
Regularizing Irregularity: Bitmap-based and Portable Sparse 

Matrix Multiplication for Graph Data on GPUs 
 

Jianting Zhang 
Dept. of Computer Science 
City College of New York 
New York City, NY, 10031 

jzhang@cs.ccny.cuny.edu  

Le Gruenwald 
School of Computer Science 

University of Oklahoma 
Norman, OK 73071 

ggruenwald@ou.edu 

ABSTRACT 
Graphs can be naturally represented as sparse matrices. The 

relationship between graph algorithms and linear algebra 

algorithms is well understood and many graph problems can be 

abstracted as Sparse General Matrix-Matrix Multiplication 

(SpGEMM) operations. While quite some matrix storage formats, 

including bitmap-based ones, have been proposed for sparse 

matrices, they are mostly evaluated on the simpler Sparse Matrix-

Vector Multiplication (SpMV) problems. In this study, we have 

developed data parallel algorithms to pair up bitmap-indexed 

sparse matrix blocks for SpGEMM using data parallel primitives 

for portability. Experiments on the WebBase-1M dataset with 

more than one million rows and columns and three million non-

zero values have shown that our technique on squaring the large-

scale sparse matrix using a 2013 GTX Titan GPU can complete 

in about 300 milliseconds. The runtime is 2.4X faster than CUSP 

and 3.5X faster than bhSPARSE, the two leading open source 

SpGEMM packages. Furthermore, our bitmap-indexed sparse 

matrix blocks can be efficiently converted to regular small dense 

matrices and subsequently utilize new hardware accelerations, 

such as tensor cores inside Nvidia Volta GPUs and Google Tensor 

Processing Units (TPUs), for more efficient implementations.  
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1. INTRODUCTION 
Graph data are becoming increasingly important in real world 

applications, ranging from social networks to physics-based 

numeric simulations. Graphs can be naturally represented as 

sparse matrices and the relationship between graph algorithms 

and linear algebra algorithms is well understood [1] [2] [3].  

Graph libraries targeting at new hardware (GPU in particular), 

such as nvGraph [4] from Nvidia and BelRed [5] from AMD, 

provide APIs for sparse matrix operations. There are increasing 

interests in utilizing  sparse matrix operations for graph 

applications [6] [7] [8] [9]. 

Dozens of sparse matrix storage formats have been 

proposed for sparse matrices [10]. Previous studies have shown 

that storage formats have a significant impact on the performance 

of sparse matrix operations, including Sparse Matrix-Vector 

Multiplication (SpMV) and Sparse General Matrix-Matrix 

Multiplication (SpGEMM) on both multi-core CPUs and GPUs. 

While those storage formats are applicable to both SpMV and 

SpGEMM in principle, they are mostly tested for SpMV and very 

few have been tested for SpGEMM, especially on new hardware. 

To our knowledge, commercial and open SpGEMM libraries 

mostly support traditional storage formats, such as Coordinate list 

(COO) and Compressed Sparse Row (CSR). An interesting 

question to ask is: are there alternative sparse matrix formats that 

can be used to efficiently support SpGEMM for graph data?  

Bitmap indexing, as a classic data structure, has been 

used extensively for various applications on different hardware 

architectures. Bitmap-based sparse matrix storage format has 

been proposed for SpMV on CPUs [11].  Different from CSR that 

stores row numbers and COO that stores both row numbers and 

column numbers explicitly, each bit in a bitmap is used to indicate 

the existence or absence of a non-zero value in the corresponding 

location, which can potentially save memory footprint 

significantly. Bitmap has also been used as an auxiliary data 

structure in some sophisticated spare matrix formats, such as 

CSR5 [12] and LSRB-CSR [13]. However, they have been only 

tested for SpMV on CPUs [11] and GPUs [12] [13] and their 

performance for SpGEMM is largely unknown.  

Compared with operations on dense matrices, including 

Matrix-Vector Multiplication (MV) and Matrix-Matrix 

Multiplication (MM), their sparse counterparts (SpMV and 

SpGEMM, respectively) have much more irregularities on data 

accesses due to sparsity and hence are more technically 

challenging to achieve high efficiency. Compared with SpMV 

where the sparsity is on the matrix side whereas the vector side is 

still dense, SpGEMM involves two input matrices and needs to 

handle sparsity on both sides, in addition to the obvious fact that 

a large two-dimensional matrix is more complex than a vector (or 

multiple vectors). From a database perspective, SpGEMM can be 

considered as a special join, namely Dot-Product Join  [14], where 

each pair may involve O(n) data elements and O(n) operations 

which are much more complex than relational joins, where only 

O(1) elements and O(1) operations are required for a pair.      

The hardware landscape has been under rapid changes 

in the past few years, including multi-core CPUs, many-core 

GPUs and Intel Many Integrated Core accelerators (MICs) [15]. 

