
High-Performance Spatial Query Processing on Big Taxi Trip Data
using GPGPUs

Jianting Zhang
Department of Computer Science
The City College of New York

 New York, NY, USA
jzhang@cs.ccny.cuny.edu

Simin You
Dept. of Computer Science

CUNY Graduate Center
New York, NY, USA
syou@gc.cuny.edu

Le Gruenwald
School of Computer Science

University of Oklahoma
Norman, OK, USA

ggruenwald@ou.edu

Abstract— City-wide GPS recorded taxi trip data contains rich
information for traffic and travel analysis to facilitate
transportation planning and urban studies. However, traditional
data management techniques are largely incapable of processing
big taxi trip data at the scale of hundreds of millions. In this study,
we aim at utilizing the General Purpose computing on Graphics
Processing Units (GPGPUs) technologies to speed up processing
complex spatial queries on big taxi data on inexpensive commodity
GPUs. By using the land use types of tax lot polygons as a proxy
for trip purposes at the pickup and drop-off locations, we formulate
a taxi trip data analysis problem as a large-scale nearest neighbor
spatial query problem based on point-to-polygon distance.
Experiments on nearly 170 million taxi trips in the New York City
(NYC) in 2009 and 735,488 tax lot polygons with 4,698,986
vertices have demonstrated the efficiency of the proposed
techniques: the GPU implementations is about 10-20X faster than
the host system and complete the spatial query in about a minute.
We further discuss several interesting patterns discovered from the
query results which warrant further study. The proposed approach
can be an interesting alternative to traditional MapReduce/Hadoop
based approaches to processing big data with respect to
performance and cost.

Keywords- High Performance, Spatial Query, Big Data, Taxi
Trip, GPGPU

I. INTRODUCTION

Taxicabs in many cities have been equipped with GPS
devices and fare collection systems. Different types of trip
related information, such as pickup and drop-off locations
and timestamps, fares, trip durations and distances, have
been automatically collected for billing and regulation
compliance purposes. In the New York City (NYC), more
than 13,000 taxicabs generate nearly half a million taxi trip
a day on average which amounts to nearly 170 million trips
in 2009. These taxi trips, when integrated with urban
infrastructures, such as road networks and different types of
zones, can be enormously useful for understanding traffic
and travel pattern across NYC at different time periods and
facilitating urban planning. While there are well established
data management techniques, such as Geographical
Information Systems (GIS), Spatial Databases (SDB) and
Moving Object Databases (MOD), to manage such geo-
referenced spatiotemporal data, the huge data volumes have
prevented these existing technologies, which are mostly
designed for disk-resident systems based on serial
algorithms and running on uniprocessors, from achieving

performance close to real-time responses to support
interactive inquiries. For example, our previous experiments
have shown that, simply uploading the raw data of 170
million taxi trip records in a PostgreSQL database and
create a geometry column for the pickup locations would
cost 100+ hours on a high-end workstation with 48 GB
memory and reasonably up-to-date dual Intel Xeon quad-
core processors [1]. Although the hardware can potentially
provide much higher performance when its parallel
processing power and large memory capacity are fully
utilized, there is a significant gap between much needed
high-performance and the level of achievable performance
using existing software stack for big taxi trip data.

While it is certainly desirable to design more
sophisticated data structures and efficient algorithms to
further improve the efficiency of serial designs and improve
the performance of existing technologies, we consider
exploiting parallel processing power, which is already
economically available on commodity hardware ranging
from desktops to workstations to virtual clusters in cloud
computing, to be an effective alternative to handling the Big
Spatial Data problem [2]. Different from most of the
existing studies based on MapReduce/Hadoop techniques to
distribute workload to multiple distributed computing nodes
to achieve high-performance (e.g., [3,4]), in this study, we
aim at utilizing the massively data parallel processing power
on commodity Graphics Processing Units (GPUs) for spatial
query processing on big taxi trip data and demonstrating its
feasibility and efficiency. Our work is built on top of the
framework of developing a high-performance data
management system for large-scale Origin-Destination (OD)
data on modern parallel hardware [1]. While we have
addressed point-to-polyline distance type of queries on both
multi-core CPUs and many-core GPUs in [1], we will focus
on Nearest Neighbor (NN) type of queries between points
and polygons in this study. Although both types of queries
can be modeled within a general spatial join framework [5]
and the yearly 170 million taxi trips in 2009 are used in both
studies, the polygon dataset we used in this study has
735,488 tax lot polygons with 4,698,986 vertices, which is
much more complex than the street network data we use in
[1] with 147,011 polylines and 352,111vertices (5X and
13X, respectively). This brings significant higher computing
intensity which makes GPU computing more desirable for
analyzing taxi trip data.

