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Abstract—GPU-equipped computing nodes have much higher 

ratios between floating point computing power (in the order of 

TFlops and is fast growing) and network bandwidth (in the order 

of Gbps and remains stable) than regular computing nodes at 

which Hadoop-based systems are targeting. The gap makes 

efficient and scalable processing of large-scale data challenging, 

especially for geo-referenced spatial (or geospatial) data, whose 

processing is both data intensive and computing intensive. We 

aim at developing a tiny GPU cluster using Nvidia Tegra K1 

(TK1) System on Chip (SoC) boards as a downscaled, low-cost 

GPU cluster for Big (Spatial) Data research. The tiny GPU 

cluster is equipped with standard gigabyte Ethernet network 

while has much less computing power and energy footprint when 

compared with a regular GPU cluster and represents a new 

platform with more balanced compute to communication ratio. 

We have ported our implementations of both single-node 

technologies for point-in-polygon test based spatial joins and the 

lightweight distributed execution engine originally developed for 

regular clusters to the tiny GPU cluster. We evaluate its 

performance on two real world geospatial applications with 

various settings and experiment results have demonstrated good 

scalability. Preliminary analysis on the scaling effect between the 

tiny cluster and a regular Amazon EC2 cluster using a simplified 

model suggest that the ARM-based CPU of the TK1 board is 

likely to achieve better energy efficiency while the Nvidia GPU of 

the TK1 board might be less efficient when compared with 

desktop/server grade GPUs, in both standalone and 4-node 

cluster settings. 
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I. INTRODUCTION  

Hardware architectures and platforms have been evolving fast 

in the past few years, which have significant impacts on 

processing large-scale data. While Big Data software 

packages, such as Hadoop, were initially developed for 

inexpensive commodity workstations, as multi-core machines 

equipped with large memory capacities and hardware 

accelerators are becoming increasingly affordable, new Big 

Data systems that can take advantages of new hardware 

features and deliver high performance, such as Apache Spark1 

and Cloudera Impala 2  for in-memory and in-network 

processing, are becoming more preferable. As a result, there 

are growing interests on using High Performance Computing 

(HPC) facilities that are typically equipped with powerful 

processors (including accelerators) and high speed networks 

for Big Data applications[1][2][3][4]. Unfortunately, accesses 

to HPC facilities are very often restrictive and it is very 

difficult (if not impossible) to reconfigure HPC platforms for 

research purposes. On the other hand, while Cloud vendors 

typically allow users to choose among a few predefined Cloud 

resource configurations and install additional software stacks 

on top of either bare metal or virtual machines, the allocated 

computing instances do not allow hardware reconfigurations 

for experiments either. For example, only very few Amazon 

EC2 instances are equipped with Graphics Processing Units 

(GPUs) and the only type of GPU instances provided by 

Amazon EC2 is g2.2xlarge3. Furthermore, neither the details 

of the underlying physical GPU specification nor the 

virtualization overheads are specified. While this may be 

acceptable for production use, is inappropriate for research 

purposes. It is thus desirable to have a dedicated, fully 

configurable and high-performance cluster for Big Data 

research. Unfortunately, the Total Cost of Ownership (CTO) 

of such a cluster is typically high and the approach may not be 

always feasible. 

GPS devices and smartphones have generated huge 

amounts of location data. Very often point location data need 

to be joined with urban infrastructure data to understand the 

location data and make better decisions. While geospatial data 

management techniques have been provided by both Spatial 

Databases 4  and Geographical Information Systems (GIS 5 ), 

existing software is incapable of processing large-scale 

geospatial data for practical applications [5]. Quickly evolving 

processor, storage and networking technologies require new 

Big Data research to understand how new hardware impacts 

the performance of large-scale data processing. We have been 

developing techniques to process large-scale geo-referenced 

spatial (or geospatial) data on both single computing nodes 

and clusters equipped with GPUs and we refer to [5][6][7][8] 

