

Prototyping A Web-based High-Performance Visual Analytics Platform for

Origin-Destination Data: A Case study of NYC Taxi Trip Records

Jianting Zhang
Dept. of Computer Science

City College of New York

New York City, NY, 10031

jzhang@cs.ccny.cuny.edu

Simin You
Dept. of Computer Science

CUNY Graduate Center

New York, NY, 10016

syou@gc.cuny.edu

Yinglong Xia
IBM T.J. Watson Research Center

Yorktown Heights, NY, 10598

yxia@ us.ibm.com

ABSTRACT
Origin-Destination (OD) data has quickly emerged as a popular

and fast growing spatiotemporal data type due to widely adoption

of GPS, smartphones and location dependent social networks.

Several previous works have developed techniques for managing

and visualizing large-scale OD data in desktop computing

environments. In this study, by leveraging our experiences in

Web-GIS and parallel spatial data processing and learning from

successful OD data visualization case studies, we have developed

a Web-based high-performance visual analytics prototype

platform for OD data. Observing that interactive spatial queries

typically only involve a limited number of Regions of Interests

(ROIs), we propose a simple yet effective technique to aggregate

OD records into dynamically defined OD polygons by data

parallel scanning OD point locations for cache efficiency and

easy parallelization on conventional multi-core hardware for high

efficiency and performance. By dynamically integrating with a

graph database backend, our prototype platform is capable of

visualizing social network analytical results and guide users to

further retrieve detailed information of interests. Two

experiments are provided to demonstrate the utilization of the

proposed techniques, including web frontend functionality and

backend efficiency, by using more than 170 million taxi trip

records in NYC in 2013 as well several urban infrastructure

datasets. Interactive demonstrations are available for the web-

based system.

1. INTRODUCTION
Approximately 13,000 taxicabs in the New York City (NYC)

equipped with GPS devices generate more than half a million taxi

trip records per day with each trip has a pickup and a drop-off

location1. As of 10/07/2014, there are more phones (7.2 billion)

than people on the Earth2. Cell phone call logs with caller-callee

locations represent a category of data at an even larger scale. Also

as visitors travel around the world more frequently, the

increasingly popular location-dependent social networks such as

Foursquare, location-enhanced social media such as text posted

to Wiki sites and images and videos posted to Flickr and

YouTube, record more and more location data at different

granularities and accuracies. All the above data have one

characteristic in common, i.e., recoding Origin (O) and

Destination (D) locations, and they are typically termed as OD

data.

The inefficiency of using traditional GIS, Spatial

Databases or Moving Object Databases to manage large-scale OD

data has motivated us to develop new parallel techniques on

modern hardware, including multi-core CPUs and Graphics

Processing Units (GPU [1]) and distributed computing systems to

process the OD data efficiently on modern hardware [2] [3].

While experiments have demonstrated high-efficiency, previous

works mostly focus on spatially joining point location data with

urban infrastructure data (or spatial join [4]) in an offline manner

and do not support online visual analytics for interactive query

and analysis. On the other hand, as visual analytics typically has

a local focus (e.g., Region of Interests - ROIs), the computing

demands is generally less intensive than globally exhaustive

searching over a large OD data repository. Despite it is still

technically challenging to make full use of commodity parallel

hardware for high performance, it is possible to utilize

conventional hardware to support interactive query processing

and analysis based on limited ROIs. Different from offline spatial

join processing, visual analytics of urban OD data involves

considerably more operations, such as various social network

algorithms in computing centralities and ranking, to guide

effective visual exploration. Although these algorithms are well-

defined and open source implementations are available, the

integration of spatial and spatiotemporal query processing and

social network analytics with a visual exploration interface is

non-trivial from a system development perspective. Furthermore,

while desktop computing based information visualization system

can generally provide more functionality (e.g., TaxiVis [5]), a

web-based platform that allows users to access anytime and

anywhere is more desirable, especially for non-expert users.

