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ABSTRACT 
Volumes of GPS recorded trajectory data in ubiquitous urban 
sensing applications are increasing fast. Many trajectory queries 
are both I/O and computing intensive. In this study, we propose 
to develop the U2STRA prototype system to efficiently manage 
large-scale GPS trajectory data using General Purpose 
computing on Graphics Processing Units (GPGPU) 
technologies. Towards this end, we have developed a trajectory 
data layout schema using simple in-memory array structures 
which is not only flexible for data accesses but also cache 
friendly. We have further developed an end-to-end trajectory 
similarity query processing technique on GPUs. Our 
experiments on two publically available large trajectory datasets 
(GeoLife and T-Drive) have demonstrated the efficiency of 
massively data parallel GPGPU computing. An impressive 87X 
speedup for spatial aggregations of GPS point locations and 25-
40X speedups for trajectory queries over serial CPU 
implementations have been achieved. The U2STRA system has 
also been integrated with commercial desktop and Web-based 
GIS systems and spatial databases for visual exploration 
purposes.  
Categories and Subject Descriptors 
H.2.8 [Database Management]: Database applications – Data 
mining, Spatial databases and GIS 

General Terms 
Management, Design 

Keywords 
Ubiquitous Sensing, GPS Trajectory, High-Performance, 
GPGPU, Similarity Query, Spatial Aggregation 

1. INTRODUCTION 
Huge amounts of pervasive urban sensing data are 

being captured at ever growing rates due to the increasing 
availability of imaging, locating and other types of sensing 
technologies on portable wireless devices and increasing urban 
activities. In particular, Global Positioning System (GPS) traces 
have been recorded routinely by taxicabs in many big cities over 
the world. For example, The T-Drive sample dataset collected 
by Microsoft Research Asia [1] has 15 million GPS readings 
from 10,357 taxis during a single a week and the dataset 

amounts to 762 MB in text format. The number of GPS point 
locations compiled by OpenStreetMap from GPS traces 
contributed by world-wide volunteers in the first seven and a 
half years has reached 2.77 billion and the data volume is 55 GB 
[2]. Nokia probe vehicles collects more than 11 billion GPS 
readings in major cities over the world to measure and predict 
traffic flows (Personal communication). Yet cell phone call logs 
represent a category of data at an even larger scale [3, 4]. These 
Ubiquitous Urban Sensing (U2S) data, while very useful in 
understanding a variety of aspects of urban dynamics, traffic 
conditions and social interactions, have imposed signficant 
challenges on data management.  

Geographical Information System (GIS) and Spatial 
Databases (SDB) are commonly used techniques in managing 
geo-referenced data. Unfortunately, most of the existing 
commercial and open source GIS and spatial databases are disk-
resident and are designed for managing transactional data. The 
performance is usually rather poor in managing large-scale 
trajectory data. In recent years, quite a few Moving Object 
Databases (MOD) techniques have been developed to index and 
query trajectory data [5, 6, 7, 8, 9]. However, most of them are 
designed based on traditional database architectures, i.e., disk-
resident and serial CPU computing.  

To achieve the desired level of high-performance in 
querying and data mining of large-scale trajectory data, it is 
natural to explore the massively data parallel General Purpose 
computing on Graphics Processing Units (GPGPU) 
technologies. Despite the fact that almost all reasonably current 
desktop and server computers have already been equipped with 
GPU devices that are capable of general computing and there 
have been many successful applications in different domains, 
there is relatively little research on using GPGPU technologies 
for data management. Among the few pioneering works to 
explore the potentials of using GPGPU computing power for 
data management, the majority focuses on indexing and query 
processing on relational data [10, 11]. The work reported in this 
paper is an extension to our previous work on using GPGPU 
technologies for managing U2S Origin-Destination (OD) data 
[12]. Our experiments have demonstrated 3-4 orders speedups 
when joining point locations with urban infrastructure data 
(street networks and different type of zones) based on different 
criteria [13,14, 15]. In this study, we extend our experiences in 
designing and developing the U2SOD-DB system to trajectory 
data in the same context of managing ubiquitous urban sensing 
data (where urban infrastructure plays a key role) and we call 
our prototype system as U2STRA.  