for details. While a small GPU cluster with ~10 nodes has 

been built for internal use, the heterogeneity of the cluster with 

different generations of CPUs and GPUs, different memory 

capacities and different combinations of HDD/SSD drives has 

made it difficult to use. More importantly, GPU-equipped 

computing nodes have much higher ratios between floating 

point computing power (in the order of TFlops and fast 

growing) and network bandwidth (in the order of Gbps and 

remains stable in the past decade) than regular computing 

nodes at which Hadoop-based systems are targeting. While 

many research works have exploited high-performance 



networks (e.g., Infiniband 6) to narrow the gap and achieve 

better performance for Big Data systems, in this study, we 

propose to develop a tiny GPU cluster with much less 

computing power while being equipped with standard 

gigabyte Ethernet network, to investigate several Big Data 

research issues from a domain-specific application 

perspective. In particular, we have ported our implementations 

of both single node spatial data processing techniques and a 

lightweight distributed execution engine originally designed 

for regular clusters (referred to as LDE hereafter [8]) to the 

tiny GPU cluster and evaluate its performance on real world 

geospatial datasets. The performance is further compared with 

SpatialSpark [6], another distributed geospatial data 

processing system we have developed on top of Apache Spark, 

on the same tiny GPU cluster whereas appropriate.  

Our technical contributions in this study can be 

summarized as follows. First, we report our effort in building a 

tiny GPU cluster consists of multiple Nivida Tegra K1 (TK1) 

System on Chips (SoC) boards7, standard networking devices 

and Solid State Drives (SSDs) for Big (Spatial) Data research. 

The scaled-down GPU cluster has desired features for both 

data intensive and computing intensive applications that may 

not available in regular clusters, including high network 

bandwidth to compute ratio, GPU acceleration using the 

standard Nvidia CUDA 8  technology and shared memory 

between CPU and GPU. Second, we have ported our in-house 

developed LDE engines (including LDE-MC for multi-core 

CPUs and LDE-GPU for GPUs) and SpatialSpark (for multi-

core CPUs) to the tiny GPU cluster. To the best of our 

knowledge, we are not aware of previous works on processing 

large-scale geospatial data on embedded systems (such as 

Tk1) with GPU accelerations in a cluster computing setting. 

Third, we report our experiment results on two real world 

geospatial applications and the results have demonstrated good 

scalability on the tiny GPU cluster.   

II. BACKGROUND AND MOTIVATION  

The success of Hadoop-based systems has attracted quite some 

interests to improve Hadoop performance from many aspects, 

including porting it to HPC facilities to utilize their high-end 

computing processors, large memory capacities and high-

speed networks. A comparison of architecture and abstractions 

between HPC and Apache Big Data Stacks (ABDS) is 

presented in [1] and the authors argued that a convergence 

between the two at many levels can be observed. While 

regular Hadoop uses the Java-based Netty 9  package for 

distributed communication, several works have proposed to 

use Message Passing Interface (MPI10) libraries, which are 

typically C/C++ based, to achieve better performance, 

especially on HPC clusters with high-speed networks [9][2]. A 

comprehensive assessment on the performance impact of high-

speed interconnects (including 10Gbps Ethernet and 

Infiniband) on MapReduce is presented in [3]. A design of 

Hadoop Distributed File System (HDFS 11 ) using Remote 

Direct Memory Access (RDMA12) over InfiniBand via Java 

Native Invocation (JNI13) is presented in [4] and a similar idea 

is also presented in [10]. Recently, [11] discussed how 

traditional HPC facilities can be optimized to accommodate 

both traditional HPC applications (computing intensive) and 

new data analytics applications (data intensive). While high-

speed networks in HPC facilities have been demonstrated to 

achieve different levels of speedups over commodity Cloud 

resources, local storage is also crucial to the performance of 

Hadoop-based systems on HPC facilities. Unfortunately, 

traditional HPC facilities generally rely on dedicated storage 

nodes running parallel/distributed file systems (e.g., Luster-

based 14 ) which can be a bottleneck for data-intensive 

applications. Using HPC clusters for Big Data applications 

may require significant architectural redesigns to maximize 

efficiency, which further mandates novel ideas on setting up 

realistic yet low-cost and easy-to-access experiment 

environments. We believe our idea on using SoC clusters as 

scaled-down prototype systems could be an interesting idea.   