 The rest of the paper is arranged as the following.
Section 2 introduces background, motivation and related
work. Section 3 presents the workflow for taxi trip analysis
based on spatial query processing. Section 4 provides the
design and implementations of GPU-based spatial query
processing techniques. Section 5 provides experiment and
results on runtimes of system modules and discusses patterns
identified from the taxi trip data. Finally Section 6 is the
conclusions.

II. BACKGROUND, MOTIVATION AND RELATED WORK

Identifying travel patterns from recorded trips is important
to understand human mobility and transportation planning.
Existing approaches to trip purpose identification include
traditional diary/phone based travel survey and more
recently, GPS based travel survey [6,7]. As almost all
taxicabs in cities of the developed countries have been
equipped with GPS devices and different types of trip
related information are recorded. For example, the more
than 13,000 GPS-equipped medallion taxicabs in the New
York City (NYC) generate nearly half a million taxi trips
per day and more than 170 million trips per year serving 300
million passengers. The number of yearly taxi riders is
about 1/5 of that of subway riders and 1/3 of that of bus
riders in NYC, according to MTA ridership statistics [8].
Taxi trips play important roles in everyday lives of NYC
residents (or any major city worldwide) and understanding
the trip patterns is instrumental in transportation modeling
and planning. However, the large-scale taxi trip data at the
level of hundreds of millions are well beyond the processing
power of existing GIS and spatial databases technologies.
As such, new computing infrastructure that can handle big
taxi trip data is needed to process the data and identify trip
patterns (such as trip purpose analysis) efficiently and
effectively.

As spatial is an important feature for many types of
data (especially geo-referenced spatial data that is close to
our everyday life) and spatial data volumes are ever
increasing, several pioneering works have addressed the
scalability issue on processing large-scale geospatial data.
In the pre-Hadoop age, parallelization on spatial indexing
and spatial join were based on low-level computation
protocols which made their adoptions in practical
applications very challenging (see [9] for a survey). In
recent years, there are significant research and application
interests in adopting MapReduce/Hadoop based techniques
for geospatial data processing (e.g. [3,4]). The coarse-
grained task-level parallelization model makes it relatively
easy to adapt existing serial designs on a single CPU core to
multiple CPU cores across distributed computing nodes.
The availability of cloud computing resources also makes
developing and deploying such systems much easier.
Despite MapReduce/Hadoop based techniques are generally
considered easy to use and have good scalability, they are
also criticized for low resource utilizations [10] which
makes improving single node efficiency desirable. Indeed, if

more data can be processed within a computing node by
fully utilizing the increasing number of processing cores and
high memory bandwidth (which is typically 3 orders higher
than disk I/O speed and 2 orders higher than network
bandwidth, i.e., 10-100 GB/s vs. 0.1-1 GB vs. 10-100
MB/s), the intra-node communications and disk I/Os (which
is arguably the most expensive part) will be significantly
reduced and the overall system performance can be
improved. In this study, we aim at improving single-node
computing efficiency by making use of GPU computing
power.

Fig. 1 Illustration of GPU hardware Architecture

Compared with distributed computing and multi-

core CPU computing, using GPUs for general purpose
computing (or GPGPU in short) is relative young. While we
refer to [11] for more details of GPU computing, Fig. 1
illustrates some key features of GPU hardware and Nvidia
CUDA (Computing Unified Device Architecture [11])
programming model. Currently, GPUs are typically
equipped as PCI-E devices to workstations and computing
nodes but have their own graphics memory (top of Fig. 1).
While transferring data between CPU memory and GPU
memory incur additional overheads, very often offloading
computing intensive tasks to GPUs is still beneficial due to
their excellent parallel computing power, including large
number of processing cores and high memory bandwidth.
Roughly speaking, the GPU computing model supports both
task parallelism at the thread block level and data
parallelism at the thread level (Fig. 1). For a single GPU
kernel designed for solving a particular problem, the
boundary between task and data parallelism can be
configured when the kernel is invoked (lower-left part of
Fig. 1). However, to maximize performance, data items
should be grouped into basic units that can be processed by
a warp of threads (which are dynamically assigned to
processor cores) without incurring significant divergence.

While GPUs, as shared-memory parallel hardware,
are generally considered lacking good scalability when

A

B
C

Thread Block

compared with shared-nothing architectures, we argue that
the large numbers of processing cores and the high memory
bandwidth available on GPUs have made them competitive
in solving big data problems up to a certain scale. We
further argue that, the techniques we have developed in this
study for single computing node can be used as the building
blocks to be integrated with existing MapReduce/Hadoop
systems for larger scale problems to scale out. This is left
for our future work. We would like to note that, while our
research is motivated by practical needs on managing and
processing big taxi trip data, many techniques can be
applied to other types of spatial and relational data.

