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Abstract— City-wide GPS recorded taxi trip data contains rich 
information for traffic and travel analysis to facilitate 
transportation planning and urban studies. However, traditional 
data management techniques are largely incapable of processing 
big taxi trip data at the scale of hundreds of millions. In this study, 
we aim at utilizing the General Purpose computing on Graphics 
Processing Units (GPGPUs) technologies to speed up processing 
complex spatial queries on big taxi data on inexpensive commodity 
GPUs. By using the land use types of tax lot polygons as a proxy 
for trip purposes at the pickup and drop-off locations, we formulate 
a taxi trip data analysis problem as a large-scale nearest neighbor 
spatial query problem based on point-to-polygon distance. 
Experiments on nearly 170 million taxi trips in the New York City 
(NYC) in 2009 and 735,488 tax lot polygons with 4,698,986 
vertices have demonstrated the efficiency of the proposed 
techniques: the GPU implementations is about 10-20X faster than 
the host system and complete the spatial query in about a minute. 
We further discuss several interesting patterns discovered from the 
query results which warrant further study. The proposed approach 
can be an interesting alternative to traditional MapReduce/Hadoop 
based approaches to processing big data with respect to 
performance and cost.  

Keywords- High Performance, Spatial Query, Big Data, Taxi 
Trip, GPGPU 

I.  INTRODUCTION 

Taxicabs in many cities have been equipped with GPS 
devices and fare collection systems. Different types of trip 
related information, such as pickup and drop-off locations 
and timestamps, fares, trip durations and distances, have 
been automatically collected for billing and regulation 
compliance purposes. In the New York City (NYC), more 
than 13,000 taxicabs generate nearly half a million taxi trip 
a day on average which amounts to nearly 170 million trips 
in 2009. These taxi trips, when integrated with urban 
infrastructures, such as road networks and different types of 
zones, can be enormously useful for understanding traffic 
and travel pattern across NYC at different time periods and 
facilitating urban planning.  While there are well established 
data management techniques, such as Geographical 
Information Systems (GIS), Spatial Databases (SDB) and 
Moving Object Databases (MOD), to manage such geo-
referenced spatiotemporal data, the huge data volumes have 
prevented these existing technologies, which are mostly 
designed for disk-resident systems based on serial 
algorithms and running on uniprocessors, from achieving 

performance close to real-time responses to support 
interactive inquiries. For example, our previous experiments 
have shown that, simply uploading the raw data of 170 
million taxi trip records in a PostgreSQL database and 
create a geometry column for the pickup locations would 
cost 100+ hours on a high-end workstation with 48 GB 
memory and reasonably up-to-date dual Intel Xeon quad-
core processors [1]. Although the hardware can potentially 
provide much higher performance when its parallel 
processing power and large memory capacity are fully 
utilized, there is a significant gap between much needed 
high-performance and the level of achievable performance 
using existing software stack for big taxi trip data.   

While it is certainly desirable to design more 
sophisticated data structures and efficient algorithms to 
further improve the efficiency of serial designs and improve 
the performance of existing technologies, we consider 
exploiting parallel processing power, which is already 
economically available on commodity hardware ranging 
from desktops to workstations to virtual clusters in cloud 
computing, to be an effective alternative to handling the Big 
Spatial Data problem [2]. Different from most of the 
existing studies based on MapReduce/Hadoop techniques to 
distribute workload to multiple distributed computing nodes 
to achieve high-performance (e.g., [3,4]), in this study, we 
aim at utilizing the massively data parallel processing power 
on commodity Graphics Processing Units (GPUs) for spatial 
query processing on big taxi trip data and demonstrating its 
feasibility and efficiency. Our work is built on top of the 
framework of developing a high-performance data 
management system for large-scale Origin-Destination (OD) 
data on modern parallel hardware [1]. While we have 
addressed point-to-polyline distance type of queries on both 
multi-core CPUs and many-core GPUs in [1], we will focus 
on Nearest Neighbor (NN) type of queries between points 
and polygons in this study. Although both types of queries 
can be modeled within a general spatial join framework [5] 
and the yearly 170 million taxi trips in 2009 are used in both 
studies, the polygon dataset we used in this study has 
735,488 tax lot polygons with 4,698,986 vertices, which is 
much more complex than the street network data we use in 
[1] with 147,011 polylines and 352,111vertices (5X and 
13X, respectively). This brings significant higher computing 
intensity which makes GPU computing more desirable for 
analyzing taxi trip data.  



