
Tiny GPU Cluster for Big Spatial Data: A Preliminary

Performance Evaluation

Jianting Zhang

Dept. of Computer Science

The City College of New York

 New York, NY, USA

jzhang@cs.ccny.cuny.edu

Simin You

Dept. of Computer Science

CUNY Graduate Center

New York, NY, USA

syou@gc.cuny.edu

Le Gruenwald

Dept. of Computer Science

The University of Oklahoma

Norman, OK, USA

ggruenwald@ou.edu

Abstract—GPU-equipped computing nodes have much higher

ratios between floating point computing power (in the order of

TFlops and is fast growing) and network bandwidth (in the order

of Gbps and remains stable) than regular computing nodes at

which Hadoop-based systems are targeting. The gap makes

efficient and scalable processing of large-scale data challenging,

especially for geo-referenced spatial (or geospatial) data, whose

processing is both data intensive and computing intensive. We

aim at developing a tiny GPU cluster using Nvidia Tegra K1

(TK1) System on Chip (SoC) boards as a downscaled, low-cost

GPU cluster for Big (Spatial) Data research. The tiny GPU

cluster is equipped with standard gigabyte Ethernet network

while has much less computing power and energy footprint when

compared with a regular GPU cluster and represents a new

platform with more balanced compute to communication ratio.

We have ported our implementations of both single-node

technologies for point-in-polygon test based spatial joins and the

lightweight distributed execution engine originally developed for

regular clusters to the tiny GPU cluster. We evaluate its

performance on two real world geospatial applications with

various settings and experiment results have demonstrated good

scalability. Preliminary analysis on the scaling effect between the

tiny cluster and a regular Amazon EC2 cluster using a simplified

model suggest that the ARM-based CPU of the TK1 board is

likely to achieve better energy efficiency while the Nvidia GPU of

the TK1 board might be less efficient when compared with

desktop/server grade GPUs, in both standalone and 4-node

cluster settings.

Keywords—Lightweight, Distributed Computing, GPU

I. INTRODUCTION

Hardware architectures and platforms have been evolving fast

in the past few years, which have significant impacts on

processing large-scale data. While Big Data software

packages, such as Hadoop, were initially developed for

inexpensive commodity workstations, as multi-core machines

equipped with large memory capacities and hardware

accelerators are becoming increasingly affordable, new Big

Data systems that can take advantages of new hardware

features and deliver high performance, such as Apache Spark1

and Cloudera Impala 2 for in-memory and in-network

processing, are becoming more preferable. As a result, there

are growing interests on using High Performance Computing

(HPC) facilities that are typically equipped with powerful

processors (including accelerators) and high speed networks

for Big Data applications[1][2][3][4]. Unfortunately, accesses

to HPC facilities are very often restrictive and it is very

difficult (if not impossible) to reconfigure HPC platforms for

research purposes. On the other hand, while Cloud vendors

typically allow users to choose among a few predefined Cloud

resource configurations and install additional software stacks

on top of either bare metal or virtual machines, the allocated

computing instances do not allow hardware reconfigurations

for experiments either. For example, only very few Amazon

EC2 instances are equipped with Graphics Processing Units

(GPUs) and the only type of GPU instances provided by

Amazon EC2 is g2.2xlarge3. Furthermore, neither the details

of the underlying physical GPU specification nor the

virtualization overheads are specified. While this may be

acceptable for production use, is inappropriate for research

purposes. It is thus desirable to have a dedicated, fully

configurable and high-performance cluster for Big Data

research. Unfortunately, the Total Cost of Ownership (CTO)

of such a cluster is typically high and the approach may not be

always feasible.