Towards this end, we have started the initiative of

developing a web-based high-performance visual analytics

platform for urban OD data. The platform leverages our

experiences in processing large-scale OD data on parallel

hardware [2]. It integrates Google Map API3 for map-based

visualization at the frontend and IBM SystemG API4 for social

network analysis on graphs at the backend. The platform supports

ROI-based visual queries on Google Map not only for arbitrarily

drawn polygons but also for OD polygon pairs, with a response

speed in a fraction of a second in a web based computing

environment. The platform populates offline generated geosocial

graphs into IBM SystemG graph databases and provides social

network analytical services through its web-enabled APIs. The

social network analytical results are subsequently geocoded and

visualized in Google Map based web frontend for subsequent

map-based interactive visual exploration. The communications

between the Google Map based frontend and the respective

distributed backend services are through the open standard JSON

format to lower system development barriers and achieve

interoperability, scalability and high performance.

While our technical contributions in this study are

mostly on the system designs and implementations, our prototype

platform is unique in several aspects: an in-house developed

spatial query processing backend that utilizes in-memory and

parallel techniques for performance, integrating with industrial

strength social network analysis modules for enhanced

functionality that is typically not available in a web-based GIS,

and, a visual analytics frontend specially designed for OD data on

top of Google Map APIs that is easy to use. To the best of our

knowledge, we are not aware of previous works that have

explored similar system designs for large scale urban OD data.

The rest of the paper is arranged as follows: Section 2 introduces

background and motivation and briefly discusses related work.

Section 3 presents system designs and implementation details.

Section 4 provides case studies of several application scenarios to

demonstrate the functionality of the prototype platform. Finally

Section 5 is the conclusion and future work directions.

2. BACKGROUND, MOTIVATION AND

RELATED WORK
The work being reported is related to quite a few disciplines and

their intersections, including GIS, Big Data, visual analytics,

social networks and web technologies. Web-GIS has established

itself as a mature application domain to publish georeferenced

data over the Web in the past two decades. In addition to open

source software stacks, such as PostgresSQL/PostGIS [6] -

MapServer5/GeoServer6 - OpenLayers7, major GIS vendors and

their products, such as ESRI ArcGIS Server8 and its client SDKs,

allow users to publish their data as web services and consume

such services in web-based environments for visualization,

analytics and their combinations. Typically the backend has a

database or data repository module to manage vector and raster

geospatial data, and a middleware module to transform the raw

geospatial data to various open formats, including images and

documents using markup languages, such as Geographical

Markup Language (GML9) and Keyhole Markup Language

(KML10). The web frontend is typically provided as Javascript

libraries or other web-plugin libraries (such as Microsoft

Silverlight, Oracle JavaFX and Adobe/Apache Flex) that can

assemble various formats of georeferenced data transmitted over

the HTTP protocol and graphically represented them in browsers.

Standardization organizations, such Open Geospatial Consortium

(OGC11), have been playing an import role in standardizing the

interfaces among different components in a Web-GIS application,

such as Web Map Services (WMS12) and Web Feature Services

(WFS13), to achieve interoperability among modules provided by

different software vendors. The popular Google Map and

Microsoft Bing Map combine proprietary data and a limited

subset of GIS functionality as web services and provide such

services through their frontend Web APIs. While the commercial

products make it easy to use services they provide, e.g., using web

maps as background for visualization purposes, typically it is

difficult to publish users’ own data to use similar services or to

significantly extend the services for more complex analysis. On

the other hand, although most of existing open source or

commercial Web-GIS software allows users to store large-scale

georeferenced data in disk-resident databases or data repositories,

their performance is not acceptable for large-scale data [2] due to

the poor scalability of software of multiple layers in Web-GIS

software stacks. Furthermore, while Google Map and Microsoft

Bing Map may be able to optimize their data accesses and services

for the data they directly manage, as users are required to integrate

their customer data and services at the frontend (e.g., based on

Javascript), the performance degenerates quickly as customer

data and services increase. As a consequence, existing web-based

systems for OD data visual analytics (e.g., [7]) have not utilized

Web-GIS technologies extensively beyond simple web map

overlay for visualization. Indeed, without significantly changing

backend and/or frontend in the existing Web-GIS software stacks,

it is very difficult to handle large-scale OD data in a sensible way.

As a preliminary remedy, our prototype platform reuses Web-GIS

frontend (Google Map API in particular) but enhances the

backend with a high-performance in-memory parallel data

management system to perform spatial queries, which will be

further discussed next.

