

Query-Driven Visual Explorations of Large-Scale Raster Geospatial Data in
Personal and Multimodal Parallel Computing Environments

By Jianting Zhang @CCNY

Project Description

1 Introduction
Advances in geospatial technologies, especially space-borne satellite remote sensing and large-

scale environmental modeling, have generated large amounts of raster geospatial data at the ever
increasing spatial and temporal resolutions. High resolution large-scale raster geospatial datasets provide
tremendous opportunities to understand the Earth and our environments deeper than ever before.
Unfortunately, existing data management techniques on large-scale raster geospatial data mostly focus
on storage, standard-based remote access and simple or animated display. Very little interactive query
functionality is available to users to stimulus hypothesis and subsequently to seek causal relationships.
As a result, scientists are usually forced to manually inspect images converted from large-scale raw data
for exploratory analysis. This may bring quite some potentially serious problems: 1) Using down-scaled
data to reduce workloads may make high-resolution data meaningless in enhancing scientific discovery.
2) Subsetting large-scale data to limit geographical scopes may miss large-scale patterns, especially
global patterns. (3) Using predefined data-to-image conversion methods through quantization may reduce
data accuracies and generate false patterns.

Query-Driven Visual Explorations (QDVE) integrates dynamic queries with traditional visualization
techniques to support scientists to explore large-scale datasets interactively [1-7]. As QDVE applications
are both data intensive and computing intensive, most of the reported works utilize cluster computers in
supercomputing centers equipped with large numbers of processors, fast network connections and
sophisticated parallel I/O software. While the barriers to utilize supercomputing resources have been
significantly lowered over the past few years due to the increasingly community efforts in developing
cyberinfrastructure tools [8,9], we believe that QDVE applications are more suitable to personal
computing environments due to its interactive exploration nature. This is especially desirable to general
researchers and citizen scientists that do not have privileges to conveniently reserve supercomputing
resources for their exclusive uses. As commodity personal workstations and desktop computers are
increasingly equipped with larger numbers of multicore Chip Multiprocessors (CMPs) [10][11]and may-
core General Purpose Graphics Processing Units (GPGPUs)[12][13], we envision the possibility and
opportunities of developing and deploying QDVE applications on personal computers.

While a current commodity personal computer with dual hex-core CPUs and two GPU cards can
easily achieve computing power at the teraflops level, which largely removes computing bottleneck in
QDVE applications, a more fundamentally difficult problem is the disk I/O bottleneck. Compared with
cluster computers that usually have dedicated I/O control hardware and sophisticated parallel I/O
software over fast network connections, disk I/Os on personal computers are serial and are limited to
around 100MB/s or even lower. The mismatch between disk I/Os and processors has put significant
technical challenges in developing QDVE applications in a personal computing environment. We list a few
use cases to help understand the problem domain and the relevant queries in QDVE applications. While
these queries can be answered through offline preprocessing followed by standalone visualization of the
results, we argue that the uninterrupted exploration processes promised by QDVE techniques are likely to
facilitate novel scientific discoveries more effectively.

1) WorldClim current (1950-2000) climate data [14][15] has been widely used in climate change
and biodiversity research. The data includes altitude, monthly precipitation, minimum temperature and
maximum temperature (12 month) and 18 derived bioclimatic variables. At the global 30 arc-seconds
spatial resolution, each of the 55 raster datasets has 43200*21600 raster cells. Ecologists, and
biogeographers are interested in knowing regions with January temperature between [t1,t2) and July
precipitation between [p1,p2) as they may be suitable for the distributions of species X. Our experiments
showed that reading the January precipitation raster dataset (1.5 GB) from disk to memory will cost 15-18
seconds on a 7200rpm disk using a Dell T5400 workstation. However, the data loading time can be
reduced to 2.37 seconds if the raster is divided into multiple 2048*2048 tiles and use the 16 threads
available to the dual quad-core machine to read and uncompress the compressed tiles.

2) Quite a few indices from satellite data, such as Normalized Difference Vegetation Index
(NDVI), Normalized Difference Water Index (NWDI) and Normalized Difference Drought Index (NDDI),
have been derived and used as indicators of geographical or environmental phenomena, events or
processes [16]. The NASA Moderate Resolution Imaging Spectroradiometer (MODIS) 500 meter spatial
resolution data has a grid size of 31200 by 21600 in North and South Americas. With 417 time steps
(every 8 days) and seven bands for each scene at a time step, the data amounts to 1.14 TB in nine years
from 2000 to 2009. Experiments reported in [7] showed that it took around 1 minute to identify regions
that satisfy a simple compound range query on four variables for draught assessment using 16K CPU
cores on a Jaguar Cray XT4 supercomputer. Based on the experiment results, it is clear that the read
time dominants the whole QDVE pipeline (46.56 seconds out of 57.68 seconds), even if sophisticated
parallel I/O components have been used.

3) The National Mosaic & Multi-Sensor Quantitative Precipitation Estimation (NMQ) data [17]
covers the continental United States with a spatial resolution of 1 kilometer and temporal resolution of 5
minutes. This translates to a data volume of more than 10GB raw data per day and nearly 4TB per year.
Climatologists and hydrologists may want to examine the differences between National Weather Service
(NWS) in-situ observation records and the NMQ data in a W*W window around NWS station locations.
For those deviations that are larger then threshold T, they may further want to explore the casual
relationships on how the deviations vary with topography (e.g., altitude, slope and aspect) at a regional
scale (e.g., within a W’*W’ window) using a local regression approach.

2 Vision, Goals and Overview of the Research Plan
Raster data representation is a major data model for geospatial data [18]. Surprisingly, compared

to vector geospatial data that hundreds of tree indexing techniques have been developed [19,20], raster
geospatial data is much less well supported in databases with respect to efficient query processing.
Existing techniques in spatial databases (e.g., Oracle GeoRaster [21] and RasDaMan [22]) adopt a
chunking approach to store raster geospatial data and index the metadata (e.g., minimum and maximum)
of the chunks using standard vector spatial indexing. While queries on the spatial locations and metadata
values of the chunks are supported, chunks are stored as Binary Large Objects (BLOBs) and usually no
queries and other operations on the chunks are supported. We are not aware of any major efforts in
systematically support efficient I/O in querying large-scale raster data beyond the chunk level in spatial
databases. On the other hand, while some scientific data formats (such as HDF5 [23,24]) supports data
compression at the chunk level, their focuses are on data storage, simple display and animated
visualization and are not query-friendly. Queries are usually considered as part of a modeling process
and require offline processing. However, mixing well-structured and frequently used queries with physics-
based modeling often makes it complicated to reuse the query processing component, especially when
modeling systems are evolving from serial to parallel computing.