Balancing latency and throughput has profound 

implications in Big Data research. While traditional parallel 

and distributed databases mostly targeted at reducing data 

processing latency for moderately sized datasets, Big Data 

systems need to take ownership costs and energy consumption 

into consideration. Using large quantities of small processors 

to achieve similar throughputs while reducing energy footprint 

is becoming an increasingly important topic in Big Data 

research. Works on using low-power ASICs [12] and FPGAs 

[13] and power-efficient GPUs [14], Intel MICs [15] and SoCs 

[16] to process Big Data have been reported in the past few 

years with exciting results. Several previous works on 

evaluating standalone ARM-based systems for relational data 

query processing [17][16] have shown that while these low 

profile systems are excellent for power-efficient computing 

under low utilization, they may not necessarily lead to 

significant energy saving under high utilization. However, we 

are not aware of previous works on evaluating the 

performance of a cluster of GPU-equipped SoCs for Big Data 

applications. A very recent work on evaluating Hadoop on a 

cluster of Exynos 5410 SoCs for relational queries using TPC-

C and TPC-H benchmarks is reported in [16]. An Exynos 

5410 SoC consists of 4 Cortex-A7 (little) and 4 Cortex-A15 

(big) CPU cores; however, its GPU is incapable of general 

computing and is left unutilized. While both TK1 and Exynos 

5410 include 4 Cortex-A15 CPU cores, TK1 has 192 Nvidia 

CUDA cores that are capable of general computing in a way 

the same as desktop/server grade GPUs, which makes TK1 

much more powerful than Exynos 5410. Our work is 

orthogonal to [16] in the sense that we target at spatial data 

processing which is both data intensive and computing 

intensive; and we compare with Spark instead of Hadoop.  

Since Nvidia Tegra K1 (TK1) SoC boards became 

available in 2014, its high computing power (up to 326 Gflops 

from GPU alone) and low cost (currently $192) have made it 

attractive in several mobile application domains, including real 

time image processing, computer vision and robotics. Our 

interests in TK1, in this study, however, are not on the 

absolute performance, which is still weaker than a regular 

CPU or a low-end discrete GPU on a desktop/server. Instead, 

we plan to use TK1 as down-scaled computing node to build a 



low-cost and low profile cluster with  high network bandwidth 

and high storage performance (by attaching SSDs) using 

commodity peripherals for Big Data research. Different from 

Raspberry Pi15 SoCs which either do not provide networking 

capabilities or only provide 10Mbps or 100 Mbps through a 

USB interface, TK1 uses standard 1Gbps network interface. 

According to [16], data communication in Exynos 5410 also 

uses USB which limits its effective network bandwidth to 200-

300 Mbps. The high network bandwidth to compute ratio 

provided by TK1, in addition to supporting SSDs through 

standard SATA interface, makes it ideal for our purpose. 

While it is beyond the scope of this study to formally model 

the mapping between a down-scaled TK1-based cluster and a 

regular cluster equipped with desktop/server grade GPUs, we 

hope the empirical results in a domain-specific application 

(spatial join query processing in Big Spatial data) can provide 

some insights on the feasibility and effectiveness of the 

proposed scaled-down based approach for Big Data research.   

As a proof-of-concept, we have developed a small 

GPU cluster using four TK1 boards running Ubuntu Linux 

14.04 with pre-configured drivers. Each TK1 board is 

equipped with both a multi-core CPU (4 ARM A15 cores at 

2.32 GHZ) and a GPU (192 CUDA cores at 850 MHZ). As the 

onboard eMMC storage only has a capacity of 16GB, which is 

insufficient for Big Data applications, we have attached a 

Kingston 120GB SSDNow V300 drive to each board through 

a SATA 6.0 gbps interface, with half capacity used as a disk 

and half of the capacity used as virtual memory. The SSD 

drive, although inexpensive ($60), provides a read and write 

speed up to 450MB/s. Adding the SSD drive brings the total 

cost of a computing node to around $250. Adding a 24-port 

Buffalo Gigabit switch ($60), the 4-node tiny GPU cluster thus 

costs slightly over $1000, which is still lower than many 

desktop computers even without a discrete GPU, yet is still 

capable of achieving >1TFlops computing power. While the 

tiny GPU cluster can be used for general purpose, we are 

currently focusing on processing large-scale spatial data. In 

this study, it is not our intension to develop algorithms and 

implementations that are specifically designed for SoC boards, 

which are left for future work. Instead, we install both open 

source software and our in-house spatial data processing 

modules on the tiny GPU cluster, run experiments that we 

have tested for regular multi-core CPU and GPU clusters and 

compare their performance. We analyze the experiment results 

and discuss several architectural design issues for big spatial 

data processing on multi-core CPU and GPU equipped 

clusters.  

III. THE TINY GPU CLUSTER FOR DISTRIBUTED SPATIAL JOIN 

QUERY PROCESSING 

The architecture of the proposed tiny GPU cluster is illustrated 

in Fig. 1, where relevant software and parallel programming 

tools used in our C/C++ based implementations are also 

shown. Due to budget constraint, the cluster currently has only 

4 nodes but the switch allows up to 24 distributed nodes. 