Information visualization and visual analytics

techniques specially designed for spatiotemporal data, trajectory

data and OD data, which are becoming increasingly popular in the

past few years, can be considered as extensions and enhancements

to traditional GIS. While traditional GIS nicely integrates data

management, visualization, analysis and simulation functionality

into software suits and provide end-to-end solutions for many real

world applications in the past few decades, they have not

provided sufficient functionality for spatiotemporal data in

general and OD data in particular. There have been a plethora of

works on managing, analyzing and visualizing spatiotemporal

data and trajectory data and we refer to [8] for reviews and

examples. The seminal work of TaxiVis reported in [5] has

motivated quite a few works to develop visualization gadgets

specifically for OD data. As an example, a recent work in [7] has

developed Circular Pixel Graph and Spatio-Temporal Stacked

Graph to better understand patterns from OD data. Similarly, OD-

Wheel [9] was designed to explore the temporal dynamics of OD

clusters to help users to study traffic pattern of a ROI. Different

from TaxiVis that allows user to dynamically define ROIs by

interactively drawing polygons on a base map and retrieve taxi

trip records from the backend database on-demand, which

involves considerable development efforts in indexing and query

processing, the works reported in [7] and [9] seem to rely on

preprocessing to aggregate OD data to a limited number of

predefined regions to reduce computing demands. While effective

from a computing perspective, the techniques might limit their

capabilities to support fine-grained spatiotemporal visual

explorations of large-scale OD data due to the predefined

aggregations. We note that, all these works are based on a desktop

computing environment. While preprocessing techniques,

including indexing and aggregation, may utilize distributed

computing environment, query processing and visualization in

these studies seem to be based on a serial computing model,

which may limit their scalability and achievable performance. In

contrast, our prototype platform is designed to be web-based and

naturally supports distributed computing environments. In

addition to dispatching multiple queries to distributed backend

servers, each server can natively utilizes multi-core CPUs for

efficient parallel query processing.

Large-scale OD data such as taxi trips has also

motivated several research works from spatiotemporal data

management perspective, which is closely related to data

management in GIS. We have developed several data parallel

spatial indexing and query processing techniques both on GPUs

and GPU-accelerated clusters and we refer to [3] for a brief

summary. Experiments have shown that spatially joining

hundreds of millions of GPS OD locations in the NYC taxi trip

records with hundreds of thousands of road segments and

different types of zones can be completed in the order of tens of

seconds. Compared with traditional disk resident spatial

databases techniques running a single CPU core, 3-4 orders of

magnitude of speedups (from tens of hours to tens of seconds)

have been achieved due to the combined improvements of

columnar layout, data parallel geometry operation, in-memory

processing and many-core GPU acceleration. Based on the

results, it is reasonable to assume that, interactive queries that

typically involve only a limited number of manually drawn

simple ROI polygons, can perform much faster than spatial joins

that involve hundreds of thousands of complex real world

polygons. This further motivates us to develop a simplified spatial

query technique for such interactive queries in the context of web-

based visual analytics for OD data. As detailed in Section 3, our

point-in-polygon test based query processing technique at the

backend does not require sophisticated spatial indexing, such as

KD-Tree in TaxiVis [5] and R-Tree, Quadtree or Grid File in our

previous works [10] [2]. Instead, our simplified technique simply

scans point locations and aggregate OD records that spatially

intersect with the MBRs of query polygons by using inexpensive

MBR test as a filtering step before performing more expensive

point-in-polygon test on point locations and query polygons. The

simplified technique is easy to implement and deploy on

conventional multi-core CPUs and does not require a GPU.

Experiments have shown the response time is typically a fraction

of a second for arbitrarily drawn ROI query polygons against the

complete 2013 NYC taxi trip dataset whose number of records is

over 170 million on a legacy dual quad-core CPU machine. While

we acknowledge the need of a comprehensive and powerful

backend for large-scale OD data, we believe the simplified spatial

query technique is useful as a lightweight module for visual

analytics.