To effectively support QDVE of large-scale raster data and foster new scientific discoveries in a
personal computing environment, we propose to extend existing spatial databases functionality by making
full use of available commodity parallel hardware resources on personal computers. We consider the
following technical issues relevant to seeking a scalable and high-performance solution for query driven
visual explorations of large-scale raster data.

 The data-intensive nature of query-driven visual explorations requires novel data management
techniques. Queries generally are required to be answered within a few seconds in order to be
interactive. The time may be even insufficient to load all relevant data into memory from hard drives.
The problem becomes severe as the general trends are that data resolution and volume are going up
while the ratios between I/O speeds and processor speeds on current commodity personal computers
are going down.

 Supporting ad-hoc and low-response time queries simultaneously is likely to go beyond the capability
of a single processor and thus parallel computing is essential to achieve the goals. Parallel data
structures and algorithms that are applicable across different commodity hardware platforms,
including multicore CPUs, GPGPU accelerators and cloud/grid computing clusters are crucial to seek
scalable computing solutions. While it is difficult to automatically parallelize generic serial code, pilot
studies on parallelizing certain domain-specific algorithms, such as raster geospatial data, can shed
lights on seeking more general solutions. Due to the data-parallel nature of large-scale raster data,
supporting QDVE-related queries can be an ideal pilot study.

 While indexing techniques have been widely applied in speeding up both relational and vector
geospatial data query processing, the ad-hoc nature of visualization and visual explorations related
queries very often makes it inadequate to use pre-generated indices targeted at repetitive queries
involving fixed numbers of dimensions. Large volumes of disk-resident indices can potentially slow
down query processing due to the disk I/O bottleneck. The balance between indexed and non-
indexed data access techniques need to be re-evaluated in the context of visual explorations of large-
scale raster geospatial data using new cost models on new parallel hardware architectures.

We consider the mismatch between slow, serial disk I/Os and fast, parallel processors (including
both CPU and GPU cores) on modern commodity personal computers a key technical challenge for data-
intensive applications. Our goals in this project are to develop a novel data-centric, software-oriented
framework to mitigate such mismatch and a set of techniques to effectively support QDVE of large-scale
raster geospatial data. While indexing has been the primary technique in reducing disk I/Os in processing
relational queries in the past few decades, we argue that many of the increasingly sophisticated indexing
techniques may not be suitable for QDVE queries in exploring large-scale numeric raster geospatial data.
For example, many QDVE queries involve identifying regions-of-interests (ROIs) from multivariate geo-
referenced environmental data where each variable is represented as a raster layer. Selection ratios in
many ROI queries are usually high once certain levels of the multi-scale representations of rasters have
reached. The low selectivity will incur extra disk I/Os to retrieve indices while the majority of the data
items need to be fetched from disks regardless. Our proposed framework focuses on balancing top level
indexing and lower level data encoding (compression/decompression) by fully utilizing the parallel
computing power available to modern personal computers. The framework is realized by developing
realistic cost models that incorporate both index guided queries and data decompression before fine
tuning of key parameters. Based on the framework, a set of techniques will be developed to effectively
support QDVE queries on large-scale raster geospatial data. While the primary focus of the proposed
research is to speed up online query processing using a single personal workstation (or Personal
Computing), the parallel-aware techniques are also suitable to guide indexing and compressing data in
grid or cloud computing environments in an offline or semi-online mode for scalable data preprocessing
and on-demand workload sharing as illustrated in Fig. 1. We term the hybrid computing environment as
Multimodal Computing. The proposed research and development efforts are grouped into four tasks as
listed below and each of the four tasks will be further detailed in Section 4.

Fig. 1 Illustration of System Architecture: QDVE in Personal and Multimodal Computing
Environments

(1) Understand the characteristics of major queries in QDVE applications in the context of visual

explorations of large-scale raster geospatial and analyze existing data management practices on raster
geospatial data in both spatial databases and Geographical Information System (GIS). A subset of
geospatial operations that are suitable for QDVE applications will be identified.

MD arrays
Chunk feature vectors

and metadata

Top level: persistent spatial and

spatiotemporal indices

Chunking

Raster geospatial data

CMP+GPU Workstation
Grid/Cloud Cluster

Offline processing

Online data access

Visual Exploration Interface

Compressed chunks Bottom level: progressive chunk

decompression to speed up queries

(2) Develop realistic cost models to model end-to-end query performance of the identified QDVE
queries for the Disk-CPU-GPU data transfer pipeline under both non-compression and data-compression
scenarios. The cost models will serve as the foundation for fine-tuning chunk sizes and data layouts using
both fixed parameters (e.g., disk to memory data transfer speed, CPU to GPU data transfer speed) and
dynamic parameters (e.g., data compression ratios, decompression algorithm complexities).

(3) Develop parallel data structures and algorithms to facilitate parallel query processing on both
multicore CPUs and GPGPU accelerators. A particular challenge we propose to address is to develop
low-complexity algorithms with bounded and low memory footprints that can potentially run across
multiple types of parallel hardware.

(4) Develop a semi-automated task scheduling module to coordinate local (CPU and GPU) and
remote (grid and cloud) cluster computing resources for both online query processing and offline data
preprocessing.

Intellectual Merit:

The proposed framework enables query driven visual explorations of large-scale raster geospatial
data on commodity personal computers equipped with multicore CPUs and GPU accelerators. Compared
with cluster computing based solutions, our proposed software-driven approach is more affordable,
accessible and usable to general users. The framework can be used as a replacement of traditional
cluster computing for moderate sized problems as well as can serve as a “last-mile” sub-system to be
connected to large cyberinfrastructure for extremely large size problems by dividing QDVE tasks among
personal workstations and cluster computers. While using data compression to reduce data storage and
transfer costs in the context of relational queries and image coding have been studied extensively, to the
best of our knowledge, we believe the idea on tightly integrating spatial indexing and raster data
compression for processing QDVE queries on parallel hardware attached to personal computers is novel
and innovative. The proposed research bridges the gaps between scientific data management, digital
image processing, parallel computing, spatial databases and environmental applications in the context of
visual explorations of large-scale raster geospatial data. The uninterrupted exploration processes
promised by QDVE techniques are likely to facilitate novel scientific discoveries more effectively

Broader Impact:

The proposed research and prototype development have the potential to turn an individual
researcher’s desktop computer into high-performance visual exploration tools at no extra cost and thus
have a broad audience in the geospatial data processing communities. The visual exploration tools are
particularly interesting to researchers whose work are related to remote sensing applications and
environmental modeling, such as atmospheric science, oceanography, hydrology, environmental
monitoring, biodiversity, global changes and emergency responses. The prototype system can be used to
exemplify how a high-performance parallel GIS can be realized (at least partially) on a commodity
personal computer and serve as the “last-mile” sub-system for larger cyberinfrastructure at the same time.
This is likely to foster community efforts on utilizing parallel computing for more general geospatial
analysis.