Within a node (TK1 board), each of the four ARM A15 cores 

has a private L1 cache and a shared L2 cache. The GPU is 

based on Nvidia Kepler microarchitecture and has 192 CUDA 

cores in a Streaming Multiprocessor (SM). Conceptually, the 

TK1 GPU has 1/14 of the computing power of GTX TITAN16 

which has 14 SMs. We note that according to elinux website, a 

TK1 board consumes ~11W power when performing 

computing intensive image processing tasks17 while consumes 

1.6-4.7W when running a disk-intensive search command18. 

The low energy footprint of TK1 also makes it interesting to 

use the tiny GPU cluster for energy efficiency related research 

in Big Data applications, which is left for our future work. 

The LDE engine [8] uses Apache Thrift to define data 

types and service interfaces for data communication across the 

network. Our micro-benchmark has confirmed that the 

realized network bandwidth for point-to-point data 

communication in the tiny (“Wimpy”) cluster can be close to 

100 MB/s, which is the same as a regular “Brawny” cluster. 

For our C/C++ based implementations, we program the four 
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Fig. 1 Hardware Configuration and Software Stacks of a 4-node Tiny GPU Cluster  



ARM cores using standard C/C++ with OpenMP 19  and we 

program the GPU using CUDA together with the Thrust 

parallel library20 which is also part of CUDA SDK. While our 

parallel spatial join processing techniques and the LDE engine 

are developed for “Brawny” clusters, porting to the “Wimpy” 

cluster is rather smooth as the operating system (i.e., Ubuntu 

Linux) hides away the differences among ARM and X86/64 

CPUs. 

Porting SpatialSpark to the tiny cluster is virtually 

effortless, as Java Virtual Machine (JVM) and Hadoop/Spark 

platform provides two additional layers of portability. The 

only issue is that, as a 32-bit CPU, ARM A15 supports only 

32-bit Java SDK which does not allow use large memory, 

even though we have allocated 60GB SSD as virtual memory. 

While this issue has less effect on C/C++ based LDE engine, 

which has a small memory footprint (by design), Spark 

requires significant amount of memory in runtimes and can 

only accommodate small datasets with the remaining memory. 

As the successor of Tegra K1, which has been announced by 

Nvidia as Tegra X1 21 , has adopted a 64-bit ARM CPU 

architecture, is likely to solve the issue. Nevertheless, high 

infrastructure overheads of Hadoop and Spark makes it 

unlikely for SoC-based clusters to achieve competitive 

performance even after taking the scaling factor into 

consideration. The experiment results to be presented in 

Section III supports our observation. As such, we will focus on 

evaluating the performance of the LDE engine due to its low 

infrastructure overheads. While we refer to our technical 

report for the design and implementation details of the LDE 

engine and its application to distributed spatial query 

processing [8], for the sake of completeness, we next provide a 

brief introduction from a Big Spatial Data application 

perspective. We use one of the experiments in Section IV for 

illustration purpose.  

Given a large taxi trip data (point dataset) and a census 

block data (polygon dataset), the point-in-polygon test based 

spatial join can be used as an example to introduce spatial data 

management as a concrete Big Spatial Data application. A taxi 

trip typically has a GPS-recorded pickup location (Origin) and 

a drop-off location (Destination), together with many other 

attributes, e.g., timestamps and fare amounts [5]. Counting the 

numbers of pickup/drop-off locations by census blocks and 

providing spatially aggregated statistics using different 

temporal hierarchies (e.g., hourly, daily, weekdays/weekends 

and peak/off-peak), can be very useful to help better 

transportation and city planning [5]. To align points to census 

blocks, a technique in spatial data management known as 

spatial join is required. Our LDE engine adopts a “left-partition 

and right-broadcast” strategy to partition point data across 

distributed computing nodes and broadcast polygon data to all 

participating distributed computing nodes for distributed query 

execution [8]. The LDE engine accesses HDFS to retrieve both 

raw data and index files in binary format, supports 

asynchronous network communication, asynchronous disk I/O 

and asynchronous computing, and support using native parallel 

programming tools for local processing. The features make the 

LDE engine efficient in processing large-scale data, when 

compared with our previous works on extending Impala for 

spatial data [6][7][8]. 

IV. EXPERIMENTS AND RESULTS 

We have performed experiments using two real world large 

geospatial datasets to test the performance and scalability of the 

tiny GPU cluster for point-in-polygon test based spatial join. 

