
Spatial Join Query Processing in Cloud: Analyzing Design Choices

and Performance Comparisons

Simin You

Dept. of Computer Science

CUNY Graduate Center

New York, NY, USA

syou@gc.cuny.edu

Jianting Zhang

Dept. of Computer Science

The City College of New York

 New York, NY, USA

jzhang@cs.ccny.cuny.edu

Le Gruenwald

Dept. of Computer Science

The University of Oklahoma

Norman, OK, USA

ggruenwald@ou.edu

Abstract—Data volumes of GPS recorded locations and many

other types of geospatial data are fast increasing. Processing

large-scale spatial joins in Cloud for performance and scalability

is becoming increasingly popular. In this study, we compare three

leading Cloud-based spatial data management systems, namely

HadoopGIS, SpatialHadoop and SpatialSpark, both conceptually

through analysis of design choices and empirically through

experiments using real world datasets. Using both a workstation

serving as a single-node cluster and up to 10 nodes Amazon EC2

clusters, the results show that the combined factors, including

Cloud platforms, data access models and the underlying

geometry libraries, have significant impacts in their realized

performance. While SpatialHadoop generally wins on robustness,

SpatialSpark is the clear winner of efficiency due to in-memory

processing.

Keywords— Spatial Join, Query Processing, Cloud Computing,

Design, Performance

I. INTRODUCTION

The recent development of Big Data systems has motivated

processing large-scale geospatial data on commodity cluster

computers in a distributed manner. Spatial joins [1], such as

matching taxi pickup/drop-off locations with road segments

through point-to-nearest polyline distance computation or

assigning species occurrence records to ecological zones

through point-in-polygon test, are not only data intensive but

also computing intensive. Although efficient parallel

algorithms on shared memory architectures have been

explored previously [2, 3], it is desirable to scale spatial join to

distributed computing nodes to process large-scale spatial data

that are beyond the capacities of single computing nodes.

While serial spatial join algorithms typically have two phases,

i.e., spatial filtering to pair up spatial data items based on the

spatial relationship of their Minimum Bounding Rectangles

(MBRs) and spatial refinement to remove false positives due

to MBR approximation by using exact geometry to test spatial

relationships between paired spatial data items, distributed

spatial joins require an additional partition phase and a global

join phase to distribute workload across multiple computing

nodes.

Several research prototype systems have been

developed for large-scale spatial query processing in Cloud.

HadoopGIS1 is a pioneering system that allows spatial joins

and several other spatial operations on Hadoop by adopting

Hadoop Streaming2 framework and integrating several open

source software packages for spatial indexing and geometry

computation [4]. SpatialHadoop3, on the other hand, tightly

integrates spatial operations including indexing and joins into

Hadoop [5]. While HadoopGIS is mostly a collection of

modules (Java, python and C++ wrappers) that can be nicely

plugged into Hadoop, SpatialHadoop has 14,000 lines of Java

code which re-implements several popular spatial operations

from scratch in Hadoop. SpatialSpark4, which is a lightweight

implementation of several spatial join algorithms on top of the

Apache Spark5 in-memory Big Data system, recently becomes

available [6]. Different from HadoopGIS and SpatialHadoop

that were built on top of Hadoop and utilize Hadoop

Distributed File System (HDFS6) to store intermediate results

for scalability and fault tolerance, SpatialSpark targets at in-

memory processing for higher performance. As a lightweight

implementation, SpatialSpark has a very small codebase

(<2,000 lines) which makes it easy to understand, use and

maintain. The three systems differ significantly in terms of

distributed computing platforms (Hadoop/Spark), data access

models (streaming/random/functional), languages

(Java/mixed/Scala) and the underlying geometry libraries

(GEOS7/JTS8).

Despite the similarities among HadoopGIS,

SpatialHadoop and SpatialSpark from an end-user perspective

where end-to-end runtime is the primary concern, it is

interesting to analyze their design choices, compare their

realized performance and understand how the designs and

implementations affect performance. We believe this is the

first work towards comparing systems for large-scale

geospatial processing (or Big Spatial Data systems) and gain

insights for future enhancements. Our work shares similar

motivation of several previous works on performance

comparisons on Big Data systems for relational data [7] and

graph data [8]. In addition, although [9] provided a

comprehensive evaluations of batched queries on point data

(static and moving objects) using a spatial join framework on a

shared memory machine, the systems we evaluate target at

much larger scale spatial joins in distributed computing

platforms for more complex geospatial data (such as polylines

and polygons) and higher generality (both sides of a join can

be any type of geospatial data).

