
Towards GPU-Accelerated Web-GIS for Query-Driven
Visual Exploration

Jianting Zhang1,2, Simin You2, and Le Gruenwald3

1 Department of Computer Science
The City College of the City University of New York

138th Convent Avenue,New York, NY 10031
jzhang@cs.ccny.cuny.edu

2 Department of Computer Science
The Graduate Center of the City University of New York

365 Fifth Avenue,New York, NY 1006
syou@gradcenter.cuny.edu

3 Department of Computer Science
The University of Oklahoma

110 W. Boyd St. Norman, OK, USA, 73019
ggruenwald@ou.edu

Abstract. Web-GIS has played an important role in supporting accesses, visu-
alization and analysis of geospatial data over the Web for the past two decades.
However, most of existing WebGIS software stacks are not able to exploit in-
creasingly available parallel computing power and provide the desired high per-
formance to support more complex applications on large-scale geospatial data.
Built on top our past works on developing high-performance spatial query pro-
cessing techniques on Graphics Processing Units (GPUs), we propose a novel
yet practical framework on developing a GPU-accelerated Web-GIS environment
to support Query-Driven Visual Explorations (QDVE) on Big Spatial Data. An
application case on visually exploring global biodiversity data is presented to
demonstrate the feasibility and the efficiency of the proposed framework and re-
lated techniques on both the frontend and backend of the prototype system.
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1 Introduction

Since the inception of Web-GIS more than two decades ago, Web-GIS systems have
played important roles in extending desktop GIS functionality to Web environments
that allow users to visualize and query geographical information anywhere and anytime.
In the coming Big Data era, the volume, variety and velocity (3Vs) of geo-referenced
data increase proportionally, if not more rapidly, when compared with the mainstream
relational data. However, although considerable new techniques have been developed
for relational Big Data by exploiting newly emerging hardware, platforms and algo-
rithms for higher performance, it seems that Web-GIS systems are still largely relying
on the frameworks and techniques matured decades ago. As such, Web-GIS users are



often forced to limit their applications to pre-aggregated data generated by third-party
systems before feeding them to existing Web-GIS systems. This not only significantly
increases end-to-end system complexity but also makes the overall performance very
poor, as data exchanges among multiple systems through disks and network interfaces
are known to be expensive. The low performance likely makes more performance de-
manding applications in Web-GIS environments impractical, such as query-driven vi-
sual exploration on large-scale geo-referenced data.

Although HTML5 has been quickly adopted and new Web techniques are increas-
ingly feature-rich, the development of server side techniques for large-scale geospa-
tial data is more complicated. Existing leading Big Data techniques, such as Hadoop
and Spark, are mostly designed for offline batch processing on cluster computers. Al-
though those techniques have been extended to process large-scale geospatial data (e.g.
[1][2][3][4]), the technical complexity, hardware cost and high-latency make them gen-
erally unattractive for Web-GIS applications. Parallel techniques on multiple processors
[5], such as multi-core CPUs and many-core Graphics Processing Units (GPUs), offer
alternative solutions to cluster-based distributed computing techniques, although those
two categories of techniques can be combined in principle. While efforts on paralleliz-
ing geospatial operations on multi-core CPUs for higher performance can be dated back
to decades ago, using GPUs for general computing did not come into being until 2007
when Compute Unified Device Architecture (CUDA) was announced by Nvidia[6].
There have been growing interests in using the massively data parallel processing power
provided by GPUs for geospatial processing (see Section 2 for more details), however,
to the best of our knowledge, there have been little systematic efforts on using GPUs to
speed up Web-GIS applications on large-scale geo-referenced data.

In this study, we propose to exploit parallel processing power on modern proces-
sors, adopt new parallel designs and implementations of spatial join query process-
ing and refactor existing Web-GIS processing pipelines to support visual query explo-
ration on large-scale geo-referenced data. Our specific contributions in this paper are
the following. First, we present a novel yet practical framework on integrating GPU
techniques, geospatial techniques and Web-GIS pipelines to enable query driven visual
explorations on large-scale geo-reference data to achieve the desired high performance.
Second, we design and implement the relevant components and develop a prototype sys-
tem for feasibility and performance studies. Third, we perform experiments on a real
world large-scale geospatial dataset at global scale to demonstrate its feasibility and re-
alizable performance. The rest of the paper is arranged as follows. Section 2 introduces
background, motivation and related work. Section 3 presents system arhitecture and the
design and implementation details. Section 4 reports experiments and results. Finally,
Section 5 is the conclusion and future work directions.