The rest of the paper is arranged as the following. 
Section 2 introduces background and related work. Section 3 
presents the system architecture and discusses some design 
considerations. Section 4 provides the technical details of the 
new implementations of key components. Section 5 provides 
some experiment results. Finally Section 6 is conclusion and 
future work.  
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2. BACKGROUND, MOTIVATIONS AND 
RELATED WORK 

Moving objects and trajectories have attracted 
considerable research interests in the past decade [5, 6, 7, 8]. 
While moving objects are not necessarily constrained by 
infrastructure (such as road networks), trajectories recorded by 
GPS devices, cellular networks or wifi networks, which are 
typical in the context of ubiquitous sensing and computing, are 
strongly connected with urban infrastructure data, including 
street segments, Points of Interests (POIs) and land use types. In 
general, in contrast to other types of trajectories, such as 
hurricane paths and animal movements, U2S trajectories are 
closely related to human activities with specific trip purposes. 
While the rich semantics make U2S trajectory data interesting in 
various applications, significantly more sophisticated data 
management techniques are required to make sense out of the 
huge amount of the data due to the sophistications of human 
activities [16, 17,18].  

Spatial, temporal and spatiotemporal query processing 
is fundamental to trajectory data management and analysis. 
Quite a few indexing techniques have been developed to speed 
up processing the queries over the past few years and we refer to 
[5, 6, 7, 8, 9] for reviews. More specifically, SECONDO is an 
extensible database system that has been extensively used to 
manage moving objects and trajectories [19, 20]. Recently, the 
M-Atlas project has made its system available for download [21] 
which is built on top of the open source PostgreSQL database 
[22] and its PostGIS plugin [23]. These indexing techniques and 
system realizations target at different types of queries. In this 
study, we are particular interested in similarity related trajectory 
queries which have also received extensive attentions [24-27]. 
We currently use Hausdorff distance whose behaviors have been 
discussed in previous studies (e.g. [28]) and we are also actively 
exploring various definitions of trajectory similarities.  

The majority of the existing indexing structures and 
query processing algorithms are designed for serial CPU 
implementations. The designs usually favor using sophisticated 
algorithms in reducing computation overheads and improving 
query response times. This is a natural choice before multi-core 
CPUs and many-core GPUs become the mainstream commodity 
processors. Unfortunately, there are situations that efficient but 
sophisticated data structures and algorithms may perform poorly 
on parallel hardware. Parallelization on such query processing 
algorithms can be very difficult if excessive coordination is 
required to utilize parallel processing units. Furthermore, due to 
the increasing gap between computing and I/Os [29], simple 
data structures such as arrays and linear scanning may 
outperform indexing that require non-sequential data accesses in 
certain cases due to the nature of caching mechanisms on 
modern hardware architectures. Another new technical trend on 
modern hardware is the increasingly availability of large 
memories which makes it possible to quickly stream large 
chunks of data between memory and disks. This may largely 
reduce the need for page-based buffer management in traditional 
disk-resident databases, especially in an Online Analytical 
Processing (OLAP [30]) setting.  

Based on these observations, our goal is to design a 
prototype system that can utilize commodity hardware 
capacities, including parallel computing power and large 
memory capacity, to boost the performance of OLAP type 
queries in a batch mode for U2S trajectory data. Instead of 

limiting to multi-core CPUs, we have chosen to use GPUs as co-
processor for more computationally intensive modules, such as 
distance based joins. We note that a distance computation may 
require significantly fewer clock cycles on GPUs than on CPUs 
due to their special hardware designs. In addition, GPUs usually 
have signficant larger numbers of processing cores than CPUs. 
For example, the Nvidia GeForce GTX 690 GPUs [31] that are 
currently available form the market have 3072 cores. Although 
GPU processors (~ 1 GHZ) are typically weaker than CPU 
processors, thousands of processors together can deliver huge 
amounts of computing power than CPUs and even small cluster 
computers. The combined fast floating point computing power 
and large number of processors make GPUs suitable for 
accelerating trajectory queries that involve large amount of 
distance computation.  

While nearest neighbor searching have been 
extensively used on GPUs for various applications [33-37], it 
seems that there are few previous works on speeding up spatial 
and spatiotemporal queries that require large amounts of 
distance computation on GPUs. The potential of GPU 
accelerations in speeding up queries on trajectory data in a 
database environment (by utilizing indices for filtering) is 
largely unknown. We believe our prototype system can provide 
a concrete case study on this aspect. Our proposed research and 
implementation can be used to evaluate the relative advantages 
and disadvantages of classic efficiency oriented design and the 
new design based on the throughput oriented GPU computing 
paradigm [38] in the context of managing large-scale trajectory 
data.  

3. SYSTEM ARCHITECTURE DESGIN  
In addition to designing an implementable architecture 

to handle unique characteristics of GPS-based trajectory data as 
reported next, we have brought our previous experiences in 
designing the U2SOD-DB for origin-destination data [12] into 
the U2STRA system for trajectory data. These experiences 
include timestamp compression [12, 14], array-based simple in-
memory structures and parallel primitive friendly design for fast 
implementation [13, 15]. We also note that our current design on 
trajectory data is based on our experiences in processing the T-
Drive [1] and the GeoLife (also from Microsoft Research Asia 
[39]) GPS trajectory datasets. We are working on further 
abstracting the design to accommodate for more general cases.  