GPS devices and smartphones have generated huge

amounts of location data. Very often point location data need

to be joined with urban infrastructure data to understand the

location data and make better decisions. While geospatial data

management techniques have been provided by both Spatial

Databases 4 and Geographical Information Systems (GIS 5),

existing software is incapable of processing large-scale

geospatial data for practical applications [5]. Quickly evolving

processor, storage and networking technologies require new

Big Data research to understand how new hardware impacts

the performance of large-scale data processing. We have been

developing techniques to process large-scale geo-referenced

spatial (or geospatial) data on both single computing nodes

and clusters equipped with GPUs and we refer to [5][6][7][8]

for details. While a small GPU cluster with ~10 nodes has

been built for internal use, the heterogeneity of the cluster with

different generations of CPUs and GPUs, different memory

capacities and different combinations of HDD/SSD drives has

made it difficult to use. More importantly, GPU-equipped

computing nodes have much higher ratios between floating

point computing power (in the order of TFlops and fast

growing) and network bandwidth (in the order of Gbps and

remains stable in the past decade) than regular computing

nodes at which Hadoop-based systems are targeting. While

many research works have exploited high-performance

networks (e.g., Infiniband 6) to narrow the gap and achieve

better performance for Big Data systems, in this study, we

propose to develop a tiny GPU cluster with much less

computing power while being equipped with standard

gigabyte Ethernet network, to investigate several Big Data

research issues from a domain-specific application

perspective. In particular, we have ported our implementations

of both single node spatial data processing techniques and a

lightweight distributed execution engine originally designed

for regular clusters (referred to as LDE hereafter [8]) to the

tiny GPU cluster and evaluate its performance on real world

geospatial datasets. The performance is further compared with

SpatialSpark [6], another distributed geospatial data

processing system we have developed on top of Apache Spark,

on the same tiny GPU cluster whereas appropriate.

Our technical contributions in this study can be

summarized as follows. First, we report our effort in building a

tiny GPU cluster consists of multiple Nivida Tegra K1 (TK1)

System on Chips (SoC) boards7, standard networking devices

and Solid State Drives (SSDs) for Big (Spatial) Data research.

The scaled-down GPU cluster has desired features for both

data intensive and computing intensive applications that may

not available in regular clusters, including high network

bandwidth to compute ratio, GPU acceleration using the

standard Nvidia CUDA 8 technology and shared memory

between CPU and GPU. Second, we have ported our in-house

developed LDE engines (including LDE-MC for multi-core

CPUs and LDE-GPU for GPUs) and SpatialSpark (for multi-

core CPUs) to the tiny GPU cluster. To the best of our

knowledge, we are not aware of previous works on processing

large-scale geospatial data on embedded systems (such as

Tk1) with GPU accelerations in a cluster computing setting.

Third, we report our experiment results on two real world

geospatial applications and the results have demonstrated good

scalability on the tiny GPU cluster.

II. BACKGROUND AND MOTIVATION

The success of Hadoop-based systems has attracted quite some

interests to improve Hadoop performance from many aspects,

including porting it to HPC facilities to utilize their high-end

computing processors, large memory capacities and high-

speed networks. A comparison of architecture and abstractions

between HPC and Apache Big Data Stacks (ABDS) is

presented in [1] and the authors argued that a convergence

between the two at many levels can be observed. While

regular Hadoop uses the Java-based Netty 9 package for

distributed communication, several works have proposed to

use Message Passing Interface (MPI10) libraries, which are

typically C/C++ based, to achieve better performance,

especially on HPC clusters with high-speed networks [9][2]. A

comprehensive assessment on the performance impact of high-

speed interconnects (including 10Gbps Ethernet and

Infiniband) on MapReduce is presented in [3]. A design of

Hadoop Distributed File System (HDFS 11) using Remote

Direct Memory Access (RDMA12) over InfiniBand via Java

Native Invocation (JNI13) is presented in [4] and a similar idea

is also presented in [10]. Recently, [11] discussed how

traditional HPC facilities can be optimized to accommodate

both traditional HPC applications (computing intensive) and

new data analytics applications (data intensive). While high-

speed networks in HPC facilities have been demonstrated to

achieve different levels of speedups over commodity Cloud

resources, local storage is also crucial to the performance of

Hadoop-based systems on HPC facilities. Unfortunately,

traditional HPC facilities generally rely on dedicated storage

nodes running parallel/distributed file systems (e.g., Luster-

based 14) which can be a bottleneck for data-intensive

applications. Using HPC clusters for Big Data applications

may require significant architectural redesigns to maximize

efficiency, which further mandates novel ideas on setting up

realistic yet low-cost and easy-to-access experiment

environments. We believe our idea on using SoC clusters as

scaled-down prototype systems could be an interesting idea.

