
Regularizing Irregularity: Bitmap-based and Portable Sparse

Matrix Multiplication for Graph Data on GPUs

Jianting Zhang
Dept. of Computer Science
City College of New York
New York City, NY, 10031

jzhang@cs.ccny.cuny.edu

Le Gruenwald
School of Computer Science

University of Oklahoma
Norman, OK 73071

ggruenwald@ou.edu

ABSTRACT
Graphs can be naturally represented as sparse matrices. The

relationship between graph algorithms and linear algebra

algorithms is well understood and many graph problems can be

abstracted as Sparse General Matrix-Matrix Multiplication

(SpGEMM) operations. While quite some matrix storage formats,

including bitmap-based ones, have been proposed for sparse

matrices, they are mostly evaluated on the simpler Sparse Matrix-

Vector Multiplication (SpMV) problems. In this study, we have

developed data parallel algorithms to pair up bitmap-indexed

sparse matrix blocks for SpGEMM using data parallel primitives

for portability. Experiments on the WebBase-1M dataset with

more than one million rows and columns and three million non-

zero values have shown that our technique on squaring the large-

scale sparse matrix using a 2013 GTX Titan GPU can complete

in about 300 milliseconds. The runtime is 2.4X faster than CUSP

and 3.5X faster than bhSPARSE, the two leading open source

SpGEMM packages. Furthermore, our bitmap-indexed sparse

matrix blocks can be efficiently converted to regular small dense

matrices and subsequently utilize new hardware accelerations,

such as tensor cores inside Nvidia Volta GPUs and Google Tensor

Processing Units (TPUs), for more efficient implementations.

Categories and Subject Descriptors

Keywords

bitmap-indexing, Sparse Matrix Multiplication, graph operations,

data parallel design, GPU

1. INTRODUCTION
Graph data are becoming increasingly important in real world

applications, ranging from social networks to physics-based

numeric simulations. Graphs can be naturally represented as

sparse matrices and the relationship between graph algorithms

and linear algebra algorithms is well understood [1] [2] [3].

Graph libraries targeting at new hardware (GPU in particular),

such as nvGraph [4] from Nvidia and BelRed [5] from AMD,

provide APIs for sparse matrix operations. There are increasing

interests in utilizing sparse matrix operations for graph

applications [6] [7] [8] [9].

Dozens of sparse matrix storage formats have been

proposed for sparse matrices [10]. Previous studies have shown

that storage formats have a significant impact on the performance

of sparse matrix operations, including Sparse Matrix-Vector

Multiplication (SpMV) and Sparse General Matrix-Matrix

Multiplication (SpGEMM) on both multi-core CPUs and GPUs.

While those storage formats are applicable to both SpMV and

SpGEMM in principle, they are mostly tested for SpMV and very

few have been tested for SpGEMM, especially on new hardware.

To our knowledge, commercial and open SpGEMM libraries

mostly support traditional storage formats, such as Coordinate list

(COO) and Compressed Sparse Row (CSR). An interesting

question to ask is: are there alternative sparse matrix formats that

can be used to efficiently support SpGEMM for graph data?

Bitmap indexing, as a classic data structure, has been

used extensively for various applications on different hardware

architectures. Bitmap-based sparse matrix storage format has

been proposed for SpMV on CPUs [11]. Different from CSR that

stores row numbers and COO that stores both row numbers and

column numbers explicitly, each bit in a bitmap is used to indicate

the existence or absence of a non-zero value in the corresponding

location, which can potentially save memory footprint

significantly. Bitmap has also been used as an auxiliary data

structure in some sophisticated spare matrix formats, such as

CSR5 [12] and LSRB-CSR [13]. However, they have been only

tested for SpMV on CPUs [11] and GPUs [12] [13] and their

performance for SpGEMM is largely unknown.

Compared with operations on dense matrices, including

Matrix-Vector Multiplication (MV) and Matrix-Matrix

Multiplication (MM), their sparse counterparts (SpMV and

SpGEMM, respectively) have much more irregularities on data

accesses due to sparsity and hence are more technically

challenging to achieve high efficiency. Compared with SpMV

where the sparsity is on the matrix side whereas the vector side is

still dense, SpGEMM involves two input matrices and needs to

handle sparsity on both sides, in addition to the obvious fact that

a large two-dimensional matrix is more complex than a vector (or

multiple vectors). From a database perspective, SpGEMM can be

considered as a special join, namely Dot-Product Join [14], where

each pair may involve O(n) data elements and O(n) operations

which are much more complex than relational joins, where only

O(1) elements and O(1) operations are required for a pair.

The hardware landscape has been under rapid changes

in the past few years, including multi-core CPUs, many-core

GPUs and Intel Many Integrated Core accelerators (MICs) [15].

While the achievable floating point computing power has been

increasing significantly for dense matrix operations (MV and

MM) due to their inherent parallelisms that match with Single

Instruction Multiple Data (SIMD) computing power well, it is

much harder to utilize SIMD for sparse matrix operations (SpMV

and SpGEMM) due to irregular data accesses. With the ever-

increasing computing power demands from the deep learning

community, more specialized hardware for matrix

multiplications, such as ASIC-based Tensor Processing Units

(TPU), start to become available inside Nvidia Volta-based GPUs

[16] and Google Clouds [17]. However, these hardware

accelerators, while extremely fast and powerful, are designed to

support small blocked dense matrix only (e.g., 16*16), which

.

renders most of the current sparse matrix storage formats,

including blocked/segmented ones (on a single row or multiple

rows) inappropriate for such hardware accelerators.

