale-invariant LoC plots of the same
vertices as in Fig. 5. As can be seen, the LoC curves of the
two surfaces begin to converge at a much finer scale, and look
more similar. The scale-invariant LoC is resilient to changes in
sampling resolution, spatial scaling, and additive i.i.d. noise.
Additionally, Fig. 7 provides a comparison between the ∆si

plots on the original, scaled, and higher resolution versions
of the same model as in Fig. 4(a). The higher resolution
version of the model was obtained by applying one iteration
of Loop’s subdivision scheme, which increases the number of
mesh vertices by a factor of 4. As can be seen, spatial scaling
of the model has no effect on the plotted ∆si curves, while
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(a) spatial scaling: ×100 (b) sampling resolution: ×4

Fig. 7. Comparison of scale-invariant LoC plots of the Bimba model
(Fig. 4(a)) with different spatial scales and sampling resolutions. Plot in (a)
is identical to the plot for the original model, shown in Fig. 6(a), while (b)
has been shifted to the right by approximately 7 levels. Note that, unlike the
plots in Figs. 5 and 6, the x-axis denotes the level in the CS3 stack, and not
the scale.
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Fig. 8. Automatic scale selection on the Caesar model. (a) Estimated scales
at a few locations; the radii of the blue spheres are computed using Eq. (18).
(b) Plots of the scale-normalized Laplacian of the surface mean curvatures at
the selected vertices as functions of scale; the locations of the filled squares
on the scale-axis indicate the detected scale for the keypoints.

the increase in the resolution of the surface shifts the curves
to the right.

According to the principle of automatic scale selection [7],
the scale(s) where ∆normFi becomes a local extremum across
scales can be expected to correspond to the size of surface
structures at vertex vi. This is visually verified in Figures 8
and 9, where the size of the blue spheres indicate the computed
spatial scale (neighborhood size) at a few selected keypoints.
An approach similar to Lowe’s [8] was used to select the
keypoints (shown as red spheres) on the models, in the two
figures. The keypoints were selected as the vertices that were

(a) (b)
Fig. 9. Automatic scale selection on the Bimba model. (a) Original model;
(b) estimated scales at a few locations on the model.



local extrema among their immediate neighbors, both on the
current level and two adjacent levels on the stack: let set
Ql(i) = {Fl+kj } ∪ {F

l−1
i ,Fl+1

i }, for k = −1, 0, 1, and
j ∈ N (i). Then, vertex vi, at level l, is selected as a keypoint
if Fli > qj ,∀qj ∈ Ql(i) or Fli < qj ,∀qj ∈ Ql(i). Let tl be
the scale associated with level l. tl then defines the scale of
the detected keypoint vi. The radius of each blue sphere in
Figures 8 and 9 was computed using

r = tlē , (18)

where ē is the average edge length in the surface mesh.
The graph in Fig. 8(c) shows the plots of LoC values at the

few selected keypoints (blue spheres) on the model in Fig. 8(a).
The filled squares on the curves indicate the location of the
detected scale for each keypoint.

IV. APPLICATION: AUTOMATIC FACE DETECTION

The CS3 representation together with the feature extraction
procedure described in the previous section can be used in
3D matching tasks, such as surface registration and 3D object
recognition. In this section, we describe how our proposed
representation can be used to detect the face region on 3D
surfaces containing human faces with arbitrary scale, orienta-
tion, and translation.

The detection system consists of two main stages. In the
offline (training) stage, a classifier is trained with a set of
3D human faces. The training set consists of faces with and
without expressions. The online (matching) stage involves the
actual detection of the human face on an input 3D surface.
Sec. IV-A describes the training stage, while the matching
stage of the algorithm is described in Sec. IV-B.

A. Face Detection: Training

The objectives of the training phase are: (1) facial feature
identification and AFM computation, and (2) face region
descriptor computations.

Facial Feature Identification and AFM Computation. In
this step, a user manually selects a predefined set of facial
features (e.g., the nose tip, eyes, chin) on each 3D face in
the training set. These features are then used to register all
the surfaces with a reference face model. These features are
additionally used to obtain a cropped version of each of the
surfaces such that only the face region is included. Finally, all
the cropped faces in the training set are averaged together to
obtain an Average Face Model (AFM). Example of an AFM
is shown in Fig. 2(d).