While OD data naturally has a spatiotemporal

component and can be georeferenced, for a single origin location,

the destination location can be arbitrary in a study area. Although

road network data can be generally represented as a planar graph

where edges only intersect at their endpoints, OD pairs can only

be represented as non-planar graphs. In fact, OD pairs that are

geographically faraway may have stronger connection. For

example, there are much more taxi trips between the Empire State

Building (as a ROI) and the JFK airport in NYC. The unique

characteristic of OD graphs makes them resemble more to social

network graphs. It is thus interesting to apply many well

established social network algorithms to better understand OD

data. In our previous work, we have aligned the pickup and drop-

off locations of NYC taxi trips to road network intersections [2].

We then calculate shortest paths between unique node pairs

before aggregating the shortest paths to calculate the centralities

of road network segments by empirically assuming the drivers

will generally follow shortest paths [11] [12]. A similar idea has

been applied to TrajGraph [13] where road segments are

partitioned into zones to limit the numbers of OD pairs to ease

graph manipulations. We refer to [14] for a more comprehensive

survey on using taxi GPS traces to analyze community dynamics

where many studies use OD data derived from complete GPS

traces. In this study, we align taxi pickup and drop-off locations

to predefined zones in polygon datasets (e.g., Community

District14 in NYC) and use the polygon zones as nodes and the

numbers of taxi trips as the weights of edges that connect the

polygon zones. Clearly, different from road networks that planar

graphs are formed purely based on geometry, non-planar OD

graphs reflect the aggregated utilization of the underlying road

networks.

To generate OD graphs and apply social network

algorithms, it is necessary to utilize various spatial join

techniques, such as point-in-polygon test based and point-to-

nearest polygon based, to align OD locations with the underlying

urban infrastructure, such as road segments and different types of

zones. While large-scale spatial joins are computing intensive (as

discussed before), generating OD graphs is an one-time cost and

can be done offline, possibly by utilizing GPUs and/or computer

clusters for accelerations. However, managing diverse OD graphs

with complex node and edge structures and highly dynamic

weights is technically non-trivial. As detailed in Section 3, we

have chosen IBM SystemG as our graph database infrastructure

to manage such OD graphs and to provide various analytical

functionality through built-in and easy-to-use web-based APIs.

Although we have chosen PageRank15 as an example to

demonstrate the feasibility from an integrated system

development perspective in this study, we plan to incorporate

more social network analysis functionality into the prototype

platform by adopting and extending IBM SystemG modules. To

the best of our knowledge, we are not aware of previous works on

dynamically integrating Web-GIS and social network analysis

functionality for visual analytics of OD data in a distributed (web)

computing environment. Clearly such integration requires non-

trivial coordination among Web-GIS frontend, spatial database

backend and graph database backend. We discuss our designs and

implementation details in the next Section.

3. System Architecture and Implementations
Our prototype platform currently consists of two backend servers

and a frontend module to integrate services provided by the two

backend servers as well as third party backends (Google Map

services in particular). The high-level architecture is illustrated in

Fig. 1 and the implementation details of the three components are

provided in the subsections next. As the network/web

communication and the GUI sub-modules are standard web and

Web-GIS technologies, we will focus on the frontend geometry

library sub-module that we have developed.

3.1 Geospatial backend
As illustrated in Fig. 1, the geospatial backend has a dual role: on-

demand processing spatial (and spatiotemporal in the future)

queries through client side visual exploration interfaces and

offline aggregating OD records to generate dynamic graphs for

online social network analysis and visualization. As the offline

computation is not time critical and have been extensively studied

in previous works, we next focus on on-demand query processing.

The most popular on-demand spatial query on OD data

through a visual exploration interface in the current prototype

platform is to retrieve the OD records (e.g., taxi trips in our NYC

case study) whose origin or destination locations fall within an

interactively drawn polygon, or the OD records that with the

origin and the destination in a pair of interactively drawn

polygons. Both require the point-in-polygon test based spatial

operation which are well supported in traditional disk-resident

Spatial Databases (e.g. [6]) and newly emerging hardware-

accelerated prototype systems (e.g. [2]).

As discussed previously, our geospatial backend is

designed to balance the tradeoffs between conventional database

technologies, which are rich in functionality and easy to use but

suffer from low performance, and hardware-accelerated

geospatial query processing technologies, which are high-

performance but are quite sophisticated and could be fragile due

to lacking maturity. Different from traditional databases that

typically follow row-based layouts for physical storage, we

follow the columnar design and partition OD data based on both

columns and rows for efficient data loading and subsequent in-

memory processing (we refer to Section 3 of [2] for details).