In this study, we aim at examining the suitability of

bitmap indexing for SpGEMM in the context of graph data

applications on GPUs and present our bmSPARSE technique as

both a sparse matrix format and a SpGEMM algorithm. Different

from previous studies that focus on either supporting SpMV only

or exploiting sophisticated optimizations to push the performance

limit of SpGEMM on new hardware, we aim at re-targeting the

classic bitmap-indexing technique in relational data management

for spare matrix/graph data and develop data parallel algorithms

for SpGEMM to support graph applications. Our technique

decomposes a large-scale sparse matrix into regularly shaped 2D

blocks (8*8 sub-matrices in particular). Non-empty blocks are

then indexed by their block identifiers (ids) for binary-search

based paring in the task list generation stage in SpGEMM. Within

a non-empty block, the bitmap of non-zero values is represented

as a uint64_t value. By utilizing population counting intrinsic

functions that are available on modern hardware (such as __popc

and __popcll on Nvidia GPUs and __builtin_popcount

and__builtin_popcountll on modern CPUs supporting GCC), it is

efficient to compute the number of non-zero elements in a block

and compute the positions of non-zero elements within and across

blocks for easy data accesses. The tradeoff between real-time

computation and storage overheads (explicitly storing

row/column information) is well justified on modern hardware.

Blocks in our technique play a bridging role in regularizing

irregularity in SpGEMM: (1) The distributions of blocks are

considered sparse and they are used as the basic units for indexing

and pairing for task list generation to determine the structures of

output matrices; (2) Non-zero values within a block are indexed

with bitmaps which can be used to transform the non-zero values

between sparse format and dense format in real time in both

directions efficiently on fast shared memory or caches to compute

the output matrices in the bitmap format.

We demonstrate that our bmSPARSE technique is

effective not only in reducing the memory footprint of large-scale

sparse matrices but also in supporting high-performance

SpGEMM which has numerous graph applications. Applying to

the public WebBase-1M dataset [18] with more than one million

rows and columns (graph nodes) and three million non-zero

values (graph edges), squaring the matrix takes approximately

300 milliseconds on a 2013 Nvidia GTX GPU, which is 2.4X

times faster than CUSP [19] and 3.5X faster than bhSPARSE

[20], the two leading open source SpGEMM packages, on the

same GPU device. Perhaps more importantly, our work has

shown that, bitmap, as both a sparse matrix storage format and an

indexing technique, and together with data parallel designs, can

effectively regularize the significant irregular data accesses on

massively data parallel hardware with much less technical

complexity. The resulting semi-regular data access and blocked

sub-matrix computation patterns is also friendly to future

hardware accelerations such as TPUs, and thus our technique is

likely to benefit from such hardware accelerations.

The rest of the paper is arranged as follows. Section 2

introduces the background and discusses the related work.

Section 3 presents our bitmap-based storage format and the

bmSPARSE technique for SpGEMM. Section 4 is the

experiments using the WebBase dataset. Finally, Section 5 is the

conclusion and future work.

2. BACKGROUND AND RELATED

WORK
Graph and Sparse Matrix are strongly related, not only very often

they share the same storage format (e.g., COO and CSR) [4] [5],

but also many graph algorithms can be expressed as linear algebra

operations [1] [2] [3] which could be easier to understand at a high

level, especially for those having a numeric computing

background. Practically, it has been shown that, Breadth-First-

Search (BFS) based on SpMV has achieved better performance

on Intel Xeon CPUs and Intel Xeon Phi MICs than native

implementations [3]. Park et al. implemented the popular

PageRank algorithm using SpMV formulation on both Hadoop

and Spark platforms and achieved better performance and/or

scalability when compared with native leading graph libraries,

including PEGASUS, GraphLab, GraphX and Giraph [21]. In a

sense, research on sparse matrix operations can be an interesting

bridge between the discrete and the numeric computing

communities and synergize advantages of both sides for large-

scale problems (e.g. GraphBLAS initiative [22] and ExaGraph

project [23]). The bridging role is becoming increasingly

important given that deep learning algorithms and systems are

now ubiquitous and sparsity in deep learning algorithms are being

actively explored and exploited for faster and more efficient

training and inferencing [24].

To address sparsity in matrices, dozens of sparse matrix

formats have been developed and we refer to [10] for systematic

studies of design considerations and metrics on performance.

While memory footprint alone is an important factor for storage

format, performance measurements with respect to runtimes on

various sparse matrix operations are also important in many

applications. Unfortunately, most of existing performance studies

on different storage formats are based on SpMV alone (see [25]

for a review), which leaves their performance on SpGEMM

largely unclear. Due to the complexity of SpGEMM, existing

SpGEMM implementations are mostly based on popular storage

formats (CSR in particular) and few efforts have been given to

alternative storage formats for SpGEMM. Nevertheless, several

storage formats originally developed for SpMV share certain

similarities with our bmSPARSE technique and we will provide

a brief review next before discussing the state-of-the-art works on

SpGEMM. We note that, those techniques originally developed

for SpMV could be extended to support SpGEMM and some of

them can be incorporated into our bmSPARSE technique for

further performance improvements. We leave the integration and

comparison for our future work.

Mapped Blocked Row (MBR) [11] uses bitmaps to

index non-zero values in blocks whose sizes can vary. In addition

to b_bmp array for bitmaps blocks, it also has row_start and

col_idx arrays to keep row and column information for blocks.

The format is very similar to our bmSPARSE technique, except

that we use row and column numbers directly at block level and

combine them into a single long integer variable (e.g. uint64_t) as

block identifier. We do not use position information (row_start)

as they can be efficiently computed from the number of 1s in

bitmaps on the fly. We also need block identifies to match blocks

in the two input sparse matrices in SpGEMM, which is not

required in SpMV.

Derived from CSR, in Compressed Multi-Row Storage

(CMRS) [26], rows are divided into strips. A StripPtr array is

used to point to the beginning positions of non-zero values in

strips that have multiple rows. The RowInStrip array records the

row numbers within strips, which can be calculated as the

remainders of row numbers divided by the numbers of rows in the

strips. This format, compared with the classic CSR format that

has only one level of granularity on rows, has two level of

granularities on rows instead. CMRS is somewhat similar to delta

encoding and can potentially has a lower memory footprint than

CSR, in addition to be more GPU friendly in exploring fine-

granular parallelisms.