The overall system design is illustrated in Fig. 1. 
Before we present the design of the key components, we would 
like to introduce the array-based trajectory representation which 
is fundamental to the system design. While a widely accepted 
trajectory representation is still lacking, following the Open 
Geospatial Consortium (OGC) Simple Feature Specification 
(SFS) [40] on polygons, we have defined the following four-
level hierarchy to represent trajectory data, i.e., 
dataset trajectory track point. A trajectory dataset is a 
collection of trajectories and a trajectory is a collection of tracks 
where each track comprises a sequence of points. The criteria on 
the divisions among the first three levels can be flexile which 
largely depend on applications. A point has at least three 
attributes (x,y and t) but allows additional attributes. Similar to 
using simple arrays to represent polygons (whose benefits are 
discussed in [14]), we use the following four arrays to represent 
the four-level hierarchy. First of all, by accessing the Trajectory 
Index (TRI) array, we know the starting and ending positions 
(and hence the number of trajectories) of the ith dataset. For 



example, in Fig. 2, the 12th dataset (base 0) has 10 trajectories 
that begin at the 50th trajectory (inclusive) and ends at the 60th 
trajectory (exclusive). Similarly, the Track Index (TKI) array 
stores the starting positions all trajectories and the Point Index 
(PTI) array stores the starting positions of all tracks. By 
accessing the 50th elements in TKI, we know that the 50th 
trajectory has 27 tracks with a starting position of 73. 
Correspondingly, the 73rd track has 76 points with a starting 
position at 913 in the point array. By accessing the point array, 
we can retrieve the respective values of x/y/t and other 
attributes. We note the point array can be implemented as Array 
of Structures (AoS) or Structure of Arrays (SoA) depending on 
how often the x/y/t components (and other relevant components 
if present) are used together. The design also makes it easy to 
associate additional attributes at the dataset, trajectory and track 
levels by providing additional arrays with each element 
correspond to the indices in the TRI, TKI and PTI, respectively. 
For example, in the Microsoft Research Asia GeoLife dataset 
[38], some trajectories are manually labeled with travel modes 
which are very useful for analysis. These travel mode labels can 
be put into an array that corresponds to the trajectory or track 
index array (TRI and TKI, respectively) so that the travel mode 
of each trajectory/track can be easily retrieved by simply 
accessing the arrays using a position index. We note that since 
we only keep the beginning positions in TRI/TKI/PTI and we 
rely on the next positions to compute the lengths of the 
corresponding datasets (for numbers of trajectories), trajectories 
(for numbers of tracks) and tracks (for numbers of points), they 
need to be put in the respective array in an ordered manner to 
establish the correspondences. On the other hand, if the index 
arrays are extended to include both the starting and the ending 
positions (or lengths), it becomes possible to build subsets of the 
trajectory data by providing multiple sets of TRI/TKI/PTI arrays 
but reusing the point array. This can be convenient and efficient 
in some application scenarios. Of course, it is always possible to 
extract partial of the trajectory data, rebuild the four arrays and 
use them as a completely new trajectory store. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig. 1 Overview of U2STRA System Architecture 
 
After transforming raw data into a structured 

trajectory store, a variety of queries can be performed. In the 
current implementation of U2STRA, we have limited ourselves 
to three types of queries as shown in the middle part of Fig. 1. 
First, some simple yet useful statistics can be derived from the 

trajectory data through spatial queries (e.g. Minimum Bounding 
Boxes or MBRs for tracks/trajectories), temporal queries (e.g., 
durations for tracks/trajectories) or their combinations. 
Furthermore, by treating points on trajectories individually, we 
can aggregate these points spatially using different levels of 
grids in a way similar to using the point locations at the origins 
and destinations of taxi trips in U2SOD-DB [12]. These spatially 
aggregated grids can be filtered by different temporal units to 
generate daily or hourly grids to understand the overall patterns 
of the GPS trajectory data. 