3 Background and Related work
Advancements in remote sensing technology and instrumentation have generated huge amounts

of remotely sensed imagery from air- and space-borne sensors. In recent years, numerous remote
sensing platforms for Earth observation with increasing spatial, temporal and spectral resolutions have
been deployed by NASA, NOAA and the private sector. The next generation geostationary weather
satellite GOES-R (whose first lunch is scheduled in 2015) will improve the current generation weather
satellite by 3, 4 and 5 times with respect to spectral, spatial and temporal resolutions [25]. With a
temporal resolution of 5 minutes, GOES-R generates 288 global coverages everyday for each of its 16
bands. At a spatial resolution of 2km, each coverage and band combination has 360*60 cells in width and
180*60 cells in height, i.e., nearly a quarter of a billion cells. In addition to raw imagery data, derived data
products targeting at domain-specific applications are fast growing as well. For example, regional and
global coverage of Land Cover, Land Surface Temperature, Albedo and Vegetation Indices are among a
fraction of MODIS Product Table [26]. Still yet, numerous environmental models, such as Weather
Research and Forecast (WRF[27]), have generated even larger volumes of geo-referenced raster model

output data with different combinations of parameters, in addition to increasing spatial and temporal
resolutions.

Traditionally environmental scientists are limited to simple display and animation of raster
geospatial data in a desktop environment. Very little high-performance visual exploration functionality has
been provided despite the continuous community software development efforts, e.g.[28-30]. While large-
scale raster geospatial data are widely used for environmental modeling in a variety of domains in
different regions, existing software tools provide very limited query capability as observed by Jim Gray
and his research group [31]. Most raster geospatial data are numeric and can have a large number of
distinct values. Since human eyes can only effectively distinguish a limited number of colors at a time,
traditionally thematic mapping techniques have been applied to quantify the distinct values into bins and
color the data using the bins (which has been provided by many GIS software). While a viable solution for
small-scale datasets that can be rendered in a single screen and relatively well-perceived by domain
experts, it is often too complex to choose suitable quantification methods and to interpret the rich
information in large-scale environmental datasets. This is true even if a large tiled display wall is setup to
display all the cells as pixels. Research in Information Visualization has shown that human eyes can only
effectively distinguish a limited number of colors at a time. Screen resolutions beyond 4000 by 4000
pixels are not effective [32].

Previous studies have shown that query-driven visual exploration [1-3,5,7,33] is a valuable
approach to deep understanding of scientific data. These studies couple high-performance query
processing techniques (such as FastBit [34,35] and M-ary search tree [3]) and visualization techniques
(such as histograms, Parallel Coordinate Plot-PCP and iso-surfaces). QDVE techniques have been
successfully applied to multiple domains, such as astrophysics [3], biogeochemistry [36], combustion
simulation [4,37], climate [2,4,5], Computational Flow Dynamics (CFD) [3,4], laser wakefield simulation [5]
and traffic analysis [38]. While several of these pioneering QDVE works have considered time as a
special dimension, spatial dimensions were not explicitly addressed. Indeed, FastBit and M-ary search
tree indexing data structures utilized in these applications require treating a multivariate record as a multi-
dimensional point and indexing was performed at the individual record level. As such, geospatial
dimensions were treated the same as thematic dimensions and no distinctions between domains and
ranges can be made for geospatial analysis. A problem in applying existing QDVE techniques to
geospatial raster data is that the links between geographic distributions (domains) and thematic values
(ranges) have to be established through enumerating record identifiers, i.e., raster cell identifiers, which is
likely to incur scalability issues as further discussed below. We also note that many of the previous works
focused on 3D rendering through iso-surfaces constructions. While adding a third dimension certainly
provides richer information, the number of raster cells along the spatial (X/Y) dimensions are generally
limited to a few hundreds to a few thousands although grid-based cluster computing resources have
already been extensively used. Our proposed research has a 2D geospatial focus and targets at 10-100
times higher resolutions along each of the 2D geospatial dimensions. In addition, our targeted computing
platforms are personal workstations although we plan to use on-demand cluster computing resources for
“surge protection”.

Raster geospatial data can be abstracted as a special type of multi-dimensional array data with at
least longitude (X) and longitude (Y) dimensions and optional time (T), elevation (Z), spectral and other
semantic dimensions. Different from vector geospatial data that has the notion of object identifiers which
may be associated with rich semantics, raster cells, as the basic units of raster geospatial data, need to
be aggregated and put into context before they become useful for further analysis. We consider QDVE
serves as the first steps towards deep understanding the data and develop fine-tuned algorithms to
extract vector features from raster data if necessary. However, the primary goal of QDVE techniques is to
fast identify subspaces in a multi-dimensional data space that are potentially useful for further
investigation. QDVE can be considered as an intermediate step between a simple raw raster
representation of complex real world and a more precise representation using a vector data model. As
such, QDVE techniques are distinct to both traditional display/animation based visualization (where the
underlying data space is treated uniformly) and feature extraction using sophisticated pattern recognition
techniques. Experiments on aggregating Fastbit query records (multi-dimensional point) into regions of
interest show that the aggregation stage overheads can dominate the QDVE process [39]. In contrast,
separating domain dimensions and range dimensions and allow efficient mapping between these two
categories of dimensions using hierarchical data structures can support queries with rich semantics. For
example, as detailed in Section 4, instead of supporting compound range queries only as in most of

existing QDVE applications, our proposed research supports at least four types of queries. In this sense,
we consider our domain-driven solution a valid contribution to the development of QDVE techniques.

Parallel and distributed processing of geospatial data has been evolving with mainstream
hardware architectures, including shared disk and shared nothing systems. Quite a few works on parallel
spatial data structures [40-42], spatial join [43,44], spatial clustering [45], spatial statistics [46,47] ,
polygon vectorization [48][49] and handling terrain data [50] have been reported. However, as discussed
in [51], research on parallel and distributed processing of geospatial data prior to 2003 has very little
impact on mainstream geospatial data processing applications, possibly due to the accessibility of
hardware and infrastructures in the past. Cary et al [52] reported their experiences on processing spatial
data with MapReduce on a Google and IBM cluster using the Hadoop framework. Their experiments
include R-Tree construction on point data and image tile quality computation. Parallel computing on
LIDAR data using cluster computers [53] is getting increasingly popular due to its computation intensive
nature. More recently, works reported [54,55] have demonstrated significant speedups by using cluster
computing for spatial statistics. Among these works, very few of them specifically addressed query
processing of large-scale raster data, especially in an online, interactive, visual exploration context. We
have observed that there are significant gaps between new hardware architectures and software
information systems that can fully utilize the hardware features. While both multicore CPUs and GPGPUs
have been available for a few years and have been explored in many other application domains, to the
best of our knowledge, neither GIS nor spatial databases (open source or commercial) can fully utilize the
hardware potentials (our review in [56] provides more discussions and references).