The Local Segmented Reduction based CSR (LSRB-

CSR) [13], in a way similar to its predecessor CSR5 [12],

partitions non-zero values into blocks with each block having

approximately the same number of non-zero values. Both CSR5

and LSRB-CSR use a bitmap to indicate whether a matrix element

is the first element in a row, which is different from the bitmap in

[11] and our technique. Compared with CSR5, LSRB-CSR is

simpler, more memory efficient and performs better for SpMV

according to [13]. LSRB-CSR is similar to our technique in the

sense that certain position information is computed from the

bitmap structure (which also contributes to its memory

efficiency). However, LSRB-CSR divides row-major ordered

none-zero values sequentially and the resulting blocks are

essentially irregularly shaped chunks of rows. It can be seen that,

CMRS, CSR5 and LSRB are designed to adopt a 1D (along rows)

blocking strategy and to exploit fine-grained parallelisms on

GPUs. While the strategy may be suitable for SpMV, it is unclear

how to adapt them for SpGEMM, where 2D blocking (along both

rows and columns) seems to be more suitable.

Among the SpMV techniques that adopt 2D blocking

(but do not necessarily involve bitmap), Blocked CSR (BCSR)

[27] might be the earliest proposal that divides a large sparse

matrix into 2D blocks and then applies CSR for each block. The

work has motived several efforts to develop efficient SpMV

techniques on both CPUs and GPUs. The Cache-Oblivious

Extension Quadtree (COEQT) technique proposed in [28] divides

a sparse matrix into four quadrants recursively until the blocks

corresponding to leaf nodes can fit into cache, which can be

considered as a special 2D-blocking strategy. While the idea is

interesting in the sense that derived quadrants are equivalent to

blocks and bitmaps can be used to index non-zero values inside

blocks, it seems that the technique primarily adopts COO format

and the only difference is re-ordering non-zero values according

a DFS traversal order of the resulting quadtree.

The Blocked Row-Column (BRC) [29] format

partitions both rows and columns where the block size is

parameterized by a predefined number of non-zero values in a

block, instead of a sub-matrix space size. It can be seen that equal

partition based on sub-matrix space size (e.g., BCSR and

COEQT) may result in variable numbers of non-zero values

among blocks while equal partition-based on non-zero values

(e.g., BRC) may result in irregularly shaped blocks. To the best

of our knowledge, there have been no efforts to adapt those 2D

blocking formats to SpGEMM. Our bmSPARSE technique

chooses equal partition based on sub-matrix space size as it is

easier to pair equal and regularly shaped blocks in SpGEMM.

Most of the recent works on SpGEMM adopt CSR or

COO formats and many of them are targeting at GPUs. The

Expansion, Sorting, and Contraction (ESC) algorithm [30]

generates T(i,j,k) pairs by matching column j in Aij with row j in

Bjk (based on Ci,k=sum(Aij*Bjk)) and then performs reduction

using (i, k) as key to aggregate the intermediate values in T(i,j,k)

to Cik. While operations required by ESC has high parallelisms on

GPUs, its performance is hurt by generating large volumes of

intermediate data and several optimization efforts have been

developed as documented in the CUSP open source library [19].

The bhSPARSE framework [20] adopts a four-stage

strategy. The first stage estimates the number of non-zero

elements in each row of the output matrix and the second stage

puts the rows into different bins for load balancing purpose.

Subsequently, the third stage computes the resulting matrix,

generates non-zero values and outputs them to a temporal matrix.

Finally, the last stage compacts the temporal matrix and generates

the final output matrix. Similar to CUSP, the source code of

bhSPARSE has been released [31]. Independent studies [32] [33]

have confirmed that bhSPARSE is generally more efficient than

CUSP, which can be partially contributed to the binning strategy

and better load balancing.

The BalancedHash technique [32] also estimates non-

zero values in the output matrix first, but it partitions non-zero

values (instead of rows as in bhSPARSE) for load balancing.

With additional optimizations including efficient hashing on GPU

shared memory to aggregate intermediate results and atomic

operations to fully utilize more recent GPU hardware support, it

is reported that BalancedHash can achieve impressive speedups

over bhSPARSE. The HybridSparse technique [33] combines the

classic ESC technique [30] with a GPU-based Scatter-Vector

approach that was originally developed for CPUs [34] and has

demonstrated higher performance than both bhSPARSE and

BalancedHash. Unfortunately, the source code of BalancedHash

and HybridSparse is not available and direct comparisons are not

possible.

Extensive optimizations to maximize the utilizations of

GPU hardware are applied in CUSP, bhSPARSE, BalancedHash

and HybridSparse. While the performance is significantly

boosted, sophisticated algorithmic designs make their codebases

difficult to understand, maintain and improve. An interesting

work in [35] focuses on both performance and portability in

SpGEMM as the work targets at heterogeneous platforms,

including multicore CPUs, GPUs, Intel MICs and clusters, where

the Kokkos framework [36] is used for portability. While

currently we target at GPUs only, we would like to keep

portability in mind from the very beginning. Our idea is to utilize

parallel primitives [37] [38] as much as possible and only resort

to custom GPU kernels when necessary. We argue that the

behavior of parallel primitives, such as sort, scan, reduction,

expand and compact, are well understood and well supported on

multiple platforms with high portability. As detailed in Section 3,

our technique utilizes the Thrust library [39] (which comes with

CUDA SDK) to generate task lists and to compact intermediate

outputs, which are portable among multiple hardware platforms.

The kernels to estimate the output sizes (i.e., memory counting)

and to perform the actual sub-matrix computation are very simple.

In addition to using OpenCL for portability (similar to

bhSPARSE), the implementations can be easily ported to other

platforms using their native programming languages for higher

efficiency. While portability and efficiency may conflict with

each other, in Section 4, we show that our technique is able to

outperform both CUSP and bhSPARSE significantly for the

public WebBase dataset [18], which might indicate that our

proposed technique is effective for graph data.

There are several aspects of sparse matrix operations

that are relevant to our work. For efficient implementations of

SpGEMM on GPUs, similar to the long-lasting debate between

hashing and merging for relational joins, there are also works that

adopt merging strategies on GPUs [40] [41]. Architecture-

specific optimization techniques for SpGEMM (e.g., [42]), while

may not necessarily be portable, can be used as a performance

benchmark. Techniques developed for optimizing SpGEMM on

multi-core CPUs [43] and traditional clusters [44] are valuable for

developing portable SpGEMM techniques. The idea of designing

a unified sparse matrix format [45] or automatically choosing the

best sparse matrix format [46], and dynamic allocation and task

scheduling for SpMV [47] [48] [49] seems to be applicable to

SpGEMM as well, which is left for our future work.