 The rest of the paper is arranged as the following. 
Section 2 introduces background, motivation and related 
work. Section 3 presents the workflow for taxi trip analysis 
based on spatial query processing. Section 4 provides the 
design and implementations of GPU-based spatial query 
processing techniques. Section 5 provides experiment and 
results on runtimes of system modules and discusses patterns 
identified from the taxi trip data. Finally Section 6 is the 
conclusions. 

II. BACKGROUND, MOTIVATION AND RELATED WORK 

Identifying travel patterns from recorded trips is important 
to understand human mobility and transportation planning. 
Existing approaches to trip purpose identification include 
traditional diary/phone based travel survey and more 
recently, GPS based travel survey [6,7]. As almost all 
taxicabs in cities of the developed countries have been 
equipped with GPS devices and different types of trip 
related information are recorded. For example, the more 
than 13,000 GPS-equipped medallion taxicabs in the New 
York City (NYC) generate nearly half a million taxi trips 
per day and more than 170 million trips per year serving 300 
million passengers. The number of yearly taxi riders is 
about 1/5 of that of subway riders and 1/3 of that of bus 
riders in NYC, according to MTA ridership statistics [8]. 
Taxi trips play important roles in everyday lives of NYC 
residents (or any major city worldwide) and understanding 
the trip patterns is instrumental in transportation modeling 
and planning. However, the large-scale taxi trip data at the 
level of hundreds of millions are well beyond the processing 
power of existing GIS and spatial databases technologies. 
As such, new computing infrastructure that can handle big 
taxi trip data is needed to process the data and identify trip 
patterns (such as trip purpose analysis) efficiently and 
effectively. 

As spatial is an important feature for many types of 
data (especially geo-referenced spatial data that is close to 
our everyday life) and spatial data volumes are ever 
increasing, several pioneering works have addressed the 
scalability issue on processing large-scale geospatial data.  
In the pre-Hadoop age, parallelization on spatial indexing 
and spatial join were based on low-level computation 
protocols which made their adoptions in practical 
applications very challenging (see [9] for a survey).  In 
recent years, there are significant research and application 
interests in adopting MapReduce/Hadoop based techniques 
for geospatial data processing (e.g. [3,4]). The coarse-
grained task-level parallelization model makes it relatively 
easy to adapt existing serial designs on a single CPU core to 
multiple CPU cores across distributed computing nodes. 
The availability of cloud computing resources also makes 
developing and deploying such systems much easier. 
Despite MapReduce/Hadoop based techniques are generally 
considered easy to use and have good scalability, they are 
also criticized for low resource utilizations [10] which 
makes improving single node efficiency desirable. Indeed, if 

more data can be processed within a computing node by 
fully utilizing the increasing number of processing cores and 
high memory bandwidth (which is typically 3 orders higher 
than disk I/O speed and 2 orders higher than network 
bandwidth, i.e., 10-100 GB/s vs. 0.1-1 GB vs. 10-100 
MB/s), the intra-node communications and disk I/Os (which 
is arguably the most expensive part) will be significantly 
reduced and the overall system performance can be 
improved. In this study, we aim at improving single-node 
computing efficiency by making use of GPU computing 
power.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1 Illustration of GPU hardware Architecture 
 
Compared with distributed computing and multi-

core CPU computing, using GPUs for general purpose 
computing (or GPGPU in short) is relative young. While we 
refer to [11] for more details of GPU computing, Fig. 1 
illustrates some key features of GPU hardware and Nvidia 
CUDA (Computing Unified Device Architecture [11]) 
programming model. Currently, GPUs are typically 
equipped as PCI-E devices to workstations and computing 
nodes but have their own graphics memory (top of Fig. 1). 
While transferring data between CPU memory and GPU 
memory incur additional overheads, very often offloading 
computing intensive tasks to GPUs is still beneficial due to 
their excellent parallel computing power, including large 
number of processing cores and high memory bandwidth. 
Roughly speaking, the GPU computing model supports both 
task parallelism at the thread block level and data 
parallelism at the thread level (Fig. 1). For a single GPU 
kernel designed for solving a particular problem, the 
boundary between task and data parallelism can be 
configured when the kernel is invoked (lower-left part of 
Fig. 1). However, to maximize performance, data items 
should be grouped into basic units that can be processed by 
a warp of threads (which are dynamically assigned to 
processor cores) without incurring significant divergence.  