2 Background and Related Work

2.1 Web-GIS and Parallel and Distributed Processing

A Web-GIS can be considered as a distributed computing system that allows visualiz-
ing and querying geo-referenced data in Web browsers. Standards such as Web Map
Services (WMS) and Web Feature Services (WFS) are developed to standardize data



communication protocols between server side and client side in a Web-GIS application.
While it is desirable to expose as many desktop GIS functionalities to Web browsers as
possible, functionalities that are supported by WebGIS are typically limited when com-
pared with desktop GIS, due to security restrictions and limited accesses to native or raw
computing power through Web browsers in the browser-server computing model whose
strength and weakness are well understood. Query-Driven Visual Explorations (QDVE)
integrates dynamic queries with traditional visualization techniques to support users ex-
plore large-scale datasets interactively (e.g. [7]). There have been growing interests in
enabling QDVE in a Web environment. We consider Web-based QDVE on large-scale
geospatial data a special application of Web-GIS and is a natural extension to traditional
Web-GIS applications that primarily focus on mapping and simple queries. It is easy to
see that QDVE imposes significant performance challenges on both client and server
sides of Web-GIS systems in this setting.

While client machines (including both PCs and mobile devices) hosting Web browsers
have significantly improved their processing power due to hardware progresses on sin-
gle processors, the hardware performance improvements on server side are mostly due
to the increased parallelisms, including multi-core CPUs and many-core GPUs. Indeed,
while parallelizing a sophisticated general-purpose browser program is very difficult,
it is relatively easier to parallelize individual server programs which are very often
domain-specific and with abundant parallelisms to exploit. Unfortunately, most of ex-
isting Web-GIS applications are built on top of legacy commercial or open-source Web-
GIS systems that are aware of neither application parallelisms nor the underlying par-
allel hardware. It is thus both conceptually interesting and practically useful to match
the intrinsic parallelisms in processing large-scale geospatial data with the increasingly
available parallel hardware for desired high performance in Web-GIS applications, es-
pecially for QDVE applications that demand interactive responses in real time.

Parallel processing of geospatial data is not a new idea and can be traced back to
at least two decades ago (see the dedicated book by Healey[8] for details). However,
as discussed in [9], research on parallel and distributed processing of geospatial data
prior to 2003 has very little impact on mainstream geospatial data processing appli-
cations, possibly due to the accessibility of hardware and infrastructures in the past.
The past ten years have seen two major technical trends in scaling up large-scale data
processing, one is MapReduce/Hadoop based techniques for distributed computing and
the other is GPU related techniques for parallel computing on a single computing node.
MapReduce/Hadoop based techniques provide a distributed execution engine and a run-
time system to automatically distribute Map and Reduce tasks to distributed computing
nodes and assemble results. So long as users can decompose their problems into inde-
pendent Map and Reduce tasks, they do not need to write sophisticated and error-prone
distributed programs while are able to achieve significant speedups. More efficient suc-
cessors, such as Spark-based techniques that utilize in-memory processing, are likely
to play a leading role in Big Data market in the near future. Although there were at-
tempts to integrate MapReduce/Hadoop based techniques for interactive visualization
(e.g. [2]), their inherent high latency (due to start-up delay and batch-oriented process-
ing schema) has made the attempts largely unsuccessful. Although Spark-based tech-
niques are generally more efficient, there are still significant gaps between hardware



potential and realizable capabilities. Our focus in this work is to maximize the utiliza-
tion of increasing parallel computing power on a single computing node and understand
its realizable performance on commodity hardware in the context of Web-GIS applica-
tions.

A typical modern computing node is equipped with 2-4 CPUs each with 4-16 pro-
cessing cores (totaling 8-64 CPU cores) and multiple hardware accelerators, such as
Nvidia GPUs [6]. While multi-core CPUs feature large-memory capacity and multi-
level large caches to accommodate tasks with complex logics and irregular data ac-
cesses, GPUs typically have much larger number of cores (102-104), higher memory
bandwidth (102-103 GB/s) and significantly higher floating point computing power
(10+ TFLOPs) than multi-core CPUs [5]. Although a single CPU core may only have
a few to a few tens of GFLOPs computing power, a modern computing node can easily
achieve several tens of TFLOPs when SIMD computing power of both GPUs and multi-
core CPUs are fully utilized. When properly used, the three orders higher computing
power may produce orders of magnitude of higher performance.