Balancing latency and throughput has profound

implications in Big Data research. While traditional parallel

and distributed databases mostly targeted at reducing data

processing latency for moderately sized datasets, Big Data

systems need to take ownership costs and energy consumption

into consideration. Using large quantities of small processors

to achieve similar throughputs while reducing energy footprint

is becoming an increasingly important topic in Big Data

research. Works on using low-power ASICs [12] and FPGAs

[13] and power-efficient GPUs [14], Intel MICs [15] and SoCs

[16] to process Big Data have been reported in the past few

years with exciting results. Several previous works on

evaluating standalone ARM-based systems for relational data

query processing [17][16] have shown that while these low

profile systems are excellent for power-efficient computing

under low utilization, they may not necessarily lead to

significant energy saving under high utilization. However, we

are not aware of previous works on evaluating the

performance of a cluster of GPU-equipped SoCs for Big Data

applications. A very recent work on evaluating Hadoop on a

cluster of Exynos 5410 SoCs for relational queries using TPC-

C and TPC-H benchmarks is reported in [16]. An Exynos

5410 SoC consists of 4 Cortex-A7 (little) and 4 Cortex-A15

(big) CPU cores; however, its GPU is incapable of general

computing and is left unutilized. While both TK1 and Exynos

5410 include 4 Cortex-A15 CPU cores, TK1 has 192 Nvidia

CUDA cores that are capable of general computing in a way

the same as desktop/server grade GPUs, which makes TK1

much more powerful than Exynos 5410. Our work is

orthogonal to [16] in the sense that we target at spatial data

processing which is both data intensive and computing

intensive; and we compare with Spark instead of Hadoop.

Since Nvidia Tegra K1 (TK1) SoC boards became

available in 2014, its high computing power (up to 326 Gflops

from GPU alone) and low cost (currently $192) have made it

attractive in several mobile application domains, including real

time image processing, computer vision and robotics. Our

interests in TK1, in this study, however, are not on the

absolute performance, which is still weaker than a regular

CPU or a low-end discrete GPU on a desktop/server. Instead,

we plan to use TK1 as down-scaled computing node to build a

low-cost and low profile cluster with high network bandwidth

and high storage performance (by attaching SSDs) using

commodity peripherals for Big Data research. Different from

Raspberry Pi15 SoCs which either do not provide networking

capabilities or only provide 10Mbps or 100 Mbps through a

USB interface, TK1 uses standard 1Gbps network interface.

According to [16], data communication in Exynos 5410 also

uses USB which limits its effective network bandwidth to 200-

300 Mbps. The high network bandwidth to compute ratio

provided by TK1, in addition to supporting SSDs through

standard SATA interface, makes it ideal for our purpose.

While it is beyond the scope of this study to formally model

the mapping between a down-scaled TK1-based cluster and a

regular cluster equipped with desktop/server grade GPUs, we

hope the empirical results in a domain-specific application

(spatial join query processing in Big Spatial data) can provide

some insights on the feasibility and effectiveness of the

proposed scaled-down based approach for Big Data research.

As a proof-of-concept, we have developed a small

GPU cluster using four TK1 boards running Ubuntu Linux

14.04 with pre-configured drivers. Each TK1 board is

equipped with both a multi-core CPU (4 ARM A15 cores at

2.32 GHZ) and a GPU (192 CUDA cores at 850 MHZ). As the

onboard eMMC storage only has a capacity of 16GB, which is

insufficient for Big Data applications, we have attached a

Kingston 120GB SSDNow V300 drive to each board through

a SATA 6.0 gbps interface, with half capacity used as a disk

and half of the capacity used as virtual memory. The SSD

drive, although inexpensive ($60), provides a read and write

speed up to 450MB/s. Adding the SSD drive brings the total

cost of a computing node to around $250. Adding a 24-port

Buffalo Gigabit switch ($60), the 4-node tiny GPU cluster thus

costs slightly over $1000, which is still lower than many

desktop computers even without a discrete GPU, yet is still

capable of achieving >1TFlops computing power. While the

tiny GPU cluster can be used for general purpose, we are

currently focusing on processing large-scale spatial data. In

this study, it is not our intension to develop algorithms and

implementations that are specifically designed for SoC boards,

which are left for future work. Instead, we install both open

source software and our in-house spatial data processing

modules on the tiny GPU cluster, run experiments that we

have tested for regular multi-core CPU and GPU clusters and

compare their performance. We analyze the experiment results

and discuss several architectural design issues for big spatial

data processing on multi-core CPU and GPU equipped

clusters.