While GPUs, as shared-memory parallel hardware, 
are generally considered lacking good scalability when 
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compared with shared-nothing architectures, we argue that 
the large numbers of processing cores and the high memory 
bandwidth available on GPUs have made them competitive 
in solving big data problems up to a certain scale. We 
further argue that, the techniques we have developed in this 
study for single computing node can be used as the building 
blocks to be integrated with existing MapReduce/Hadoop 
systems for larger scale problems to scale out. This is left 
for our future work. We would like to note that, while our 
research is motivated by practical needs on managing and 
processing big taxi trip data, many techniques can be 
applied to other types of spatial and relational data.  

III.  A FRAMEWORK FOR TRIP PURPOSE ANALYSIS USING 

SPATIAL QUERY PROCESSING 

Typically each taxi trip is associated with a pair of 
pickup location/time and drop-off location/time as well as 
fare, distance and duration information. While the trip 
records do not tell their trip purposes directly, when 
associating the pick-up/drop-off locations and times with 
urban infrastructure data, such as street networks, Land Use 
Types (LUTs) and Points-of-Interests (POIs), the trip-
purposes can be speculated. Although the identified trip 
purposes for individual trips may not be completely 
accurate, given the large number of taxi trips, the identified 
trip purposes are useful from a probability distribution 
perspective. We also believe identifying trip purposes from 
large-scale taxi trips is orthogonal and complementary to 
existing survey based (diary and/or GPS) trip purpose 
identification approaches where the accuracy is higher at the 
individual trip level but the numbers of trips are limited. The 
proposed approach represents a radical change from 
traditional labor-intensive transportation data collection to 
potentially deeper and more accurate understanding of urban 
dynamics with lower costs through ubiquitous sensing and 
computing intelligence.  

Through a partnership with the NYC Taxi and 
Limousine Commission (TLC), we have access to the raw 
transaction data of NYC medallion taxicabs for eighteen 
months (2008-2010) that amounts to roughly 300 million 
GPS-based trip records. We also have access to the NYC 
MapPluto Tax Lot from NYC Department of City Planning 
(DCP) [12].  The MapPluto tax lot dataset contains rich land 
use information where each tax lot (polygon) is associated 
with a LUT. Currently there are 11 LUTs (see Table 4 in 
Section V for the list).  A trip starts near a lot of Family 
Buildings (types 01 or 02) and ends near a lot of 
Commercial/Office Buildings (04) is likely to be work 
related. Similarly, a trip starts near a lot of Transportation& 
Utility (07) and ends near a lot of Open Space & Outdoor 
Recreation (09) is likely related to visitors outside of NYC. 
While it takes more domain knowledge and requires fine-
tuning the combinations of the N*N (N=11) Origin-
Destination types to identify more meaningful and 
interpretable trip categories, the most computationally 
expensive step is to associate each pickup and drop-off 

location with its nearest neighbor polygon. After the LUTs 
of the polygons at the pickup and drop-off locations of a taxi 
trip are derived through their nearest polygons, the trip can 
be aggregated to the corresponding statistics or histograms 
(one of N*N) for further analysis.  As N is fixed and is 
typically small, the computing cost for this final aggregation 
step is just a fraction of a second even on a single CPU core 
and can be parallelized using the techniques presented in 
[1]. As such, in this study, we will focus on the spatial query 
step, i.e., searching for nearest polygons based on point-to-
polygon boundary distances.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 Using LUT Label of Nearest Polygon (Tax Lot) of a 
Taxi Trip Record for Trip Analysis 

As illustrated in Fig. 2, the polygons that represent 
the tax lots are spatially non-overlapping and are 
constrained by the city street network.  As most taxi pickup 
and drop-off locations are along street segments, they are 
outside of tax lots. The exceptions might be due to GPS 
errors or arranged pickups/drop-offs in special cases. As 
such, it is natural to use the distance between a pickup/drop-
off location (point) and the boundary a polygon (tax lot) as a 
measurement of likelihood that the trip is related to the LUT 
of the tax lot. While it might be more accurate by taking all 
the tax lots within a distance R into consideration, as a first 
step, we currently take only the nearest tax lot within a 
distance R into consideration. Extending 1NN to KNN is 
relatively straightforward from a computing perspective, 
which is left for our future work. 