Given a limited number of interactively drawn polygons as user-

defined ROIs, our geospatial backend scans all the OD locations

and aggregates OD records that fall within the ROI polygons

without relying on any prebuilt indices. A code segment using

OpenMP16 for straightforward parallelization is listed in Fig. 2.

The approximately 20 lines of C code can be easily included in

any C/C++ programs for simplicity and portability. Note that the

7 lines point-in-polygon test code is due to W. Randolph Franklin

of RPI in 1990s17. We note that our GPU-based pint-in-polygon

test module reported in [10] is based on the code as well.

Although we have not used any spatial index, we do use

the MBR of a ROI query polygon represented by (xmin, ymin,

xmax, ymax) to filter out location points that are outside of the

MBR. Even for large ROIs where the MBR-based filtering is not

effectively, scanning through all the yearly 170 million taxi

pickup or drop off locations typically requires only a fraction of a

second on an Intel dual quad-core machine running at 2.0 GHZ

released in 2007. In contrast, a similar query against

PostgreSQL/PostGIS database may take minutes. The query

processing time using the simple technique could be even lower

than network delays for web-based visual explorations. We found

the performance satisfactory when the technique is applied to

NYC taxi trip data at a yearly basis, although further refinement

may be needed for larger-scale data. On the other hand, as the

numbers of cores in multi-core machines are also increasing fast

in the past few years [15], it is likely that the growth of CPU cores

may match the growth of data volumes for the particular

application that we are targeting at. This may further increase the

applicability of the proposed simple technique.

Fig. 1 Fig. 1 Prototype Platform System Architecture and Components

CCNY

Geospatial

Backend
W

eb
 P

ro
x

y
 (P

H
P

)

Web-GIS API

Large-scale geospatial data management

• Columnar data layout and storage

• Spatial query processing

Web frontend for geospatial and

geosocial visual exploration using

NYC Taxi Trip Data

Spatial and spatiotemporal aggregation

to derive graph structures and weights

IBM SystemG

Backend

Network/Web Communication

Javascript asynchronous function call

JSON string encoding and parsing

User data and Web-GIS API binding

Frontend Geometry Library

MBR Indexing

Point-in-Polygon Test

Line-Polygon Intersection

Graph Data Management and Analytics:

Shortest Path, Centrality, PageRank…

GUI

Spatial selection: polygon drawing

Temporal selection: dropdown list

OD indication: arrow/polyline drawing

Fig. 2 Code Segment of OpenMP based Parallel Processing of

Interactive Spatial Query based on Point-in-Polygon Test

3.2 Graph Database for Social Network

Analysis
SystemG is a graph database that is being actively developed at

IBM Research, which explores efficient graph data organization

for parallel computing architectures. SystemG is a whole

spectrum solution for large scale graph processing, including

graph storage, runtime, analytics and visualization [16]. In this

study, we primarily use SystemG as a graph database backend to

manage dynamical graphs and provide social network analysis

functionality. As the possible combinations of spatial, temporal

and thematic (e.g., zone datasets) selections from a visual

exploration interface is considerably large, the backend needs to

respond to such dynamic parameters during a visual exploration

process, retrieve and transform the corresponding graphs,

perform required graph analytics and send back the results to the

client. As part of its analytics library, SysemG provides various

social network analysis functionality, including shortest paths,

betweeness centrality and PageRank. In this study, we will be

using PageRank for demonstration purposes where graph weights

are defined as the numbers of OD records between an OD pair, in

a way similar to TrajGraph [13] where travel time between two

OD zones is used as the weight of the corresponding OD graph.

PageRank is useful in revealing the distributions of hot traffic

hubs and the relative ranking of OD zones.