Towards this end, we have been working on data parallel designs of major opera-
tions that support spatial query processing and we refer to an invited ACM SIGSPA-
TIAL Special contribution [11] for a summary. Preliminary results have demonstrated
thousands of times of speedups over traditional techniques that reflect the combined im-
provements of data structures, algorithms, in-memory process and GPU accelerations
on a single computing node. This effectively reduces processing time from tens of hours
to tens of seconds on several real world datasets on GPUs (e.g. [12][14]). However, as
runtimes are not crucially important to offline processing, we believe that interactive
applications, especially for QDVE on large-scale geospatial data in a Web-GIS envi-
ronment where real time response is essential, are better suited for the newly developed
high-performance geospatial techniques. While most of the data parallel designs and
implementations utilized in this study were initially developed for offline applications
as improvements to traditional single-node and cluster computing environments, we be-
lieve adopting and adapting these techniques for Web-GIS applications to support inter-
active QDVE is reasonably novel and could be interesting to the Web-GIS community,
especially at the tipping point that hardware progresses demand software renovations
due to the changed cost models, to better support real world applications.

2.2 Spatial Joins on GPUs

Spatial joins techniques are fundamental to spatial query processing in spatial databases
[17][18], which are typically the core of a Web-GIS application backend, especially
when working with vector geo-referenced data. For example, both MapServer and ESRI
ArcGIS Server can delegate spatial operations written in SQL to major database sys-
tems that support spatial data, such as PostgreSQL (with PostGIS), Oracle and Mi-
crosoft SQLServer. Compared with point/location query and window/range query that
involve querying a point/box against a single dataset which typically only incurs lin-
ear complexity at most, spatial joins typically involve multiple datasets and their tuples
need to be related based on certain spatial operations. The indexing and query process-
ing capabilities provided by such database systems are fundamental to the performance



of Web-GIS applications when datasets are getting large. The efficiencies of index-
ing schemes and query execution plans, which may vary significantly among afore-
mentioned spatially-enhanced database systems, have been one of the primary driving
forces for spatial databases research. While hundreds of spatial indexing techniques and
numerous query processing techniques have been proposed [19][20], most of them are
designed for serial executions on uniprocessors.

Our efforts on developing spatial indexing and query processing techniques on
GPU-accelerated machines are largely based data parallel deigns and implementations[11].
By carefully identifying parallelisms on spatial indexing (including grid-file based,
quadtree based and R-Tree based) and spatial joins (including point-to-polyline/polygon
distance based, point-in-polygon test based and polyline-intersection test based), we are
able to chain parallel primitives [37], such as map/transform scan, reduce and sort, to
partition spatial data into blocks (partitioning), index the Minimum Bounding Boxes
(MBBs) of these blocks (indexing) and join them based on spatial intersections (fil-
tering) before developing fine-grained parallel designs for geometric computation on
GPUs (refinement). The behavior of the underlying parallel primitives is well under-
stood and their efficient implementations on multiple parallel hardware (including both
multi-core CPUs and GPUs) are available either by hardware vendors or parallel com-
puting research community. Since spatial partitioning and indexing are typically one-
time cost and spatial filtering are typically cheaper than refinement, the design choice
represents a reasonable tradeoff between complexity and efficiency. On the other hand,
spatial refinement generally involves floating-point intensive geometric computation
and very often dominates the overall cost in spatial joins. As such, it is crucial to
maximize its performance by exploiting GPU specific hardware features and we re-
fer to our individual reports on computing point-to-polyline distance (NN)[13], point-
to-polygon distance (KNN) [12], point-in-polygon test [10][14] and polyline intersec-
tion [16] based relationships. As a general strategy, in spatial refinement, we allocate
a joined pair (P, Q) to a GPU thread block and let all the basic elements in P (e.g.,
points in a quadrant or a grid cell and vertices of a polyline or a polygon) loop through
all the basic elements in Q to achieve coalesced memory accesses and reduce control
divergence, both are important in maximizing GPU performance. We have also devel-
oped efficient lightweight data structures (e.g., array-based queues) on block-specific
shared memory (fast but with very limited size [6]) and use atomic operations whereas
appropriate to further maximize GPU hardware utilization.

While our data parallel spatial join techniques were motivated by GPU hardware,
we have found that our in-memory columnar data layouts using flat arrays [12] have
contributed significantly to the orders of magnitude of performance improvement when
compared with traditional spatial databases that are typically row/tuple based and disk
resident. By storing columns or column groups as arrays and only load columns that
are relevant into CPU memory (and subsequently transferred to GPU memory), both
disk I/Os and memory footprints can be significantly reduced. Furthermore, since array
offsets can be used in lieu of pointers and data accesses in data parallel deigns are well
behaved, the columnar layouts are cache friendly on CPUs and memory accesses are
largely coalesced on GPUs, both are highly desirable with respect to memory system
performance, which are becoming increasingly important on modern hardware.