The observation has led us to develop a framework 
for trip purpose analysis using big taxi trip data, as shown in 
Fig. 3. The shaded components represent those that have 
been realized. Please note that incorporating temporal 
aggregation and filtering (the middle part of Fig. 3) is 
similar to what we have proposed in [1] from a technical 
perspective. The techniques can be used to analyze trip in 
specific time periods or during special events (e.g., new 
years, sport events). In our future work, we plan to 
incorporate Point-of-Interests (POIs) to further improve the 
accuracy of our trip purpose analysis. For tax lots in non-
residential areas, there can be many POIs located in the 
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same building in a tax lot and the POIs may have complex 
but interesting semantic relations that can potentially be 
useful for better accuracy. We also plan to use survey data 
in a machine-learning framework to improve the accuracy 
of our trip analysis. In all cases, the computing performance 
of the basic building block of the proposed framework in 

Fig. 3, i.e., searching the nearest polygons for all taxi trips, 
is the key in the success of trip purpose analysis using big 
taxi trip data. We next present the GPU-based spatial query 
processing techniques in the next section.  

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3 Framework of Big Taxi Trip Data Analysis 
 

IV.  PARALLEL DEISGNS AND 

IMPLEMENTATIONS ON GPGPUS 

The high-level designs are illustrated in Fig. 4 which 
follows a spatial join framework [5] closely by using a grid-
file structure for spatial indexing [1]. We next present the 
designs for the four modules in the spatial query processing, 
i.e., point indexing (to align points to grid cells), polygon 
indexing (to align expanded polygon Minimum Bounding 
Boxes –MBRs - to grid cells), spatial filtering (to pair up 
points with nearby polygons based on common grid cells) 
and spatial refinement (to associate each point with its 
nearest polygon based on point-to-polygon distances). As 
shown in the top part of Fig. 4, we store point coordinates 
and polygon vertex coordinates as arrays for better 
performance (e.g., being cache friendly on CPUs and 
coalesced memory accesses on GPUs). As detailed in [1], 

the boundaries of polygons and their rings are also stored as 
index arrays (i.e., PLI at the top-right part of Fig. 4).  

For point indexing, based on the experiments 
reported in [1], as it is simpler and more efficient to index 
points using a flat grid-file structure than the multi-level 
quad-tree structure that we previous developed in [13], we 
have used the flat grid-file structure in this study. While we 
refer to the details provided in [1], which also uses the same 
point dataset for a different application, basically points are 
sorted by using row-major ordered cell-identifiers as keys 
and points with a same cell identifier are grouped into a cell. 
As such, a point index array (PTI in the top-left part of Fig. 
4) is also used to store the starting positions of points in all 
the cells, in a way similar to the role of PLI. 

 For polygon indexing, the R-expanded MBRs of 
polygons, i.e., MBRs expanded by distance R along both 
directions, are also rasterized based on the same grid 
tessellation. It is clear that if a grid cell is not part of the 
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expanded MBR of a polygon, then any of the point in the 
cell is at least R distance away from the polygon boundary 
and such cell-polygon pair should be excluded from 
subsequent spatial refinement. The GPU implementations of 
the first three modules can reuse the techniques presented in 
[1] as the primitives-based parallel designs and 
implementations are portable across different parallel 
hardware platforms. The details are omitted here due to 
space limit.    