As an extension to SystemG’s PageRank

implementation, we consider not only graph structure (node

degrees) but also edge weight, which is computed as the number

of OD records (taxi trips) between an OD pair. The primary

reason for the extension is that, for the NYC taxi trip dataset, the

resulting OD graphs for pretty much all zoning systems are almost

fully connected graphs. This is due to the close social-economic

interactions among NYC zones. Without exploiting edge weight,

classic PageRank algorithm designed for unweighted graphs will

produce the same ranking scores for the zones which is not

informative and is undesirable. Currently our prototype platform

supports two zoning systems, i.e., Community District with 71

zones and Taxi Zone with 263 zones. The processing times of all

the analytic modules that we have tested on the small graphs by

SystemG is negligible. The high efficiency and high scalability of

the graph databases backend allow much larger and much more

complex graph analytics for better visual explorations and we

leave it for our future work.

Another feature of SystemG we have exploited

extensively is its built-in support for web-based applications. By

starting the backend in a socket mode, all graph query and

analytical results that are sent to terminals for debugging purposes

in the interactive mode can be redirected to web clients. By setting

the output format to JSON, the graph processing results can be

easily consumed by web clients as Javascript objects and

integrated with other web APIs, such as Google Map APIs for

visualization.

3.3 Web Frontend
While many of the web frontend functionality utilizes standard

techniques, such as Javascript asynchronous function call and

JSON string encoding and parsing for distributed data

communication and defining spatial parameters through polygon

drawing (lower-right part of Fig. 1), in this subsection, we would

like to highlight a few techniques that we consider unique to the

prototype platform.

First, when querying OD pairs during an interactive

visual exploration, after users draw both an origin polygon, a

destination polygon and an arrow (all by Google Map APIs), we

check the geometrical validity of the arrow at the web frontend

by implementing the point-in-polygon test in Javascript. Only

when both ends of an arrow fall within the two polygons, the web

frontend considers it a valid OD pair query. Invalid OD polygon

pairs will not be allowed to be sent to the geospatial backend to

protect the backend from invalid queries and to lower its

overhead.

Second, after a social network analysis by the graph

database backend is completed and the results are geo-coded and

visualized in the web frontend, we allow users to query graph

weights of any OD pairs using a map interface. While the colored

or patterned zones can show the distributions of the resulting

ranking or centrality scores which can serve the purpose of

“Overview” in visualization terminology [17], users may want to

further look into the edge weights that are associated with certain

nodes of the original graph to serve the purpose of providing

“Detail”, according to the well-known information seeking

mantra – “Overview First, filter and zoom and details on demand”

[17]. Although this can be easily implemented in a desktop

computing environment, we found it non-trivial in a Web

browser.

int pip_count(float vertices[][2], int num_vertices)

{

…

int count = 0;

#pragma omp parallel for reduction(+:count)

 for (int i = 0; i < num_points; ++i) {

 double x = point_x[i];

 double y = point_y[i];

 if (x < xmin || x > xmax || y < ymin || y > ymax)

continue;

 bool in_polygon = false;

 for (int j = 0; j < num_vertices-1; ++j) {

 double x0 = vertices[j][0];

 double x1 = vertices[j+1][0];

 double y0 = vertices[j][1];

 double y1 = vertices[j+1][1];

 if ((((y0 <= y) && (y < y1)) ||

 ((y1 <= y) && (y < y0))) &&

 (x < (x1 - x0) * (y - y0) / (y1 - y0) + x0))

 in_polygon = !in_polygon;

 }

 if (in_polygon) ++count;

 }

 return count;

}

Our solution is to allow users draw an arrow on the map

and determine the identifiers of the origin and the destination

zones, again by applying the point-in-polygon test algorithm.

Unfortunately, using Google Map APIs, while we are able to

access the whole set of polygons of the base map that is being

visualized, we are not able to get the active polygons in the current

view and we have to perform the test on all polygons. While the

number of polygons in a base map is typically small, the

Javascript based geometry test is orders of magnitude slower than

the backend side implementation and the performance is often

unacceptable for interactive visual exploration. Again, we apply

MBR based spatial filtering to limit the number of point-in-

polygon test to solve the performance issue. We also observed

that users are typically interested in nearby OD pairs which makes

the query quite selective and the MBR based filtering highly

effective in our experiments. An alternative might be to delegate

the point-in-polygon test to server side. This would require the

graph database backend to either communicate with the

geospatial backend dynamically or implement the geometry

operation inside the graph database backend. We are working on

integrating the point-in-polygon test code originally developed

for the geospatial backend into the graph database backend.