 
 
 
 
 
 
 
 
 

Fig. 2 Array Representation of Trajectory Data 
Second, the trajectories can be joined with urban 

infrastructure data, such as POIs, road networks, administrative 
regions and census blocks based on different spatial and 
spatiotemporal relationships. Depending on applications, there 
can be many join criteria. For example, to count the number of 
trajectories (or tracks) that are completely within a region during 
a certain time period, we would require all the points in the 
trajectory/track to be in the region during the period. This can be 
realized by extending our previous design on point-in-polygon 
test [13] by applying an AND operator over the test results of all 
points on the trajectory/track. We are in the process of 
evaluating the possibilities of implementing more complex 
spatiotemporal queries (e.g., those discussed in [8] in a serial 
CPU computing based database setting) on GPUs based on our 
existing codebase (with necessary extensions) before we decide 
to include them in U2STRA.  

In addition to adapting our GPGPU based spatial join 
to trajectories as we just discussed, our current major design and 
development efforts focus on similarity based trajectory join 
processing. While quite a few approaches to computing the 
similarity between two trajectories (and tracks) been defined, as 
mentioned earlier, we currently use Hausdorff distance which is 
defined as the maximum of minimum distances between two 
point sets as shown in the left part of Fig. 3. Among the 
minimum distances between the four points in T1 to T2, d3 is 
the largest one and will be used as the distance between T1 and 
T2. Following the filtering-refinement schema that has been 
extensively used in spatial databases [40], our idea is to use 
trajectory as the basic units for filtering based on the spatial 
relationships between their Minimum Bounding Boxes (MBRs). 
For two trajectories T1 and T2, as shown in the right part of Fig. 
3, if the expanded MBR of a track (S1i) in T1 (using an 
expansion distance D) and the MBR of a track (S2j) in T2 
overlaps then we further perform pair-wised distance 
computation and find the shortest distance to S2j for all points in 
S1i. Here the shortest distance between a point and a trajectory is 
simply defined as the minimum distance between the point and 
all points in the trajectory. After pair-wise distance computing is 
finished, each of the points in a trajectory (say T1) will have a 
shortest distance to one or more tracks in T2 (i.e., S2j). By 
finding the maximum distance among the computed shortest 
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distances (i.e., maximum of minimum values), the distance 
between the two trajectories can be computed.  

While the details of the implementation will be 
provided in Section 4, we would like to briefly discuss several 
design considerations. First of all, as we plan to implement the 
design on parallel hardware (GPUs to be more specific), the 
proposed design needs to be parallelization friendly. Pair-wise 
distance computation in the refinement phase is embarrassingly 
parallelizable. We also reuse the grid-file based spatial indexing 
for pairing trajectory tracks in the filtering phase by 
transforming a spatial relationship testing (intersecting) problem 
into a set of binary searching problems through equality test that 
is well supported in most parallel hardware including GPUs. 
Second, as can be seen in Fig. 2, the spatial join is performed at 
the track level which is in the middle between the trajectory and 
point levels. The design helps to effectively use the filtering 
power of MBRs.  

Properly controlling the sizes of tracks in the 
preprocessing phase is very important. If the MBRs are too 
large, then the filtering power is limited which will result in 
quadratically growing numbers of pair-wise distance 
computation in the refinement phase. On the other hand, when 
the MBRs are too small, for a large query distance D, the 
expansion ratios will be large and will result in a large number 
of duplicated track pairs which need to be removed before the 
refinement phase. The large number of duplicated track pairs 
can impose signficant memory pressure on GPUs.  

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3 Illustration of Hausdorff Distance Between Two 
Trajectories and Paring Two Trajectory Tracks 
 

4. IMPLMENTAITON DETAILS 
In this section, we will be focusing on the parallel 

implementations of trajectory similarity query on GPGPUs by 
assuming basic knowledge of GPGPU programming. We also 
refer to our related works for the implementation details on 
spatial and temporal aggregations [12, 14] and different types of 
spatial joins between points and urban infrastructure data [13, 
14, 15]. Although the implementation of trajectory similarity 
query still follows the filtering-refinement schema in spatial 
joins [41], there are several unique features. First of all, 
trajectory similarity query involves a new data type (trajectory) 
and joins a trajectory dataset with itself (i.e., self join). Second, 
the similarity (using Hausdorff distance) is defined between two 
sets instead of between two individual objects as we have dealt 
in the previous studies. More importantly, unlike in point 
datasets where the MBRs of the divisions of the dataset do not 
overlap, the MBRs of trajectory tracks can overlap significantly. 
There will be multiple MBRs associated with a grid cell in the 
refinement phase (to be detailed shortly) which makes the 
implementation more complex.  