While the achievable floating point computing power has been 

increasing significantly for dense matrix operations (MV and 

MM) due to their inherent parallelisms that match with Single 

Instruction Multiple Data (SIMD) computing power well, it is 

much harder to utilize SIMD for sparse matrix operations (SpMV 

and SpGEMM) due to irregular data accesses. With the ever-

increasing computing power demands from the deep learning 

community, more specialized hardware for matrix 

multiplications, such as ASIC-based Tensor Processing Units 

(TPU), start to become available inside Nvidia Volta-based GPUs 

[16] and Google Clouds [17]. However, these hardware 

accelerators, while extremely fast and powerful, are designed to 

support small blocked dense matrix only (e.g., 16*16), which 
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renders most of the current sparse matrix storage formats, 

including blocked/segmented ones (on a single row or multiple 

rows) inappropriate for such hardware accelerators.  

In this study, we aim at examining the suitability of 

bitmap indexing for SpGEMM in the context of graph data 

applications on GPUs and present our bmSPARSE technique as 

both a sparse matrix format and a SpGEMM algorithm. Different 

from previous studies that focus on either supporting SpMV only 

or exploiting sophisticated optimizations to push the performance 

limit of SpGEMM on new hardware, we aim at re-targeting the 

classic bitmap-indexing technique in relational data management 

for spare matrix/graph data and develop data parallel algorithms 

for SpGEMM to support graph applications. Our technique 

decomposes a large-scale sparse matrix into regularly shaped 2D 

blocks (8*8 sub-matrices in particular). Non-empty blocks are 

then indexed by their block identifiers (ids) for binary-search 

based paring in the task list generation stage in SpGEMM. Within 

a non-empty block, the bitmap of non-zero values is represented 

as a uint64_t value. By utilizing population counting intrinsic 

functions that are available on modern hardware (such as __popc 

and __popcll on Nvidia GPUs and __builtin_popcount 

and__builtin_popcountll on modern CPUs supporting GCC), it is 

efficient to compute the number of non-zero elements in a block 

and compute the positions of non-zero elements within and across 

blocks for easy data accesses. The tradeoff between real-time 

computation and storage overheads (explicitly storing 

row/column information) is well justified on modern hardware. 

Blocks in our technique play a bridging role in regularizing 

irregularity in SpGEMM: (1) The distributions of blocks are 

considered sparse and they are used as the basic units for indexing 

and pairing for task list generation to determine the structures of 

output matrices; (2) Non-zero values within a block are indexed 

with bitmaps which can be used to transform the non-zero values 

between sparse format and dense format in real time in both 

directions efficiently on fast shared memory or caches to compute 

the output matrices in the bitmap format.  

We demonstrate that our bmSPARSE technique is 

effective not only in reducing the memory footprint of large-scale 

sparse matrices but also in supporting high-performance 

SpGEMM which has numerous graph applications. Applying to 

the public WebBase-1M dataset [18] with more than one million 

rows and columns (graph nodes) and three million non-zero 

values (graph edges), squaring the matrix takes approximately 

300 milliseconds on a 2013 Nvidia GTX GPU, which is 2.4X 

times faster than CUSP [19] and 3.5X faster than bhSPARSE 

[20], the two leading open source SpGEMM packages, on the 

same GPU device. Perhaps more importantly, our work has 

shown that, bitmap, as both a sparse matrix storage format and an 

indexing technique, and together with data parallel designs, can 

effectively regularize the significant irregular data accesses on 

massively data parallel hardware with much less technical 

complexity. The resulting semi-regular data access and blocked 

sub-matrix computation patterns is also friendly to future 

hardware accelerations such as TPUs, and thus our technique is 

likely to benefit from such hardware accelerations. 

The rest of the paper is arranged as follows. Section 2 

introduces the background and discusses the related work. 

Section 3 presents our bitmap-based storage format and the 

bmSPARSE technique for SpGEMM. Section 4 is the 

experiments using the WebBase dataset. Finally, Section 5 is the 

conclusion and future work.  

2. BACKGROUND AND RELATED 

WORK 
Graph and Sparse Matrix are strongly related, not only very often 

they share the same storage format (e.g., COO and CSR) [4] [5], 

but also many graph algorithms can be expressed as linear algebra 

operations [1] [2] [3] which could be easier to understand at a high 

level, especially for those having a numeric computing 

background. Practically, it has been shown that, Breadth-First-

Search (BFS) based on SpMV has achieved better performance 

on Intel Xeon CPUs and Intel Xeon Phi MICs than native 

implementations [3]. Park et al. implemented the popular 

PageRank algorithm using SpMV formulation on both Hadoop 

and Spark platforms and achieved better performance and/or 

scalability when compared with native leading graph libraries, 

including PEGASUS, GraphLab, GraphX and Giraph [21]. In a 

sense, research on sparse matrix operations can be an interesting 

bridge between the discrete and the numeric computing 

communities and synergize advantages of both sides for large-

scale problems (e.g. GraphBLAS initiative [22] and ExaGraph 

project [23]). The bridging role is becoming increasingly 

important given that deep learning algorithms and systems are 

now ubiquitous and sparsity in deep learning algorithms are being 

actively explored and exploited for faster and more efficient 

training and inferencing [24]. 