2.3 Previous Efforts on WebGIS for QDVE on Large-Scale Geospatial Data

Our previous efforts on supporting QDVE in a WebGIS framework mostly focus on
improving spatial indexing and query processing in traditional disk-resident systems
(PostgreSQL in particular) and main-memory systems. In [21], we decompose millions
of polygons from thousands of bird species range maps into linear quadtree nodes and
represent them as strings. Subsequently, we use the LTREE module available in Post-
greSQL1 to index the strings and support window/range queries based on string match-
ing. By using a same quadtree based spatial tessellation for both polygons and query
windows, the technique essentially transforms a spatial query into a string query. While
it does not seem to be elegant from a spatial databases research perspective, experiments
have demonstrated the desired high performance than querying PostgreSQL/PostGIS
directly with 6-9.5X speedups.

To further improve performance, we have developed a memory-resident Multi-
Attributed Quadtree (MAQ-Tree) structure by re-using the linear quadtree nodes de-
rived previously [22]. Basically, individual linear quadtree nodes that represent range
maps of thousands of bird species were spatially aggregated based on binary linear
codes. As such, polygon identifies are now associated with both intermediate and leaf
quadtree nodes. A window/range query can be efficiently processed by traversing the
multi-attributed quadtree while evaluating the query in memory at each quadtree node.
The new technique, which was integrated with a OpenLayers based WebGIS, has re-
duced the end-to-end response time from high tens of seconds to below a second in a
Web environment and is suitable for interactive location/window query processing.

We have also experimented a simple brute-force based technique to support sim-
ple QDVE in a WebGIS environment [15]. By adopting the columnar based design for
point and polygon data discussed previously and utilizing multi-core CPU parallel pro-
cessing power, we have successfully demonstrated that interactively querying hundreds
of millions of taxi trip records that fall within a few Regions of Interests (ROIs) that are
defined by users interactively in a Web environment (using Google Map client APIs)
while achieving sub-second end-to-end performance without sophisticated indexing is
possible. It is conceivable that a WebGIS backend that can leverage both spatial index-
ing and parallel processing is essential to provide desired performance when handling
more complex QDVE tasks on more complex spatial data types such as polygons and
polylines.

Similar to indexing and querying vector data on GPUs, we have also developed
a server side indexing technique called Binned Min-Max Quadtree (BMMQ-Tree) to
support efficient query processing on large-scale raster data [23]. The technique was
integrated with an ArcGIS Server for QDVE on monthly climate data using the 1-
km global WorldClim datasets [24]. The BMMQ-Tree construction algorithm was later
parallelized on GPUs with significant performance improvements [25][26]. We further
have developed a technique that converts query results on a BMMQ-Tree to tiled im-
ages to be overlaid with base map data at the client side for highlighting purposes [27].
As the on-the-fly derived query results are provided as dynamic WMS services, the
technique imposes virtually no data management overhead to the server side (the CPU
overhead of generating binary image tiles along with query processing is negligible)
and is easy to use on client side (by using conventional XYZ tile request).



2.4 Other Related Work

It is beyond the scope of this paper to provide a comprehensive review of large bodies
of related works on spatial databases, parallel processing of geospatial data, WebGIS
and QDVE applications in various application contexts. Besides what have been dis-
cussed in the previous section and subsections, we refer to the SP-GIST project [28] for
developing a general index framework for space partitioning trees and its implemen-
tation in PostgreSQL. Several research groups have developed GPU-based techniques
for large scale geospatial data for different purposes [29][30]. However, to the best of
our knowledge, these techniques have not been applied to Web-GIS environment. There
are several works that integrate high-end computing facilities at supercomputer centers
and visualization software (e.g., ParaView2) to facilitate identifying and understand-
ing patterns from large-scale geospatial data, such as weather and climate data[7]. A
hybrid architecture that integrates the data storage and processing power from remote
Cloud resources (Microsoft Azure in particular) and visual analytics functionality of lo-
cal workstations is demonstrated to be beneficial for visual explorations of large-scale
ocean data[2]. However, these systems are typically developed for domain experts that
have accesses to supercomputer resources and are not available to the general public.
Furthermore, the techniques behind are significantly different from those that Web-GIS
applications are built upon.

3 System Design and Prototyping

The prototype system being presented in this work integrates several techniques we
have developed previously, including spatial indexing and spatial joins on GPUs, dy-
namic tiled map services and client side geometry APIs for query optimization. In this
section, we will first introduce the overall system design and then present details of
the relevant modules. Due to time limit, not all modules discussed have been tested
and they are left for future work. The overall system design follows a typical Web-GIS
framework: a server side backend for data processing, a client side frontend runs in Web
browsers and the backend and the frontend communicate using WMS, WFS and other
relevant Web services. Different from classic WebGIS backends that delegates spatial
query processing to spatial databases, our prototype integrates spatial query processing
with the backend to conveniently exploit parallel processing power on modern hard-
ware. While the frontend can be implemented on top of various Web Map Javascript
libraries, we have chosen Google Map API for popularity, ease-of-use (API) and per-
formance (fast base map loading). The overall system architecture is shown in Fig. 1.