As shown in the middle of Fig. 4, for a cell-
polygon pair (C,P) that should be sent for further spatial 
refinement based on true geometrical distances between 
points and polygons, the coordinates of points that fall 
within the cell C and the coordinates of polygon vertices can 
be retrieved from their respective coordinate arrays. As the 
shortest distance between a point and a polygon is defined 
as the smallest distance between the point and all the 
polygon edges, we can further reuse the shortest point-to-

polyline distance computation module developed in [1] for 
this purpose. We do need, however, handle the neighboring 
vertices that belong to two different rings in a polygon in 
this particular application. As shown in the bottom of Fig. 4, 
we assign a (C,P) pair to a GPU computing block. Each 
thread is assigned to process a point which loops through all 
the polygon vertices to compute the shortest distance to the 
polygon. If a cell is paired with multiple polygons, then the 
polygon with the shortest smallest distance will be chosen to 
be associated with the point. The polygon identifier and the 
shortest distance will be assigned to each point. Although 
currently we have not used the computed shortest distances 
to adjust LUT probabilities for better accuracy, we plan to 
do so in our future work. As such, we have not used an 
obvious optimization of simply assigning the polygon 
identifier to all the points in a cell if only one polygon is 
paired up with the cell. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

V.  

 

Fig. 4 High-Level Designs of GPU-based Parallel Spatial Query Processing to Associate Polygons with Points 

Clearly, as R increases, the expanded polygon 
MBRs will likely to be more overlapped and a cell is likely 
to be paired up with more polygons. As such, the computing 
intensity increases as R goes up. We further note that, even 
for a large R value, it is possible that a grid cell is not paired 
up with any polygons. As such, our spatial query is not a 
nearest neighbor query in a strict sense, which requires find 
a nearest neighbor no matter how far way it is. Instead, the 
nearest neighbor polygon of a point in our approach is 
selected from polygons whose expanded MBR intersects 
with the cell that the point falls within, i.e., the cell is no 
more than R distance away from the MBR of the polygon. 
Please note that the rule does not guarantee that the shortest 
distance between a point and its nearest polygon is less than 
R. Although we can iteratively increase R until all points 
find their nearest polygon regardless R values to meet the 
conventional definition of nearest neighbor, we choose to 

use fixed R values in our experiments as we consider nearest 
neighbors are only meaningful within a certain distance 
buffer (as represented by R) in this particular application. 

V EXPERIMENTS, RESULTS AND DISCUSSIONS 

A Experiment Setup 

All experiments are performed on a Do-It-Yourself 
(DIY) workstation equipped with a single Intel dual-core 
Core i5-650 CPU running at 3.2 GHZ, 8 GB GDDR3 
memory and 500GB hard drive. Since the hardware support 
hyper-threading, the CPU appears to have four processing 
cores which are all used in our parallel implementations on 
CPUs. The CPU has 32KB L1 cache (per core) and 256KB 
L2 cache (per core) but there is no L3 cache for the CPU. 
The memory bandwidth is 21 GB/s. The total cost of all the 
parts used to assemble the workstation is around $1000 
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which put it in the lower end. The absence of L3 cache and 
the low memory bandwidth has significantly limited the 
machine’s computing power when compared with high-end 
workstations. While the low-cost workstation is fairly weak 
in terms of computing power, we have quipped with an 
Nvidia GTX Titan GPU that has 2,688 cores (running at 877 
MHZ), 6GB device memory and 288 GB/s memory 
bandwidth. We have compiled both the CPU and GPU 
source code with –O2 optimization flag for fair 
comparisons. We also mention that the total cost of the 
workstation (~$2000) is comparable or even lower than 
many computing nodes in cloud computing facilities which 
makes it possible to compare monetary cost. 

Our experiments focus on two aspects, i.e., the 
runtimes of spatial query processing and the interesting 
patterns that can be derived from taxi trip data. For the first 
set of experiments, we will report the runtimes of the four 
modules using three different R values using both CPUs and 
GPUs in Section V.B. For the second set of experiments, we 
will report the numbers of taxi trips in each of the N*N 
combinations as an O-D matrix and provide some 
preliminary analysis on some of the potentially interesting 
patterns based on the resulting matrix in Section V.C.  

B Results on Spatial Query Proceesing  

Since the runtimes of experiments on pickup locations and 
drop-off locations are largely the same, we will report 
runtimes for pickup locations unless stated otherwise. It is 
clear that point indexing is independent of R values while 
the rest three modules are sensitive to different R values.  