To address sparsity in matrices, dozens of sparse matrix 

formats have been developed and we refer to [10] for systematic 

studies of design considerations and metrics on performance. 

While memory footprint alone is an important factor for storage 

format, performance measurements with respect to runtimes on 

various sparse matrix operations are also important in many 

applications. Unfortunately, most of existing performance studies 

on different storage formats are based on SpMV alone (see [25] 

for a review), which leaves their performance on SpGEMM 

largely unclear. Due to the complexity of SpGEMM, existing 

SpGEMM implementations are mostly based on popular storage 

formats (CSR in particular) and few efforts have been given to 

alternative storage formats for SpGEMM. Nevertheless, several 

storage formats originally developed for SpMV share certain 

similarities with our bmSPARSE technique and we will provide 

a brief review next before discussing the state-of-the-art works on 

SpGEMM. We note that, those techniques originally developed 

for SpMV could be extended to support SpGEMM and some of 

them can be incorporated into our bmSPARSE technique for 

further performance improvements. We leave the integration and 

comparison for our future work. 

Mapped Blocked Row (MBR) [11] uses bitmaps to 

index non-zero values in blocks whose sizes can vary. In addition 

to b_bmp array for bitmaps blocks, it also has row_start and 

col_idx arrays to keep row and column information for blocks. 

The format is very similar to our bmSPARSE technique, except 

that we use row and column numbers directly at block level and 

combine them into a single long integer variable (e.g. uint64_t) as 

block identifier. We do not use position information (row_start) 

as they can be efficiently computed from the number of 1s in 

bitmaps on the fly. We also need block identifies to match blocks 

in the two input sparse matrices in SpGEMM, which is not 

required in SpMV.  

Derived from CSR, in Compressed Multi-Row Storage 

(CMRS) [26], rows are divided into strips. A StripPtr array is 

used to point to the beginning positions of non-zero values in 

strips that have multiple rows. The RowInStrip array records the 



row numbers within strips, which can be calculated as the 

remainders of row numbers divided by the numbers of rows in the 

strips. This format, compared with the classic CSR format that 

has only one level of granularity on rows, has two level of 

granularities on rows instead. CMRS is somewhat similar to delta 

encoding and can potentially has a lower memory footprint than 

CSR, in addition to be more GPU friendly in exploring fine-

granular parallelisms.  

The Local Segmented Reduction based CSR (LSRB-

CSR) [13], in a way similar to its predecessor CSR5 [12], 

partitions non-zero values into blocks with each block having 

approximately the same number of non-zero values. Both CSR5 

and LSRB-CSR use a bitmap to indicate whether a matrix element 

is the first element in a row, which is different from the bitmap in 

[11] and our technique.  Compared with CSR5, LSRB-CSR is 

simpler, more memory efficient and performs better for SpMV 

according to [13]. LSRB-CSR is similar to our technique in the 

sense that certain position information is computed from the 

bitmap structure (which also contributes to its memory 

efficiency). However, LSRB-CSR divides row-major ordered 

none-zero values sequentially and the resulting blocks are 

essentially irregularly shaped chunks of rows. It can be seen that, 

CMRS, CSR5 and LSRB are designed to adopt a 1D (along rows) 

blocking strategy and to exploit fine-grained parallelisms on 

GPUs. While the strategy may be suitable for SpMV, it is unclear 

how to adapt them for SpGEMM, where 2D blocking (along both 

rows and columns) seems to be more suitable.  

Among the SpMV techniques that adopt 2D blocking 

(but do not necessarily involve bitmap), Blocked CSR (BCSR) 

[27] might be the earliest proposal that divides a large sparse 

matrix into 2D blocks and then applies CSR for each block. The 

work has motived several efforts to develop efficient SpMV 

techniques on both CPUs and GPUs. The Cache-Oblivious 

Extension Quadtree (COEQT) technique proposed in [28] divides 

a sparse matrix into four quadrants recursively until the blocks 

corresponding to leaf nodes can fit into cache, which can be 

considered as a special 2D-blocking strategy. While the idea is 

interesting in the sense that derived quadrants are equivalent to 

blocks and bitmaps can be used to index non-zero values inside 

blocks, it seems that the technique primarily adopts COO format 

and the only difference is re-ordering non-zero values according 

a DFS traversal order of the resulting quadtree.  

The Blocked Row-Column (BRC) [29] format 

partitions both rows and columns where the block size is 

parameterized by a predefined number of non-zero values in a 

block, instead of a sub-matrix space size. It can be seen that equal 

partition based on sub-matrix space size (e.g., BCSR and 

COEQT) may result in variable numbers of non-zero values 

among blocks while equal partition-based on non-zero values 

(e.g., BRC) may result in irregularly shaped blocks. To the best 

of our knowledge, there have been no efforts to adapt those 2D 

blocking formats to SpGEMM. Our bmSPARSE technique 

chooses equal partition based on sub-matrix space size as it is 

easier to pair equal and regularly shaped blocks in SpGEMM.  