III. A FRAMEWORK FOR TRIP PURPOSE ANALYSIS USING

SPATIAL QUERY PROCESSING

Typically each taxi trip is associated with a pair of
pickup location/time and drop-off location/time as well as
fare, distance and duration information. While the trip
records do not tell their trip purposes directly, when
associating the pick-up/drop-off locations and times with
urban infrastructure data, such as street networks, Land Use
Types (LUTs) and Points-of-Interests (POIs), the trip-
purposes can be speculated. Although the identified trip
purposes for individual trips may not be completely
accurate, given the large number of taxi trips, the identified
trip purposes are useful from a probability distribution
perspective. We also believe identifying trip purposes from
large-scale taxi trips is orthogonal and complementary to
existing survey based (diary and/or GPS) trip purpose
identification approaches where the accuracy is higher at the
individual trip level but the numbers of trips are limited. The
proposed approach represents a radical change from
traditional labor-intensive transportation data collection to
potentially deeper and more accurate understanding of urban
dynamics with lower costs through ubiquitous sensing and
computing intelligence.

Through a partnership with the NYC Taxi and
Limousine Commission (TLC), we have access to the raw
transaction data of NYC medallion taxicabs for eighteen
months (2008-2010) that amounts to roughly 300 million
GPS-based trip records. We also have access to the NYC
MapPluto Tax Lot from NYC Department of City Planning
(DCP) [12]. The MapPluto tax lot dataset contains rich land
use information where each tax lot (polygon) is associated
with a LUT. Currently there are 11 LUTs (see Table 4 in
Section V for the list). A trip starts near a lot of Family
Buildings (types 01 or 02) and ends near a lot of
Commercial/Office Buildings (04) is likely to be work
related. Similarly, a trip starts near a lot of Transportation&
Utility (07) and ends near a lot of Open Space & Outdoor
Recreation (09) is likely related to visitors outside of NYC.
While it takes more domain knowledge and requires fine-
tuning the combinations of the N*N (N=11) Origin-
Destination types to identify more meaningful and
interpretable trip categories, the most computationally
expensive step is to associate each pickup and drop-off

location with its nearest neighbor polygon. After the LUTs
of the polygons at the pickup and drop-off locations of a taxi
trip are derived through their nearest polygons, the trip can
be aggregated to the corresponding statistics or histograms
(one of N*N) for further analysis. As N is fixed and is
typically small, the computing cost for this final aggregation
step is just a fraction of a second even on a single CPU core
and can be parallelized using the techniques presented in
[1]. As such, in this study, we will focus on the spatial query
step, i.e., searching for nearest polygons based on point-to-
polygon boundary distances.

Fig. 2 Using LUT Label of Nearest Polygon (Tax Lot) of a
Taxi Trip Record for Trip Analysis

As illustrated in Fig. 2, the polygons that represent
the tax lots are spatially non-overlapping and are
constrained by the city street network. As most taxi pickup
and drop-off locations are along street segments, they are
outside of tax lots. The exceptions might be due to GPS
errors or arranged pickups/drop-offs in special cases. As
such, it is natural to use the distance between a pickup/drop-
off location (point) and the boundary a polygon (tax lot) as a
measurement of likelihood that the trip is related to the LUT
of the tax lot. While it might be more accurate by taking all
the tax lots within a distance R into consideration, as a first
step, we currently take only the nearest tax lot within a
distance R into consideration. Extending 1NN to KNN is
relatively straightforward from a computing perspective,
which is left for our future work.

The observation has led us to develop a framework
for trip purpose analysis using big taxi trip data, as shown in
Fig. 3. The shaded components represent those that have
been realized. Please note that incorporating temporal
aggregation and filtering (the middle part of Fig. 3) is
similar to what we have proposed in [1] from a technical
perspective. The techniques can be used to analyze trip in
specific time periods or during special events (e.g., new
years, sport events). In our future work, we plan to
incorporate Point-of-Interests (POIs) to further improve the
accuracy of our trip purpose analysis. For tax lots in non-
residential areas, there can be many POIs located in the

One &Two Family
Buildings

Multi-Family Elevator
Buildings Home

Commercial & Office
Buildings

Public Facilities &
Institutions

same building in a tax lot and the POIs may have complex
but interesting semantic relations that can potentially be
useful for better accuracy. We also plan to use survey data
in a machine-learning framework to improve the accuracy
of our trip analysis. In all cases, the computing performance
of the basic building block of the proposed framework in

Fig. 3, i.e., searching the nearest polygons for all taxi trips,
is the key in the success of trip purpose analysis using big
taxi trip data. We next present the GPU-based spatial query
processing techniques in the next section.