The implementation of the trajectory similarity query 
begins with rasterizing the MBRs of trajectory tracks to a 
uniform grid. Based on the widths and heights of the MBRs, the 
numbers of rasterized grid cells for the MBRs can be determined 
(which are stored in a vector V1). In our GPU-based 
implementation, we have developed a GPU kernel (program 
block that can be executed in parallel) for this purpose by 
assigning a computing block to process a MBR. After applying 
an exclusive scan on V1, we can obtain the starting positions to 
output the cells of the MBRs (which are stored in V2). Each 
computing block then output the trajectory segment identifiers 
and rasterized cell identifiers based on V2, in parallel, to two 
vectors (VQQ and VQC), respectively.  Please refer to the top-
middle part of Fig. 3 for the illustration of this step. The second 
step is to rasterize the expanded MBRs (with the predefined 
distance D) of the trajectory segments by following the same 
procedure as in Step 1. The results are stored in VPP and VPC 
vectors, respectively, as illustrated in the bottom-middle part of 
Fig. 3. The third step is to pair the segment identifiers in VQQ 
and VPP through equality test on the cell identifiers in VQC and 
VPC. Our implementation is based on the vectroized binary 
search parallel primitive provided by the Thrust library [42] that 
comes with CUDA SDK as detailed below.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4 Illustration of the Four Steps in GPU-based Implementation of the Filtering Phase for Trajectory Similarity Join Query 
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We assume VQQ are sorted based on VQC so that 
trajectory segments identifiers associated with a same cell 
identifier appear consecutively in VQC. A parallel sorting can 
be applied for this purpose. For each of the elements in VPC, in 
parallel, we perform a lower bound and an upper bound binary 
search on VQC. If there is a hit, then we know the starting and 
ending positions of the matched elements in VQQ. Based on 
these positions, the trajectory track identifiers stored in VQQ 
can be retrieved and they are paired with the trajectory track 
identifiers stored in VPP that corresponds to the element in 
VPC. As an example, assuming that we are searching the cell 
with an identifier of 2 in VPC (whose corresponding track 
identifier is 2 in VPP, i.e., P2), the lower bound and the upper 
bound of the binary searches are 1 and 2 respectively. The two 
segment identifiers stored in VQQ at the position range are 1 
and 2 (i.e., Q1 and Q2), respectively. As such, P2 will be paired 
with Q1 and Q2. After knowing the number of matches for all 
elements in VPC, in a way similar to step 1, we can apply an 
exclusive scan to compute the output positions of the matched 
pair in the output vector (say V3) and copy the matched pairs to 
V3. It is conceivable that there will be duplicates in V3 with 
respect to the combinations of the track identifiers in Q and P. 
Since only one copy is needed to represent the matched track 
pair to be used in pair-wise distance computation in the 
refinement phase, in Step 4, we can follow a stand procedure by 
combining a sort and a unique primitive for this purpose.  

After the filtering phase completes, we proceed with 
the refinement phase. We modify the pair-wise distance 
computing kernel we have developed previously [13-15] for this 
purpose. Within a CUDA computing block that handles a (P,Q) 
track pair, same as before, for each of the points in the Q (or P) 
track, we compute the minimum distance between the point and 
all the points in the P (or Q) track  are computed. We assign a 
thread to each point in Q track and let it loop through all the 
point in the P track for this purpose. The maximum distance 
among all the S minimum distances is output where S is the 
number of points in the Q track. Finally, a maximum reduction 
on all the (P,Q) pairs to compute the global maximum distance 
among all the trajectory tracks of T1 and those of T2 if the 
bounding boxes are within the threshold distance D. Note that 
we have only shown two trajectories (P and Q respectively) in 
Fig. 4. In practice, there will be a large number of trajectories 
(and tracks) involved in a trajectory similarity query. This is not 
an issue since the track identifiers are globally unique and the 
parallel primitives do not limit the number of elements in the 
relevant vectors. To handle multiple trajectories, we will need to 
extend the last step slightly by looking up the trajectory 
identifiers based on the track identifiers and use a segmented 
version of the reduce primitive by using the combinations of the 
trajectory identifiers (from P tracks and Q tracks, respectively) 
as the key.    

There are several technical issues need to be further 
discussed to better understand the filtering phase of the 
trajectory similarity join query processing. First of all, although 
we have used Q to represent tracks to be paired and P to 
represent tracks that initiates pairing and we have chosen to 
expand the MBRs of P elements, since this is a self-join and is 
symmetrical, it is possible to do the other way, i.e., expanding 
the MBRs of Q elements. Second, if we decide to expand the 
bounding boxes of P tracks, we note that there is no need to sort 
VPP based on VPC although a VPC element (cell identifier) 
may correspond to multiple track identifier as in the VQQ/VQC 

pairs. The reason is that each element in VPC searches through 
VQC independently (in parallel) and the paired result need to be 
sorted independently in Step 4 of the filtering phase. On the 
other hand, sorting on VQC/VQQ is necessary because the 
requirements of the binary search (including lower bound and 
upper bound search). Finally, we note that while the 
rasterization process and grid-file based filtering phase in the 
trajectory join processing generate duplicated track identifier 
pairs, it eliminates the need of complex spatial indexing which is 
difficult to implement on GPUs in general. However, as 
mentioned at the end of Section 3 and discussed in Section 5.3, 
the duplications do impose some memory pressure on GPUs. 
We are also in the process of exploring multi-level grid-file 
structures to reduce or eliminate the duplications.  