The first experiment uses the taxi trip and census data (termed 

as taxi-nycb experiments) where the pickup locations of  

approximate 170 million taxi trips in NYC in 2013 are used as 

the point dataset and the 2000 census blocks in the same region 

with 38,794 polygons are used as the point dataset. As the 

average number of points per polygon is only around 9, the 

experiment is more data intensive. Our second experiment to 

spatially joining a subset of global species occurrence locations 

with World Wide Fund (WWF) global ecological regions. The 

number of points is approximately 10 million and the number 

of polygons is 14,458 and we term the experiment as g10m-

wwf. As the average number of vertices of the polygons in the 

WWF polygon dataset is about 279, the experiment is much 

more computing intensive. 

In addition to performing the two experiments using 

1, 2 and 4 nodes of the tiny GPU cluster, similar to the 

experiments on regular GPU clusters as reported in [7][8], we 

have also measured the runtimes in a standalone setting where 

the distributed infrastructure is removed and computing is 

iteratively performed on a single node. The results on multi-

core CPUs (labeled as LDE-MC) and GPUs (labeled as LDE-

GPU) are listed in Table I. For the first experiment (taxi-nycb), 

we also report runtimes of SpatialSpark for comparison 

purposes. We have not reported the performance of 

SpatialSpark for the second experiment (g10m-wwf.) as it 

cannot complete within a reasonable time. 

TABLE I.  RUNTIMES OF OF THE TINY GPU CLUSTER UNDER MULTIPLE 

SETTINGS FOR TAXI-NYCB AND G10M-WWF EXPERIMENTS 

Experiment Setting standalone 1-node 2-node 4-node 

taxi-nycb LDE-MC 18.6 27.1 15.0 11.7 

LDE-GPU 18.5 26.3 17.7 10.2 

SpatialSpark - 179.3 95.0 70.5 

g10m-wwf LDE-MC 1029.5 1290.2 653.6 412.9 

LDE-GPU 941.9 765.9 568.6 309.7 

 

From Table I, we can see that when the number of 

nodes in the cluster is increased from 1 to 4, the speedup is 

between 2.3X to 3.1X among all the experiment settings, 

which is reasonable. While LDE-GPU still performs better 

than LDE-MC in general (with only one exception, i.e., LDE-

MC using 2 nodes) on the tiny cluster, the speedups are 

typically lower than those using a regular cluster as reported in 

[7][8]. This can be due to the reason that CPU and GPU in a 

TK1 board access the same DDR3 memory. Compared with 

GDDR5 memory on desktop/server grade GPUs with 384-bit 

memory bandwidth, the memory access latency is high and the 

bandwidth is much lower for TK1 GPU. Nevertheless, both 

LDE-MC and LDE-GPU have achieved significant speedups 

over SpatialSpark (5.4X to 6.9X) in the taxi-nycb experiment. 

The high efficiency may be due to several differences among 



them: language (C/C++ vs. Scala/Java), platform (LDE vs. 

Spark) and implementation efficiency of point-in-polygon test. 

While we leave a more detailed analysis to future work, we 

argue that a lightweight distributed execution engine for the 

tiny cluster is advantageous. While we are able to successfully 

set up Hadoop and Spark on the tiny cluster, we have 

encountered several major technical challenges to port our 

ISP-based systems [6][7], which extend Impala, to the tiny 

GPU cluster due to the complexities of Impala and its various 

required third party software packages. Even though we have 

run SpatialSpark successfully on the tiny cluster, the 

performance is less preferable when compared with the LDE 

engine that is lightweight with less than 1,000 lines of code 

[8].  

It is also interesting to compare the performance of 

the tiny GPU cluster with a regular GPU cluster. We have 

increased the number of species occurrence records in the 

g10m-wwf experiment from approximately 10 million to 

approximately 50 million and run the experiment on the tiny 

GPU cluster with 4 nodes. The new experiment (termed as 

g50m-wwf) is thus more computing intensive and takes longer 

on the tiny cluster. The performance results of the experiment 

on an Amazon EC2 GPU cluster have been reported in [8] and 

both results are tableted in Table II. For comparison purpose, 

the performance on a high-end workstation in the standalone 

setting is also listed in Table II.   

TABLE II.  RUNTIMES UNDER DIFFERENT HARDWARE CONFIGURATIONS 

FOR THE G50M-WWF EXPERIMENT 

 TK1-

Standal

one 

TK1-4 

Node 

Workstation-

Standalone  

EC2-4 Node 

CPU Spec. 