Sophisticated visualization techniques and systems have been proposed to visualize
spatiotemporal and/or multivariate data [32,57-79] and some of them have been applied to scientific data
[33,80-83]. However, most of them assume that all data can be fit into main-memory and thus efficient
query processing of large-scale data does not play a substantial role in these techniques. The recently
emerging Visual Analytics initiative [68,84,85] advocates for tightly coupling visualization and analytics
techniques to effectively explore large-scale data. Different from QDVE applications that originate from
scientific computing community and use massive parallel cluster computers to process large-scale data
from the very beginning, many of the existing research on visual analytics rely on personal workstations
to provide high degree interactions that are difficult to achieve through remote rendering at the clusters.
Our proposed research is thus related to both QDVE and visual analytics, which integrates the
advantages from both through careful redesigns of data structures, algorithms and system architectures
in a personal computing environment. We believe our efforts in developing query processing techniques
that trade off computing with I/O for large-scale raster data through data compression can potentially
stimulate similar research on exploring domain-specific data semantics and push the limit of visual
analytics of large-scale data on personal workstations.

We want to point out that compressing data to reduce I/O is not a completely new idea. Lossy
and lossless data compression techniques have been routinely used to reduce storage and transmission
overheads for geospatial data, including large-scale raster geospatial data. In addition to using generic
compression techniques, patented commercial systems, such as MrSID from LizardTec [86] and Wavelet-
based ECW from EARDAS/ERMapper [87], have been quite influential in geospatial data processing
communities. However, these products are not designed to support queries and the close-source nature
makes it very difficult to extend them to support QDVE applications. It is also unclear whether the
techniques behind the products can be migrated to multicore CPUs and/or many-core GPUs. In
databases, while quite a few works have investigated the role of data compression in reducing I/O
overheads and direct query processing on compressed data [35,89,90], our proposed research targets at
large-scale raster geospatial data which is quite different from relational data. Furthermore, existing works
are prior to the wide availability of current generation of commodity personal computers equipped with
multicore and GPGPU accelerators. The changed hardware architectures and cost models may require a
different set of data compression techniques and query processing algorithms. We also note that, data
compression has also been explored in cluster computing environments [91,92] as data compression can
be an integral function of dedicated hardware I/O controllers. However, most of existing compression
algorithms applied to cluster I/O controllers are “semantic unaware”, i.e., data are simply treated as bit
streams for lossless compression and decompression. No data semantics can be explored to facilitate
efficient query processing. We consider that trading off computing with I/O in a personal computing
environment is technically more challenging than in a cluster computing environment as both available
hardware I/O bandwidth and computing power are much more limited. As such, lossless data

compression and decompression can hardly achieve the desired degree of tradeoff and make it
practically useful. Different from existing lossless data compression techniques used in cluster computing
environments, our proposed research focuses on simultaneous data compression and filtering based
query processing.

Wavelet [93,94] based image compression and transmission over different types of
communication channels have been extensively studied in digital image processing community [95-99].
However, we argue that Wavelet compression in multimedia applications are mostly designed for viewing
grayscale or RGB color images and may not be suitable for querying purposes, especially for large-scale
raster data. While indexing and query processing techniques have been developed for image databases
[100], they are mostly applied to derived multi-dimensional features after image decompression rather
than on raw image data. Although many wavelet based image compression techniques (including wavelet
transformation and coefficient encoding stages [99]) can be extended to geospatial raster data with higher
numbers of bits per cell (pixel), our proposed research tightly integrates spatial indexing with both wavelet
transformation and encoding to support efficient queries on large-scale raster geospatial data. In contrast,
previous databases applications of wavelet transformations focus on histogram approximation [98], range
aggregate queries in OLAP [102-104] and approximate relational queries in the wavelet domain [105]. As
these techniques are applicable to multidimensional arrays, they can be tailored to raster geospatial data.
However, while choosing wavelet synopses [106,107], i.e., a subset of significant wavelet coefficients,
can potentially reduce disk I/O overheads, the computation overheads of the proposed approaches are
generally much higher than well-established wavelet encoding schemes for digital image processing, e.g.,
bit-plane based ones. Jahangiri et al [108] provided two novel operations to establish relationships among
wavelet coefficients. These techniques are not suitable for our application context, i.e., speeding up serial
I/O through parallel compression/decompression. Finally we note that, while parallel algorithms for
wavelet transformation are emerging [109-112], practical software-based wavelet coefficient encoding
and decoding solutions largely remain serial.

Query processing on multicore CPUs [113-115], GPGPU accelerators [116-119] and cluster
computing facilities [120-124] have gained considerable research interests in the past few years as
multicore CPU becomes the mainstream architecture and commercially available cluster computing
resources. Equally important, GPGPU technologies have turned massive floating-point computational
power of a modern GPU’s graphics-specific pipeline into general-purpose computing power. According to
[13], NVIDIA alone has shipped almost 220 million CUDA [125] based GPGPU devices. The number is
several orders of magnitude more than historical massively parallel architectures. Due to the ever-
increasing demands from massive game players, the computing power as well as benefit-cost ratios of
GPGPU devices will improve significantly and steadily in the near future. In fact, it is projected that GPU
speed improvement will be more than 50% per year, over the next decade [126]. While hardware
architectural changes require significant changes on data structures and algorithms and system re-
implementations in the context of geospatial data processing, we believe that the “growing pain” will help
the research community better understand the unique and rich parallelism among geospatial data and
geospatial operations, and, develop fully-fledged parallel GIS and spatial databases by fully utilizing
parallel hardware both locally (multicore CPUs and GPGPUs) and remotely (cloud/grid computing).

4 Research Plan
As discussed before, our goals are to develop a novel data-centric, software-based framework to

mitigate the mismatch between serial disk I/Os and parallel processors attached to personal computers
and a set of techniques to effectively support QDVE applications in both a personal and a multimodal
computing environment.