5. EXPERIMENT AND RESULTS  

5.1 Data and Experiment Setup 
To test the feasibility of the system design and the 

performance of the implemented modules, we have used the 
Microsoft Research Asia T-Drive [1] and GeoLife [38] datasets. 
They are provided as two sets of text files with different 
structures. Following the architectural design introduced in 
Section 2, we transform each dataset into four arrays so that they 
can be efficiently streamed among disks, CPU memories and 
GPU memories. We have processed both datasets but will use 
the T-Drive dataset for visual exploration purposes (Section 5.2) 
and use the GeoLife dataset to test the performance of the GPU-
based trajectory similarity query processing (Section 5.3). We 
have discretized the study region, i.e., (116.1000, 39.7000, 
116.7553, 40.35530), into a 65536*65536 grid with a resolution 
of 10-5 degree (the maximum precision provided in the original 
datasets). As such, a grid cell has a spatial extent of 10-5 degree 
by 10-5 degree. The with and height of a grid cell are 
approximately 0.85 meter and 1.11 meter along the longitude 
(X) and latitude (Y) direction, respectively. All GPS point 
locations in the two datasets are aligned to grid cells.  All 
experiments are performed on a Dell Precision T5400 
workstation equipped with dual quadcore CPUs running at 2.26 
GHZ with 16 GB memory, a 500GB hard drive and an Nvidia 
Quadra 6000 GPU device with 448 cores and 6 GB memory. 

The trajectories in the GeoLife dataset are chunked 
based on the annotated travel mode labels that come with the 
dataset. We are particularly interested in the trajectories that are 
labeled as “walk” for trajectory similarity queries from a data 
management perspective as their bounding boxes are relatively 
small and have good filtering power. Two preprocessing steps 
are performed to make the trajectory similarity query feasible 
and interesting from a practical perspective. First, GPS points 
that are outside of the study area are removed. This results in 
1,178,524 points out of the 1,440,823 points that are in the 
trajectories labeled as “walk”. The number of trajectories after 
this step is 3,245. Second, we have removed trajectories whose 
MBR areas are larger than 0.0001 square degrees in the study 
area, in addition to trajectories that have only one point (MBR 
areas are 0). This steps results in 2,341 trajectories. To better 
understand the distributions of the trajectories, we have plotted 
their MBRs in Fig. 5. Clearly, the majority of the selected 
trajectories are located in the Northern part of Beijing, especially 
in the areas that are close to Microsoft Research Asia office. 
These trajectories will be used for trajectory similarity queries 
and the results will be reported in Section 5.3. 



 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 5 MBR Plots of GeoLife Trajectories (left) and Two 

Detailed Views in Different Presentations (Right) 

5.2 Visualization of Raw Trajectories and 
Gridded GPS Points 

U2STRA supports exporting internal representations 
of trajectory data into SQL statements which can be imported in 
the open source PostgreSQL database through the PostGIS 
plugin. Subsequently, these trajectory data can be exported to 
ESRI Shapefile format that is accepted by many GIS software 
(such as ESRI ArcGIS and QGIS) for visualization and visual 
exploration purposes. A snapshot of the T-Drive dataset by 
connecting two neighboring GPS location points as lines is 
shown in the left part of Fig. 5. At the city scale, the directly 
plotted GPS trajectories show the overall network topology of 
Beijing City reasonably well. A major problem of plotting all 
trajectories by linking two consecutive points is that, for 
trajectories with low sampling rates, the connected lines can 
deviate from true travel paths significantly. When plotted 
together, they are likely to clutter the whole display space 
without providing much useful information at finer scales, as 
shown in the right part of Fig. 5.  