Fig. 3 Framework of Big Taxi Trip Data Analysis

IV. PARALLEL DEISGNS AND

IMPLEMENTATIONS ON GPGPUS

The high-level designs are illustrated in Fig. 4 which
follows a spatial join framework [5] closely by using a grid-
file structure for spatial indexing [1]. We next present the
designs for the four modules in the spatial query processing,
i.e., point indexing (to align points to grid cells), polygon
indexing (to align expanded polygon Minimum Bounding
Boxes –MBRs - to grid cells), spatial filtering (to pair up
points with nearby polygons based on common grid cells)
and spatial refinement (to associate each point with its
nearest polygon based on point-to-polygon distances). As
shown in the top part of Fig. 4, we store point coordinates
and polygon vertex coordinates as arrays for better
performance (e.g., being cache friendly on CPUs and
coalesced memory accesses on GPUs). As detailed in [1],

the boundaries of polygons and their rings are also stored as
index arrays (i.e., PLI at the top-right part of Fig. 4).

For point indexing, based on the experiments
reported in [1], as it is simpler and more efficient to index
points using a flat grid-file structure than the multi-level
quad-tree structure that we previous developed in [13], we
have used the flat grid-file structure in this study. While we
refer to the details provided in [1], which also uses the same
point dataset for a different application, basically points are
sorted by using row-major ordered cell-identifiers as keys
and points with a same cell identifier are grouped into a cell.
As such, a point index array (PTI in the top-left part of Fig.
4) is also used to store the starting positions of points in all
the cells, in a way similar to the role of PLI.

 For polygon indexing, the R-expanded MBRs of
polygons, i.e., MBRs expanded by distance R along both
directions, are also rasterized based on the same grid
tessellation. It is clear that if a grid cell is not part of the

Pre-processed Taxi Pickup and Drop-off Locations POI Locations and Categories Land-use types (polygons)

Finding top-K nearest POI categories
based on Point-to-Point Distance

Finding nearest land-use types based
on Point-to-Polygon Distance

Probabilistic Trip Purpose distribution (POI)

Semantic Connection Networks

Probabilistic Trip Purpose distribution (Land Use)

 Year

Month

Day
Hour

Day of Year Week of Year

Day of Week

15/30-minutes

Taxi pickup/drop-off timestamps

Peak/off-peak

Temporal
aggregation and

filtering

Trip Purpose Patterns identified by algorithms Surveyed trip purposes

Diary and GPS
based trip data

Verification and accuracy report Rule learning (e.g., probabilistic assignment)

expanded MBR of a polygon, then any of the point in the
cell is at least R distance away from the polygon boundary
and such cell-polygon pair should be excluded from
subsequent spatial refinement. The GPU implementations of
the first three modules can reuse the techniques presented in
[1] as the primitives-based parallel designs and
implementations are portable across different parallel
hardware platforms. The details are omitted here due to
space limit.

As shown in the middle of Fig. 4, for a cell-
polygon pair (C,P) that should be sent for further spatial
refinement based on true geometrical distances between
points and polygons, the coordinates of points that fall
within the cell C and the coordinates of polygon vertices can
be retrieved from their respective coordinate arrays. As the
shortest distance between a point and a polygon is defined
as the smallest distance between the point and all the
polygon edges, we can further reuse the shortest point-to-

polyline distance computation module developed in [1] for
this purpose. We do need, however, handle the neighboring
vertices that belong to two different rings in a polygon in
this particular application. As shown in the bottom of Fig. 4,
we assign a (C,P) pair to a GPU computing block. Each
thread is assigned to process a point which loops through all
the polygon vertices to compute the shortest distance to the
polygon. If a cell is paired with multiple polygons, then the
polygon with the shortest smallest distance will be chosen to
be associated with the point. The polygon identifier and the
shortest distance will be assigned to each point. Although
currently we have not used the computed shortest distances
to adjust LUT probabilities for better accuracy, we plan to
do so in our future work. As such, we have not used an
obvious optimization of simply assigning the polygon
identifier to all the points in a cell if only one polygon is
paired up with the cell.

V.