III. THE TINY GPU CLUSTER FOR DISTRIBUTED SPATIAL JOIN

QUERY PROCESSING

The architecture of the proposed tiny GPU cluster is illustrated

in Fig. 1, where relevant software and parallel programming

tools used in our C/C++ based implementations are also

shown. Due to budget constraint, the cluster currently has only

4 nodes but the switch allows up to 24 distributed nodes.

Within a node (TK1 board), each of the four ARM A15 cores

has a private L1 cache and a shared L2 cache. The GPU is

based on Nvidia Kepler microarchitecture and has 192 CUDA

cores in a Streaming Multiprocessor (SM). Conceptually, the

TK1 GPU has 1/14 of the computing power of GTX TITAN16

which has 14 SMs. We note that according to elinux website, a

TK1 board consumes ~11W power when performing

computing intensive image processing tasks17 while consumes

1.6-4.7W when running a disk-intensive search command18.

The low energy footprint of TK1 also makes it interesting to

use the tiny GPU cluster for energy efficiency related research

in Big Data applications, which is left for our future work.

The LDE engine [8] uses Apache Thrift to define data

types and service interfaces for data communication across the

network. Our micro-benchmark has confirmed that the

realized network bandwidth for point-to-point data

communication in the tiny (“Wimpy”) cluster can be close to

100 MB/s, which is the same as a regular “Brawny” cluster.

For our C/C++ based implementations, we program the four

Core

L1 SIMD

Core

L1 SIMD

Core

L1 SIMD

Core

L1 SIMD

L2

OpenMP

Shared Mem/L1 Cache

Thrift

DDR3 RAM

(2GB)

CPU GPU

SSD (120GB)

CUDA/THRUST

Fig. 1 Hardware Configuration and Software Stacks of a 4-node Tiny GPU Cluster

ARM cores using standard C/C++ with OpenMP 19 and we

program the GPU using CUDA together with the Thrust

parallel library20 which is also part of CUDA SDK. While our

parallel spatial join processing techniques and the LDE engine

are developed for “Brawny” clusters, porting to the “Wimpy”

cluster is rather smooth as the operating system (i.e., Ubuntu

Linux) hides away the differences among ARM and X86/64

CPUs.

Porting SpatialSpark to the tiny cluster is virtually

effortless, as Java Virtual Machine (JVM) and Hadoop/Spark

platform provides two additional layers of portability. The

only issue is that, as a 32-bit CPU, ARM A15 supports only

32-bit Java SDK which does not allow use large memory,

even though we have allocated 60GB SSD as virtual memory.

While this issue has less effect on C/C++ based LDE engine,

which has a small memory footprint (by design), Spark

requires significant amount of memory in runtimes and can

only accommodate small datasets with the remaining memory.

As the successor of Tegra K1, which has been announced by

Nvidia as Tegra X1 21 , has adopted a 64-bit ARM CPU

architecture, is likely to solve the issue. Nevertheless, high

infrastructure overheads of Hadoop and Spark makes it

unlikely for SoC-based clusters to achieve competitive

performance even after taking the scaling factor into

consideration. The experiment results to be presented in

Section III supports our observation. As such, we will focus on

evaluating the performance of the LDE engine due to its low

infrastructure overheads. While we refer to our technical

report for the design and implementation details of the LDE

engine and its application to distributed spatial query

processing [8], for the sake of completeness, we next provide a

brief introduction from a Big Spatial Data application

perspective. We use one of the experiments in Section IV for

illustration purpose.