Most of the recent works on SpGEMM adopt CSR or 

COO formats and many of them are targeting at GPUs. The 

Expansion, Sorting, and Contraction (ESC) algorithm [30] 

generates T(i,j,k) pairs by matching column j in Aij with row j in 

Bjk (based on Ci,k=sum(Aij*Bjk)) and then performs reduction 

using (i, k) as key to aggregate the intermediate values in T(i,j,k) 

to Cik. While operations required by ESC has high parallelisms on 

GPUs, its performance is hurt by generating large volumes of 

intermediate data and several optimization efforts have been 

developed as documented in the CUSP open source library [19].  

The bhSPARSE framework [20] adopts a four-stage 

strategy. The first stage estimates the number of non-zero 

elements in each row of the output matrix and the second stage 

puts the rows into different bins for load balancing purpose. 

Subsequently, the third stage computes the resulting matrix, 

generates non-zero values and outputs them to a temporal matrix. 

Finally, the last stage compacts the temporal matrix and generates 

the final output matrix. Similar to CUSP, the source code of 

bhSPARSE has been released [31]. Independent studies [32] [33] 

have confirmed that bhSPARSE is generally more efficient than 

CUSP, which can be partially contributed to the binning strategy 

and better load balancing.  

The BalancedHash technique [32] also estimates non-

zero values in the output matrix first, but it partitions non-zero 

values (instead of rows as in bhSPARSE) for load balancing. 

With additional optimizations including efficient hashing on GPU 

shared memory to aggregate intermediate results and atomic 

operations to fully utilize more recent GPU hardware support, it 

is reported that BalancedHash can achieve impressive speedups 

over bhSPARSE. The HybridSparse technique [33] combines the 

classic ESC technique [30]  with a GPU-based Scatter-Vector 

approach that was originally developed for CPUs [34] and has 

demonstrated higher performance than both  bhSPARSE and 

BalancedHash. Unfortunately, the source code of BalancedHash 

and HybridSparse is not available and direct comparisons are not 

possible.  

Extensive optimizations to maximize the utilizations of 

GPU hardware are applied in CUSP, bhSPARSE, BalancedHash 

and HybridSparse. While the performance is significantly 

boosted, sophisticated algorithmic designs make their codebases 

difficult to understand, maintain and improve. An interesting 

work in [35] focuses on both performance and portability in 

SpGEMM as the work targets at heterogeneous platforms, 

including multicore CPUs, GPUs, Intel MICs and clusters, where 

the Kokkos framework [36] is used for portability. While 

currently we target at GPUs only, we would like to keep 

portability in mind from the very beginning. Our idea is to utilize 

parallel primitives [37] [38] as much as possible and only resort 

to custom GPU kernels when necessary. We argue that the 

behavior of parallel primitives, such as sort, scan, reduction, 

expand and compact, are well understood and well supported on 

multiple platforms with high portability. As detailed in Section 3, 

our technique utilizes the Thrust library [39] (which comes with 

CUDA SDK) to generate task lists and to compact intermediate 

outputs, which are portable among multiple hardware platforms. 

The kernels to estimate the output sizes (i.e., memory counting) 

and to perform the actual sub-matrix computation are very simple. 

In addition to using OpenCL for portability (similar to 

bhSPARSE), the implementations can be easily ported to other 

platforms using their native programming languages for higher 

efficiency. While portability and efficiency may conflict with 

each other, in Section 4, we show that our technique is able to 

outperform both CUSP and bhSPARSE significantly for the 

public WebBase dataset [18], which might indicate that our 

proposed technique is effective for graph data.   

There are several aspects of sparse matrix operations 

that are relevant to our work. For efficient implementations of 

SpGEMM on GPUs, similar to the long-lasting debate between 



hashing and merging for relational joins, there are also works that 

adopt merging strategies on GPUs [40] [41]. Architecture-

specific optimization techniques for SpGEMM (e.g., [42]), while 

may not necessarily be portable, can be used as a performance 

benchmark. Techniques developed for optimizing SpGEMM on 

multi-core CPUs [43] and traditional clusters [44] are valuable for 

developing portable SpGEMM techniques. The idea of designing 

a unified sparse matrix format [45] or automatically choosing the 

best sparse matrix format [46], and dynamic allocation and task 

scheduling for SpMV [47] [48] [49] seems to be applicable to 

SpGEMM as well, which is left for our future work.  

3. THE PROPOSED BMSPARSE 

TECHNIQUE  
For notation convenience, we term our technique as bmSPARSE 

where bm stands for bitmap. We first present our bitmap-based 

sparse matrix storage format and then we will introduce our 

SpGEMM algorithm based on the format, which includes three 

stages: the symbolic computing stage to generate a task list to 

associate the blocks of the two input matrices and the output 

matrix, the block multiplication stage to multiply input blocks and 

assemble the resulting output blocks, and the compaction stage to 

remove zero values in the resulting output matrix. The block 

multiplication stage follows a two-phase procedure with the first 

phase to determine the upper bounds of non-zero values in the 

output blocks for efficient memory allocation purpose and the 

second phase to actually write out block multiplication results.      