Fig. 4 High-Level Designs of GPU-based Parallel Spatial Query Processing to Associate Polygons with Points

Clearly, as R increases, the expanded polygon
MBRs will likely to be more overlapped and a cell is likely
to be paired up with more polygons. As such, the computing
intensity increases as R goes up. We further note that, even
for a large R value, it is possible that a grid cell is not paired
up with any polygons. As such, our spatial query is not a
nearest neighbor query in a strict sense, which requires find
a nearest neighbor no matter how far way it is. Instead, the
nearest neighbor polygon of a point in our approach is
selected from polygons whose expanded MBR intersects
with the cell that the point falls within, i.e., the cell is no
more than R distance away from the MBR of the polygon.
Please note that the rule does not guarantee that the shortest
distance between a point and its nearest polygon is less than
R. Although we can iteratively increase R until all points
find their nearest polygon regardless R values to meet the
conventional definition of nearest neighbor, we choose to

use fixed R values in our experiments as we consider nearest
neighbors are only meaningful within a certain distance
buffer (as represented by R) in this particular application.

V EXPERIMENTS, RESULTS AND DISCUSSIONS

A Experiment Setup

All experiments are performed on a Do-It-Yourself
(DIY) workstation equipped with a single Intel dual-core
Core i5-650 CPU running at 3.2 GHZ, 8 GB GDDR3
memory and 500GB hard drive. Since the hardware support
hyper-threading, the CPU appears to have four processing
cores which are all used in our parallel implementations on
CPUs. The CPU has 32KB L1 cache (per core) and 256KB
L2 cache (per core) but there is no L3 cache for the CPU.
The memory bandwidth is 21 GB/s. The total cost of all the
parts used to assemble the workstation is around $1000

4

C1

P1

C2

P1

C2

P2

Cell-Polygon pairs after
spatial filtering

…

…

…

…

0

1
2

3

Loop
Thread

assignment

SM1 SM2 … SMn

GPU Global Memory

GPU Accelerator Block
assignment

5

6

7

Polygon vertex
coordinates

 200 220 PLI

......

 100 110

......

Point x/y coordinates
Flat grid-file based indexing

Expanded Polygon
MBR

Sort based
on cell IDs

PTI

R

which put it in the lower end. The absence of L3 cache and
the low memory bandwidth has significantly limited the
machine’s computing power when compared with high-end
workstations. While the low-cost workstation is fairly weak
in terms of computing power, we have quipped with an
Nvidia GTX Titan GPU that has 2,688 cores (running at 877
MHZ), 6GB device memory and 288 GB/s memory
bandwidth. We have compiled both the CPU and GPU
source code with –O2 optimization flag for fair
comparisons. We also mention that the total cost of the
workstation (~$2000) is comparable or even lower than
many computing nodes in cloud computing facilities which
makes it possible to compare monetary cost.

Our experiments focus on two aspects, i.e., the
runtimes of spatial query processing and the interesting
patterns that can be derived from taxi trip data. For the first
set of experiments, we will report the runtimes of the four
modules using three different R values using both CPUs and
GPUs in Section V.B. For the second set of experiments, we
will report the numbers of taxi trips in each of the N*N
combinations as an O-D matrix and provide some
preliminary analysis on some of the potentially interesting
patterns based on the resulting matrix in Section V.C.

B Results on Spatial Query Proceesing

Since the runtimes of experiments on pickup locations and
drop-off locations are largely the same, we will report
runtimes for pickup locations unless stated otherwise. It is
clear that point indexing is independent of R values while
the rest three modules are sensitive to different R values.

Table 1 Runtime Comparisons of Point Indexing

CPU GPU
Step 1: data loading from disk (ms) 26285.40
Step 2: data preparation (ms) 1183.24
Step 3: computing cell identifiers (ms) 221.43 385.17
Step 4: sort based cell identifiers (ms) 8177.81 588.31
Step 5: computing cell index array(ms) 1840.50 46.13

Table 1 lists the runtimes of the five steps in point

indexing in milliseconds. Note that the first two steps are
performed on CPUs. The GPU implementation of the point
indexing module differs in the last three steps. Note that we
load both pickup and drop-off locations from disks in Step 1
as they are stored in a same physical file. Step 2 checks data
validity and performs some basic transformations. Although
this step is easily parallelizable, since the runtime of this
step is only a small fraction of the end-to-end runtime, we
run this step in CPU sequentially for convenience. The
reason that the GPU implementation has a higher runtime
than CPU in Step 3 is that, point data is transferred from
CPU to GPU in this step in the GPU-based implementation.
Assuming that the CPU to GPU data transfer rate is 4 GB/s,
transferring 170 million *8 bytes = 1.36GB data already
takes 340 ms, which clearly dominates the GPU time in this
step. From Table 1 we can see that, for the rest two steps,

the GPU implementation is significant faster than the CPU
implementation, i.e., 14X for Step 4 and 40X for Step 5.