(per node)  

ARM A15 

2.34 GHZ 

4 Cores 
2 GB DDR3 

Intel SB  

2.6 GHZ 

16 cores 
128 GB DDR3 

Intel SB 

 2.6 GHZ 

8 cores (virtual) 
15 GB DDR3 

GPU Spec. 

(per node) 

192 Cores 

2GB DDR3 

2,688 cores  

6 GB  GDDR5 

1,536 cores 

4 GB GDDR5 

Runtime (s) 
–MC 

4478 1908 350 334 

Runtime (s) 

–GPU 

4199 1523 174 105 

 

From Table II we can see that, when comparing the 

runtimes of the CPU implementation in standalone setting, the 

workstation with dual eight-core Intel Sandy Bridge (SB) 

CPUs is about 12.8X faster than TK1 with 4 ARM CPU cores. 

Given an Intel CPU with 8 cores consumes 95W while an 

ARM A15 CPU with 4 cores consumes 10W, the workstation 

consumes 95*2/10=19X more power. This suggests that the 

ARM CPU on TK1 can potentially achieve 

95*2/10/12.8=1.48X more energy efficiency in the standalone 

setting. On the other hand, when only energy consumed by 

CPUs (at maximum level) is taken into consideration, the EC2 

4-node cluster consumes 95/10=9.5X more energy but is 

1908/334=5.7X faster, which may suggest the TK1 4-node 

cluster can be 9.5/5.7=1.67X more energy efficient.  

While the GPU model in the Amazon EC2 cluster is 

not available to us (which could be virtualized GPU), the 

workstation is known to be equipped with GTX Titan.  In 

standalone setting, the GPU implementation on the 

workstation is 24X faster than TK1. Given that GTX Titan has 

14X more CUDA cores, there is no evidence in this 

experiment showing that the TK1 cluster is more performant 

when only the number of GPU cores is taken into 

consideration. The workstation can be 24/14=1.7X more 

efficient than TK1. A similar trend can be observed on the 

cluster performance with 4 nodes: the EC2 4-node cluster has 

8X more CUDA cores while runs 14X faster which may 

suggest that the EC2 4-node cluster is 1.75X more efficient 

than the TK1 4-node cluster.  

While it is tempting to draw a conclusion that TK1 

CPU has a better energy efficiency than that of GPU for the 

experiment in both the standalone setting and the 4-node 

cluster setting by assuming that all CUDA cores consumes the 

same amount of energy, we argue that more research is 

needed. The runtimes of GPU implementations do not 

necessarily translate into energy consumption linearly as 

energy consumed by CPUs, memory, disk and network cannot 

be easily incorporated in the simple energy model. 

Furthermore, it is likely that GPU may become idle while 

waiting for resources during the process. We leave more in-

depth investigation for future work.  

V. CONCLUSIONS AND FUTURE WORK 

Motivated by the increasing gap between the computing power 

of GPU-equipped clusters and network bandwidth and disk 

I/O throughput, we propose to develop a low-cost prototype 

research cluster made of Nvidia TK1 SoC boards that can be 

interconnected with standard 1Gbps network to facilitate Big 

Data research. By porting our previous works on distributed 

spatial query processing techniques, include SpatialSpark and 

the LDE engine, we evaluate the performance of the tiny GPU 

cluster for spatial join query processing on large-scale 

geospatial data. Experiments on point-in-polygon test based 

spatial join using two real world applications with tens to 

hundreds of millions of points and tens of thousands of 

polygons have demonstrated the efficiency of the LDE engine 

when compared with SpatialSpark. Preliminary analysis on the 

scaling effect between the tiny cluster and a regular Amazon 

EC2 cluster using a simplified model seems to suggest that the 

ARM CPU of the TK1 board is likely to achieve better energy 

efficiency while the Nvidia GPU of the TK1 board is less 

performant when compared with desktop/server grade GPUs, 

in both the standalone setting and the 4-node cluster setting for 

the two particular application.  

For future work, first of all, we would like to develop 

a formal method to model the scaling effect between SoC-

based clusters and regular clusters, not only including 

processors but also memory, disk and network components. 

Second, while it is beyond our scope to develop benchmarks 

for all types of data, we would like to evaluate the 

performance of SpatialSpark and the LDE engine using more 

real world geospatial datasets and applications, e.g., distance 

and nearest neighbor based spatial joins. We hope our work in 

processing large-scale geospatial data, together with the 

mainstream Big Data research on relational and graph data, 



can play a complementary role in understanding the interplays 

between hardware and software and develop novel techniques 

for more efficient and scalable Big Data applications.  
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