Our technical contributions are twofold. First, we

analyze the components and stages of distributed spatial join

implementations in HadoopGIS, SpatialHadoop and

SpatialSpark and provide a generalized framework to set the

context for discussing various design and implementation

choices that have been exploited in the three systems. Second,

we prepare several datasets derived from public sources and

use them to evaluate the end-to-end performance of the three

systems. The rest of the paper is arranged as follows. After a

brief background introduction, Section 2 provides the

generalized framework and introduces the design and

implementation choices adopted by HadoopGIS,

SpatialHadoop and SpatialSpark. Section 3 presents our

experiments and results. Finally, Section 4 is the summary and

future work directions.

II. GENERALIZED FRAMEWORK FOR ANALYZING DESIGN

AND IMPLEMENTATION CHOICES

Techniques on distributed spatial joins exist long before

Hadoop and Spark were developed [1]. However, the

significant burden of handling distributed data

communications and spatial join logic in a tightly intertwined

manner has made the traditional techniques difficult to adopt

in practical applications. Both Hadoop and Spark separate data

communication and processing logic to make distributed data

management much easier for application developer, although

in a related but different way. All the three systems to be

evaluated are built on top of either Hadoop or Spark. As a

consequence, their design and implementation choices are

significantly impacted by the underlying platforms. Similar to

the discussions in [5], we divide a complete distributed spatial

join process into three stages: (1) preprocessing (2) global join

and (3) local join. The components of the implementations of

a complete distributed spatial join in the three systems,

however, have a complex relationships with respect to the

three stages.

Assuming neither of the two input datasets in a

spatial join is indexed, the preprocessing stage is responsible

for loading data into a distributed file system, performing data

format transformation if necessary, building indexes at one or

multiple levels and logically or physically partition the

datasets into chunks (referred as partitions hereafter) that may

be beneficial to the subsequent stages. The global join stage

can be considered as a distributed extension to spatial filtering

in serial spatial join algorithms. In all the three systems, input

data items are first grouped into partitions and a spatial join on

the MBRs of the partitions is first performed to pair up

partitions whose MBRs spatially intersect, typically on a

single computing node (e.g. the master node in a Hadoop or

Spark cluster). The list of paired partitions is then dispatched

to distributed computing nodes for the final local spatial join

stage. Fig. 1 represents a generalized framework that are

shared by the three systems and serves as the context for the

discussions of the implementation choices.

Fig. I Illustration of a Generalized Framework for Analyzing Design Choices of HadoopGIS, SpatialHadoop and SpatialSpark

B’

A’

A

B

1 2 3

SA

HDFS

MR

MR

SIA

SB

MR

SIB

HDFS

MR

X

P1: (A1,B1)

P2: (A1,B2)

Pk: (Ai,Bj)

…

…

MR (map-only)

Paired Partition List

A1 B1

A1 B2

… …

A1 Bn

A2 B1

A2 B2

… …

Ai Bj

… …

(b)

 P1: Partition 1

P2: Partition 2

… Shuffle

1 2 3

Pk: Partition k

…

MR

A SA

A’

HDFS

MR

MR

SIA

B SB

MR

SIB

HDFS

MR B’

SI +

(a)

 P1: Partition 1

P2: Partition 2

… Join

1 2 3

Pk: Partition k

…

A

A'

HDFS

Map

B SB SIB

HDFS

Map B’

GroupByKey

GroupByKey

Map

1 preprocessing

2 global join

3 local join

A/B: input dataset

A’/B’: re-ordered input dataset

SA/SB: sampled dataset

SI/SIA/SIB: spatial index

MR: MapReduce job

Pi: i-th processing unit

+ set union

X spatial join

(c) (a) HadoopGIS

(b) SpatialHadoop

(c) SpatialSpark

process flow

HDFS disk I/O

Given two input datasets (A and B, respectively),

subplots of Fig. 1 illustrate how the three stages are

implemented in HadoopGIS (Fig. 1(a), top left),

SpatialHadoop (Fig. 1 (b), top right) and SpatialSpark (Fig. 1

(c), bottom left), respectively. We use SA and SB to represent

the sampled dataset of A and B, respectively. We also use SI

to represent the spatial index that is used for global join, which

can be built either from both SA and SB (HadoopGIS and

SpatialHadoop) or from SA or SB (SpatialSpark), and used

either in both the Map phase and Reduce phase (HadoopGIS)

or the Map phase only (SpatialHadoop) in a MR job, or a

standalone step that uses an implicit Join parallel primitive

which is equivalent to the shuffle phase in a MR job

(SpatialSpark). Note that the shaded region in Fig. 1(a) and

Fig. 1(b) represent the most important (and the final) MR job

in the end-to-end distributed spatial join process. The shaded

region in Fig. 1(c) represents steps that are functionally

equivalent to the MR job in the shaded region in Fig. 1(a) and

Fig. 2(b).