3. THE PROPOSED BMSPARSE

TECHNIQUE
For notation convenience, we term our technique as bmSPARSE

where bm stands for bitmap. We first present our bitmap-based

sparse matrix storage format and then we will introduce our

SpGEMM algorithm based on the format, which includes three

stages: the symbolic computing stage to generate a task list to

associate the blocks of the two input matrices and the output

matrix, the block multiplication stage to multiply input blocks and

assemble the resulting output blocks, and the compaction stage to

remove zero values in the resulting output matrix. The block

multiplication stage follows a two-phase procedure with the first

phase to determine the upper bounds of non-zero values in the

output blocks for efficient memory allocation purpose and the

second phase to actually write out block multiplication results.

3.1 bmSPARSE format for Sparse Matrix

As shown in Fig. 1, bmSPARSE partitions a sparse matrix into

8*8 blocks and each block is represented as a (key, bmp) pair. Key

can be either a 32-bit integer for small (# of row/col less than

65536) and 64-bit integer for large sparse matrices. We use 64-

bit key for generalizability, although there are possibilities for

compression and memory saving. For bmp, naturally an 8*8

bitmap requires a 64-bit integer. Given that a (row, column) pair

is represented as a 64-bit integer, it can be seen that, as long as

there are more than one non-zero element in a block, the bitmap

representation is memory-efficient and can be up to 32 times more

efficient than using the classic COO format. This is because when

a block is fully dense, COO requires 64*2 32-bit integers while

bmSPARSE requires only two 64-bit integers. The non-zero

values in a block are then re-ordered based on their row and

column numbers within the block to make the one-to-one

mapping between a 1-bit and a non-zero element.

Clearly, the number of non-zero elements in a block can

be efficiently computed using hardware intrinsic functions on

both CPUs and GPUs, which typically takes only one or a small

number of machine cycles and is much more efficient than naïve

counting using a loop. An exclusive scan (prefix-sum) [37] can

be performed on the derived numbers of non-zero elements in all

blocks to compute the starting positions of non-zero elements in

the blocks in parallel for both computation and data accesses.

Compared with the CSR and COO formats that use two arrays for

row and column numbers for non-zero elements, our technique

uses only a single array for blocks and is much more memory

efficient. While a more comprehensive analysis comparing with

CSR and COO is left for future work, as discussed above, the

memory efficiency can be significantly higher than COO. We

will empirically compare memory footprints of COO, CSR and

our bmSPARSE for the WebBase dataset in Section 4.

Fig. 1 Illustration of bmSPARSE Format

3.2 Generating Task List in SpGEMM
The purpose of generating the task list is to pair up blocks in the

two input matrices, i.e., A and B, respectively, to determine the

corresponding blocks in the output matrix, i.e., C, according to

the general rule in SpGEMM, i.e., Cik=sum(Aij*Bjk). The stage

(Fig. 2) is essential in regularizing irregularity in SpGEMM as a

block in C can involve variable pairs of blocks in A and B, which

reflects the irregular non-zero element distributions in the two

input matrices. Once the task list in the form of vector of (i,j,k)

triplets is generated, multiplying and adding 8*8 blocks according

to the list is highly parallelizable and the irregular distributions of

non-zero elements in the blocks are bounded.

Assuming the two input matrices, A and B, are given as

a list of (key, bmp) pairs of blocks, the stage to generate the task

list involves key only, which is a concatenation of (row, column)

numbers. We use A’ and B’ to denote boolean matrices indicating

the non-empty blocks of A and B, respectively. The first step in

the task list generation stage is to count the number of non-empty

blocks in each row of B’, which can be easily implemented as a

reduce_by_key parallel primitive by using the row numbers of B’

as key. The second step is to match each column of the non-empty

blocks in A’ with the rows in B’. Clearly, an A’ column may be

matched with multiple B’ rows whose numbers can be retrieved

from the resulting vector in step 1 by using a Gather parallel

primitive in Thrust, as shown in the middle-top part of Fig. 2.

The third step in the stage is to expand A’ blocks,

identified as (i, j) pairs, by the numbers of matched pairs to

generate (i, j, idx) triples where idx belongs to 0..nj-1 and nj is the

number of columns in the jth row of B’. Note that idx is NOT

column number of non-empty blocks in B’ and thus k in (i, j, k)

triple needs to be computed from idx. By using an auxiliary array

keeping the starting positions of non-empty blocks in the rows of

B’ (vector pos), which can be computed in parallel using an

exclusive scan parallel primitive as shown in the middle of Fig. 2

(labelled as “#3 Exclusive Scan”), the columns of B’ blocks

matching with A’ blocks, i.e., k, can be retrieved by accessing the

key vector of B. In our implementation, the (i, j, k) triple vector is

computed by taking the matrix A key vector and the idx vector

after expansion (the procedure labelled as “#3 Expand” in the

middle of Fig. 2, see the next paragraph for details) as the inputs

and apply a user-defined functor in a transform parallel primitive.

Given a (Akey, Bidx) pair, i and j are the first and last 32 bits of

Akey and k can be calculated as the last 32 bits of wjk, which is

calculated as B.key[pos[j]+idx].

Fig. 2 Task List Generation Using Data Parallel Primitives

While the behavior of the expand parallel primitive, i.e.,

expanding a vector (E) by making the numbers of copies of its

elements specified in the second vector (N), is well-known [37],

it is not directly supported in Thrust. Fortunately, it can be

implemented by chaining four parallel primitives in Thrust (not

shown in Fig. 2): exclusive_scan on N to compute the positions

of the first copies of the elements to be expanded, gather to put E

elements at these positions as the first copies and maximum-

inclusive scan to create the desired number of copies of E

elements, and finally exclusive_scan_by_key to generate the idx

vector by using E elements as the keys on a sequence of 1s.