Table 1 Runtime Comparisons of Point Indexing 

CPU GPU 
Step 1: data loading from disk (ms) 26285.40 
Step 2: data preparation (ms) 1183.24 
Step 3: computing cell identifiers (ms) 221.43 385.17 
Step 4: sort based cell identifiers (ms) 8177.81 588.31 
Step 5: computing cell index array(ms) 1840.50 46.13 

 
Table 1 lists the runtimes of the five steps in point 

indexing in milliseconds. Note that the first two steps are 
performed on CPUs. The GPU implementation of the point 
indexing module differs in the last three steps. Note that we 
load both pickup and drop-off locations from disks in Step 1 
as they are stored in a same physical file. Step 2 checks data 
validity and performs some basic transformations. Although 
this step is easily parallelizable, since the runtime of this 
step is only a small fraction of the end-to-end runtime, we 
run this step in CPU sequentially for convenience. The 
reason that the GPU implementation has a higher runtime 
than CPU in Step 3 is that, point data is transferred from 
CPU to GPU in this step in the GPU-based implementation. 
Assuming that the CPU to GPU data transfer rate is 4 GB/s, 
transferring 170 million *8 bytes = 1.36GB data already 
takes 340 ms, which clearly dominates the GPU time in this 
step. From Table 1 we can see that, for the rest two steps, 

the GPU implementation is significant faster than the CPU 
implementation, i.e., 14X for Step 4 and 40X for Step 5. 

Table 2 lists the runtimes of the rest of the rest of 
the three modules on both CPUs and GPUs in milliseconds 
under three R values, i.e., 50, 100 and 200 feet, respectively. 
Clearly, as expected, the runtimes increase as R values 
become larger. Table 2 also show that, he spatial refinement 
module that computes the distances between points and 
polygon boundaries is the most computing intensive one 
among all the four modules (including point indexing). The 
GPU implementations have achieved 16X-75X speedups 
among these three modules. For the spatial refinement 
module, the speedups vary from 24X-30X. The results in 
this module are more consistent than the other modules.   

Table 2 Runtime and Speedup Comparisons among Other Three 
Modules Using Three R values 

R (ft)  Polygon-
indexing 

Spatial 
Filtering 

Spatial 
Refinement 

50 CPU (ms) 2579 2175 613031 
GPU (ms) 161 46 25507 
Speedup 16.03X 47.20X 24.03X 

100 CPU (ms) 4743 3921 789149 
GPU (ms) 293 74 29999 
Speedup 16.19X 49.96X 26.31X 

200 CPU (ms) 46287 12287 1260588 
GPU (ms) 634 164 43067 
 73.01X 74.90X 29.27X 

 
To better understand the overall performance of the 

CPU-based implementations and the GPU-based 
implementations, we have listed the end-to-end runtimes 
under two scenarios, i.e., with and without including point 
data disk I/Os and the corresponding speedups.  While we 
have parallelized all the important steps in the four modules, 
disk I/Os remain to be a bottleneck that is difficult to tackle 
in big data applications.  The speedups listed in the right-
most column of Table 3 represent the upper bounds that 
GPU computing can expect to achieve, after removing the 
disk I/O bottleneck (such as pre-loading or using flash 
drives). By including point data disk I/O times, as shown in 
the third column of Table 3, the realized speedups of the 
end-to-end runtimes in this study under the three R values 
range from 12X to 19X, which are still impressive. While 
we cannot include the runtimes of single thread 
implementations due to space limit, our results on the spatial 
refinement module (computing point-to-polygon distance 
and searching for nearest polygon) indicate that using all the 
4-threads in the 2 CPU cores is about 1/3 better than single-
thread (using a single core), i.e., 1.5X speedup. This may 
indicate that, limited cache capacity and low memory 
bandwidth on this low-end workstation may among the 
factors that prevent linear scalability with respect to 
processor cores and hardware threads, given that our data 
parallel designs have demonstrated better scalability on 
server grade CPUs [1].  