4. EXPERIMENTS AND

DEMONSTRATIONS
 Fig. 3 is a snapshot of a case study of querying an OD

pair through the visual exploration interface. For the two

interactively drawn polygons in the middle town region in NYC,

it took the geospatial backend 136.29 milliseconds and 165.48

milliseconds to scan 173,179,763 pickup and drop-off locations

in the two polygons and count numbers of locations that fall

within the polygons. The performance is considered acceptable

for interactive visual explorations. We are in the process of

developing visual gadgets for temporal selection by learning from

previous designs, such as TaxiVis [5] and OD-Wheel [9], and

adapting for our web frontend.

Our second experiment is to demonstrate the utilization

of the integrated Web-GIS and social network analysis for visual

explorations of geosocial data. After users choose a certain zoning

system (community district or taxi zone) and a weight metric

(numbers of trips in hours 0-23 and their total) through dropdown

lists, as shown in the top-left side of Fig. 4, the prototype

communicates with the graph database backend and retrieves

social network analysis results. While we currently uses colors to

visualize PageRank results (red represents higher ranking and

green for lower ranking), more sophisticated visualization

techniques can be applied for better visualization. Form Fig. 4 it

is clear that, taxi zones in the mid-town and downtown areas as

well as the LaGuardia airport and the JFK airport regions (both

are in Queens) are ranked much higher than those in Staten Island,

which is expected and intuitive for non-expert users.

Assuming users are interested in retrieving the OD

details between a taxi zone in the mid-town region and the

LaGuardia airport region, as shown in the mid-left part of Fig. 4,

they can draw an arrow to identify the original and the destination

zones (polygons). If the original and the destination are validated,

they will be highlighted (colored in yellow) and the detailed

information will be requested form the graph database backend.

Users can further switch to the interactive spatial query interface

to draw polygons within or cross the boundaries of the predefined

OD zones to obtain more specific OD information. While we are

in the process to integrate the two web frontend interfaces, we

hope the designs can serve as the starting point to better support

seamless OD data explorations with both predefined zones and

dynamically defined ROIs.

Fig. 3 Snapshot of an Interactive Spatial Query Processing Demonstration after Users Draw a Pair of OD Polygons

Fig. 4 Visualizing and Exploring PageRank Results of Taxi Zones: Interfaces and Results

5. CONCLUSION AND FUTURE WORK
In this study, we report our work on developing a high-

performance research platform to visually explore large-scale

urban OD data in a web computing environment. Still under

active development, the prototype platform integrates an in-

memory parallel geospatial query processing backend and a graph

database backend and provides several novel web frontend

modules for both functionality and efficiency. Using the yearly

170+ million taxi trips in NYC, we have provided two

experiments to demonstrate the utilization of an interactive query

processing interface where users can define their OD ROIs

interactively, and a geo-referenced social network analysis

interface where graphs are dynamically defined, analytical results

are visualized and details can be retrieved in an intuitive map-

centric way.

The reported work is preliminary in nature and

naturally leads to several future improvements. First of all, we

plan to extend the geospatial backend to efficiently support more

types of spatial queries, in addition to point-in-polygon test.

Second, as discussed inline, we plan to work with IBM SystemG

development team to integrate spatial data processing

functionality to support in-graph spatial queries. This may

significantly reduce the coordination complexity among the web

frontend and the two backend servers. Third, we plan to develop

more intuitive visual gadgets for temporal selection in the web

frontend, for both interactive spatial queries on raw OD data and

social network inspired analysis on derived OD graphs.

Acknowledgement: This work is supported in part by NSF

Grants IIS-1302423 and is part of a collaborative project between

CCNY and IBM T. J. Watson Research Center under a Joint

Study Agreement (JSA #W1463481).

6. REFERENCES
[1] D. B. Kirk and W.-m. W. Hwu, Programming Massively

Parallel Processors: A Hands-on Approach, 2nd ed.,

Morgan Kaufmann, 2012.

[2] J. Zhang, S. You and L. Gruenwald, "Parallel Online

Spatial and Temporal Aggregations on Multi-core CPUs

and Many-Core GPUs," Information Systems, vol. 44, p.

134–154, 2014.