The left side of Fig. 1 illustrates the major modules of the proposed Web-GIS back-
end: data storage, spatial indexing, spatial filtering and spatial refinement. The right
side of the figure also shows the major modules of our WebGIS frontend for QDVE ap-
plications. While the frontend and the backend communicate through convential Web
standards, including WMS, WFS and JSON, both the backend and the frontend are
enhanced with the targeted application: QDVE on large-scale geospatial data. As dis-
cussed previously, the backend is accelerated by GPU hardware which requires a com-
plete new set of techniques for data storage, indexing, filtering and refinement. While
the backend is designed to support major geospatial data types (point, polyline and



polygons) and popular spatial operations (e.g., point-to-polyline distance computation,
point-to-polyline/polygon distance computation, polyline-to-polyline distance compu-
tation and point-in-polygon topological test), we will focus on point-in-polygon test
based spatial operation in this study. The frontend is enhanced with customized Graph-
ics User Interface (GUI) to facilitate realizing typical QDVE schemes (see below for
details) and a simple yet effective Javascript geometry for performance optimization.
We next present more design and implementation details on the relevant modules.

3.1 On-Demand Data Parallel Spatial Joins on GPUs

As discussed in Section 2.2, spatial join processing is indispensable in supporting query-
driven visual explorations on large-scale data. Our previous works have developed data
parallel spatial indexing, filtering and refinement techniques on GPUs, including utiliz-
ing quadtree indexing for point and rasters and grid-file and R-Tree indexing for MBRs
of polylines and polygons, which have demonstrated excellent performance. However,
these techniques were developed for static data and offline processing. In this study, we
adapt these techniques for online interactive QDVE with a set of strategies to effectively
support QDVE for the following considerations.

First, queries in QDVE are typically ad-hoc and it is impractical to pre-build in-
dices for all possible queries for both raw and intermediate data. On the other hand, as
long as the response time is in the order of sub-second to a few seconds, users on QDVE
tasks would hardly perceive major differences. As such, for QDVE tasks, it is possible
to more aggressively exploit the concept of ”disposable indexing” for on-demand spa-
tial joins. The idea is that, instead of loading pre-built index from disks and use it for the
subsequent spatial filtering (as in traditional databases), we build index on the data par-
titions of interests in real time and use it to relate relevant data partitions on both sides
of a spatial join for the final spatial refinement based on the desired spatial operation
(e.g., point-in-polygon test). While the end-to-end runtime of a spatial join significantly
depends on the spatial distributions of the underlying spatial datasets to be joined, the
average performance of each of the three steps in a spatial join (indexing, filtering and
refinement) with respect to the number of data items can be roughly estimated based
on historical experiments. This is because our implementations are based on data paral-
lel designs which mostly involve element-wise operations that include transform (map),
scan, reduce and binary search [37]. Furthermore, the most popular sorting algorithm on
GPUs is radix sort, which also incurs linear complexity[38]. Subsequently, it is possible
to roughly estimate whether disposable indexing is feasible and the level of granularity
of indexing and to decide the tradeoffs between filtering and refinement that are needed
to achieve response time requirement.

Second, the four popular QVDE schemes [35][36] listed in the top-right part of Fig.
1 exhibit certain patterns in processing a QVDE task and mapping them to sequences
of spatial databases operations, including spatial joins, location/window queries and re-
lational queries. For example, Overview typically happens at the beginning of a QVDE
task while Details on Demand happens after the other three types of schemes. Con-
text+Focus, typically works as an intermediate step between Overview and Details on
Demand and mostly involves the neighborhood of the region that a user is currently ex-
ploring. The Filter and Zoom scheme may involve both spatial and non-spatial attributes



Fig. 1. Prototype System Architecture and Modules.



and queries may require two-way correspondence between spatial and non-spatial data.
As such, we can precompute and cache queries related to Overview to reduce startup
delay and improve response time. In a similar way to the tiling mechanism exploited by
WebGIS for simple visualization, we actively buffer query results based on the neigh-
borhood of the current region being explored to serve Context+Focus better. Location-
dependent queries are reevaluated when their results are not in the cache or cannot fully
cover the neighborhood anymore. For filtering based on relational attributes, the results
may potentially cover the whole study area and require highlighting and coloring to
help identify ROIs for further explorations. We reuse the dynamic tiling technique to
generate image tiles that represent the relational filtering results to help users spatially
zooming to multiple ROIs in a convenient manner. Subsequently Context+Focus and
Details on Demand schemes can be applied. We note that Details on Demand typically
incurs very light overhead as retrieving a limited number of records from memory is
generally very fast and the response time is well beyond the sub-second reponse time
requirement, even through it takes extra time to assemble column values from different
arrays to form records (tuples) due to our column-based data layout desgin.