While HadoopGIS processes data items sequentially

and is transparent to partition boundaries (streaming data

access), SpatialHadoop is aware of partition boundaries and

explicitly pair up partitions based on the spatial relationships

among the MBRs of partitions (random data access).

SpatialSpark, on the other hand, adopts a data parallel

(functional) model due to the underlying Spark platform.

While SpatialSpark is similar to HadoopGIS with respect to

sequential data access within a partition, it is aware of

partition boundary as partitions are defined by keys. However,

different from SpatialHadoop, SpatialSpark does not have the

ability to randomly access data items within a partition and we

use “functional data access” to reflect the fact that both Spark

and SpatialSpark use Scala which is a functional programming

language. The different data access models largely imposed by

the underlying system infrastructures have significant impacts

on many design choices and performance subsequently. While

the implementation choices will be discussed in more details

in the subsequent three subsections on the three stages,

respectively, from Fig. 1, it is clear that SpatialHadoop and

HadoopGIS have much more interactions (including reading

inputs, writing outputs and shuffling intermediate results) with

HDFS while SpatialSpark touches HDFS only when input data

are read from HDFS to memory of computing nodes. As we

shall see in the experiment section, reducing disk I/O to a

minimum level contributes significantly to the efficiency of

SpatialSpark.

A. Preprocessing

HadoopGIS uses the following steps to partition an input

dataset: (1) a map-only job to convert the input to a tab

separated file while the dataset is being loaded to HDFS, (2) a

map-only job to sample data items and extract MBRs of the

sampled data items, (3) a MR job to compute the spatial extent

of the dataset based on the samples (with a single reducer), (4)

a map-only job to normalize the sample MBRs, (5) a local

program to generate partitions based on the sample MBRs, (6)

a MR job to assign each input data items with an partition by

querying the partitions it intersects. Although step 2-4 involve

only MBRs of samples which can be significantly smaller than

the input dataset (assuming sample rate is far less than 1.0),

step 1 and 5 require reading and/or writing all the input data

items with all attributes, which can be very expensive with

respect to disk I/O. Step 6 is the most expensive step with

respect to both I/O and computation for three reasons. First,

each mapper needs to build a spatial index from sample

MBRs. Second, since data items are stored as strings (due to

the requirement imposed by Hadoop Streaming), each input

data item needs to be parsed and the parsed MBR needs to

query against the spatial index. Third, each input data item, in

addition to its assigned partition ID, needs to be written out to

HDFS to be processed in the reduce step. The reducer is

currently implemented as a python script which uses a

pipelined cat-sort-unique combination to remove duplicated

data items in a partition. Note that Linux command cat is used

to retrieve data from HDFS to feed the subsequent sort and

unique modules. However, removing duplication through

sorting is typically suboptimal. Furthermore, Step 5 uses a

local serial program and requires copy data back and forth

between a local file system and HDFS, which can be

expensive as well. Conceptually, Step 1-5 can be combined to

simplify both the process workflow, and more importantly, to

reduce disk I/O overheads. Disk I/Os are known to be

excessive (and quite often unnecessary) in Hadoop when

compared with Spark which is designed for in-memory

processing.

Compared with HadoopGIS that adopts a Hadoop

Streaming framework which requires it to process input data

items sequentially (as a string per line) in both a mapper and

reducer, SpatialHadoop is tightly integrated with Hadoop

which allows it to use low-level APIs for more efficient

processing. Assuming that neither of the input datasets has

been indexed, the preprocessing stage in SpatialHadoop is

implemented using two MapReduce (MR) jobs. The first MR

job samples both input datasets and generate partitions based

on the samples. The MBRs of the partitions for an input

dataset are stored in a special HDFS file that is accessible to

the subsequent MR jobs due to HDFS runtime (i.e., disk-based

broadcast). In the second MR job, the mapper queries against a

spatial index built from the MBRs to assign a partition ID for

each data item from an input dataset. By using the partition ID

as the key and the geometry as the value, after the shuffle

stage of the MR job, all data items that belong to the same

partition are naturally written to a same HDFS block file. A

spatial index for all the data items within the block can be built

and written to the beginning of the HDFS block file. From a

developer’s perspective, since SpatialHadoop has random data

accesses to block files in HDFS, it is both convenient and

efficient than the Hadoop steaming approach adopted by

HadoopGIS, although much deeper knowledge of Hadoop is

required to develop SpatialHadoop than HadoopGIS which

can be both an advantage and a disadvantage form a

development perspective. As disk I/Os are typically more

expensive than computing required for spatial indexing, the

intra-partition indexes are built virtually for free.