Face Region Descriptor Computations. In this step, local
shape descriptors and feature vectors (described in Sec. IV-B)
are computed on the nose tips of the faces in the training set.
These descriptors are used to define the distance (dissimilarity)
measure between 3D surfaces that is needed to detect the face
region in the matching stage.

We define the distance of a feature vector z ∈ RD from
the distribution of the feature vectors in the training set as the
squared Mahalanobis distance

d2
cf

(z) = (z− x̄cf )>Σ−1
cf

(z− x̄cf ) , (19)

where x̄cf and Σcf correspond to the mean and covariance
matrix of the feature vectors in the training set. To estimate
Eq. (19) efficiently and reliably, we use a similar approach to
[21], where Principal Component Analysis (PCA) is used to
reduce the dimensionality of the data. The approach, however,
retains some information about the less significant principal
components of the data, which is generally discarded in other
PCA-based approaches.

B. Face Detection: Matching

The main goal of the algorithm’s online stage is to identify
the location, orientation, and scale of the face region. This
region is centered at the nose tip because the nose bridge helps
establish orientation and symmetry, and its high curvature is
easily detected using our keypoint extraction method. This
is accomplished in the following steps: keypoint extraction /
local scale estimation, global scale adjustment, local descriptor
computation, and detection.

Keypoint Extraction/Local Scale Estimation. We use a
slight modification of the approach discussed in Sec. III-C to
obtain the location and scale of a set of keypoints on the input
surface. Note that since the signal that is being smoothed in
our representation is the surface mean curvature, the extracted
keypoints correspond to locations of blob-like features on the
surface; this is verified in Fig. 4. Since we are interested in
identifying the location of the nose tip, these features provide
an ideal choice. Additionally, the size of each blob is estimated
by the associated scale of the keypoint at that location using
Eq. (18).

Global Scale Adjustment. One advantage of estimating the
size of the surface structures, as described in Sec. III-C, is that
the computed values are intrinsic to the surface. The relative
scale of an input 3D surface with respect to the 3D face models
in the training set can therefore be estimated by comparing the
detected sizes of the surface structures. To do this, the median
radius of the surface structures on the surfaces in the training
set are computed using Eq. (18), offline. Similarly, the median
radius of the structures on the input 3D surface are computed.
The ratio of these radii are then used to estimate and then
adjust the relative scale of the input model with respect to the
models in the training set.

Local Shape Descriptor Computation. Given a keypoint
and the estimated size of the face region (obtained from the
faces in the training set), we construct a local coordinate sys-
tem at the point and represent the positions of its neighboring
vertices in the form of a height map. We use the Multilevel B-
Spline Algorithm [22], to obtain a continuous map of the local
neighborhood around the keypoint, which is then turned into
an image. This image defines the local descriptor employed
by our detection system.

The local coordinates at the keypoints need to be con-
structed in a manner which are invariant to any transforma-
tion the 3D model may undergo. We use PCA of the local
neighborhood around each point of interest to construct the
local coordinate system. Let p0 denote the keypoint where
the local coordinate system is being constructed, and k1 ≥



k2 ≥ k3 ≥ 0, u1, u2, u3 denote the eigenvalues and unit
eigenvectors of the covariance matrix of the vertex positions in
the neighborhood around p0, respectively. u3 approximates the
normal direction, while u1 and u2 span the tangent plane at p0.
u3 defines the z direction of the constructed local coordinate
system, and u2 and u1 define the directions of the x and y
axes, respectively.

Since the eigenvectors provide only information about direc-
tion and not orientation, we make the following adjustments:
u3 is adjusted so that it has the same orientation as the
surface normal at p0, while the orientations of u1 and u2

are changed such that u2 × u1 = u3. u1 and u2 may still
be rotated by 180 degrees. To overcome this ambiguity, we
create two height maps using the two possible orientations. In
the detection stage, both maps are used, and the one with the
worst performance is ignored.

In our implementation, the covariance matrix was weighted
by the LoC values at each vertex. The weighting scheme
helped the two major eigenvectors of the covariance matrix
to be better-aligned with the underlying elongated structures
of the surface at each keypoint.