Table 2 lists the runtimes of the rest of the rest of
the three modules on both CPUs and GPUs in milliseconds
under three R values, i.e., 50, 100 and 200 feet, respectively.
Clearly, as expected, the runtimes increase as R values
become larger. Table 2 also show that, he spatial refinement
module that computes the distances between points and
polygon boundaries is the most computing intensive one
among all the four modules (including point indexing). The
GPU implementations have achieved 16X-75X speedups
among these three modules. For the spatial refinement
module, the speedups vary from 24X-30X. The results in
this module are more consistent than the other modules.

Table 2 Runtime and Speedup Comparisons among Other Three
Modules Using Three R values

R (ft) Polygon-
indexing

Spatial
Filtering

Spatial
Refinement

50 CPU (ms) 2579 2175 613031
GPU (ms) 161 46 25507
Speedup 16.03X 47.20X 24.03X

100 CPU (ms) 4743 3921 789149
GPU (ms) 293 74 29999
Speedup 16.19X 49.96X 26.31X

200 CPU (ms) 46287 12287 1260588
GPU (ms) 634 164 43067
 73.01X 74.90X 29.27X

To better understand the overall performance of the

CPU-based implementations and the GPU-based
implementations, we have listed the end-to-end runtimes
under two scenarios, i.e., with and without including point
data disk I/Os and the corresponding speedups. While we
have parallelized all the important steps in the four modules,
disk I/Os remain to be a bottleneck that is difficult to tackle
in big data applications. The speedups listed in the right-
most column of Table 3 represent the upper bounds that
GPU computing can expect to achieve, after removing the
disk I/O bottleneck (such as pre-loading or using flash
drives). By including point data disk I/O times, as shown in
the third column of Table 3, the realized speedups of the
end-to-end runtimes in this study under the three R values
range from 12X to 19X, which are still impressive. While
we cannot include the runtimes of single thread
implementations due to space limit, our results on the spatial
refinement module (computing point-to-polygon distance
and searching for nearest polygon) indicate that using all the
4-threads in the 2 CPU cores is about 1/3 better than single-
thread (using a single core), i.e., 1.5X speedup. This may
indicate that, limited cache capacity and low memory
bandwidth on this low-end workstation may among the
factors that prevent linear scalability with respect to
processor cores and hardware threads, given that our data
parallel designs have demonstrated better scalability on
server grade CPUs [1].

Table 3 End-to-End Runtime and Speedup Comparisons With and
Without Including Point Data Disk I/O time

R
(ft)

 With Point data
disk I/O time

Without Point data
disk I/O time

50 CPU (ms) 655493 629208
GPU (ms) 54203 27917
Speedup 12.09X 22.54X

100 CPU (ms) 835521 809236
GPU (ms) 58859 32574
Speedup 14.20X 24.84X

200 CPU (ms) 1356870 1330585
GPU (ms) 72355 46070
Speedup 18.75X 28.88X

We have not included direct comparisons with
Hadoop-based implementations in this study as we are not
aware of existing Hadoop-based implementations that have
similar functionality. However, our early work presented in
a technical report at [14] have included a serial CPU
implementation using two popular open source geospatial
software packages, i.e., libspatialindex [15] for R-Tree
based polygon indexing and GDAL [16], for point-to-
polygon distance computation. While the serial CPU
implementation simply query the nearest polygon for each
point iteratively, which leaves room for algorithmic
improvements, the performance can be used as a baseline
for an idealized comparison. Assuming that runtime of the
serial implementation is Ts, then the best expected runtime
for a Hadoop system with N computing nodes would be
Ts/N, by excluding the overheads of network
communication costs and disk I/Os for intermediate results.
According to [14], for R=100, the end-to-end runtime for
the serial CPU implementation to associate points with their
nearest polygons is 110,093seconds. For verification
purposes, the serial CPU implementation code has been
made available online at [17]. In contrast, by adding up the
runtimes of the four modules in the R=100 experiments, the
end-to-end runtimes for our GPU implementation is
Tg=58.856 and seconds including point data disk I/O time
and Tg=32.574 seconds without including I/O time. In
order for a Hadoop-based implementation to match the
GPU-based implementation by adapting the serial
implementation, even under the idealized assumption, the
number of processing units would be N=Ts/Tg. Although N
might be different when plugging in runtimes under
different scenarios and accounting the differences among
the CPUs, generally N should be in the order of 500-3000
based on the simple calculation. The computed N value is
well above the numbers of computing nodes that are utilized
by typical applications (in the order of dozes). The results
may indicate that, GPUGPU computing can be attractive to
practical big data applications with respect to end-to-end
performance and monetary cost. On the other hand, the
development cycle is much shorter for the serial
implementation using open source packages, which can be
more important in certain applications. Plugging the serial
implementation into a Hadoop system by chunking points

into segments is also relatively straightforward, which can
be advantageous. The work reported in this study can serve
as a case study to understand tradeoffs among different
technologies in big data applications.