SpatialSpark supports both spatial partitioning and

sequence-based partitioning. While sequence-based (non-

spatial) partition does not require preprocessing and is more

efficient when the left side of a spatial join is a point dataset,

we will focus on spatial partitioning in this study to make it

comparable with HadoopGIS and SpatialHadoop. Similar to

HadoopGIS, SpatialSpark supports creating partitions through

sampling using different approaches as discussed in [10] and

partially implemented (on top of Hadoop) in HadoopGIS. As

the aggregated memory of a reasonably up-to-date cluster is

typically larger than both of the input datasets in a spatial join,

the end-to-end sampling process can be completed in-memory

without touching HDFS, which is clearly more efficient. The

built-in sampling function in Spark/Scala makes the

implementation much easier. Different from HadoopGIS and

SpatialHadoop where data items in a dataset (that may or may

not participate in a distributed spatial join) are physically

reordered and stored in HDFS, reordered data items are

generated for query processing only in SpatialSpark. It may

not need to be stored in HDFS which can be efficient in both

computing and storage. Again, the advantage of SpatialSpark

is due to the in-memory processing feature brought by Spark.

As a brief summary for the preprocessing stage,

HadoopGIS samples and partitions both input datasets using

several partition techniques. SpatialHadoop partitions sampled

data items into grid cells which can be used to pair up partition

MBRs to be detailed next. SpatialSpark, on the other hand,

samples only one input dataset and uses partition MBRs to

build a spatial index to assign partitions IDs for data items on

both sides of a join. HadoopGIS is likely to be the most

expensive technique among the three due to excessive

geometry parsing and disk I/Os in multiple MR jobs which can

be potentially combined or simplified.

B. Global Join

Global Join is to pair up spatial partitions of both input

datasets before distributing the pairs to computing nodes for

local join. Implementations of global join techniques are

largely determined by the underlying distributed computing

platforms (i.e., Hadoop and Spark) and data access models

(random or streaming in Hadoop).

In HadoopGIS, after spatial partition, each data item

in both input datasets is assigned a partition ID. Unfortunately,

the spatial relationships among the partitions in the two

joining datasets cannot be derived and used for pairing

directly. To spatially pair up partitions, HadoopGIS reuses

samples of these two datasets by concatenating them and

creating new partitions based on the combined data. As this

step is implemented on a local machine in a serial manner, the

input sample files need to be copied from HDFS to local file

system and the output partitions need to be copied back to

HDFS. While the input datasets are sampled to reduce

computing overheads, both I/O overhead and scalability are

likely to be a serious performance issue when sampling rates

are high. The HDFS file that stores the locally built partitions

serves as one of the inputs to the distributed join MR job,

which is essentially broadcast to all map tasks in the job. Each

map task builds a spatial index (using R-Tree implemented in

libspatialindex9) based on the MBRs of the new partitions.

Each item in the input datasets query against the spatial index

to compute its partition ID and append the ID to the item as

the output of the map task in the MR job. By using the

partition ID as the key, data items that spatially belong to the

same partition in both input datasets are shuffled by Hadoop

runtime and sent to a reducer task. The process is very similar

to the last MR job in the preprocessing stage (spatial partition)

in HadoopGIS, except that the reducer there only needs to

write out shuffled data items to HDFS while the reducer in the

distributed spatial join MR job needs to perform local spatial

job (to be discussed in the next subsection). The design is

smart in the sense that it avoids the limitation imposed by

Hadoop Streaming framework. We note that it is very difficult

(and may be even impossible) to pair partitions in the two

input datasets in HadoopGIS otherwise, as this would require

accesses to individual partitions whose information is invisible

to Hadoop Streaming applications. However, a serious

consequence is that the partition IDs assigned to data items in

the two input datasets cannot be reused in the distributed

spatial join job, which is wasteful. Querying each data item in

both input datasets against the new spatial index is both disk

I/O intensive (HDFS) and memory intensive (traversing R-

Trees). Although data items that spatially belong to a same

partition may have been physically shuffled to an HDFS block

for both input datasets after the preprocessing stage, they still

need to go through the shuffle step in the distributed spatial

join MR job. The expensive shuffle operation, however, is

again wasteful. The implementation decisions in HadoopGIS

are clearly limited by Hadoop Streaming.

Global join in SpatialHadoop is much simpler and is

likely to be more efficient. Pairing partitions in SpatialHadoop

is actually implemented as a preprocessing step in a MR job

by overloading the getSplits(…) function in FileInputFormat

class in Hadoop. For the two partitioned input datasets,

SpatialHadoop stores the MBRs of all their partitions as a

HDFS file (indicated by _master keyword in its file name).