3.1 bmSPARSE format for Sparse Matrix  

As shown in Fig. 1, bmSPARSE partitions a sparse matrix into 

8*8 blocks and each block is represented as a (key, bmp) pair. Key 

can be either a 32-bit integer for small (# of row/col less than 

65536) and 64-bit integer for large sparse matrices. We use 64-

bit key for generalizability, although there are possibilities for 

compression and memory saving.  For bmp, naturally an 8*8 

bitmap requires a 64-bit integer. Given that a (row, column) pair 

is represented as a 64-bit integer, it can be seen that, as long as 

there are more than one non-zero element in a block, the bitmap 

representation is memory-efficient and can be up to 32 times more 

efficient than using the classic COO format. This is because when 

a block is fully dense, COO requires 64*2 32-bit integers while 

bmSPARSE requires only two 64-bit integers. The non-zero 

values in a block are then re-ordered based on their row and 

column numbers within the block to make the one-to-one 

mapping between a 1-bit and a non-zero element. 

Clearly, the number of non-zero elements in a block can 

be efficiently computed using hardware intrinsic functions on 

both CPUs and GPUs, which typically takes only one or a small 

number of machine cycles and is much more efficient than naïve 

counting using a loop. An exclusive scan (prefix-sum) [37] can 

be performed on the derived numbers of non-zero elements in all 

blocks to compute the starting positions of non-zero elements in 

the blocks in parallel for both computation and data accesses.  

Compared with the CSR and COO formats that use two arrays for 

row and column numbers for non-zero elements, our technique 

uses only a single array for blocks and is much more memory 

efficient. While a more comprehensive analysis comparing with 

CSR and COO is left for future work, as discussed above, the 

memory efficiency can be significantly higher than COO.  We 

will empirically compare memory footprints of COO, CSR and 

our bmSPARSE for the WebBase dataset in Section 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Illustration of bmSPARSE Format 

3.2 Generating Task List in SpGEMM  
The purpose of generating the task list is to pair up blocks in the 

two input matrices, i.e., A and B, respectively, to determine the 

corresponding blocks in the output matrix, i.e., C, according to 

the general rule in SpGEMM, i.e., Cik=sum(Aij*Bjk). The stage 

(Fig. 2) is essential in regularizing irregularity in SpGEMM as a 

block in C can involve variable pairs of blocks in A and B, which 

reflects the irregular non-zero element distributions in the two 

input matrices. Once the task list in the form of vector of (i,j,k) 

triplets is generated, multiplying and adding 8*8 blocks according 

to the list is highly parallelizable and the irregular distributions of 

non-zero elements in the blocks are bounded. 

Assuming the two input matrices, A and B, are given as 

a list of (key, bmp) pairs of blocks, the stage to generate the task 

list involves key only, which is a concatenation of (row, column) 

numbers. We use A’ and B’ to denote boolean matrices indicating 

the non-empty blocks of A and B, respectively. The first step in 

the task list generation stage is to count the number of non-empty 

blocks in each row of B’, which can be easily implemented as a 

reduce_by_key parallel primitive by using the row numbers of B’ 

as key. The second step is to match each column of the non-empty 

blocks in A’ with the rows in B’. Clearly, an A’ column may be 

matched with multiple B’ rows whose numbers can be retrieved 

from the resulting vector in step 1 by using a Gather parallel 

primitive in Thrust, as shown in the middle-top part of Fig. 2.  

The third step in the stage is to expand A’ blocks, 

identified as (i, j) pairs, by the numbers of matched pairs to 

generate (i, j, idx) triples where idx belongs to 0..nj-1 and nj is the 

number of  columns in the jth row of B’. Note that idx is NOT 

column number of non-empty blocks in B’ and thus k in (i, j, k) 

triple needs to be computed from idx. By using an auxiliary array 

keeping the starting positions of non-empty blocks in the rows of 

B’ (vector pos), which can be computed in parallel using an 

exclusive scan parallel primitive as shown in the middle of Fig. 2 

(labelled as “#3 Exclusive Scan”), the columns of B’ blocks 

matching with A’ blocks, i.e., k, can be retrieved by accessing the 

key vector of B. In our implementation, the (i, j, k) triple vector is 

computed by taking the matrix A key vector and the idx vector 

after expansion (the procedure labelled as “#3 Expand” in the 

middle of Fig. 2, see the next paragraph for details) as the inputs 

and apply a user-defined functor in a transform parallel primitive. 

Given a (Akey, Bidx) pair, i and j are the first and last 32 bits of 

Akey and k can be calculated as the last 32 bits of wjk, which is 

calculated as B.key[pos[j]+idx].  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Task List Generation Using Data Parallel Primitives 

 

While the behavior of the expand parallel primitive, i.e., 

expanding a vector (E) by making the numbers of copies of its 

elements specified in the second vector (N), is well-known [37], 

it is not directly supported in Thrust. Fortunately, it can be 

implemented by chaining four parallel primitives in Thrust (not 

shown in Fig. 2): exclusive_scan on N to compute the positions 

of the first copies of the elements to be expanded, gather to put E 

elements at these positions as the first copies and maximum-

inclusive scan to create the desired number of copies of E 

elements, and finally exclusive_scan_by_key to generate the idx 

vector by using E elements as the keys on a sequence of 1s.    