4.1 Understanding large-scale raster data and QDVE Queries
Advances in geospatial data processing have identified various types of modeling and query

techniques [127,128]. While it is difficult to clearly separate between modeling and query, in general,
queries are more well-defined with known computation complexities, general-purposed and can be
processed in a short time. Continuous improvements of computing capabilities have moved traditional
offline modeling tasks to online query processing. However, in general, only queries whose inputs can be
conveniently defined from graphics user interface and whose outputs can be mapped to some
visualization primitives are suitable for visual exploration purposes. Towards this end, we propose to re-
examine various types of raster geospatial operations, including local, focal, zonal and global operations

[128], and evaluate their suitability for QDVE applications. We propose a practical approach by studying
the categorization of geoprocessing tools available from ESRI ArcGIS software due to its large user
community [56]. For each of the geoprocessing tools that are related to raster data operations, we will first
evaluate their suitability for QDVE applications and investigate whether they are suitable for multicore
CPU or GPGPU implementations within the project group and then conduct online surveys in different
user communities that may have different focuses.

While our priority list on targeted queries types for visual explorations of large-scale raster
geospatial data may change dynamically, the following query types are on our initial list: 1) Extended
Spatial Window (ESW) query to allow users limit spatial extent. Different from window/range queries for
vector spatial data [129] where a set of object identifiers are returned, a ESW query on raster data can
return internal representation (e.g., quadtrees) of raw data chunks that fall within the spatial window
together with metadata, including predefined and dynamically generated statistics. 2) Region of
Interests (ROI) query [130] to allow user to limit value ranges and locate corresponding spatial
distributions of raster cells that satisfy the range criteria. ROI queries can be used separately on whole
datasets or combined with ESW queries to further limit spatial extents based on range values. A complex
ROI query may be composed from multiple simple ROI queries that involve only one variable using any
conjunctive or disjunctive combinations. ROI queries can be considered as extensions to the data
manipulation components of several traditional visualization techniques, such as linking and brushing. 3)
Optimized Raster Algebra (ORA) query. While traditional map/raster algebra operations [127] work at
individual raster cell level and are considered as local operations, the metadata/statistics associated with
the raster data chunks can be used to efficiently prune query space with support from domain knowledge.
For example, assuming that a1<x<b1 and a2<y<b2 where x and y represent two raster variables, then
c=(x-y)/(x+y) will be in the range of c1=(a1-b2)/(b1+b2) and c2=(b1-a2)/(a1+a2). Further assume the
query range value is [q1,q2), then any chunk whose c value range [c1,c2) does not intersect with [q1,q2)
can be safely pruned. 4) Local Spatial Statistics (LSS) query. Local spatial statistics, e.g., Spatial
Autoregression (SAR) [128] and Weighted Geographical Regression (GWR) [131], can be used to show
how the statistics vary across space and have played an important role in spatial data analysis [132]. LSS
queries for interactive visual explorations allow users to interactively define resolution level, spatial extent
and important parameters (such as GWR bandwidth) and visualize the query results using proper forms,
e.g., 3D topographical surface [133]. LSS queries are usually computationally intensive and are ideal for
demonstrating the utilization of local GPUs and remote grid/cloud computing resources.

4.2 Cost Models: Investigating the Role of Data Compression

Fig. 2 depicts a simplified system model of a typical personal workstation equipped with multicore
CPUs and GPGPUs. Limited by both the hard dive bus interface and its controller interface, commodity
hard drives usually have an effective I/O speed in the range of 50-150 MB/s [10,134]. On the other hand,
the current generation PCI-E interface between a CPU and a GPU allows a maximum of 4 GB/s one-way
transfer rate [12]. It is clear that hard drive disk I/O speed is the primary bottleneck affecting the overall
system throughputs in data intensive applications, including QDVE of large-scale raster geospatial data.
Let the effective data transfer rates between hard drive and CPU and between CPU and GPU are RD-C
and RC-G, respectively. Let the raw data volume be V and the compression ratio be C. Further assume Nc
and Ng parallel processing units on CPUs and GPUs are used to decompress the compressed chunks
and the maximum decompression time durations for the units are Tmax

C
 and Tmax

G
, respectively. Based on

the simplified system model, we can see that the data transfer time from hard drive to CPU memory
without compression is V/RD-C and the time with compression is V/(C* RD-C)+Tmax

C
. If we choose to use

GPU for decompression, then the total time to transfer the raw data to GPU (assuming single GPU for
simplicity) is V/(C* RD-C)+V/(C* RC-G)+ Tmax

G
. If the decompressed data needs to be transferred back to

CPU for further processing, the total time becomes V/(C* RD-C)+

V/(C* RC-G)+Tmax

G
 +V/RC-G. We note that

both Tmax
C
 and Tmax

G
 can be a non-linear function of Nc and Ng, respectively.

Despite simple, the system model shows the major components in loading large-scale raster data
from hard drives to CPU (and GPU) memories and highlights the important role of data compression.
Unlike many traditional data and image compression techniques [135] that mostly target at reducing data
volumes and increase compression ratios as much as possible, the new application requires optimizing
decompression time which is jointly determined by compressed data volume and complexity of
decompression algorithm. Thus, the model may favor low-complexity decompression algorithms (smaller
decompression time) at the cost of larger compressed data volumes (larger I/O time) to reduce overall

data loading time. Second, the simplified model also suggests that whether to use GPU accelerator for
chunk decompression depends on whether the benefits of using additional GPU computing power can
surpass the CPU-GPU data transfer costs. If the decomposed data is used subsequently on GPU for
further processing, the CPU to GPU data transfer cost could be justified. However, transferring large
amount of decompressed data from GPU back to CPU is likely to overshadow the benefits. To develop
realistic cost models for practical query optimizations in the application domain, we propose to address
the following issues.

Fig. 2 A Simplified System Model for Personal Workstations with Multicore CPUs and GPGPUs

First, the distributions of raster cell values can be highly uneven and the data volumes of
compressed chunks can vary significantly. The unevenness of decompressing chunks should be taken
into consideration during the raster data chunking and compression stages. Second, assuming that each
CPU core is assigned to process a single chunk at a time, the decompression times can vary significantly
among all the processors which will subsequently affect Tmax

C
. Third, a large number of CPU processors

may compete for shared resources (such as memory and last level cache) [114,136] and make it even
harder to predict Tmax

C
. Finally, various factors may affect Tmax

G
, such

as the layout of GPU computing

blocks, memory access coalescing and using shared memory [12]. We propose to adopt a practical
solution for the inherent intricate problem by deriving statistics from system logs, generating lookup tables
for typical scenarios and using the lookup tables in respective cost models for online query optimizations.
We project that partitioning CPU cores into an I/O group and a decompression group and using proper
chunk sizes can be two effective strategies to improve overall data loading time. The projection is based
on the heuristic that functionally partition CPU cores can potentially reduce I/O and memory contentions
and the heuristic that proper chunk sizes can align chunks with hard drive caches and memory caches
better. While the numbers of cores to be allocated to the I/O or decompression groups can be changed in
applications, hard drive and memory caches on commodity personal computers are usually transparent to
applications. The optimal parameters are better determined through experiments. We also want to stress
that while cost model driven optimization can potentially generate a better query execution plan, when the
computation overheads is deemed to be too big, we will switch to rule-based query optimization by
utilizing a set of predefined rules. For example, only when decompressed data are subsequently used in
GPUs for other computation should decompression be performed on GPUs.