After a MR job is started, the master node of the job will

execute the getSplits function defined in a custom

FileInputFormat class (BinarySpatialInputFormat in

SpatialHadoop to be precise) to generate a list of splits that

will be distributed to map tasks. Given the two MBR files, any

in-memory spatial join technique can be applied to spatially

pair up partitions based on their MBRs. For each split that is

assigned to a map task, the HDFS block file names

corresponding to the two paired partitions of the two input

datasets are provided to the map task which allows it to

perform local spatial join (to be detailed next) within the map

task. As a map-only MR job, the implementation is very

efficient and is quite different from HadoopGIS where local

spatial joins are implemented in reducers. Different from

HadoopGIS that only data items (lines of string text) are

invisible to the mappers and reducers (due to Hadoop

Streaming), SpatialHadoop has the location information of all

the blocks in a HDFS file and can randomly access the data

block files. The random data access flexibility allows

SpatialHadoop to easily adapt traditional serial spatial join

techniques (see [1] for a review) for global join.

The programming model in Spark gives SpatialSpark

more flexibility in pairing up partitions in the global join

stage. Recall that, in the preprocessing stage, SpatialSpark

only partitions one input dataset (assuming the right side of the

spatial join) through sampling. A spatial index is built for the

MBRs of the partitions. The index, as an in-memory data

structure, can be sent (through broadcasting) to all computing

nodes by Spark runtime without involving HDFS, which is

more efficient than HadoopGIS (each map task builds its own

index by reading the MBR file from HDFS) and could be

more scalable than SpatialHadoop (the master node reads

MBR files of both input datasets from HDFS and perform a

serial spatial join). Subsequently, in SpatialSpark, the data

items of both input datasets are used to query the index to

compute that partition ID that each data item should be

assigned to. We note that while the spatial query logic is

expressed at the individual data item level in SpatialSpark,

Spark runtime system actually divides the input data items into

chunks (sequentially) and dispatch them for distributed

execution. This step is functionally equivalent to the map step

of the distributed MR job in HadoopGIS but is much more

efficient due to in-memory processing. The partitioned data

items are subsequently grouped based on partition IDs at the

both sides, respectively. This can be easily achieved by using a

groupByKey member function of RDDs (Resilient Distributed

Dataset) that is natively supported by Spark. As a result of the

step, each partition is associated with a list of data items that

are assigned to the partition, for both input datasets. Finally,

another RDD member function (i.e., join) is used to join

{partition ID,{Left item ID}} and {partition ID,{Right item

ID}} based on partition ID and generate the {partition ID,

{Left item ID}X{Right item ID}} list. A disadvantage of

SpatialSpark is that, similar to many Spark applications,

available memory capacity is crucial to its success and

efficiency. When available memory is insufficient, as

presented in the experiment section, SpatialSpark may fail to

work properly.

We note that the partition-based spatial join technique

we discuss here is different from the broadcast-based spatial

join that was originally implemented in the early version of

SpatialSpark [6]. Although the built spatial index from

sampled data items in the partition-based spatial join technique

is broadcast to all computing nodes using Spark distributed

computing infrastructure as discussed in [6], neither data items

in the dataset of the right side of a spatial join nor their full

index are broadcast to the left side. The data volume of the

sample index to be broadcast can be controlled by adjusting

sample rate which makes the partition-based spatial join more

scalable at the expense of joining partitions based on partition

IDs. In contrast, in broadcast-based spatial join technique,

each data item can query against the broadcast full index tree

(and/or the data items they index) to pair up data items

directly. We leave a thorough comparison between broadcast-

based and partition-based spatial join techniques in Cloud for

future work. In this study, we focus on evaluating partition-

based spatial join technique in the three systems.

The combination of the two steps in SpatialSpark is

essentially equivalent to the shuffle step of the distributed MR

Job in HadoopGIS. However, Spark is able to maximize the

utilization of aggregated cluster memory capacity for fast in-

memory processing, provided that there are sufficient memory

available for the application. The join result can subsequently

be treated as an RDD. A RDD map function can then be used

to distribute a partition to a processing unit, in a way similar to

the reducer in HadoopGIS and mapper in SpatialHadoop in

their distributed spatial join MR jobs, respectively. Comparing

SpatialSpark with SpatialHadoop, the work that is done in the

global join stage in SpatialSpark is essentially equivalent to

SpatialHadoop that requires re-partitioning [5]. We note that,

in SpatialHadoop, even though both input datasets in a spatial

join may have been indexed in the preprocessing stage, when

the underlying grid configurations are not compatible and the

cells in the two datasets cannot be directly used for pairing,

repartition is required. On the other hand, the on-demand

indexing in SpatialSpark makes re-partitioning unnecessary,

although SpatialHadoop can run faster when re-partitioning

can be skipped.