 
 
 
 
 
 
 
 
 
 
 
Fig. 6 Visualizing GPS Trajectories in GIS at the City 

Scale (Left) and Block Scale (Right) 
An alternative solution is to plot the GPS points 

separately without connecting them. However, there are two 
major problems for the straightforward approach. First, when the 
numbers of points are large (e.g., millions to billions), drawing 
the points in a GIS environment is extremely slow due to large 
data volumes and graphics rendering overheads. Second, due to 
limited screen resolutions, points that are close to each other 
very often are overshadowed. Both of the problems prevent from 
seeing a clear picture of the structures that can derived from the 
underlying GPS data. As such, we reuse our grid-based spatial 
aggregation module to compute the numbers of GPS points that 
fall within a raster grid and output the aggregated results into an 

image. The result of aggregating 17,762,489 GPS points in the 
T-Drive dataset using an 8192*8192 grid is shown in Fig. 6. 
Compared with Fig. 5, plotting aggregated GPS points seems to 
be a better approach than plotting trajectories directly.  

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7 Visualizing Aggregated GPS Point Locations  
 
Our results show that U2STRA is able to aggregate the 

nearly 18 million points in 47.25 milliseconds while it took 
4,110.27 milliseconds for the same aggregation on a serial CPU 
implementation using STL (Standard Template Library [44]) 
with O2 optimization. Clearly an impressive 87X speedup has 
been achieved. While the performance of the serial CPU 
implementation is acceptable for this relatively small dataset, we 
expect the speedup will be much more desirable for large GPS 
datasets, such as OpenStreetMap Planet GPS point dataset with 
2.77 billion GPS points (we are working on it actively to derive 
world-wide roadmap). Interested readers are further encouraged 
to access the link at [45] to our website to visualize the derived 
road map in a Web-based GIS environment. We have registered 
the aggregated raster with the OpenStreetMap data in the same 
area. An interesting observation is that, the derived road map 
from GPS locations is able to show some new roads that do not 
exist in the OpenStreetMap data yet. The results suggest that 
near real time taxi GPS trajectories can potentially be used to 
update city street maps at a much finer temporal resolution.   

5.3 Results on trajectory similarity queries 
In this set of experiments, we focus on the efficiency 

of the query processing on trajectory similarity join. Before 
discussing the performance, we provide an example from the 
GeoLife dataset in Fig. 8 to help understand the Hausdorff 
distance based similarity measurement better. In Fig. 8, the red 
dashed line is the longest among all the dashed lines which 
represent the shortest distances from all the points in the green 
trajectory to the blue trajectory. We have used this approach to 
verify the correctness of the implementation by looking into 
selected trajectory pairs.  

We use a grid dimension of 8192*8192 for 
rasterization during the filtering phase although other grid 
dimensions are possible. To test the scalability of the GPU 
implementation, we have used different D values and report the 
results in Table. 1. For comparison purposes, we have also 
implemented the refinement phase in the query processing on 
CPUs using a single core (serial implementation). We did not 
implement the filtering phase on CPUs for two reasons. First, we 
are not aware of efficient open source implementations of main-
memory based spatial indexing on CPUs and our GPU 
implementation, while has achieve impressive throughput, may 
not be efficient on CPUs due to the overhead of parallelization 
coordination. It would be inappropriate to simply serialize the 



GPU implementation on CPUs and report its performance. 
Although we could have used external memory spatial indexing 
packages (such as libspatialindex [43]), it would not be fair to 
compare the performance directly as the gap between main-
memory structures and external memory structures are well-
known. Second, perhaps more importantly, the runtimes of the 
filtering phase is dominated by the refinement phase on both 
GPUs and CPUs. The runtimes of the filtering phase on CPUs 
do not affect GPU speedups significantly due to Amdahl's law 
[46]. The runtimes for of the refinement phase of the CPU 
implementation for different D values are also shown at the 
lower part of Table. 1.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8 A Real Example Showing Hausdorff Distance between 
Two trajectories Identified During the Experiments 

 
From Table 1 we can clearly see that our GPU based 

implementation has achieved 35-40X speedup on distance 
computation in the refinement phase. Even the runtimes of the 
filtering phase on CPUs are excluded, the GPU implementation 
still achieves overall 25-35X speedup (last row of Table 1). 
However, the experiments also confirmed the analysis on the 
GPU memory pressure imposed by the simple grid-file based 
filtering framework. We can also see that, as D increases, the 
runtimes of the filtering phase weigh higher which is the 
primary reason that the speedups (SP-RT and SP-Overall) get 
lower. Although our GPU implementation is capable of handling 
up to NCP=257 million paired cell identifiers for D=500*10-5 
degree (as shown in Table 1), it runs out of GPU memory for 
D=750*10-5 degree where NCP=379 million which clearly 
indicates that the GPU implementation is memory bound. From 
Table 1 we can see that both NCE (number of rasterized cells of 
expanded MBRs) and NCP (number of paired cell identifiers) 
grow almost linearly with D but NCE has a higher slope. This 
can be explained by the fact that the majority of trajectories in 
walk mode follow street segments which are either horizontal or 
vertical in most cases in Beijing. As such, the areas of expanded 
MBRs of these trajectories, which are proportional to NCE, 
grow mostly linearly except those with significant portions of 
perpendicular turns (which do happen). The reason that NCP has 
a lower grow slope can potentially be attributed to the fact that 
only the expanded part of MBRs are paired with additional cells 
while the base part does not. In another word, NCP grows with 
Σ(area(Expanded MBRi)-area(MBR)) which is less than 
Σ(area(Expanded MBRi)). 