Third, collaborations between CPUs and GPUs are crucial for the end-to-end per-
formance. Despite that GPU memory capacity is increasingly fast (up to 24GB), it is still
10X-50X smaller than CPU memory capacity on a typical machine. The data transfer
speed between CPU memory and GPU memory is limited to PCI-E bandwidth (16/32
GB/s). Fortunately, all our spatial indexing and spatial filtering techniques designed
for GPUs are implemented based on data parallel primitives that are also supported on
multi-core CPUs. Even though our spatial refinement implementations are GPU spe-
cific, we have developed multi-core CPU implementations on top of Intel TBB parallel
library [37] with the same interfaces. As such, it is both desirable and feasible to execute
certain queries on multi-core CPUs to avoid the data transfer overhead between CPUs
and GPUs, which naturally improves the overall performance. The large CPU memory
capacity also makes it suitable to cache GPU results as discussed above.

3.2 WebGIS Frontend Optimized for QDVE

Different from our previous works on Web-GIS applications using OpenLayers [22] and
ESRI ArcGIS API for Flex [23], we have chosen to use Google Map Javascript API for
our WebGIS frontend in this study. Several modules listed in the lower-right part of
Fig. 1 are inherited from our previous work on visual analytics of taxi trip Origin-
Destination (OD) data in a Web environment [15] with enhancements which will be
described shortly.

The GUI module is the interfaces to interact with users which is largely application
specific. Nevertheless, there are several interfaces that are common to many applica-
tions, including selecting dataset(s) to start a QVDE task, choosing/switching base map
layers and turning on/off auxiliary and cosmetic layers, tools to interactively specifying
ROIs and neighborhood, and dynamic interfaces to set both mandatory and optional
parameters for spatial queries during a QVDE task. Those interfaces can be relatively
easily implemented using Javascript and HTML and we skip the details due to space
limit. The network/Web Communication modules listed in the bottom-right part of Fig.
1, while important, are quite standard in implementation and whose details are also



skipped for the same reason. We note that the preference of JSON over GML or KML as
a data format to communicate between the WebGIS backend and the frontend is mostly
due to efficiency concerns, although other data formats including GML and KML can
also be used with an additional conversion step before the parsed data can be used by
Javascript APIs. We next focus on the frontend geometry API module which is unique
to the targeted QDVE applications.

The optional GetFeatureInfo operation defined in the WMS specification allows
to retrieve the underlying data including geometry and attribute values for a pixel lo-
cation on a map. Since the operation can also return unique FeatureID, it is possible
to combine it with the GetFeature operation defined in the WFS specification to re-
trieve specific attribute values to support visualization and information display at the
Web frontend. However, while those techniques work reasonably well for a small num-
ber of features in traditional WebGIS applications, working at the individual feature
level through WMS/WFS is not likely to be efficient for QEDV tasks where a large
number of features can be involved, such as results of queries for Overview, Filter and
Zoom and Context+Focus schemes. While dynamically generating WMS/WFS layers
at the backend side and make them ready to be pulled by the frontend is a practically
useful solution, efficiently filtering features at the frontend (to reduce the backend over-
head of generating and maintaining a large number of dynamic WMS/WFS layers) is
complementarily beneficial. Towards this end, we reuse the MBR intersection test and
point-in-polygon test Javascript code initially implemented in [15] to spatially filter out
FeatureIDs at the Web frontend that cannot be part of queries, such as those involve
ROIs that are interactively drawn by users and those involve neighborhood dynamically
set by users, before the queries are sent for server side processing. We note that the
server side processing of such filtering can be several orders of magnitude faster than
the performance of the Javascript code performance at the frontend. However, the bene-
fit here is mostly on reducing data transmission overhead over the Web and reducing the
associated encoding/decoding overhead, which could be much more costly than spatial
filtering on the frontend using Javascript code.

We are aware of the techniques and applications of integrating Google Map and
Google BigQuery3 APIs to spatially visualize ”small” query results from ”big” rela-
tional tables in Cloud where the number of features (after combining geometry and
relational attribute values) is limited. However, we beleive these techniques are gen-
erally incapable of handling QEDV tasks on large-scale geospatial datasets where the
features can be large in quantity and complex in topology and thus a pure Web frontend
solution is inapplicable. Our strategy is to hybridize the traditional WMS/WFS based
techniques that mostly rely on backend processing and the Google Map/BigQuery based
techniques that mostly rely on frontend processing. The idea is to use the size of the set
of unique FeatureIDs to determine whether a backend or a frontend processing is more
beneficial. When size is large, we generate dynamic WMS/WFS layers so that query
results in different visual representations can be pulled by the frontend. On the other
hand, when the size is small, we choose to request feature data (including both geom-
etry and attribute values) and create cosmetic layer(s). Either the dynamic layers, the
cosmetic layers or their combinations can be composited with existing layers for better
visualization and visual explorations.