The fourth step in the task list generation stage is to

generate keys for output blocks, i.e., Cik. After the vector of (i, j,

k) triples are generated, it is sorted based on (i, k) so that input

block pairs, i.e., (i, j) and (j, k), that contribute to the same output

block (i, k) are neighboring to each other and can be processed by

a same thread block in the next stage (block multiplication,

Section 3.3). By performing a reduce_by_key parallel primitive

on (i, k), the number of non-empty blocks of the output matrix is

computed, the key vector of output matrix C (by concatenating i

and k) can be derived and the approximate layout of C is thus

determined. To facilitate accessing blocks in A and B, this stage

also searches block keys of (i, j) and (j, k) in the block key vectors

of A and B, respectively, so that the bitmaps and the starting

positions of non-zero values can be directly accessed using the

positions.

3.3 Block Multiplication

In the block multiplication stage, a GPU thread block is assigned

to compute a block of C based on Ci,k=sum(Aij*Bjk). As a Cik block

may need to accumulate multiple intermediate blocks of Aij*Bjk, a

loop is applied. For an 8*8 block, 64 threads are assigned to a

thread block and each thread is responsible for computing an

element in the output Cik block, i.e., thread idx is responsible for

block element (idx/8, idx%8) in block Cik. Although the floating

point computation is simple, the more complex work for each

thread is to retrieve non-zero elements from Aij and Bjk blocks

based on their bitmaps, and to generate the bitmap and its

corresponding non-zero values for block Cik in output matrix C.

As illustrated in Fig. 1, an 8*8 bitmap is represented as

a 64-bit integer and its 1-bits are used to index non-zero values.

To efficiently retrieve non-zero values from Aij and Bjk for

subsequent block multiplication, the positions of the non-zero

values, i.e., non-zero value array offsets, need to be computed in

parallel by all threads. While each thread can retrieve its bit from

a bitmap and then perform a thread block level scan (prefix-sum),

we found that it is more efficient to use population count intrinsic

function that are available on modern GPUs. Since we use 64-bit

integer for bitmap, __popcll is suitable. The offset can be simply

computed as L-__popcll(w>>(threadIdx.x)) in CUDA where w is

the bitmap of a block; and L=__popcll(w), which can be set as a

shared variable and computed by a single thread. Assuming that

the non-zero values of Aij and Bjk blocks are loaded into the 8*8

double array dij and djk, respectively, the output can be computed

in parallel as following, where t is a looping variable 0..7:

out[threadIdx.x]+=dij[(threadIdx.x/8)*8+t]*djk[t*8+(threadIdx.x%8)]

The remaining task is to compact the 8*8 out array and

generate the bitmap and non-zero values for the output block.

Here we use another intrinsic function __ballot to ask all threads

in a thread warp to test whether out[threadIdx.x] is zero. Since a

thread warp has 32 threads, the bitmap values can be set up by

combining the voting results using __ballot in the two warps in a

thread block (64 threads in total). To write non-zero values in the

out array in accordance with the resulting bitmap, the offsets of

the non-zero values are determined in the same way as computing

the offsets for retrieving elements of the input blocks.

In our design, the dij, djk and out arrays have a size of

8*8 and are shared among the 64 threads in a thread block. As

such, each thread block only needs 3*64*sizeof(double) bytes

shared memory. Adding several other scalar shared variables at

block level, the total required shared memory is less than two

kilobytes. As such, different from many other GPU kernels for

linear algebra applications, shared memory is not a limiting factor

for performance in our design. However, using only 64 threads

per block seems to make occupancy relatively low (50%). This is

because occupancy is now limited by the maximum number of

thread block per multi-processor on CUDA-enabled GPUs (16 for

GTX Titan supporting Compute Capacity 3.5). Despite using

shared memory to lower the overall data access overhead has been

actively exploited, the kernel requires quite significant data

accesses to GPU global memory which have long delays. As such,

it is desirable to improve occupancy by using a larger number of

threads per block so that more warps can be scheduled to amortize

memory I/O overhead to achieve higher throughput. One idea is

to use a larger thread block to process multiple Cik blocks in

parallel and we leave this for future work.

Another important issue to discuss is how to allocate

memory for non-zero values in output matrix C. One solution is

to utilize the fact that a block can have at most 64 non-zero values

and pre-allocate a value array with a size of 64*num_block and

then compact unused memory space in the last stage (to be

discussed next, Section 4.4). One of the disadvantages of the

solution is large-memory footprint when the output matrix is

sparse and the number of non-zero values is far less than 64.

Another solution is to follow a classic two-phase approach, i.e.,

execute part of the kernel in the first phase to count the number

of non-zero values and then perform a prefix sum to calculate the

starting positions of non-zero values of the blocks before actual

computation is done in the second phase. The second solution

essentially trades off space with time by spending more time on

computation in order to save unnecessary memory allocation.

The tradeoff can be well justified in many cases,

including when output matrices are sparse. We have implemented

both solutions and decided to adopt the two-phase approach. We

note that the first solution does work for the WebBase dataset [18]

on the GTX Titan GPU with 6GB memory and actually runs

faster than the second solution as measured by end-to-end

runtime. However, for the first solution, in addition to large

memory footprint, we found that compacting a large array with

large portions of unwanted data items (Section 3.4) is also

expensive, which largely offsets the advantage of not requiring

the memory counting stage for the first solution. To enable our

implementation to handle larger graph datasets without running

into the out-of-memory problem, we believe the second solution

is more desirable. That being said, as reported in Section 4, the

first phase takes about 1/3 of the runtime of block multiplication

stage and is only slightly less expensive than the runtime for the

task generation phase. As such, memory counting overhead

cannot be neglected. We are working on optimizing the

performance of the memory counting kernel to further improve

the overall performance.