C RESULTS ON TAXI TRIP DATA ANALYSIS

The output of our spatial query processing is a N*N matrix
with each element in the matrix n[i][j] represents the
number of trips from LUT i to LUT j. We have added 00 to
indicate that LUT cannot be identified for either pickup
location or drop-off location or both. As discussed earlier,
as i=1..11 and j=1..11, these 121 combinations can be
categorized into a few types of trip purposes for more
domain-specific analysis; this is left for our future work. In
this section, we will provide a preliminary analysis on the
spatial query results which are listed in Table 4.

From the totals listed in the last column of Table 4,
it is clear that the top-3 LUTs for pickup locations are 05
(Commercial & Office Buildings, 46.1 million), 09 (Open
Space & Outdoor Recreation, 37.3 million) and 04 (Mixed
Residential & Commercial Buildings, 28.5 million).
Interestingly, based on the last row of Table 4, the top-3
drop-off LUTs are also 05 (44.6 million), 09 (38.9 million)
and 04 (24.9 million), in the same order. These three LUTs
cover about 2/3 of trips with respect to both pickup
locations and drop-off locations and each of them has at
least 20 million trips for both pickup and drop-off locations.
LUT 03 (Multi-Family Elevator Buildings), 07
(Transportation & Utility) and 08 (Public Facilities &
Institutions) are among the next tier LUTs with respect to
the numbers of trips for both pickup and drop-off locations
and they are in the range of 10-20 million. Trips that are
covered by all the rest five LUTs are far below 10 million.
The clear three-tier pattern makes it interesting for further
studies.

Table 4 also suggests that, among the 13.1 million
trips that start at LUT 07 (Transportation & Utility), the
destination of the majority of the trips are LUT 05
(Commercial & Office Buildings, 4.1 million) followed by
LUT 09 (Open Space & Outdoor Recreation, 2.5 million),
LUT 07 itself (2.2 million) and LUT 04 (Mixed Residential
& Commercial Buildings, 1.2 million). This may indicate
passengers who arrive at NYC through public transportation
(air, rail or bus) are mostly for business, leisure, transfer or
coming back home (in this order). Some similar patterns can
be derived from Table 4 for further analysis. Although
subsequent validations are required for these patterns, the
spatial query results are quite useful to stimulate hypothesis.
While the results reported here are aggregated at the highest
spatial (citywide) and temporal scale (yearly), our
techniques allow incorporating spatial and temporal filtering
for finer scale aggregations. We are also in the process of
integrating visualization modules to visualize individual as
well as aggregated query results for better interpretation and
validate potentially interesting patterns to facilitate decision
making.

Table 4 City-Level Origin-Destination Matrix of Numbers of Aggregated Trips in 2009 in NYC (in millions)

F/T 00 01 02 03 04 05 06 07 08 09 10 11 Total
00 0.151 0.078 0.123 0.197 0.297 0.622 0.072 0.184 0.181 0.231 0.044 0.027 2.209
01 0.012 0.054 0.081 0.133 0.168 0.237 0.035 0.054 0.085 0.164 0.011 0.022 1.057
02 0.089 0.108 0.253 0.417 0.795 0.831 0.122 0.153 0.316 0.525 0.035 0.063 3.707
03 0.260 0.263 0.715 2.035 3.004 4.593 0.543 0.979 1.192 2.769 0.249 0.279 16.880
04 0.579 0.411 1.112 3.373 5.905 7.465 0.984 1.309 2.210 4.336 0.424 0.441 28.549
05 0.711 0.586 1.333 4.844 6.496 19.486 1.445 3.813 2.964 3.083 0.864 0.477 46.103
06 0.121 0.057 0.161 0.526 0.764 1.197 0.204 0.213 0.309 0.245 0.063 0.063 3.922
07 0.073 0.365 0.344 0.913 1.235 4.099 0.261 2.246 0.724 2.528 0.152 0.182 13.122
08 0.160 0.198 0.493 1.350 2.083 2.444 0.285 0.470 0.947 1.423 0.128 0.104 10.086
09 0.279 0.442 0.968 2.512 3.472 2.313 0.274 1.665 1.576 23.121 0.267 0.440 37.330
10 0.074 0.038 0.090 0.193 0.431 0.812 0.070 0.138 0.157 0.129 0.042 0.031 2.206
11 0.024 0.029 0.068 0.205 0.314 0.501 0.048 0.140 0.099 0.387 0.015 0.069 1.899