4 Application Case, Experiments and Results

Quantifying species-environment relationships, i.e., analyzing how species are distributed
on the Earth has been one of the fundamental questions studied by biogeographers and
ecologists for a long time [33]. Several enabling technologies have made biodiversity
data available at much finer scales in the past decade [32]. The complex relationships
among environmental variables and species distribution patterns make query-driven vi-
sual explorations desirable. The uninterrupted exploration processes are likely to facil-
itate novel scientific discoveries effectively. As discussed in [31][22], the relevant data
for large-scale biodiversity exploration can be categorized into three types: taxonomic
(T), geographical (G) and environmental (E). Taxonomic data are the classifications
of organisms (e.g., Family, Genus and Species) and environmental data are the mea-
surements of environmental variables (e.g., precipitation and temperature) on the Earth.
The geographical data defines the spatial tessellation of how the taxonomic data and
the environmental data are observed/measured, which can be based on either the vec-
tor polygonal or the raster grid tessellation[31]. The potential research in exploring
species distributions and their relationships with the environment is virtually count-
less given the possible combinations of geographic/ecological regions, species groups
and environmental variables [31]. Previously, we have developed a desktop application
called Linked Environment for Exploratory Analysis of Large-Scale Species Distribu-
tion Data (LEEASP, [31]) to visually explore 4000+ birds species range maps in the
West hemisphere and 19 WorldClim environmental variables[24]. The taxonomic hier-
archy is represented as a tree and visualized using Prefuse4 with rich user interaction
functionality. The software has several sophisticated mechanisms to coordinate the mul-
tiple views representing the three types of biodiversity data. A subset of the functionality
of the desktop application has been provided by a WebGIS application supported by a
main-memory database engine using MAQ-Tree data structure to represent rasterized
polygons [22], as discussed in Section 2.2.

In this study, as an application case of the proposed framework and techniques for
QDVE on large-scale geospatial data in a WebGIS environment discussed in the previ-
ous three sections, we use a different set of species distribution data and geographical
data to explore global biodiversity patterns (linking with environmental data will be
added in future work). For the species distribution data, we use the Global Biodiversity
Information Facility (GBIF5) global species occurrence dataset which has 375+ million
species occurrences records (as of 2012). Our preprocessing results have shown that the
dataset contains 1,487,496 species, 168,280 genus, 1,142 families in 262 classes, 109
phyla and 9 kingdoms. Different from LEEASP that uses a raster grid tessellation which
exploits polygon rasterization in a preprocessing step to improve response time during
a QDVE task with reduced accuracy (as limited by raster grid cell size), in this study,
we use vector tessellation to achieve a maximum possible spatial accuracy. Towards
this end, although virtually any global administrative data (e.g., country boundary) or
ecological zone data can be used for tessellation, we have chosen the World Wild Fund
(WWF) ecoregion dataset6 for such a purpose. The WWF ecoregion data has 14,458
polygons, 16,838 rings and 4,028,622 points. Linking the point species distribution
data and the polygonal geographical data largely depends on the functionality and ef-
ficiency of spatial joins based on the point-in-polygon test spatial operation (known as



Zonal Summation). Our previous work on the spatial join using both the full species
occurrence and the WWF ecoregion datasets indicate that it takes less than 100 sec-
onds on a Nvidia Quadro 6000 GPU (released in 2010), which represents a 4-5 orders
of magnitude of higher performance than a standalone program using libspatialindex
7for spatial indexing and GDAL8 for point-in-polygon test on a single CPU core [14].
The offline GPU processing performance also suggests that it may be possible to reduce
the processing time to sub-second level when processing a subset of species distribution
data. This is often the case for the majority of queries in QDVE tasks and the conjecture
largely motivated this work.

Our experiments in this application case has several goals. First, as a WebGIS appli-
cation, to examine that each component is implemented correctly and data flows among
different components as expected. Second, to check that GUI interfaces work properly
and ensure that users are able to use the interfaces to complete their desired QDVE
tasks. Third, to demonstrate the desired efficiency and high performance by using GPU
acceleration. Among the three goals, the first two goals are realized by using traditional
Web techniques, such as Javascript/PHP/Python programming and HTML/XML/JSON
for coding/encoding and we leave their verifications for interactive tests. We next focus
on the experiments for the third goal on real time spatial join performance, which focus
on backend side GPU design and implementations and are unique to this study.