3.4 Compaction
Compaction is needed to remove zero values in the output after

block multiplication. When each block is allocated 64 doubles to

hold the maximum possible number of non-zero values (solution

1 above), there is a significant portion of zero values that need to

be compacted. Even for the second phase solution 2, since the

counting stage does not involve actual floating point computation

on blocks, it is possible that multiplying and adding non-zero

values result in zero values, which is not uncommon in matrix

multiplication and they need to be compacted. Compaction is

actually highly parallelizable and the copy_if parallel primitive in

Thrust is designed for the right purpose. Compaction works better

when there are few elements that need to be compacted as the cost

for data movement is small in this case. As reported in Section 4,

by adopting solution 2 in the block multiplication stage, the

compaction stage incurs the least overhead during the end-to-end

process.

4 EXPERIMENTS AND RESULTS

4.1 Data and Setup
We use the WebBase-1M dataset (denoted as WebBase) from

University of Florida Sparse Matrix Collection [18] for

experiments. The dataset has 1,000,005 rows (n_row) and

1,000,005 columns (n_col) and 3,105,536 non-zero values (nnz).

It was first used by Samuel Williams et al [50] as a dataset

representing web connectivity matrix for experiments on SpMV

and later was used by several studies for SpGEMM, including

CUSP, bhSPARSE, BalancedHash and HybridSparse on GPUs.

As the source code of BalancedHash and HybridSparse is not

available, we will compare our technique with CUSP and

bhSPARSE only. In previous studies, bhSPARSE performs

generally better than CUSP on many datasets, but performs worse

than CUSP on the WebBase dataset. This makes it interesting to

examine the suitability of alternative storage formats and

techniques for SpGEMM on the web graph dataset.

Our experiments are performed on a 2013 Nvidia GTX

Titan (Kepler) GPU with 2,688 CUDA cores and 6 GB GDDR5

memory. CUDA 8.0 and the Thrust library that comes with the

SDK are used for GPU implementation. All programs are

compiled with –O3 optimization flag. We have also implemented

a CPU version using C++ Standard Template Library (STL) for

verification and comparison purposes. The machine is a dual 8-

core Ubuntu box with Intel E5-2650 processors running at 2.6

GHZ and 16 GB DDR3 memory but only a single core is used in

the experiments for the CPU implementation.

4.2 Results
We next report the memory footprint and runtime of the proposed

bmSPARSE technique, in comparison with CUSP and

bhSPARSE. We assume the row numbers and column numbers

are stored as 32-bit integers (4 bytes) and the non-zero values are

stored as doubles (8 bytes). While CUSP supports multiple

formats, COO, which is the original format of the WebBase

dataset, is used for CUSP in the experiments. The memory

footprint of COO can be calculated as

(2*sizeof(int32)+sizeof(double))*nnz, again nnz is the number of

non-zero values of the input. Given that nnz=3,105,536 for the

WebBase dataset, the memory footprint of CUSP is thus ~47.39

MB. The benchmark code of bhSPARSE uses the CSR format

and the memory footprint can be computed as

n_row*sizeof(int32)+nnz*sizoef(int32)+nnz*sizeof(double) and

thus the memory footprint is ~39.35MB. Since both the key and

bmp of our bmSPARSE technique are represented as int64

datatype (8 bytes), the memory footprint can be calculated as

n_block*sizeof(int64)+n_block*sizeof(int64)+nnz*siozeof(doub

le). As n_block is 550761for the dataset, the memory footprint is

thus ~32.10 MB. Clearly, bmSparse has the smallest memory

footprint among the three. When non-zero values are excluded

and only indexing overhead is considered, as shown in Table 1,

the overhead for bmSPARSE is only about 1/2 of CSR and 1/3 of

COO.

Table 1 Overall Result Comparisons

 Memory (MB) Runtime

(ms)

Runtime-

Speedup All Index

CUSP (COO) 47.39 23.69 760.495 2.4X

bhSPARSE

(CSR)

39.35 15.66 1104.74 3.5X

bmSPARSE 32.10 8.40 306.302 1X

To better understand the performance of bmSPARSE

on the WebBase dataset, Table 2 lists the runtimes of different

modules in bmSPARSE. Transferring the input matrix in the

COO format from CPU to GPU takes about 15ms and the

conversion from COO to bitmap format takes about 78ms. While

significant, they do not dominant the overall runtime. Note that

these two parts are not included in the total runtime when

comparing with CUSP and bhSPARSE, for consistency and

fairness reasons.

Table 2 Runtime Breakdown

CPU to GPU Data Transfer Time (ms) 14.963

COO2BMP Time (ms) 78.108

1:Task Generation Time (ms) 67.517

2:Memory Counting Kernel Time (ms) 64.514

3:Block Multiplication Kernel Time (ms) 172.126

4: Compaction Time (ms) 12.982

Total GPU runtime (1+2+3+4) (ms) 317.139

Total CPU time (single core) (ms) 8290.960

 Among the four runtimes that are included in the total

runtime for comparison, it is clear that block multiplication kernel

takes more than half of the total runtime time and is the bottleneck

of the overall process. As such, our bmSPARSE technique is

likely to benefit from future hardware (e.g. TPUs) acceleration.
The memory counting kernel is about 1/3 of the block

multiplication kernel time (2+3). A closer look reveals that the

memory counting kernel likely suffers from load unbalancing

among threads. As our implementation assigns a thread to count

the required memory for nonzero-values in a Cik output block, a

thread is required looking into a variable number of (Aij,Bjk) pairs

and the number may vary significantly among threads in a warp

and hence hardware could be underutilization. A possible

improvement would be to sort the blocks of the output matrix

based on the numbers of (Aij,Bjk) pairs that they associate for load

balancing, which is left for our future work.

From Table 2 it can be seen that the GPU

implementation is about 26.1X time faster than the serial CPU

implementation, despite that the CPU implementation largely

follows the data parallel design for GPUs. It seems that the

container classes in C++ STL, including vector and map, while

convenient to use, are less performant. We are in the process of

porting kernels to Intel Thread Building Block (TBB) [37] based

implementations on multi-core CPUs so that they can be

integrated with existing parallel primitive based implementations

that can be re-targeted for multi-core CPUs. The performance

comparisons on multi-core CPUs are also left for future work.