The fourth step in the task list generation stage is to 

generate keys for output blocks, i.e., Cik.  After the vector of (i, j, 

k) triples are generated, it is sorted based on (i, k) so that input 

block pairs, i.e., (i, j) and (j, k), that contribute to the same output 

block (i, k) are neighboring to each other and can be processed by 

a same thread block in the next stage (block multiplication, 

Section 3.3). By performing a reduce_by_key parallel primitive 

on (i, k), the number of non-empty blocks of the output matrix is 

computed, the key vector of output matrix C (by concatenating i 

and k) can be derived and the approximate layout of C is thus 

determined. To facilitate accessing blocks in A and B, this stage 

also searches block keys of (i, j) and (j, k) in the block key vectors 

of A and B, respectively, so that the bitmaps and the starting 

positions of non-zero values can be directly accessed using the 

positions. 

3.3 Block Multiplication 

In the block multiplication stage, a GPU thread block is assigned 

to compute a block of C based on Ci,k=sum(Aij*Bjk). As a Cik block 

may need to accumulate multiple intermediate blocks of Aij*Bjk, a 

loop is applied. For an 8*8 block, 64 threads are assigned to a 

thread block and each thread is responsible for computing an 

element in the output Cik block, i.e., thread idx is responsible for 

block element (idx/8, idx%8) in block Cik. Although the floating 

point computation is simple, the more complex work for each 

thread is to retrieve non-zero elements from Aij and Bjk blocks 

based on their bitmaps, and to generate the bitmap and its 

corresponding non-zero values for block Cik in output matrix C.  

As illustrated in Fig. 1, an 8*8 bitmap is represented as 

a 64-bit integer and its 1-bits are used to index non-zero values. 

To efficiently retrieve non-zero values from Aij and Bjk for 

subsequent block multiplication, the positions of the non-zero 

values, i.e., non-zero value array offsets, need to be computed in 

parallel by all threads. While each thread can retrieve its bit from 

a bitmap and then perform a thread block level scan (prefix-sum), 

we found that it is more efficient to use population count intrinsic 

function that are available on modern GPUs. Since we use 64-bit 

integer for bitmap, __popcll is suitable. The offset can be simply 

computed as L-__popcll(w>>(threadIdx.x)) in CUDA where w is 

the bitmap of a block; and L=__popcll(w), which can be set as a 

shared variable and computed by a single thread.  Assuming that 

the non-zero values of Aij and Bjk blocks are loaded into the 8*8 

double array dij and djk, respectively, the output can be computed 

in parallel as following, where t is a looping variable 0..7: 

out[threadIdx.x]+=dij[(threadIdx.x/8)*8+t]*djk[t*8+(threadIdx.x%8)] 

The remaining task is to compact the 8*8 out array and 

generate the bitmap and non-zero values for the output block. 

Here we use another intrinsic function __ballot to ask all threads 

in a thread warp to test whether out[threadIdx.x] is zero. Since a 

thread warp has 32 threads, the bitmap values can be set up by 

combining the voting results using __ballot in the two warps in a 

thread block (64 threads in total). To write non-zero values in the 

out array in accordance with the resulting bitmap, the offsets of 



the non-zero values are determined in the same way as computing 

the offsets for retrieving elements of the input blocks.  

In our design, the dij, djk and out arrays have a size of 

8*8 and are shared among the 64 threads in a thread block.  As 

such, each thread block only needs 3*64*sizeof(double) bytes 

shared memory. Adding several other scalar shared variables at 

block level, the total required shared memory is less than two 

kilobytes. As such, different from many other GPU kernels for 

linear algebra applications, shared memory is not a limiting factor 

for performance in our design. However, using only 64 threads 

per block seems to make occupancy relatively low (50%). This is 

because occupancy is now limited by the maximum number of 

thread block per multi-processor on CUDA-enabled GPUs (16 for 

GTX Titan supporting Compute Capacity 3.5). Despite using 

shared memory to lower the overall data access overhead has been 

actively exploited, the kernel requires quite significant data 

accesses to GPU global memory which have long delays. As such, 

it is desirable to improve occupancy by using a larger number of 

threads per block so that more warps can be scheduled to amortize 

memory I/O overhead to achieve higher throughput. One idea is 

to use a larger thread block to process multiple Cik blocks in 

parallel and we leave this for future work.   

Another important issue to discuss is how to allocate 

memory for non-zero values in output matrix C. One solution is 

to utilize the fact that a block can have at most 64 non-zero values 

and pre-allocate a value array with a size of 64*num_block and 

then compact unused memory space in the last stage (to be 

discussed next, Section 4.4). One of the disadvantages of the 

solution is large-memory footprint when the output matrix is 

sparse and the number of non-zero values is far less than 64. 