Towards this end, we have randomly picked five groups of species in two selected
categories, although users are allowed to pick up any combinations of species by click-
ing on the taxonomic tree, to evaluate the performance of spatial joins on these five
species groups. The spatial join result, which tells the number of occurrences of the
species in the group in each ecoregion, will be used to generate dynamic image tiles for
the WebGIS frontend, as intrduced in Section 3.2. Conceptually, this is an example of
applying the Filter and Zoom scheme in QDVE where species identifications are used
for filtering the full species occurrence dataset. On the other hand, this example can also
be considered as an application of the Overview scheme to help users understand the
distributions of the species occurrence records of the subset of the species occurrence
dataset with respect to the species in the chosen group.

For notation convenience, the two categories are named as C34, where the number
of occurrence records of a species is between 1000 and 10,000, and C45, where the
number of occurrence records of a species is between 10,000 and 100,000, respectively.
There are 22,421 species in C34 and 3223 in C45, out of the 1,487,496 total species
in the full dataset. Species in the two categories represent the most widely distributed
ones. In our experiments, three groups of species are randomly chosen in C34 with 100,
50 and 20 species, and, two groups of species are randomly chosen in C45 with 25 and
10 species, respectively. We have chosen to use a 8192*8192 grid for grid-file based
spatial indexing which seems to be appropriate. Note that using grid-file for spatial
indexing is different from rasterization as used in our previous works [31][21][22] and
does not sacrifice spatial accuracy. The experiment results of the four groups are shown
in Table 1 using a 2013 Nvidia GTX Titan GPU with 2688 cores and 6GB memory9.
All experiments are repeated several times to ensure that the results are consistent. The
runtimes reported in the table are end-to-end times that include the runtimes of all the
three modules in a spatial join (indexing for both points and polygons, filtering and



refinement) but excluding disk I/O times as we assume all data are memory-resident for
QDVE. Note that the polygon indexing times are the same as the WWF ecoregion data
is used for all the five groups.

Table 1. Runtimes of Experimenting Five Selected Species Groups on GPUs (in milliseconds)

Group 1(C34) 2(C34) 3(C34) 4(C45) 5(C45)

#of species 100 50 20 25 10
# of records 264,917 114,883 58,332 746,302 279,808
Point Indexing Time (ms) 3.0 2.4 2.0 4.5 3.1
Polygon MBR Indexing Time (ms) 29 29 29 29 29
Filtering Time (ms) 595 285 259 759 399
Refinement Time (ms) 785 329 163 860 590
Total Time (ms) 1412 645 453 1653 1021

From Table 1 we can see that there are two groups that have a total runtime sig-
nificantly below one second and there are two groups that have a total runtime around
1.5 seconds. The average of the runtimes is around 1.0 second, which is very close to
the desired sub-second level. Note that the GPU we use in the experiment was released
in 2013. As more powerful GPUs are available in the past three years and the near
future, we expect the average runtime can be further reduced to below 0.5 second on
these GPUs. The results suggest that QDVE on global biodiversity data with support
from a GPU-accelerated WebGIS backend is quite possible on a commodity personal
workstation. While we have not had a chance to compare with the performance of a
conventional spatial database directly for the subsets of the species occurrence data we
have chosen, based on the performance on the full species occurrence dataset [14], we
believe that the performance can be orders of magnitude higher and we leave a full
comparison for future work.

5 Conclusions and Ongoing Work

In this study, motived by the increasingly available parallel hardware and the low per-
formance of the traditional WebGIS software stacks, we have proposed a new WebGIS
framework and the techniques to leverage GPU-accelerated spatial join techniques for
query driven visual explorations on large-scale geospatial data. The design and imple-
mentation considerations are discussed in details and an application case on exploring
global biodiversity data is presented. The experiment results have demonstrated the
feasibility of the proposed framework and the desired high performance on exploring
large-scale geospatial data through extensive queries.

The presented work is preliminary in nature from a system development perspec-
tive. While the major components, including query processing on the backend and
QDVE related GUIs on the frontend have been designed and implemented, our pro-
totype currently is largely geared towards the specific application case. Evolving the
prototype towards a more mature system that can serve as a generic platform to accom-
modate more application cases certainly requires significant amount of efforts in the



future. Furthermore, as CPUs are also getting more powerful with significantly larger
number of cores and memory capacities, integrating both CPUs and GPUs to further en-
hance backend performance is not only interesting but practically useful. Finally, com-
pared with traditional WebGIS applications, QDVE workflows are significantly more
complex and require novel ideas on designing effective GUI interfaces and the direc-
tion is also left for our future work.
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