While the performance is encouraging on the WebBase

dataset that we currently target at, preliminary experiments on

additional sparse matrix datasets from the University of Florida

Sparse Matrix Collection have shown that our bmSPARSE

technique does not always perform better than CUSP or

bHSPARSE. This may indicate that our technique, as a very

different alternative technique to existing ones, may be suitable

to one or more specific categories of sparse matrices. The

performance on the WebBase dataset suggests that graph data

could be of these categories although further investigations are

needed.

5. CONCLUSION AND FUTURE WORK
In this study, we have introduced our preliminary design and

implementation of a bitmap-based SpGEMM technique namely

bmSPARSE. Experiments on the WebBase-1M dataset with more

than one million rows and columns and three million non-zero

values have shown that SpGEMM on squaring the large-scale

sparse using a 2013 GTX Titan GPU can complete in about 300

milliseconds. The runtime is 2.4X faster than CUSP and 3.5X

faster than bhSPARSE, the two leading open source SpGEMM

packages. The memory footprint is considerably lower than the

popular COO and CSR formats as well.

For future work, in addition to the optimization plans

discussed inline, we would like to perform more experiments on

additional graph datasets and compare the performance of

different components in both our bmSPARSE technique and

others, including CUSP and bhSPARSE, to better understand the

strengths and weaknesses of the techniques. We hope to identify

deeper and more meaningful patterns in SpGEMM for different

types of sparse matrices to intelligently choose different

techniques for different types of datasets to improve the overall

performance. Our decisions to embrace data parallel designs and

use parallel primitives are largely driven by portability among

existing and new hardware with the understanding of efficiency-

portability tradeoffs. In addition to looking into the opportunity

for TPU hardware accelerations, we also plan to port existing

design and implementation to multi-core CPUs with Vector

Processing Units (VPUs) to explore SIMD computing power on

CPUs for graph operations.

ACKNOWLEDGEMENT

This work is supported through NSF Grants IIS-1302423 and IIS-

1302439 and PSC-CUNY 60777-00 48.

REFERENCES
1. J. Kepner and J. Gilbert, Graph Algorithms in the Language of

Linear Algebra, SIAM, 2011, 348 pages.

2. S. Che, B. M. Beckmann and S. K. Reinhardt, "Programming

GPGPU Graph Applications with Linear Algebra Building

Blocks," International Journal of Parallel Programming, vol. 45,

no. 3, pp. 657-679, 2017.

3. M. Besta, F. Marending, E. Solomonik and T. Hoefler,

"SlimSell: A Vectorizable Graph Representation for Breadth-

First Search," in Proc. IEEE IPDPS'17, 2017.

4. Nvidia, "NVGRAPH Library User’s Guide," Online, 2017.

5. S. Che, B. M. Beckmann and S. K. Reinhardt, "BelRed:

Constructing GPGPU graph applications with software building

blocks," in Proc. IEEE HPEC'14, 2014.

6. A. Ashari, N. Sedaghati, J. Eisenlohr, S. Parthasarath and P.

Sadayappan, "Fast Sparse Matrix-Vector Multiplication on

GPUs for Graph Applications," in Proc. SC’14, 2014.

7. X. Yang, S. Parthasarathy and P. Sadayappan, "Fast Sparse

Matrix-vector Multiplication on GPUs: Implications for Graph

Mining," Proc. VLDB Endow., vol. 4, no. 4, pp. 231--242, 2011.

8. R. Zayer, M. Steinberger and H.-P. Seidel, "A GPU-Adapted

Structure for Unstructured Grids," Computer Graphics Forum,

vol. 36, no. 2, pp. 1467-8659, 2017.

9. Y.-Y. Jo, S.-W. Kim and D.-H. Bae, "Efficient Sparse Matrix

Multiplication on GPU for Large Social Network Analysis," in

Proc. ACM CIKM'15, 2015.

10. D. Langr and P. Tvrdík, "Evaluation Criteria for Sparse Matrix

Storage Formats," IEEE Transactions on Parallel and

Distributed Systems, vol. 27, no. 2, pp. 428-440, 2016.

11. R. Kannan, "Efficient sparse matrix multiple-vector

multiplication using a bitmapped format," in Proc. IEEE HiPC,

2013.

12. W. Liu and B. Vinter, "CSR5: An Efficient Storage Format for

Cross-Platform Sparse Matrix-Vector Multiplication," in Proc.

SC'15, 2015.

13. L. Liu, M. Liu, C. Wang and J. Wang, "LSRB-CSR: A Low

Overhead Storage Format for SpMV on the GPU Systems," in

Proc. IEEE ICPADS'15, 2015.

14. B. Qin and F. Rusu, "Dot-Product Join: An Array-Relation Join

Operator for Big Model Analytics," arXiv:1602.08845, 2017

15. J. L. Hennessy and D. A. Patterson, Computer Architecture: A

Quantitative Approach (5th Ed.), Morgan Kaufmann, 2011.

16. Nvidia, "Inside Volta: The World’s Most Advanced Data Center

GPU," 2017.

17. N. P. Jouppi, C. Young, N. Patil and D. Patterson, "In-

Datacenter Performance Analysis of a Tensor Processing Unit,"

in Proc. ISCA'17, 2017.

18. University of Florida, "Sparse Matrix Collection," [Online].

https://www.cise.ufl.edu/research/sparse/matrices/Williams/we

bbase-1M.html.

19. S. Dalton, N. Bell, L. Olson and M. Garland. [Online].

Available: http://cusplibrary.github.io/.

20. W. Liu and B. Vinter, "A Framework for General Sparse

Matrix-matrix Multiplication on GPUs and Heterogeneous

Processors," J. Parallel Distrib. Comput., pp. 47--61, 2015.

21. B. Park, H.-M. Park, M. Yoon and U. Kang, "PMV: Pre-

partitioned Generalized Matrix-Vector Multiplication,"

arXiv:1709.09099v1, 2017.

22. GraphBLAS. [Online]. Available: http://graphblas.org/.

23. ExaGraph. [Online]. Available:

http://www.pnnl.gov/science/highlights/highlight.asp?id=4558.

24. H. Mao, S. Han, J. Pool, W. Li, X. Liu, Y. Wang and W. J. Dally,

"Exploring the Granularity of Sparsity in Convolutional Neural

Networks," in IEEE CVPRW'17, 2017.