Detection. The goal of the detection stage is to find the
location of the face region on an input 3D surface using
the computed local descriptors at the keypoints. Each local
descriptor is converted into a feature vector by concatenating
the rows in its height map image. Let zi denote the feature
vector associated with keypoint i, and let Z = {zi}Ii=1 be the
set of all such feature vectors extracted on the input surface.
The ideal objective of detection would then be to identify
all zi’s which correspond to a face region—and as a result,
having the ability of identifying multiple faces on the same
model. However, in this work, we seek to solve a simpler
problem, namely, finding the most likely keypoint that belongs
to the face region. The detection task is therefore to find z∗,
minimizing d2

cf
(zi) among all zi ∈ Z, where d2

cf
denotes

the estimated squared Mahalanobis distance as defined by
Eq. (19).

Once the most likely location of the face region is identified
on the input surface, we use its location and associated local
coordinate system to obtain an initial guess for the relative
pose of the input with respect to the AFM in the training
set. The estimated position and orientation are then iteratively
improved using the ICP algorithm [23]. In each iteration, we
also improve the initial guess for the scale by finding s that
minimizes

E =
∑

pi∈Mafm

min
qj∈Min

‖pi − sqj‖2 , (20)

where Min and Mafm denote the point sets corresponding
to the input surface and the AFM, respectively. Both surfaces
are assumed to have been translated so that the nose tip is at
the origin. This prevents scaling from changing the relative
positions of the nose tips between the two surfaces.

Once the input surface has been aligned with the AFM,
the locations of auxiliary facial features, which were specified
in the training phase, are identified on the surface. Fig. 2(d)

(a) (b) (c) (d)

Fig. 10. Automatic face warping results. (a) target mouth; (b) target nose;
(c) source face; (d) resulting hybrid face.

shows the locations of these features, which were automat-
ically detected by our system, on Fig. 2(a). These features
are then used to crop and remesh the face region using an
approach similar to [24]. Fig. 2(e) shows an example of the
final result produced by our face detection procedure. Note
that in [24] the locations of the facial features on the input
model were specified manually, whereas our system detects
them automatically.

V. FACE DETECTION RESULTS

We tested the performance of our detection system on a
database of 1068 models, which included artificial models with
human faces and more than 1000 3D scanned human faces
from the FRGC database [25]. The majority of the FRGC
scans where from Spring 2003, which included large portions
of clothing. All models were randomly scaled (by a factor in
the range (0, 1000]) and rotated prior to detection. The correct
detection rate of the system was 92.13%. The required time
to build the CS3 representation with 35 levels for a model
with approximately 113.5K vertices was 32secs. The overall
detection time on the same model was 180secs on a 2.4 GHz
CPU.

As mentioned previously, the output of the detection sys-
tem, which results in normalized and compatibly remeshed
3D surfaces, can directly be used in a 3D face recognition
system. Additionally, the extracted 3D faces may be used in
automatic 3D processing tasks such as swapping of facial
features between 3D faces. We employed the differential
coordinates approach of [26] to enable a user to automatically
specify and swap facial features between various face models.
For example, Fig. 10 shows an example of a warping task
involving three different faces. Our system allowed the user
to easily specify which facial features on the source face
(Fig. 10(c)) were to be replaced by the ones on the target
faces (Fig. 10(a) and Fig. 10(b)); Fig. 10(d) shows the resulting
hybrid face. Since the faces were normalized and the meshing
was consistent between the surfaces, the user only needed to
specify the location and region of influence of the features on
the source face. The resulting hybrid faces may, in turn, be
used to generate new faces and extend the size of a training
set.

VI. APPLICATION: SURFACE REGISTRATION

Automatic surface registration is another application of our
proposed CS3 representation and feature extraction procedure.



(a) (b)
Fig. 11. Surface registration results: (a) point-point correspondences estab-
lished between the two surfaces using scale-invariant LoC shape descriptors;
(b) final registration results

We implemented a registration system, which used the CS3
representation for establishing correspondences between two
input surfaces. Given the point-point correspondences, the un-
known transformation between the two surfaces was estimated,
and consequently the surfaces were registered. The following
summarizes the general steps involved in registering two input
surfaces (A and B) using the CS3 representation. An example
is shown in Fig. 11.

1) CS3 Computation. Obtain the CS3 representations of
each of the surfaces (Sec. III-A).

2) Keypoint Extraction. Use the keypoint extraction pro-
cedure described in Sec. III-C to extract keypoints on
the two surfaces.

3) Local Descriptor Computation. Use the scale-invariant
LoC curves described in Sec. III-C to construct feature
vectors at all extracted keypoints on the two surfaces.