[3] J. Zhang, S. You and L. Gruenwald, "Large-Scale Spatial

Data Processing on GPUs and GPU-Accelerated Clusters,"

ACM SIGSPATIAL Special, vol. 6, no. 3, pp. 27-34, 2014.

[4] E. H. Jacox and H. Samet, "Spatial Join Techniques," ACM

Trans. Database Syst., vol. 32, no. 1, p. Article #7, 2007.

[5] N. Ferreira, J. Poco, H. T. Vo, J. Freire and C. T. Silva,

"Visual Exploration of Big Spatio-Temporal Urban Data: A

Study of New York City Taxi Trips," IEEE Transactions on

Visualization and Computer Graphics, vol. 19, no. 12, pp.

2149-2158, 2013.

[6] R. Obe and L. Hsu, PostGIS in Action, Manning

Publications, 2011.

[7] X. Jiang, C. Zheng, Y. Tian and R. Liang, "Large-scale taxi

O/D visual analytics for understanding metropolitan human

movement patterns," Journal of Visualization, vol. 18, no.

2, pp. 185-200, 2015.

[8] G. Andrienko, N. Andrienko, P. Bak, D. Keim and S.

Wrobel, Visual Analytics of Movement, Springer, 2013.

[9] M. Lu, Z. Wang, J. Liang and X. Yuan, "OD-Wheel: Visual

design to explore OD patterns of a central region," in 2015

IEEE Pacific Visualization Symposium (PacificVis),

Hangzhou, China, 2015.

[10] J. Zhang and S. You, "Speeding up large-scale point-in-

polygon test based spatial join on GPUs," in Proceedings of

the ACM SIGSPATIAL Workshop on Analytics for Big

Geospatial Data (BigSpatial’12), 23-32, 2012.

[11] J. Zhang, "Smarter Outlier Detection and Deeper

Understanding of Large-scale Taxi Trip Records: A Case

Study of NYC," in Proceedings of the ACM SIGKDD

International Workshop on Urban Computing, Beijing,

China, 2012.

[12] J. Zhang, "Efficient Frequent Sequence Mining on Taxi

Trip Records Using Road Network Shortcuts," in Big Data

Techniques and Technologies in Geoinformatics, CRC

Press, 2014, p. 193–206.

[13] X. Huang, Y. Zhao, J. Yang, C. Zhang, C. Ma and X. Ye,

"TrajGraph: A Graph-Based Visual Analytics Approach to

Studying Urban," IEEE Transactions on Visualization and

Computer Graphics, p. To Appear, 2015.

[14] P. S. Castro, D. Zhang, C. Chen, S. Li and G. Pan, "From

taxi GPS traces to social and community dynamics: A

survey," ACM Comput. Surv., vol. 46, no. 2, pp. 17:1--

17:34, 2013.

[15] L. Hennessy and D. A. Patterson, Computer Architecture:

A Quantitative Approach, 5th edition, Morgan Kaufmann,

2011.

[16] Y. Xia, I. G. Tanase, L. Nai, W. Tan, Y. Liu, J. Crawford

and C.-Y. Lin, "Graph analytics and storage," in IEEE

BigData Conference, 2014.

[17] B. Shneiderman, "The Eyes Have It: A Task by Data Type

Taxonomy for Information Visualizations," in Proceedings

of the 1996 IEEE Symposium on Visual Languages, 1996.

1 http://www.andresmh.com/nyctaxitrips/
2www.independent.co.uk/life-style/gadgets-and-tech/news/there-are-officially-more-mobile-devices-than-people-in-the-world-9780518.html
3 https://developers.google.com/maps/
4 https://github.com/ibmppl/ibmppl
5 http://mapserver.org/
6 http://geoserver.org/
7 http://openlayers.org/
8 http://www.esri.com/software/arcgis/arcgisserver
9 http://www.opengeospatial.org/standards/gml
10 https://developers.google.com/kml
11 http://www.opengeospatial.org/
12 http://www.opengeospatial.org/standards/wms
13 http://www.opengeospatial.org/standards/wfs
14 http://www.nyc.gov/html/dcp/html/neigh_info/nhmap.shtml
15 https://en.wikipedia.org/wiki/PageRank
16 http://openmp.org/wp/
17 http://www.ecse.rpi.edu/~wrf/Research/Short_Notes/pnpoly.html