25. S. Filippone, V. Cardellini, D. Barbieri and A. Fanfarillo,

"Sparse Matrix-Vector Multiplication on GPGPUs," ACM

Trans. Math. Softw., vol. 43, no. 4, pp. 30:1--30:49, 2017.

26. Z. Koza, M. Matyka, S. Szkoda and Ł. Mirosław, "Compressed

Multirow Storage Format for Sparse Matrices on Graphics

Processing Units," SIAM J. Sci. Comput., vol. 36, no. 2, pp.

219-239.

27. E.-J. Im, K. Yelick and R. Vuduc, "Sparsity: Optimization

Framework for Sparse Matrix Kernels," Int. J. High Perform.

Comput. Appl., vol. 18, no. 1, pp. 135--158, 2014.

28. J. Zhang, J. Wan, F. Li, J. Mao, L. Zhuang, J. Yuan, E. Liu and

Z. Yu, "Efficient sparse matrix–vector multiplication using

cache oblivious extension quadtree storage format," Future

Generation Computer Systems, vol. 54, pp. 490-500, 206.

29. A. Ashari, N. Sedaghati, J. Eisenlohr and P. Sadayappan, "An

Efficient Two-dimensional Blocking Strategy for Sparse

Matrix-vector Multiplication on GPUs," in Proc. ACM ICS'14,

2014.

30. S. Dalton, L. Olson and N. Bell, "Optimizing Sparse Matrix-

Matrix Multiplication for the GPU," ACM Trans. Math. Softw.,

vol. 41, no. 4, pp. 25:1--25:20, 2015.

31. W. Liu and B. Vinte, "bhSPARSE," [Online]. Available:

https://github.com/bhSPARSE/bhSPARSE.

32. P. N. Q. Anh, R. Fan and Y. Wen, "Balanced Hashing and

Efficient GPU Sparse General Matrix-Matrix Multiplication," in

Proc. ACM ICS'16, 2016.

33. R. Kunchum, A. Chaudhry, A. Sukumaran-Rajam, Q. Niu, I.

Nisa and P. Sadayappan, "On Improving Performance of Sparse

Matrix-matrix Multiplication on GPUs," in Proc. ICS'17, 2017.

34. F. G. Gustavson, "Two Fast Algorithms for Sparse Matrices:

Multiplication and Permuted Transposition," ACM Trans.

Math. Softw., vol. 4, pp. 250-269, 1978.

35. M. Deveci, C. Trott and S. Rajamanickam, "Performance-

portable sparse matrix-matrix multiplication for many-core

architectures," in 2017 Proc. IEEE IPDPSW, 2017.

36. H. Edwards, C. R.Trott and D. Sunderland, "Kokkos: Enabling

manycore performance portability through polymorphic

memory access patterns," Journal of Parallel and Distributed

Computing, vol. 74, no. 12, pp. 3202-3216, 2014.

37. M. McCool, A. Robison and J. Reinders, Structured Parallel

Programming: Patterns for Efficient Computation, Morgan

Kaufmann, 2012.

38. D. B. Kirk and W.-m. W. Hwu, Programming Massively

Parallel Processors: A Hands-on Approach, 2nd ed., Morgan

Kaufmann, 2012.

39. Nvidia, "Thrust parallel algorithms library," [Online].

Available: https://thrust.github.io/.

40. S. Dalton, S. Baxter, D. Merrill, L. Olson and M. Garland,

"Optimizing Sparse Matrix Operations on GPUs Using Merge

Path," in Proc. IEEE IPDPS'15, 2015.

41. F. Gremse, A. Höfter, L. O. Schwen, F. Kiessling and U.

Naumann, "GPU-Accelerated Sparse Matrix-Matrix

Multiplication by Iterative Row Merging," SIAM Journal on

Scientific Computing, vol. 37, no. 1, pp. 54-71, 2015.

42. Y. Nagasaka, A. Nukada and S. Matsuoka, "High-Performance

and Memory-Saving Sparse General Matrix-Matrix

Multiplication for NVIDIA Pascal GPU," in Proc. ICPP’17,

2017.

43. M. M. A. Patwary, N. R. Satish, N. Sundaram, J. Park, M. J.

Anderson, S. G. Vadlamudi, D. Das, S. G. P. O. Pirogov and P.

Dubey, "Parallel Efficient Sparse Matrix-Matrix Multiplication

on Multicore Platforms," in Proc. SC’15, 2015.

44. A. Buluç and J. R. Gilbert, "Parallel Sparse Matrix-Matrix

Multiplication and Indexing: Implementation and

Experiments," SIAM J. Sci. Comput., vol. 34, no. 4, pp. 170-

191, 2012.

45. M. Kreutzer, G. Hager, G. Wellein, H. Fehske and A. R. Bishop,

"A Unified Sparse Matrix Data Format for Efficient General

Sparse Matrix-Vector Multiplication on Modern Processors

with Wide SIMD Units," SIAM J. Sci. Comput., vol. 36, no. 5,

pp. 401-423, 2014.

46. N. Sedaghati, T. Mu, L.-N. Pouchet, S. Parthasarathy and P.

Sadayappan, "Automatic Selection of Sparse Matrix

Representation on GPUs," in Proc. ICS'15, 2015.

47. A. Derler, R. Zayer, H.-P. Seidel and M. Steinberger, "Dynamic

Scheduling for Efficient Hierarchical Sparse Matrix Operations

on the GPU," in Proc. ACM ICS'17, 2017.

48. J. King, T. Gilray, R. M. Kirby and M. Might, "Dynamic sparse-

matrix allocation on GPUs," in Proc. ACM ICS'16, 2016.

49. M. Steinberger, R. Zayer and H.-P. Seidel, "Globally

Homogeneous, Locally Adaptive Sparse Matrix-vector

Multiplication on the GPU," in Proc. ACM ICS '17, 2017.

50. S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick and J.

Demmel, "Optimization of Sparse Matrix-vector Multiplication

on Emerging Multicore Platforms," in Proc. SC'07, 2007