Another solution is to follow a classic two-phase approach, i.e., 

execute part of the kernel in the first phase to count the number 

of non-zero values and then perform a prefix sum to calculate the 

starting positions of non-zero values of the blocks before actual 

computation is done in the second phase. The second solution 

essentially trades off space with time by spending more time on 

computation in order to save unnecessary memory allocation.  

The tradeoff can be well justified in many cases, 

including when output matrices are sparse. We have implemented 

both solutions and decided to adopt the two-phase approach. We 

note that the first solution does work for the WebBase dataset [18] 

on the GTX Titan GPU with 6GB memory and actually runs 

faster than the second solution as measured by end-to-end 

runtime. However, for the first solution, in addition to large 

memory footprint, we found that compacting a large array with 

large portions of unwanted data items (Section 3.4) is also 

expensive, which largely offsets the advantage of not requiring 

the memory counting stage for the first solution. To enable our 

implementation to handle larger graph datasets without running 

into the out-of-memory problem, we believe the second solution 

is more desirable. That being said, as reported in Section 4, the 

first phase takes about 1/3 of the runtime of block multiplication 

stage and is only slightly less expensive than the runtime for the 

task generation phase. As such, memory counting overhead 

cannot be neglected. We are working on optimizing the 

performance of the memory counting kernel to further improve 

the overall performance.   

3.4 Compaction 
Compaction is needed to remove zero values in the output after 

block multiplication. When each block is allocated 64 doubles to 

hold the maximum possible number of non-zero values (solution 

1 above), there is a significant portion of zero values that need to 

be compacted. Even for the second phase solution 2, since the 

counting stage does not involve actual floating point computation 

on blocks, it is possible that multiplying and adding non-zero 

values result in zero values, which is not uncommon in matrix 

multiplication and they need to be compacted. Compaction is 

actually highly parallelizable and the copy_if parallel primitive in 

Thrust is designed for the right purpose. Compaction works better 

when there are few elements that need to be compacted as the cost 

for data movement is small in this case. As reported in Section 4, 

by adopting solution 2 in the block multiplication stage, the 

compaction stage incurs the least overhead during the end-to-end 

process.  
 

4 EXPERIMENTS AND RESULTS 

4.1 Data and Setup 
We use the WebBase-1M dataset (denoted as WebBase) from 

University of Florida Sparse Matrix Collection [18] for 

experiments. The dataset has 1,000,005 rows (n_row) and 

1,000,005 columns (n_col) and 3,105,536 non-zero values (nnz). 

It was first used by Samuel Williams et al [50] as a dataset 

representing web connectivity matrix for experiments on SpMV 

and later was used by several studies for SpGEMM, including 

CUSP, bhSPARSE, BalancedHash and HybridSparse on GPUs. 

As the source code of BalancedHash and HybridSparse is not 

available, we will compare our technique with CUSP and 

bhSPARSE only. In previous studies, bhSPARSE performs 

generally better than CUSP on many datasets, but performs worse 

than CUSP on the WebBase dataset. This makes it interesting to 

examine the suitability of alternative storage formats and 

techniques for SpGEMM on the web graph dataset.  

Our experiments are performed on a 2013 Nvidia GTX 

Titan (Kepler) GPU with 2,688 CUDA cores and 6 GB GDDR5 

memory. CUDA 8.0 and the Thrust library that comes with the 

SDK are used for GPU implementation. All programs are 

compiled with –O3 optimization flag. We have also implemented 

a CPU version using C++ Standard Template Library (STL) for 

verification and comparison purposes. The machine is a dual 8-

core Ubuntu box with Intel E5-2650 processors running at 2.6 

GHZ and 16 GB DDR3 memory but only a single core is used in 

the experiments for the CPU implementation. 

4.2 Results 
We next report the memory footprint and runtime of the proposed 

bmSPARSE technique, in comparison with CUSP and 

bhSPARSE. We assume the row numbers and column numbers 

are stored as 32-bit integers (4 bytes) and the non-zero values are 

stored as doubles (8 bytes). While CUSP supports multiple 

formats, COO, which is the original format of the WebBase 

dataset, is used for CUSP in the experiments. The memory 

footprint of COO can be calculated as 

(2*sizeof(int32)+sizeof(double))*nnz, again nnz is the number of 

non-zero values of the input. Given that nnz=3,105,536 for the 

WebBase dataset, the memory footprint of CUSP is thus ~47.39 

MB. The benchmark code of bhSPARSE uses the CSR format 

and the memory footprint can be computed as 

n_row*sizeof(int32)+nnz*sizoef(int32)+nnz*sizeof(double) and 

thus the memory footprint is ~39.35MB. Since both the key and 

bmp of our bmSPARSE technique are represented as int64 

datatype (8 bytes), the memory footprint can be calculated as 

n_block*sizeof(int64)+n_block*sizeof(int64)+nnz*siozeof(doub



le). As n_block is 550761for the dataset, the memory footprint is 

thus ~32.10 MB. Clearly, bmSparse has the smallest memory 

footprint among the three. When non-zero values are excluded 

and only indexing overhead is considered, as shown in Table 1, 

the overhead for bmSPARSE is only about 1/2 of CSR and 1/3 of 

COO. 