While it is possible for SpatialSpark to adopt a

similar strategy as what has been done in SpatialHadoop, i.e.,

assigning data items of both input datasets to partitions in the

preprocessing step and using a serial spatial join algorithm to

pair up the partitions (at a master node), it would require

SpatialSpark to incorporate quite some Hadoop/HDFS APIs

which is likely to increase system complexity and reduce

compatibility and interoperability. From a performance

perspective, assigning partition IDs to input data items in

SpatialSpark has the same level of overhead as re-partitioning

in SpatialHadoop. However, we argue that SpatialSpark can

be more I/O efficient as SpatialHadoop requires writing

repartitioned datasets to HDFS before its data items are read

back for local joins. We also argue that shuffling the grouped

item lists in memory (in SpatialSpark) should be more

efficient than shuffling lists of (partition ID, Item) pairs on

disks (in HadoopGIS and SpatialHadoop), especially when

Item has a large data volume. Furthermore, a (hash) join based

on partition IDs (one-to-one integer matching) in parallel in

SpatialSpark could be more efficient than a serial spatial join

on a single computing node in SpatialHadoop. As such, we

expect SpatialSpark to be more efficient in the global join

stage.

C. Local Join

Data items that are aligned to a same partition (regardless how

the partitions are generated) is assigned to a processing unit in

all of the three systems. The implementations for this stage are

much similar when compared with the other two stages: first

build a spatial index for data items in a partition of one input

dataset and the query the index for all the data items in the

other input dataset to pair up data items based on their MBRs

before the final local refinement.

As only a single processing unit is assigned to a

partition pair in the current Cloud computing platforms

running Hadoop/Spark, no more parallelisms need to be

exploited to improve performance in this stage. SpatialHadoop

actually provides both a plane-sweep based and a

synchronized R-Tree traversal based serial spatial join

implementation within a partition [1]. While the same module

can be implemented in HadoopGIS, it is natural to use indexed

nested loop join in SpatialSpark, due to the underlying Scala

functional language. Implementing a plane-sweep based serial

spatial join is more difficult than implementing an indexed

nested loop join in Scala but can be an interesting

improvement in its future work.

In a local join, a spatial refinement [1] step can be

applied by using a geometry library, i.e., GEOS7 (Geometry

Engine - Open Source) for HadoopGIS and JTS8 (Java

Topology Suit) for SpatialHadoop and SpatialSpark, to check

the spatial relationship between the paired data items using

their exact geometry. While GEOS is a language port of JTS,

we have found that JTS can be several times faster than GEOS

[6]. As shown in the experiment section, this might be a major

factor in causing HadoopGIS to have long runtimes, in

additional to the inefficiency caused by Hadoop Streaming.

III. EXPERIMENT AND RESULTS

A. Experiment Setup

In order to conduct a reasonably comprehensive and fair

performance study, we have prepared several real world

datasets that are publically available for two experiments. The

first experiment is designed to evaluate point-in-polygon test

based spatial join, which uses pickup locations from New

York City taxi trip data10 in 2013 (referred as taxi) and New

York City 2010 census blocks11 (referred as nycb). The second

experiment is designed to evaluate polyline-with-polyline

intersection based spatial join using two US Census Bureau

TIGER12 datasets provided by SpatialHadoop data portal13 ,

namely edges and linearwater. In addition to utilizing full

datasets for experiments, we have also derived three sampled

datasets, which is 1 month data from the full taxi dataset

(referred as taxi1m) and 10% sample of the TIGER datasets,

including linearwater0.1 and edges0.1. Table 1 lists the sizes

of all datasets. The reason that we use 10% sample datasets is

because not all experiment settings are able to handle all full

datasets successfully. The performance of the sample datasets

may provide an idea of the relative performance among the

three prototype systems when one or more systems cannot

handle the full datasets successfully.

We have prepared several hardware configurations.

The first configuration (WS) is a single node cluster with a

workstation that has dual 8 core CPUs at 2.6 GHz and 128 GB

memory. The large memory capacity makes it possible to

experiment spatial joins that require significant amount of

memory. A 10-node Amazon EC2 cluster, in which each node

is a g2.2xlarge instance consists of 8 vCPUs and 15 GB

memory, is used to test scalability of the three systems. We

vary the number of nodes from 10 to 6 for scalability test and

term the configurations as EC2-10, EC2-8, EC2-6,

respectively. We have excluded EC2-4 and EC2-2

configurations due to insufficient memory issue for most of

the testing. Both clusters are installed with Cloudera CDH-

5.2.0 for the Hadoop system for running HadoopGIS1 (Github

version as of 10/2014) and SpatialHadoop3 Version 2.3.