Table 3 End-to-End Runtime and Speedup Comparisons With and 
Without Including Point Data Disk I/O time 

R 
(ft) 

 With Point data 
disk I/O time 

Without Point data 
disk I/O time 

50 CPU (ms) 655493 629208 
GPU (ms) 54203 27917 
Speedup 12.09X 22.54X 

100 CPU (ms) 835521 809236 
GPU (ms) 58859 32574 
Speedup 14.20X 24.84X 

200 CPU (ms) 1356870 1330585 
GPU (ms) 72355 46070 
Speedup 18.75X 28.88X 

We have not included direct comparisons with 
Hadoop-based implementations in this study as we are not 
aware of existing Hadoop-based implementations that have 
similar functionality. However, our early work presented in 
a technical report at [14] have included a serial CPU 
implementation using two popular open source geospatial 
software packages, i.e., libspatialindex [15] for R-Tree 
based polygon indexing and GDAL [16], for point-to-
polygon distance computation. While the serial CPU 
implementation simply query the nearest polygon for each 
point iteratively, which leaves room for algorithmic 
improvements, the performance can be used as a baseline 
for an idealized comparison. Assuming that runtime of the 
serial implementation is Ts, then the best expected runtime 
for a Hadoop system with N computing nodes would be 
Ts/N, by excluding the overheads of network 
communication costs and disk I/Os for intermediate results. 
According to [14], for R=100, the end-to-end runtime for 
the serial CPU implementation to associate points with their 
nearest polygons is 110,093seconds. For verification 
purposes, the serial CPU implementation code has been 
made available online at [17]. In contrast, by adding up the 
runtimes of the four modules in the R=100 experiments, the 
end-to-end runtimes for our GPU implementation is 
Tg=58.856 and seconds including point data disk I/O time 
and Tg=32.574 seconds without including I/O time.  In 
order for a Hadoop-based implementation to match the 
GPU-based implementation by adapting the serial 
implementation, even under the idealized assumption, the 
number of processing units would be N=Ts/Tg. Although N 
might be different when plugging in runtimes under 
different scenarios and accounting the differences among 
the CPUs, generally N should be in the order of 500-3000 
based on the simple calculation. The computed N value is 
well above the numbers of computing nodes that are utilized 
by typical applications (in the order of dozes). The results 
may indicate that, GPUGPU computing can be attractive to 
practical big data applications with respect to end-to-end 
performance and monetary cost. On the other hand, the 
development cycle is much shorter for the serial 
implementation using open source packages, which can be 
more important in certain applications. Plugging the serial 
implementation into a Hadoop system by chunking points 

into segments is also relatively straightforward, which can 
be advantageous. The work reported in this study can serve 
as a case study to understand tradeoffs among different 
technologies in big data applications.  

C RESULTS ON TAXI TRIP DATA ANALYSIS 

The output of our spatial query processing is a N*N matrix 
with each element in the matrix n[i][j] represents the 
number of trips from LUT i to LUT j. We have added 00 to 
indicate that LUT cannot be identified for either pickup 
location or drop-off location or both.  As discussed earlier, 
as i=1..11 and j=1..11, these 121 combinations can be 
categorized into a few types of trip purposes for more 
domain-specific analysis; this is left for our future work. In 
this section, we will provide a preliminary analysis on the 
spatial query results which are listed in Table 4.  

From the totals listed in the last column of Table 4, 
it is clear that the top-3 LUTs for pickup locations are 05 
(Commercial & Office Buildings, 46.1 million), 09 (Open 
Space & Outdoor Recreation, 37.3 million) and 04 (Mixed 
Residential & Commercial Buildings, 28.5 million). 
Interestingly, based on the last row of Table 4, the top-3 
drop-off LUTs are also 05 (44.6 million), 09 (38.9 million) 
and 04 (24.9 million), in the same order. These three LUTs 
cover about 2/3 of trips with respect to both pickup 
locations and drop-off locations and each of them has at 
least 20 million trips for both pickup and drop-off locations. 
LUT 03 (Multi-Family Elevator Buildings), 07 
(Transportation & Utility) and 08 (Public Facilities & 
Institutions) are among the next tier LUTs with respect to 
the numbers of trips for both pickup and drop-off locations 
and they are in the range of 10-20 million. Trips that are 
covered by all the rest five LUTs are far below 10 million. 
The clear three-tier pattern makes it interesting for further 
studies.  