Given a large taxi trip data (point dataset) and a census

block data (polygon dataset), the point-in-polygon test based

spatial join can be used as an example to introduce spatial data

management as a concrete Big Spatial Data application. A taxi

trip typically has a GPS-recorded pickup location (Origin) and

a drop-off location (Destination), together with many other

attributes, e.g., timestamps and fare amounts [5]. Counting the

numbers of pickup/drop-off locations by census blocks and

providing spatially aggregated statistics using different

temporal hierarchies (e.g., hourly, daily, weekdays/weekends

and peak/off-peak), can be very useful to help better

transportation and city planning [5]. To align points to census

blocks, a technique in spatial data management known as

spatial join is required. Our LDE engine adopts a “left-partition

and right-broadcast” strategy to partition point data across

distributed computing nodes and broadcast polygon data to all

participating distributed computing nodes for distributed query

execution [8]. The LDE engine accesses HDFS to retrieve both

raw data and index files in binary format, supports

asynchronous network communication, asynchronous disk I/O

and asynchronous computing, and support using native parallel

programming tools for local processing. The features make the

LDE engine efficient in processing large-scale data, when

compared with our previous works on extending Impala for

spatial data [6][7][8].

IV. EXPERIMENTS AND RESULTS

We have performed experiments using two real world large

geospatial datasets to test the performance and scalability of the

tiny GPU cluster for point-in-polygon test based spatial join.

The first experiment uses the taxi trip and census data (termed

as taxi-nycb experiments) where the pickup locations of

approximate 170 million taxi trips in NYC in 2013 are used as

the point dataset and the 2000 census blocks in the same region

with 38,794 polygons are used as the point dataset. As the

average number of points per polygon is only around 9, the

experiment is more data intensive. Our second experiment to

spatially joining a subset of global species occurrence locations

with World Wide Fund (WWF) global ecological regions. The

number of points is approximately 10 million and the number

of polygons is 14,458 and we term the experiment as g10m-

wwf. As the average number of vertices of the polygons in the

WWF polygon dataset is about 279, the experiment is much

more computing intensive.

In addition to performing the two experiments using

1, 2 and 4 nodes of the tiny GPU cluster, similar to the

experiments on regular GPU clusters as reported in [7][8], we

have also measured the runtimes in a standalone setting where

the distributed infrastructure is removed and computing is

iteratively performed on a single node. The results on multi-

core CPUs (labeled as LDE-MC) and GPUs (labeled as LDE-

GPU) are listed in Table I. For the first experiment (taxi-nycb),

we also report runtimes of SpatialSpark for comparison

purposes. We have not reported the performance of

SpatialSpark for the second experiment (g10m-wwf.) as it

cannot complete within a reasonable time.

TABLE I. RUNTIMES OF OF THE TINY GPU CLUSTER UNDER MULTIPLE

SETTINGS FOR TAXI-NYCB AND G10M-WWF EXPERIMENTS

Experiment Setting standalone 1-node 2-node 4-node

taxi-nycb LDE-MC 18.6 27.1 15.0 11.7

LDE-GPU 18.5 26.3 17.7 10.2

SpatialSpark - 179.3 95.0 70.5

g10m-wwf LDE-MC 1029.5 1290.2 653.6 412.9

LDE-GPU 941.9 765.9 568.6 309.7

From Table I, we can see that when the number of

nodes in the cluster is increased from 1 to 4, the speedup is

between 2.3X to 3.1X among all the experiment settings,

which is reasonable. While LDE-GPU still performs better

than LDE-MC in general (with only one exception, i.e., LDE-

MC using 2 nodes) on the tiny cluster, the speedups are

typically lower than those using a regular cluster as reported in

[7][8]. This can be due to the reason that CPU and GPU in a

TK1 board access the same DDR3 memory. Compared with

GDDR5 memory on desktop/server grade GPUs with 384-bit

memory bandwidth, the memory access latency is high and the

bandwidth is much lower for TK1 GPU. Nevertheless, both

LDE-MC and LDE-GPU have achieved significant speedups

over SpatialSpark (5.4X to 6.9X) in the taxi-nycb experiment.

The high efficiency may be due to several differences among

them: language (C/C++ vs. Scala/Java), platform (LDE vs.

Spark) and implementation efficiency of point-in-polygon test.