4.3 Parallel QDVE query processing: data structures and algorithms

Distinct data structures and algorithms for two types of data in this research are required: trees at
the top level and multi-dimensional arrays at the bottom level (Fig. 1). While there are quite a few spatial
indexing [19,20] and data compression techniques [135] that can be potentially used to realize the
proposed framework, we have chosen quadtree and wavelet, respectively. The most important factor
behind the decision is that data structures and algorithms should run across multiple types of parallel
hardware architectures, including local multicore CPUs and GPGPU accelerators and remote grid/cloud
based cluster computers. Our proposed solution is based on the cache-conscious parallel quadtree
construction algorithm that we have developed for GPGPUs [137]. We have found that the algorithm can
be easily applied to multicore CPUs. Furthermore, as detailed next, the algorithm can also be used for
parallel wavelet bit-plane coding on both GPUs and CPUs. Since the data structure uses an array
representation of tree nodes, it can be loaded to local CPU and GPU memories and streamed to remote
computing nodes without requiring serialization and de-serialization. In addition to being able to reuse the
quadtree in both spatial indexing and wavelet coefficient coding, the block-based feature in wavelet
transformation and coefficient coding also aligns with the chunking schema and quadtree indexing very

GPU 1

CPU0 CPU1 … CPUm

Global memory

SM1

Device Memory

SM2
…

SMn

GPU 2

Hard drive I/O Controller

Thread

well as shown in Fig. 1. As discussed in Section 4.4, our preliminary results have shown that the quadtree
data structure [137] can be combined and partitioned along both spatial and thematic dimensions, which
is desirable in parallel tree indices constructions across multiple processing units.

As for wavelet-based techniques, they have been extensively studied in digital image processing
community. While not designed to support queries on large-scale multivariate raster data, performance
behaviors of wavelet-based data transformation, encoding, transmission and decoding on different
computing architectures and hardware devices are well studied. Certain queries, such as range-sum
queries, can be directly supported in the wavelet domain without requiring complete data decompression.
The feature has been attractive to the database research community [104,105]. We plan to investigate
the possibility of processing the four QDVE queries in the wavelet domain. Furthermore, computation in
wavelet transformation stage is naturally suitable for parallel processing. Finally, many wavelet based
approaches use bit-plane encoding to encode transformed wavelet coefficients. The feature makes it
possible to improve QDVE query efficiencies through progressive query processing.

We next briefly discuss how the relevant data structures and algorithms can be integrated to
effectively support the four types of QDVE queries identified in Section 4.1. For ESW queries, starting
from the root, all quadrants need to be checked to determine whether they intersect with the query
window and prune those who do not. The query is performed recursively until the leaf nodes of the index
tree is reached. Following the chunk identifiers associated with the leaf nodes, the metadata of the
chunks can be gathered and an optimal chunk loading schema is then calculated. The chunks will be
loaded into parallel computing units and uncompressed (fully or partially) so that subsequent processing
can be performed. For ROI queries, the recursive query process remains the same except that the
decision on whether to go to a particular child quadrant is based on range values instead of spatial
extents. When a ROI queries involve multiple raster layers, the chunks of all the layers under a quadrant
representing a qualified leaf node may be needed to be made available simultaneously on a parallel
processing unit. We will develop an efficient sequencing algorithm to assign the chunks to different
parallel processing units by adopting a graph based approach and reuse the algorithms that we have
developed for data broadcasting over wireless channels [138-140]. (3) For ORA queries, they can follow a
similar procedure as ROI queries except that, rather than comparing query ranges against multiple
ranges of variables to derive a boolean value directly, a new variable from multiple existing variables
need to be derived before checking the values of the derived variable. While the difference is negligible
when validating top level indices on CPUs from an implementation perspective, a stack is required to
derive the values of the new variable for individual raster cells which can be both memory-intensive and
computation-intensive on both CPUs and GPUs. We will develop approaches to efficiently evaluate
algebraic expressions at the chunk level by effectively utilizing commodity parallel hardware features,
e.g., fast shared memory on Nvidia GPUs [12]. (4) As a focal raster operation, parallel processing of LSS
queries are relatively straightforward on regularly distributed raster data and mature tiling techniques can
be applied to speed up the processing [12]. However, workload balancing becomes a serious issue when
LSS queries are combined with ROI queries. The input of LSS queries, i.e., output of ROI queries,
becomes irregular and/or clustered in this case. To support compositions of LSS and ROI queries, we
propose to extend the idea that we have presented in [56] and develop efficient algorithms on both CPU
and GPU as following. First, ROI query results for all chunks are indexed using quadtrees and the chunk-
level quadtrees are combined with the original quadtree indices above the chunk level to form a complete
quadtree. The large quadtree is then used to compute the computation intensity across the spatial extent
of the raster data based on the mathematic expressions of the underlying spatial statistics. The quadtree
enhanced with an expected computation intensity value with each quadrant will be used to find a data
partition schema to partition raster cells into groups. As calculating a local statistics for a cell may involve
data items in multiple groups, partial statistics for groups are calculated in parallel at the group level
before they are summarized up to derive a total statistics for the cell.

From the above discussions we can see that top level spatial indexing is effective in pruning
search space and reduce the workload for decompressing and evaluating chunks when processing ESW,
AOI and ORA queries. To further reduce the workload on decompression, we have proposed a new
raster data encoding approach that adopts wavelet transformation but uses our parallel cache-conscious
quadtree [137] for bit-plane coding as illustrated in Fig. 3. While the technique may not generate the best
compression ratio, the decoding is much less complex and can be parallelized. The parallelization can be
achieved at the both bit-plane level when decoding bit streams and at the reduction stage to reconstruct
wavelet coefficients. By using a pyramid data structure as shown in the right part of Fig. 3, decoding

based on the proposed approach completely eliminates the need for pointers and dynamic memory
allocations which makes it suitable for both multicore CPU and GPGPU implementations. Furthermore,
while the pyramid data structure may increase memory footprint by 1/3 of the volume of decoded data
[137], since decoding can be done in-place, the memory footprint may be even smaller than some
existing best approaches (e.g., SHPIT [96] EBCOT [97], SPECK [98] and LWT [99]). The low memory
footprint makes it suitable to utilize CPU caches and GPU fast shared memory to further improve the
performance of bit stream decoding. Note that the proposed quadtree bit-plane coding approach should
work with any existing wavelet transformation algorithms/implementations including parallel ones on
multicore CPUs and GPUs [109-111].