4) Registration. For each keypoint k on A find its corre-
spondence on B by finding the keypoint on B whose
feature vector has the smallest L2 distance from the
feature vector of k. Finally, use a branch and bound
approach similar to [3] to eliminate incorrect point-point
correspondences and register B with A.

VII. CONCLUSION

In this work, we presented a new scale-space based repre-
sentation for 3D surfaces, which is useful for feature extraction
and partial shape matching. Our proposed representation is
defined in terms of the evolution of the surface curvatures
according to the heat equation. This representation was shown
to be insensitive to noise. In addition, other major benefits
of our method over the most relevant approaches, such as
[19] and [20], are the capability of automatic scale selec-
tion and improved computational efficiency. We presented an
application of our approach to partial 3D shape matching
involving detection of 3D faces on input surfaces with arbitrary
scale, orientation, and translation. The output of our detection
system could directly be fed into a 3D face recognition
system. Additionally, we showed other applications involving
automatic processing of 3D faces, such as the generation of
hybrid faces, and general surface registration. In future work,
we will improve the performance of our detection system and
also use the CS3 representation for 3D face recognition.
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[12] M. Desbrun, M. Meyer, P. Schröder, and A. H. Barr, “Implicit fairing
of irregular meshes using diffusion and curvature flow,” in SIGGRAPH
’99, 1999, pp. 317–324.

[13] A. Mian, M. Bennamoun, and R. Owens, “Automatic 3d face detection,
normalization and recognition,” in Proc. 3DPVT, 2006, pp. 735–742.

[14] V. Ayyagari, F. Boughorbel, A. Koschan, and M. Abidi, “A New Method
for Automatic 3D Face Registration,” Comp. Vision and Pattern Recog.
(CVPR) Workshop, pp. 119 –119, June 2005.

[15] J. Novatnack, K. Nishino, and A. Shokoufandeh, “Extracting 3D shape
features in discrete scale-space,” in 3DPVT06, 2006, pp. 946–953.
[Online]. Available: http://dx.doi.org/10.1109/3DPVT.2006.60

[16] M. Novotni, P. Degener, and R. Klein, “Correspondence generation and
matching of 3d shape subparts,” Universitt Bonn, Tech. Rep., 2005.

[17] C. H. Lee, A. Varshney, and D. W. Jacobs, “Mesh saliency,” ACM
Transactions on Graphics, vol. 24, no. 3, pp. 659–666, Jul. 2005.

[18] M. Schlattmann, P. Degener, and R. Klein, “Scale space based feature
point detection on surfaces,” Journal of WSCG, vol. 16, no. 1-3, February
2008.

[19] J. Sun, M. Ovsjanikov, and L. Guibas, “A concise and provably infor-
mative multi-scale signature based on heat diffusion,” in Eurographics
Symposium on Geometry Processing (SGP), 2009.

[20] M. Bronstein and I. Kokkinos, “Scale-invariant heat kernel signatures for
non-rigid shape recognition,” Comp. Vision and Pattern Recog. (CVPR),
pp. 1704 –1711, June 2010.

[21] B. Moghaddam and A. Pentland, “Probabilistic visual learning for
object representation,” Pattern Analysis and Machine Intelligence, IEEE
Transactions on, vol. 19, no. 7, pp. 696 –710, jul. 1997.

[22] S. Lee, G. Wolberg, and S. Y. Shin, “Scattered data interpolation with
multilevel b-splines,” IEEE Transactions on Visualization and Computer
Graphics, vol. 3, pp. 228–244, 1997.

[23] P. J. Besl and N. D. McKay, “A method for registration of 3-D
shapes,” IEEE Transactions on Pattern Analysis and machine Intelli-
gence, vol. 14, no. 2, pp. 239–258, Feb. 1992.

[24] X. Li, T. Jia, and H. Zhang, “Expression-insensitive 3d face recognition
using sparse representation,” in Proc. IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR), 2009.

[25] P. J. Flynn, “FRGC database v2.0, 2003,” http://bbs.bee-biometrics.org/.
[26] M. Alexa, “Differential coordinates for local mesh morphing

and deformation,” The Visual Computer, vol. V19, no. 2, pp.
105–114, May 2003. [Online]. Available: http://dx.doi.org/10.1007/
s00371-002-0180-0106