While we leave a more detailed analysis to future work, we

argue that a lightweight distributed execution engine for the

tiny cluster is advantageous. While we are able to successfully

set up Hadoop and Spark on the tiny cluster, we have

encountered several major technical challenges to port our

ISP-based systems [6][7], which extend Impala, to the tiny

GPU cluster due to the complexities of Impala and its various

required third party software packages. Even though we have

run SpatialSpark successfully on the tiny cluster, the

performance is less preferable when compared with the LDE

engine that is lightweight with less than 1,000 lines of code

[8].

It is also interesting to compare the performance of

the tiny GPU cluster with a regular GPU cluster. We have

increased the number of species occurrence records in the

g10m-wwf experiment from approximately 10 million to

approximately 50 million and run the experiment on the tiny

GPU cluster with 4 nodes. The new experiment (termed as

g50m-wwf) is thus more computing intensive and takes longer

on the tiny cluster. The performance results of the experiment

on an Amazon EC2 GPU cluster have been reported in [8] and

both results are tableted in Table II. For comparison purpose,

the performance on a high-end workstation in the standalone

setting is also listed in Table II.

TABLE II. RUNTIMES UNDER DIFFERENT HARDWARE CONFIGURATIONS

FOR THE G50M-WWF EXPERIMENT

 TK1-

Standal

one

TK1-4

Node

Workstation-

Standalone

EC2-4 Node

CPU Spec.

(per node)

ARM A15

2.34 GHZ

4 Cores
2 GB DDR3

Intel SB

2.6 GHZ

16 cores
128 GB DDR3

Intel SB

 2.6 GHZ

8 cores (virtual)
15 GB DDR3

GPU Spec.

(per node)

192 Cores

2GB DDR3

2,688 cores

6 GB GDDR5

1,536 cores

4 GB GDDR5

Runtime (s)
–MC

4478 1908 350 334

Runtime (s)

–GPU

4199 1523 174 105

From Table II we can see that, when comparing the

runtimes of the CPU implementation in standalone setting, the

workstation with dual eight-core Intel Sandy Bridge (SB)

CPUs is about 12.8X faster than TK1 with 4 ARM CPU cores.

Given an Intel CPU with 8 cores consumes 95W while an

ARM A15 CPU with 4 cores consumes 10W, the workstation

consumes 95*2/10=19X more power. This suggests that the

ARM CPU on TK1 can potentially achieve

95*2/10/12.8=1.48X more energy efficiency in the standalone

setting. On the other hand, when only energy consumed by

CPUs (at maximum level) is taken into consideration, the EC2

4-node cluster consumes 95/10=9.5X more energy but is

1908/334=5.7X faster, which may suggest the TK1 4-node

cluster can be 9.5/5.7=1.67X more energy efficient.

While the GPU model in the Amazon EC2 cluster is

not available to us (which could be virtualized GPU), the

workstation is known to be equipped with GTX Titan. In

standalone setting, the GPU implementation on the

workstation is 24X faster than TK1. Given that GTX Titan has

14X more CUDA cores, there is no evidence in this

experiment showing that the TK1 cluster is more performant

when only the number of GPU cores is taken into

consideration. The workstation can be 24/14=1.7X more

efficient than TK1. A similar trend can be observed on the

cluster performance with 4 nodes: the EC2 4-node cluster has

8X more CUDA cores while runs 14X faster which may

suggest that the EC2 4-node cluster is 1.75X more efficient

than the TK1 4-node cluster.

While it is tempting to draw a conclusion that TK1

CPU has a better energy efficiency than that of GPU for the

experiment in both the standalone setting and the 4-node

cluster setting by assuming that all CUDA cores consumes the

same amount of energy, we argue that more research is

needed. The runtimes of GPU implementations do not

necessarily translate into energy consumption linearly as

energy consumed by CPUs, memory, disk and network cannot

be easily incorporated in the simple energy model.

Furthermore, it is likely that GPU may become idle while

waiting for resources during the process. We leave more in-

depth investigation for future work.