SpatialSpark4 is deployed using Spark 1.1. No further

parameter fine-tuning were attempted.

Table 1 Experiment Dataset Sizes and Volumes

Dataset #of Records Size

Taxi 169,720,892 6.9 GB

nycb 38,839 19 MB

linearwater 5,857,442 8.4 GB

edges 72,729,686 23.8 GB

linearwater0.1 585,809 852 MB

Edges0.1 7,271,983 2.3 GB

B. Results using Full Datasets

The end-to-end runtimes (in seconds) for the two experiments

(taxi-nycb and edge-linearwater) under the four configurations

on the three systems are listed in Table 2. The reported

runtimes include indexing the two input datasets and

performing the distributed join, i.e., end-to-end runtimes. It

can be seen that HadoopGIS failed all the experiments using

the full datasets, SpatialHadoop was successful in all the

experiments while SpatialSpark was in between. The top

reason for HadoopGIS to fail is broken pipeline, which is

typical in Hadoop Streaming when the data that pipes through

multiple processors is too big. The top reason for SpatialSpark

to fail is out of memory and Spark is not able to spill data to

external storage. While SpatialSpark was successful for both

the workstation and EC2-10 configurations, it failed under

EC2-8 and EC2-6 configurations. We note the workstation has

128 GB memory and the aggregated memory capacity of the

EC2-10 cluster is 150 GB, which were sufficient for

SpatialSpark to experiment on the full datasets.

Table 2 End-to-End Runtimes of Experiment Results of Full Datasets

(in seconds)
 WS EC2-10 EC2-8 EC2-6

taxi-nycb HadoopGIS - - - -

SpatialHadoop 3,327 2,361 2,472 3,349

SpatialSpark 3,098 813 - -

edge-
linearwater

HadoopGIS - - - -

SpatialHadoop 14,135 5,695 8,043 9,678

SpatialSpark 4,481 1,119 - -

When the available memory capacity is sufficient, it

can be seen from Table 2 that SpatialSpark can be

significantly faster than SpatialHadoop. Under EC2-10

configuration, SpatialSpark is 2.9X and 5.1X faster than

SpatialHadoop for the two experiments, respectively. The

results are different under the workstation configuration where

SpatialSpark is 3.2X faster for the edge-linearwater

experiment but is only 1.07X faster for the taxi-nycb

experiment. A possible explanation is that the taxi-nycb

experiment is much more disk I/O intensive than the edge-

linearwater experiment and the performance of the

workstation is significantly limited by its single-node disk I/O

bandwidth. When disk I/O is not a limiting factor (either by

using distributed I/O or the experiment is more computing

bound in the edge-linearwater experiment), the speedups of

SpatialSpark over SpatialHadoop have clearly demonstrated

the efficiency of in-memory processing.

C. Results Using Sample Datasets

The runtimes of the taxi1m-nycb and edge0.1-linearwater0.1

experiments are listed in Table 3. Since the performance of the

three EC2 configurations are roughly the same for all the three

systems (which may indicate poor scalability), we only show

the results under the workstation and EC2-10 configurations.

We list the breakdown runtimes to provide a better idea on the

runtime distributions: column IA is the runtime for indexing

the left side input dataset (taxi1m and edge0.1), column IB is

the runtime for indexing the right side input dataset (nycb and

linearwater0.1), column DJ is the runtime for distributed

spatial join, and, column TOT is the summation of the three.

Table 3 Breakdown Runtimes of Experiment Results Using Sample Datasets (in seconds)
 WS EC2-10

 IA IB DJ TOT IA IB DJ TOT

taxi1m-nycb HadoopGIS 206 54 3,273 3,533 -

SpatialHadoop 227 52 230 482 647 187 183 1,017

SpatialSpark 216 67

edge0.1-linearwater0.1 HadoopGIS 1,550 488 1,249 3,287 -

SpatialHadoop 1,013 307 220 1,540 756 596 106 1,458

SpatialSpark 765 48

Although HadoopGIS still failed under the EC2-10

configuration for both experiments, it was successful under the

workstation configuration. This makes it possible to compare

its performance with SpatialHadoop and SpatialSpark

directly. The runtimes for SpatialSpark are end-to-end times

as it is difficult to measure each individual step due to the

asynchronous data communication/computation in Spark. The

results listed in Table 3 suggest that, while the indexing times

are comparable in both HadoopGIS and SpatialHadoop,

SpatialHadoop is 14X and 5.7X faster than HadoopGIS for

distributed joins (as reported in the DJ column) in the two

experiments, respectively. While excessive disk I/O and string

parsing might be important factors in contributing to the poor

performance of HadoopGIS, our previous results have

identified that the C++ based GEOS geometry library used in

HadoopGIS can be several time slower than the java-based

JTS geometry library used in SpatialHadoop and SpatialSpark

[6], which might be another major factor. We thus exclude

HadoopGIS from further comparisons.