 
Table 1 Numbers of Rasterized and Paired Cell Identifiers, 

Runtimes and GPU Speedups from the Experiments 

D (*10-5 °)  50 100 200 500 750 
NCO (*106) 2.441 
NCE (*106) 4.324 6.934 14.35 54.16 107 
NCP (*106) 38.34 56.06 100.2 257.6 379 
NUP (*106) 0.095 0.120 0.171 0.318 - 
GPU-FT (ms) 277.8 418.9 779.6 2150 - 
GPU-RT (ms) 2124 2505 3235 5220 - 
GPU-TT (ms) 2402 2924 4015 7370  
CPU-RT (s) 83.50 96.30 120.3 181.9  
SP-RT(X) 39.3 38.4 37.2 34.8  
SP-Overall (X) 34.8 32.9 30.0 24.7  

 
Notes: NCO: # of rasterized cells of original MBRs; NCE: #of rasterized 
cells of expanded MBRs; NCP: # of paired cell ids: NUP: #of unique 
trajectory pairs whose MBRs are within D; GPU-FT: GPU filtering 
time; GPU-RT: GPU refinement time; GPU-TT=GPU-IT + GPU-FT + 
GPU-RT; CPU-RT: CPU refinement time; SP-RT(refinement speedup) 
= CPU-RT*1000/GPU-RT; SP-Overall (Overall Speedup) =CPU-
RT*1000/GPU-TR.  
 

Another observation from Table 1 that is worthy of 
discussion is the ratio between NCP and NUP (number of 
unique  trajectory pairs whose MBRs are within D) is in the 
order of 400 to 800 which grows sub-linearly as D grows. The 
ratio might be too high with respect to efficient filtering. We 
have decided to use a large grid file (8192*8192) for the 
filtering phase which is effective in reducing computing 
Hausdorff distances. The reduction rate can be computed as 
NUP*2/(N*N) where N is the number of trajectory tracks. When 
plug in N=2,341, the reduction rate varies from 3.47% to 11.6%. 
We are considering use smaller grid files to reduce NCP and 
hence memory requirement at the cost of increasing the NUP 
and hence the workload in the refinement phase. It would be 
interesting to derive a quantitative analytical framework to seek 
optimal parameters with respect to the grid file sizes. Another 
possible direction is to use multi-level grid files to reduce NCP 
directly as cells that are matched at the upper levels do not need 
to be matched in the lower levels. This is left for future work.  

6. CONCLUSION AND FUTURE WORK 
 In this study, we have explored the research 

opportunity in using massively data parallel GPGPU 
technologies for trajectory data management which is becoming 
important due to the popularities of GPS and other locating and 
navigation devices. In particular, we have developed the 
U2STRA prototype system to perform parallel aggregations to 
understand the overall patterns of GPS point locations in 
trajectory datasets and process similarity trajectory queries 
based on the Hausdorff distance. We have also developed a 
practical in-memory data layout schema that has low memory 
footprint and is cache friendly, in addition to supporting flexible 
data organization and retrieval. The experiments have shown 
that spatial aggregations of nearly 18 million GPS point 
locations in the T-Drive dataset has achieved 87X speedup 
compared with a serial CPU implementation using STL and 25-
40X speedup on trajectory similarity queries over an optimized 
serial CPU implementation in the refinement phase that requires 
intensive distance computation. The simple grid-file based 
spatial indexing also provides a solid foundation for future 
improvements.  

For future work, first of all, we plan to develop a more 
efficient parallel data structure on GPUs for filtering in 
trajectory query processing by exploring multi-level grid-files 



and other options. Second, we want to investigate the suitability 
of GPGPU computing technologies for trajectory data cleaning 
and segmentation which are usually also computing intensive. 
Third, our U2STRA system currently only supports Hausdorff 
distance based similarity query and we plan to investigate on 
more measurements of similarity and support different types of 
trajectory queries. Finally, we plan to test the system on larger 
dataset (such as OpenStreetMap Planet GPS point dataset) and 
develop techniques to reduce GPU memory capacity bottleneck.  
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