V. CONCLUSIONS AND FUTURE WORK

Motivated by the increasing gap between the computing power

of GPU-equipped clusters and network bandwidth and disk

I/O throughput, we propose to develop a low-cost prototype

research cluster made of Nvidia TK1 SoC boards that can be

interconnected with standard 1Gbps network to facilitate Big

Data research. By porting our previous works on distributed

spatial query processing techniques, include SpatialSpark and

the LDE engine, we evaluate the performance of the tiny GPU

cluster for spatial join query processing on large-scale

geospatial data. Experiments on point-in-polygon test based

spatial join using two real world applications with tens to

hundreds of millions of points and tens of thousands of

polygons have demonstrated the efficiency of the LDE engine

when compared with SpatialSpark. Preliminary analysis on the

scaling effect between the tiny cluster and a regular Amazon

EC2 cluster using a simplified model seems to suggest that the

ARM CPU of the TK1 board is likely to achieve better energy

efficiency while the Nvidia GPU of the TK1 board is less

performant when compared with desktop/server grade GPUs,

in both the standalone setting and the 4-node cluster setting for

the two particular application.

For future work, first of all, we would like to develop

a formal method to model the scaling effect between SoC-

based clusters and regular clusters, not only including

processors but also memory, disk and network components.

Second, while it is beyond our scope to develop benchmarks

for all types of data, we would like to evaluate the

performance of SpatialSpark and the LDE engine using more

real world geospatial datasets and applications, e.g., distance

and nearest neighbor based spatial joins. We hope our work in

processing large-scale geospatial data, together with the

mainstream Big Data research on relational and graph data,

can play a complementary role in understanding the interplays

between hardware and software and develop novel techniques

for more efficient and scalable Big Data applications.

ACKNOWLEDGEMENT

This work is supported through NSF Grants IIS-1302423 and IIS-

1302439.

VI. REFERENCES

[1] S. Jha, J. Qiu, A. Luckow, P. Mantha and G. Fox, "A Tale of

Two Data-Intensive Paradigms: Applications, Abstractions, and

Architectures," in Proceedings of IEEE International Congress

on Big Data (BigData Congress), Anchorage, AK , 2014.

[2] X. Lu, F. Liang, B. Wang, L. Zha and Z. Xu, "DataMPI:

Extending MPI to Hadoop-Like Big Data Computing," in

Proceedngs of IEEE 28th International Parallel and Distributed

Processing Symposium, Phoenix, AZ , 2014.

[3] Y. Wang, ong, Y. Jiao, C. Xu, X. Li, T. Wang, X. Que, C. Cira,

B. Wang, Z. Liu, B. Bailey and W. Yu, "Assessing the

Performance Impact of High-Speed Interconnects on

MapReduce," in Specifying Big Data Benchmarks, Berlin

Heidelberg, Springer , 2014, pp. 148-163.

[4] N. S. Islam, M. W. Rahman, J. Jose, Rajach, R. rasekar, H.

Wang, H. Subramoni, C. Murthy, P and D. K. a, "High

Performance RDMA-based Design of HDFS over InfiniBand,"

in Proceedings of the International Conference on High

Performance Computing, Networking, Storage and Analysis

(SC'12), Salt Lake City, Utah, 2012.

[5] J. Zhang, S. You and L. Gruenwald, "Parallel Online Spatial and

Temporal Aggregations on Multi-core CPUs and Many-Core

GPUs," Information Systems, vol. 44, p. 134–154, 2014.

[6] S. You, J. Zhang and L. Gruenwald, "Large-Scale Spatial Join

Query Processing in Cloud," in Proceedings of International

Workshop on Cloud Data Management (CloudDM'15), Seoul,

KOREA, 2015 (to appear).

[7] S. You, J. Zhang and L. Gruenwald, "Scalable and Efficient

Spatial Data Management on Multi-Core CPU and GPU

Clusters: A Preliminary Implementation based on Impala," in

Proceedings of International Workshop on Big Data

Management on Emerging Hardware (HardBD’15), Seoul,

KOREA , 2015 (to appear).

[8] J. Zhang, S. You and L. Gruenwald, "A Lightweight Distributed

Execution Engine for Large-Scale Spatial Join Query

Processing," technical report, online at http://www-

cs.engr.ccny.cuny.edu/~jzhang/papers/lde_spatial_tr.pdf, 2015.