Fig. 3 Parallel Quadtrees for Wavelet Coefficients Coding Using a Pyramid Data Structure

Compared with other data compression algorithms, such as run-length and directory-based ones
[135], one advantage of bit-plane encoding in the context of QDVE applications is that it can be used to
supports progressive query processing. Assuming that the number of bit planes is N, then the contribution
of the i

th
 bit plane to all raster cells vary between [-2

i
 and 2

i
]. By incorporating the variations into inverse

wavelet transformations, it is possible to filter out quadrants within the data chunk for AOI and ORA
queries before the data chunk is fully decoded, i.e., early termination of query processing for unqualified
quadrants. The similar idea can be used for progressive query processing where the accuracies are
incrementally improved as more bit-planes are decoded. We consider both early termination and
progressive evaluation in processing QDVE queries desirable features.

4.4 Extending to multimodal computing

We refer multimodal computing to integrating local personal computing with remote grid and
cloud computing to enable visual explorations of large-scale raster geospatial data. The remote
computing can be used for offline data preprocessing and aiding online query processing or even online
indexing in certain cases. Furthermore, remote computing can be used to serve enhanced information in
progressive query processing. Due to the data intensive nature of QDVE applications, shipping large
amount of data to remote computing is better carried out prior to performing online QDVE tasks, i.e.,
during preprocessing stage. A scheduling module is essential to effectively coordinate local and remote
computing. While considerable research from programming languages, operating systems and data
networks have been carried out on task scheduling in parallel computing, it remains a fundamental
difficult problem in seeking a generic, fully automatic solution. We propose a realistic semi-automatic
scheduling approach by fully utilizing available metadata associated with spatial indices and compressed
data chunks. The key component of our proposed solution is a data semantic and operation semantic
aware parallel data processing framework to support QDVE tasks on multi-source distributed computing
resources. More specifically we propose two sets of techniques for this purpose: a set of algorithms to
dynamically assemble materialized indexing data structures and a set of rules and heuristics to guide task
scheduling to effectively utilize local and remote computing resources.

Sub-Task 1 Algorithms to dynamically assemble data structures from previous results. As
illustrated in Fig. 1 and discussed previously, QDVE tasks on large-scale geospatial data mainly involve
three data types: tree indices and raw and wavelet encoded multi-dimensional arrays. Tree indices and
wavelet encoded arrays are suitable to be shipped among distributed computing resources due to their
relatively small data volumes. In a way similar to TCP packages, these data structures can be split,
processed and combined at distributed nodes with different types of parallel computing hardware (e.g.,
multicore CPUs and GPUs) before they are finally utilized at the personal workstations to interact with end
users directly.

The Cache-Conscious Quadtree (CCQ-Tree) we have developed in our previous work [137] can
be constructed on both multicore CPUs and GPUs. While the complete algorithms to split and combine
CCQ-Tree data structures need to be developed, we next use an example to demonstrate the feasibility.
Each CCQ-Tree node has a data field and a first child position field. The layout of CCQ-Tree nodes on
the tree’s storage array is based on a breadth-first traversal order. In Fig. 4, assuming that the two CCQ-
Trees each representing a single raster layer (e.g., precipitation and temperature) at the same spatial
extent need to be combined to form a multi-variable CCQ-Tree. The combination can be achieved as
following through a two-pass process without requiring the respective raw multi-dimensional data arrays.
During the first pass, the two trees are traversed in a synchronized manner and output the combined tree
nodes to the output array. In the second pass, the positions of first child in all output nodes are set after a
prefix scan process to compute the position values.

Fig. 4 Illustration of Dynamic Tree Indices Combination Using a Cache Conscious Quadtree

The example shows that it is possible to request remote computing resources to derive CCQ-
Trees for the raster data that are physically collocated with processors and dynamically combine CCQ-
Trees representing different raster layers to form a CCQ-Tree representing multiple raster layers for
efficient query processing. High-level tree indices in our architecture (Fig. 1), although their derivation
requires to process large amount of raster data, are usually small in sizes and are suitable for distributed
processing without incurring significant data transfer overheads. We plan to extend the idea to develop a
full set of algorithms to split and combine tree indices across both spatial domain and thematic (e.g., time,
height, spectral) domains.

Sub-task 2: rules and heuristics to guide coordination of local and remote parallel computing.
Given a QDVE query, based on the number and distribution of data chunks involved (usually available
after performing queries on spatial indices) and the knowledge of the nature of the QDVE query, the
computing intensities across the study area at the chunk level can be roughly determined. We assume
the scheduling module maintains a list of data sources (including spatial indices and compressed data
chunks) and computing capabilities of remote computing resources. While the rules and heuristics need
to be fully developed and formalized, the following example illustrates the basic idea of our proposed

L1 L2

0 1

0
5

1

0

9

5

1

0

L1 L2

0 1

0
5

1

0

9

5

1

0

L1 L2

0 1

0
5

1

0

9

5

1

0

13

4 4 4 0

4

1

5 9 13 13

1

1

Prefix scan

First traversal:

compute # of children

First traversal:

copy array elements

Second traversal:

set the positions of

first child in all nodes

Node Layout before

Combination:

uni-dimensional

Node Layout after

Combination:

multi-dimensional

D1

First child pos

D2

First child pos

D1

First child pos

D2

solution. Considered a QDVE application on NASA MODIS data that is similar to the draught assessment
in [7] which requires find spatial locations with NDVI<0.5 AND NDWI<0.3 AND 0.5<NDDI <10. The
application involves 3 out of 7 MODIS bands in a scene (red -RED, near infrared-NIR and shortwave
infrared - SWIR) and three derived indices from the three bands, i.e., NDVI, NDWI and NDDI. The
application also involves a few QDVE queries: two ORA queries on the RED-NIR and RED-SWIR raster
pairs, respectively; one ORA queries on the NDVI-NDWI pair followed by a ROI query on the three
derived indices. The data chunks satisfy the query criteria can be performed locally through set
operations or synchronized tree traversals on spatial indices as the computing overhead in this filtering
step is relatively light. However, to answer the queries exactly, we need to examine all the raster cells in
the chunks to remove false positives. This is much more computationally intensive as both wavelet
decompression and numeric calculations on the cells are involved. Assuming that a grid cluster
computing has already had a copy of the MODIS data, then the refinement query step can be divided
between local GPUs and remote computing. While the division will be affected by quite a few factors that
need to be taken into consideration, such as the projected available grid computing resources that can be
allocated to the application, network traffic delay, authentication overhead and local GPU computing
power, a heuristic is to assign the chunks that are within the current view window to local GPU while
assign the remaining chunks to remote computing resources based on the order of their closeness to the
current view window.