Table 1 Overall Result Comparisons 

 Memory (MB) Runtime 

(ms) 

Runtime-

Speedup All Index  

CUSP (COO) 47.39 23.69 760.495 2.4X 

bhSPARSE 

(CSR) 

39.35 15.66 1104.74 3.5X 

bmSPARSE 32.10 8.40 306.302 1X 

 

To better understand the performance of bmSPARSE 

on the WebBase dataset, Table 2 lists the runtimes of different 

modules in bmSPARSE. Transferring the input matrix in the 

COO format from CPU to GPU takes about 15ms and the 

conversion from COO to bitmap format takes about 78ms. While 

significant, they do not dominant the overall runtime. Note that 

these two parts are not included in the total runtime when 

comparing with CUSP and bhSPARSE, for consistency and 

fairness reasons.  

Table 2 Runtime Breakdown 

CPU to GPU Data Transfer Time (ms) 14.963 

COO2BMP Time (ms) 78.108 

1:Task Generation Time (ms) 67.517 

2:Memory Counting Kernel Time (ms) 64.514 

3:Block Multiplication Kernel Time (ms) 172.126 

4: Compaction Time (ms) 12.982 

Total GPU runtime (1+2+3+4) (ms) 317.139 

Total CPU time (single core) (ms)  8290.960 

 

 Among the four runtimes that are included in the total 

runtime for comparison, it is clear that block multiplication kernel 

takes more than half of the total runtime time and is the bottleneck 

of the overall process. As such, our bmSPARSE technique is 

likely to benefit from future hardware (e.g. TPUs) acceleration.  
The memory counting kernel is about 1/3 of the block 

multiplication kernel time (2+3). A closer look reveals that the 

memory counting kernel likely suffers from load unbalancing 

among threads. As our implementation assigns a thread to count 

the required memory for nonzero-values in a Cik output block, a 

thread is required looking into a variable number of (Aij,Bjk) pairs 

and the number may vary significantly among threads in a warp 

and hence hardware could be underutilization. A possible 

improvement would be to sort the blocks of the output matrix 

based on the numbers of (Aij,Bjk) pairs that they associate for load 

balancing, which is left for our future work.   

From Table 2 it can be seen that the GPU 

implementation is about 26.1X time faster than the serial CPU 

implementation, despite that the CPU implementation largely 

follows the data parallel design for GPUs. It seems that the 

container classes in C++ STL, including vector and map, while 

convenient to use, are less performant. We are in the process of 

porting kernels to Intel Thread Building Block (TBB) [37] based 

implementations on multi-core CPUs so that they can be 

integrated with existing parallel primitive based implementations 

that can be re-targeted for multi-core CPUs. The performance 

comparisons on multi-core CPUs are also left for future work.   

While the performance is encouraging on the WebBase 

dataset that we currently target at, preliminary experiments on 

additional sparse matrix datasets from the University of Florida 

Sparse Matrix Collection have shown that our bmSPARSE 

technique does not always perform better than CUSP or 

bHSPARSE. This may indicate that our technique, as a very 

different alternative technique to existing ones, may be suitable 

to one or more specific categories of sparse matrices. The 

performance on the WebBase dataset suggests that graph data 

could be of these categories although further investigations are 

needed. 

5. CONCLUSION AND FUTURE WORK 
In this study, we have introduced our preliminary design and 

implementation of a bitmap-based SpGEMM technique namely 

bmSPARSE. Experiments on the WebBase-1M dataset with more 

than one million rows and columns and three million non-zero 

values have shown that SpGEMM on squaring the large-scale 

sparse using a 2013 GTX Titan GPU can complete in about 300 

milliseconds. The runtime is 2.4X faster than CUSP and 3.5X 

faster than bhSPARSE, the two leading open source SpGEMM 

packages. The memory footprint is considerably lower than the 

popular COO and CSR formats as well.  

For future work, in addition to the optimization plans 

discussed inline, we would like to perform more experiments on 

additional graph datasets and compare the performance of 

different components in both our bmSPARSE technique and 

others, including CUSP and bhSPARSE, to better understand the 

strengths and weaknesses of the techniques. We hope to identify 

deeper and more meaningful patterns in SpGEMM for different 

types of sparse matrices to intelligently choose different 

techniques for different types of datasets to improve the overall 

performance. Our decisions to embrace data parallel designs and 

use parallel primitives are largely driven by portability among 

existing and new hardware with the understanding of efficiency-

portability tradeoffs. In addition to looking into the opportunity 

for TPU hardware accelerations, we also plan to port existing 

design and implementation to multi-core CPUs with Vector 

Processing Units (VPUs) to explore SIMD computing power on 

CPUs for graph operations.  
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