Total 2.533 2.630 5.743 16.697 24.965 44.599 4.343 11.365 10.760 38.940 2.295 2.198 167.068
LUT labels (defined in Section III): 00-unknown, 01- One & Two Family Buildings, 02 - Multi-Family Walk-Up Buildings, 03- Multi-Family Elevator
Buildings, 04- Mixed Residential & Commercial Buildings, 05- Commercial & Office Buildings, 06-Industrial & Manufacturing, 07-Transportation &
Utility, 08-Public Facilities & Institutions, 09 - Open Space & Outdoor Recreation, 10 - Parking Facilities, 11-Vacant Land.

VI. CONCLUSIONS

In this study, we aim at utilizing the massively data parallel
processing power provided by modern GPUs to speed up
spatial query processing on large-scale taxi trip data for
aggregated trip purpose analysis. By integrating the parallel
designs and implementations of GPU-based spatial indexing
and query processing techniques, we have successfully
developed a set of techniques to compute the nearest
polygon of both pickup and drop-off locations in a taxi trip
record and aggregate taxi trips based on land use types of
their nearest polygons. Experiments have shown that our
GPU implementations can complete such complex spatial
queries in about 50-75 seconds using an inexpensive
commodity GPU device. The performance is 10X-20X
higher than the host machine with an Intel dual-core CPU
when all the cores and hardware supported threads are fully
used. Preliminary analysis on the resulting trip count matrix
has demonstrated interesting patterns and opens the doors
for future work to validate the patterns and discovery new
patterns through more complex spatial, temporal and
spatiotemporal queries.

References
[1] J. Zhang, S.You and L. Gruenwald (to appear). Parallel online

spatial and temporal aggregations on multi-core CPUs and
many-core GPUs. Information Systems (Elsevier) , in-press.
Mancuscript online at http://www-
cs.ccny.cuny.edu/~jzhang/papers/IS14_DOLAP_Manuscript.
pdf

[2] S. Shekhar, V. Gunturi et al (2012). Spatial big-data
challenges intersecting mobility and cloud computing. In
Proc. ACM MobiDE'12.

[3] A.Cary, Z. Sun, V. Hristidis, et al. (2009). Experiences on
Processing Spatial Data with MapReduce. In
Proc.SSDBM'09, 302-319.

[4] S. Zhang, J. Han, Z. Liu, et al. (2009). SJMR: Parallelizing
spatial join with MapReduce on clusters. In Proc. IEEE
CLUSTER'09 Workshops.

[5] E. H. Jacox and H. Samet (2007). Spatial join techniques.
ACM Transaction on Database System 32(1), Article #7

[6] J. Wolf, R. Guensler and W. Bachman. (2001). Elimination
of Travel Diary: Experiment to Derive Trip Purpose from
Global Positioning System Travel Data. TRB #1768, 125-134

[7] P. R. Stopher, and S. P. Greaves (2007). Household travel
surveys: Where are we going? Transportation Research Part
A: Policy and Practice 41(5): 367-381

[8] Metropolitan Transportation Authority. Subway and Bus
Ridership. http://www.mta.info/nyct/facts/ridership/index.htm

[9] A. Clematis, M. Mineter, R. Marciano: High performance
computing with geographical data. Parallel Computing 29(10)
(2003) 1275-1279

[10] I.H. Lee, Y. J. Lee, H. Choi, et al. (2012). Parallel data
processing with MapReduce: a survey. SIGMOD Record
40(4):11-20

[11] B. Kirk and W.-m. W. Hwu (2012). Programming Massively
Parallel Processors: A Hands-on Approach (2nd ed.). Morgan
Kaufmann.

[12] http://www.nyc.gov/html/dcp/html/bytes/applbyte.shtml#
[13] J. Zhang, S.You (2012). Speeding up large-scale Point-in-

Polygon test based spatial join on GPUs. In Proc. ACM
BigSpatial'12,23-32.

[14] J. Zhang, S. You and L. Gruenwald (2012). Speeding High-
Performance Spatial Join Processing on GPGPUs with
Applications to Large-Scale Taxi Trip Data. Technical
Report. Online at http://www-
cs.ccny.cuny.edu/~jzhang/papers/nnsp_tr.pdf

[15] http://libspatialindex.github.com/
[16] http://www.gdal.org/
[17] http://www-cs.ccny.cuny.edu/~jzhang/spp2p.htm