We propose to distinguish two modes in parameterized QDVE queries when developing rules and
heuristics, i.e., instantaneous mode and continuous mode. Different from the instantaneous mode,
queries in continuous mode may change parameter values and reevaluate the queries again on a same
set of raster layers. It could be more beneficial to construct some intermediate data structures to support
continuous queries more efficiently. For example, while it may take extra time to construct a quadtree for
the combined RED, NIR and SWIR bands from quadtrees of individual MODIS bands, querying the
combined quadtree can be more efficient than querying the three quadtrees in the continuous mode. The
same rule can be applied to using remote computing resources. Instead of requesting remote computing
resources to send back final query results, the scheduling module may choose to ask returning wavelet
encoded chunks with partial of the raw data whose value ranges are interested by the exploration tasks.
In such a case, filtering non-interesting data will reduce data transfer overheads while facilitate local
continuous queries efficiently.

5 Evaluation Plan
To validate the feasibility of the proposed framework and effectiveness of the proposed

techniques, we propose to use three datasets with distinct characteristics and carry experiments on the
four initial types of QDVE queries using a typical personal workstation. While we believe our research and
development efforts on building such an end-to-end system is useful to a variety of research communities
that involve handling large-scale raster geospatial data, we consider it more important to identify strong
and weak points of such a system through extensive experiments and seek balances between personal
computing and cloud/grid based computing in the context of QDVE applications. In addition to the data
structures and algorithms we have proposed to develop, by plugging in existing open source or
commercial packages (such as spatial indexing and data compression) and new hardware (such as Solid
State Drive – SSD), the system can also serve as a test bed to push the limit of visual explorations of
large-scale raster geospatial data in a personal computing environment.

5.1 Data Collection
We plan to use the following three real world datasets:
1) WorldClim current (1950-2000) climate data [14,15] includes 55 rasters at the global 30-arc

seconds resolution as discussed in the Introduction Section. The dataset is suitable for scientists as well
as the general public to explore the spatial-temporal patterns of elevation, precipitation and temperature
as well as their relationships. Since the dataset is made publicly available in 2005, it has been cited 653
times according to ISI Web of Knowledge as of 12/11/2010.

(2) NASA MODIS satellite remote sensing data available at University of Maryland Global Land
Cover Facility (GLCF) [142]. Seven bands are available for each of the combinations of the five
geographical areas (Africa, EuraAsia, North America, South America and Oceania) over the roughly sixty
32-day periods from 2000 to 2004, i.e., 5*60*7=2100 rasters. This MODIS data has a 500 meter spatial
resolution and the numbers of cells are 16700*17352, 27600*17140, 22650*15586, 11264*16032 and

18200*15400 for the five geographical areas, respectively. We plan to repeat the experiments on drought
assessment and compare the performance of our personal workstation based system with that of Jaguar
Cray XT4 supercomputer [7].

(3) NMQ data from University of Oklahoma and NOAA [17]. The National Mosaic & Multi-Sensor
Quantitative Precipitation Estimation (NMQ) dataset covers the continental United States with a spatial
resolution of 1 kilometer (roughly 5000*7000) and temporal resolution of 5 minutes (288 rasters per day).
The high-temporal resolution makes it suitable for indexing and querying dynamic phenomena such as
storms and other mesoscale atmospheric events. As discussed in the introduction section, we plan to use
the data to explore the correlations between the deviations of NMQ and NWS observation data and the
topographical factors including elevation, slope and aspect.

5.2 Experiment Settings
Our experiments will be performed on a typical commodity personal workstation, e.g., Dell T7500

with 7200-10,000 RPM hard drive, 12G - 48 G memory and an Nvidia Quadro 6000 GPU card with 448
cores and 6G graphics memory. Two of such workstations are being purchased and will soon be
available at the PI’s lab. A SGI Octane III two-node GPU mini-cluster that is already installed in the PI’s
lab will be connected with the two workstations through a 1Gbps Ethernet switch and used as on-demand
computing resources to speed up visual explorations. We plan to simulate WAN applications during the
initial development and test phase.

As part of the City University of New York (CUNY) system, the PI’s lab is eligible to use cluster
computers available at the CUNY High-Performance Computing Center (CUNY HPCC) [142]. The CCNY
campus network backbone is a 1 Gbps Ethernet and is part of the CUNY network (CUNYNet) operates
on an optical network with a transmission rate approximately 10 Gbps. CUNYNet, CUNY HPC and major
ISPs in the New York City area connect to the collocated network hubs at the 32 Avenue Of the Americas
(AOA) in Manhattan. The network topology makes it convenient for the PI’s lab to connect to remote
computing resources, including CUNY HPCC. We plan to use the Andy GPU cluster at the CUNY HPCC
as our remote computing resources to test the proposed techniques discussed in Section 4.4. If
successful, we will further explore GPU-based cloud computing resources that recently become available
from Amazon [143]. In addition, we will also proactively seek support from the TeraGrid [144] and SDSC
Gordon [145] teams to test our idea of using remote cluster/cloud computing as on-demand resources for
QDVE applications.

5.3 Performance Metrics

While benchmarks are available for relational data (e.g., TPC [146]), we are not aware of
benchmarks for raster geospatial data. Also although there are quite a few established usability
assessment protocols in the information visualization community, scalability issues were not addressed
until recently [32]. We plan to use the following criteria as our performance metrics: (1) End-to-end query
response times for different types of QDVE queries and their combinations. Although the times will
certainly vary with quite a few factors, the ranges of the response times will provide useful information on
the limits of QDVE applications on personal workstations. (2) Utilizations of bandwidths (including disk
I/O, CPU memory to GPU memory and GPU memory to GPU processors) and computing (including both
GPU and GPU processors) for QDVE queries with different characteristics (data-intensive, computing-
intensive and their combinations). (3) Usability through user survey. The focus will be whether interactive
and uninterrupted visual explorations are more effective than offline modeling followed by online data
display and animation.