Table 4 also suggests that, among the 13.1 million 
trips that start at LUT 07 (Transportation & Utility), the 
destination of the majority of the trips are LUT 05 
(Commercial & Office Buildings, 4.1 million) followed by 
LUT 09 (Open Space & Outdoor Recreation, 2.5 million), 
LUT 07 itself (2.2 million) and LUT 04 (Mixed Residential 
& Commercial Buildings, 1.2 million). This may indicate 
passengers who arrive at NYC through public transportation 
(air, rail or bus) are mostly for business, leisure, transfer or 
coming back home (in this order). Some similar patterns can 
be derived from Table 4 for further analysis. Although 
subsequent validations are required for these patterns, the 
spatial query results are quite useful to stimulate hypothesis. 
While the results reported here are aggregated at the highest 
spatial (citywide) and temporal scale (yearly), our 
techniques allow incorporating spatial and temporal filtering 
for finer scale aggregations. We are also in the process of 
integrating visualization modules to visualize individual as 
well as aggregated query results for better interpretation and 
validate potentially interesting patterns to facilitate decision 
making.  



 

Table 4 City-Level Origin-Destination Matrix of Numbers of Aggregated Trips in 2009 in NYC (in millions)

F/T 00 01 02 03 04 05 06 07 08 09 10 11 Total 
00 0.151 0.078 0.123 0.197 0.297 0.622 0.072 0.184 0.181 0.231 0.044 0.027 2.209 
01 0.012 0.054 0.081 0.133 0.168 0.237 0.035 0.054 0.085 0.164 0.011 0.022 1.057 
02 0.089 0.108 0.253 0.417 0.795 0.831 0.122 0.153 0.316 0.525 0.035 0.063 3.707 
03 0.260 0.263 0.715 2.035 3.004 4.593 0.543 0.979 1.192 2.769 0.249 0.279 16.880 
04 0.579 0.411 1.112 3.373 5.905 7.465 0.984 1.309 2.210 4.336 0.424 0.441 28.549 
05 0.711 0.586 1.333 4.844 6.496 19.486 1.445 3.813 2.964 3.083 0.864 0.477 46.103 
06 0.121 0.057 0.161 0.526 0.764 1.197 0.204 0.213 0.309 0.245 0.063 0.063 3.922 
07 0.073 0.365 0.344 0.913 1.235 4.099 0.261 2.246 0.724 2.528 0.152 0.182 13.122 
08 0.160 0.198 0.493 1.350 2.083 2.444 0.285 0.470 0.947 1.423 0.128 0.104 10.086 
09 0.279 0.442 0.968 2.512 3.472 2.313 0.274 1.665 1.576 23.121 0.267 0.440 37.330 
10 0.074 0.038 0.090 0.193 0.431 0.812 0.070 0.138 0.157 0.129 0.042 0.031 2.206 
11 0.024 0.029 0.068 0.205 0.314 0.501 0.048 0.140 0.099 0.387 0.015 0.069 1.899 

Total 2.533 2.630 5.743 16.697 24.965 44.599 4.343 11.365 10.760 38.940 2.295 2.198 167.068 
LUT labels (defined in Section III): 00-unknown, 01- One & Two Family Buildings, 02 - Multi-Family Walk-Up Buildings, 03- Multi-Family Elevator 
Buildings, 04- Mixed Residential & Commercial Buildings, 05- Commercial & Office Buildings, 06-Industrial & Manufacturing, 07-Transportation & 
Utility, 08-Public Facilities & Institutions, 09 - Open Space & Outdoor Recreation, 10 - Parking Facilities, 11-Vacant Land.    

 

VI.  CONCLUSIONS  

In this study, we aim at utilizing the massively data parallel 
processing power provided by modern GPUs to speed up 
spatial query processing on large-scale taxi trip data for 
aggregated trip purpose analysis. By integrating the parallel 
designs and implementations of GPU-based spatial indexing 
and query processing techniques, we have successfully 
developed a set of techniques to compute the nearest 
polygon of both pickup and drop-off locations in a taxi trip 
record and aggregate taxi trips based on land use types of 
their nearest polygons. Experiments have shown that our 
GPU implementations can complete such complex spatial 
queries in about 50-75 seconds using an inexpensive 
commodity GPU device. The performance is 10X-20X 
higher than the host machine with an Intel dual-core CPU 
when all the cores and hardware supported threads are fully 
used. Preliminary analysis on the resulting trip count matrix 
has demonstrated interesting patterns and opens the doors 
for future work to validate the patterns and discovery new 
patterns through more complex spatial, temporal and 
spatiotemporal queries.  
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