[9] Y. Wang, C. Xu, X. Li and W. Yu, "JVM-Bypass for Efficient

Hadoop Shuffling," in Proceedings of IEEE 27th International

Symposium on Parallel Distributed Processing (IPDPS),

Boston, MA , 2013.

[10] W. Yu, Y. Wang and X. Que, "Design and Evaluation of

Network-Levitated Merge for Hadoop Acceleration," IEEE

Transactions on Parallel and Distributed Systems, vol. 25, no. 3,

pp. 602-611, 2014.

[11] Y. Wang, R. Goldstone, W. Yu and T. Wang, "Characterization

and Optimization of Memory-Resident MapReduce on HPC

Systems," in Proceedings of IEEE 28th International Parallel

and Distributed Processing Symposium (IPDPS’14), Phonix,

AZ, 2014.

[12] L. Wu, Lottarini, rea, T. K. Paine, M. A. Kim and K. A. Ross,

"Q100: The Architecture and Design of a Database Processing

Unit," in Proceedings of the 19th International Conference on

Architectural Support for Programming Languages and

Operating Systems (ASPLOS '14), 2014, Salt Lake City, Utah,

USA.

[13] O. Arnold, S. Haas, G. Fettweis, B. Schlegel, T. Kissinger and

W. Lehner, "An Application-specific Instruction Set for

Accelerating Set-oriented Database Primitives," in Proceedings

of the 2014 ACM SIGMOD International Conference on

Management of Data (SIGMOD'14), Snowbird, Utah, USA,

2014.

[14] H. Wu, G. Diamos, T. Sheard, M. Aref, S. Baxter, Garl, M. and

S. Yalamanchili, "Red Fox: An Execution Environment for

Relational Query Processing on GPUs," in Proceedings of

Annual IEEE/ACM International Symposium on Code

Generation and Optimization (CGO'14), Orlando, FL, USA,

2014.

[15] M. Lu, L. Zhang, H. P. Huynh, Z. Ong, Y. Liang, B. He, R. Goh

and R. Huynh, "Optimizing the MapReduce framework on Intel

Xeon Phi coprocessor," in Proceedings of IEEE International

Conference on Big Data (BigData'13), 2013.

[16] D. Loghin, B. M. Tudor, H. Zhang, B. C. Ooi and Y. M. Teo, "A

Performance Study of Big Data on Small Nodes," PVLDB, vol.

8, no. 7, pp. 762-773, 2015.

[17] T. Muhlbauer, W. Rodiger, R. Seilbeck, A. Kemper and T.

Neumann, "Heterogeneity-conscious parallel query execution:

getting a better mileage while driving faster!," in Proceedings of

the Tenth International Workshop on Data Management on New

Hardware (DaMoN'14), 2014.

L. Wu, R. J. Barker, M. A. Kim and K. A. Ross, "Navigating Big

Data with High-throughput, Energy-efficient Data Partitioning," in

Proceedings of the 40th Annual International Symposium on

Computer Architecture (ISCA'13), 2013.

1 https://spark.apache.org/
2 https://github.com/cloudera/impala
3 http://aws.amazon.com/ec2/instance-types/
4 http://en.wikipedia.org/wiki/Spatial_database
5 http://en.wikipedia.org/wiki/Geographic_information_system
6 http://en.wikipedia.org/wiki/InfiniBand
7 https://developer.nvidia.com/jetson-tk1
8 http://www.nvidia.com/object/cuda_home_new.html
9 http://netty.io/
10 http://en.wikipedia.org/wiki/Message_Passing_Interface
11 http://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
12 http://en.wikipedia.org/wiki/Remote_direct_memory_access
13 http://en.wikipedia.org/wiki/Java_Native_Interface
14 http://lustre.org/
15 http://www.raspberrypi.org/
16 http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-titan
17 http://elinux.org/Jetson/Computer_Vision_Performance
18 http://elinux.org/Jetson/Jetson_TK1_Power
19 http://openmp.org/wp/
20 https://thrust.github.io/
21 http://www.nvidia.com/object/tegra-x1-processor.html