When comparing the end-to-end runtimes between

SpatialHadoop and SpatialSpark using the sampled datasets,

SpatialSpark is about 2.2X faster under the workstation

configuration but is about 15X faster under the EC2-10

configuration for the taxi1m-nycb experiment. Similar results,

i.e., 2.0X and 30X under the EC2-10 configuration, can be

observed in the edge0.1-linearwater0.1 experiment. The result

was a surprise when compared with the speedups using the full

datasets. A careful investigation revealed that indexing times

under the EC2-10 configuration dominates in both

experiments using the sampled datasets. These are quite

different from the full dataset experiment results where

distributed join (DJ) consumes most of the runtime, which are

1,950s out of 3,327s for taxi-nycb experiment under

workstation configuration, 1,282s out of 2,361s for taxi-nycb

experiment under EC2-10 configuration, 9,887s out of 14,135s

for edge-linearwater under workstation configuration and

3,886s out of 5,695s for edge-linearwater under EC2-10

configuration. An explanation is that, indexing under EC2-10

configuration involve significant data shuffling among the 10

distributed computing nodes which can be very expensive for

SpatialHadoop. In contrast, distributed joins under the EC2-10

configuration can be significantly sped up by distributed I/Os

in SpatialSpark.

When comparing the distributed join times (DJ) only,

SpatialHadoop takes only 220s in edge0.1-linearwater0.1

experiment under the workstation configuration, which is

significantly lower than the indexing runtimes. This may

indicate the Hadoop infrastructure overheads for small

datasets on a single computing node may be high. We note

that the end-to-end runtime of SpatialSpark (765s), which is

much larger than the distributed join (DJ) runtime but only

half of the total (TOT) runtime of SpatialHadoop.

Under EC2-10 configuration, SpatialSpark is 2.7X

and 2.2X faster than SpatialHadoop with respect to distributed

join (DJ) runtimes for the two experiments, respectively. The

results are consistent with the experiments using the full

datasets, which are 1.8X (1282/712) and 3.5X (3886/1119) for

the two experiments under EC2-10 configuration. However,

similar to the workstation configuration, the indexing runtimes

are several times larger than the distributed join runtimes for

SpatialHadoop. The results may suggest that indexing in

SpatialHadoop are quite expensive when compared with

distributed joins, possibly due to distributed data shuffling and

excessive disk I/Os. It is clear that the speedups of

SpatialSpark over SpatialHadoop are mostly due to the ability

to reduce unnecessary disk accesses by pipelining the process

completely in memory.

IV. CONCLUSION AND FUTURE WORK

In this study, we have compared three leading Cloud-based

spatial data management systems, both conceptually through

architectural analysis and empirically through experiments

using real world datasets on both a workstation serving as a

single-node cluster and on Amazon EC2 clusters using up to

10 nodes. The analytical and experimental results suggest that,

Cloud system platforms (Hadoop/Spark), data access models

(streaming/random/functional), languages (Java/mixed/Scala)

and the underlying geometry libraries (GEOS/JTS) have

significant impacts in their realized performance. While

SpatialHadoop generally is the winner of robustness, partially

because it is built on top of the mature Hadoop platform,

SpatialSpark is the winner with respect to efficiency in large-

scale spatial join processing, due to the efficiency of in-

memory processing provided by Spark.

All the three systems we have evaluated in this study

run on Java Virtual Machines (JVMs), which do not support

Single Instruction Multiple Data (SIMD) computing power

yet. We have developed two sets of techniques, i.e., ISP-MC+

and ISP-GPU [11] by integrating spatial join techniques with

Cloudera Impala [12] and LDE-MC+ and LDE-GPU [13] by

developing distributed spatial join techniques directly on top

of Apache Thrift14 for distributed data communications. All of

them are capable exploiting SIMD computing power on both

multi-core CPUs and Graphics Processing Units (GPUs). For

future work, we plan to include analyzing their data parallel

designs and performance comparisons.

ACKNOWLEDGEMENT

This work is supported through NSF Grants IIS-1302423 and

IIS-1302439.

REFERENCES

1. E. H. Jacox, and H. Samet (2007). Spatial join techniques.

ACM Transaction on Database System 32(1), Article #7.
2. J. Zhang, S. You and L. Gruenwald (2014). Parallel Online

Spatial and Temporal Aggregations on Multi-core CPUs and
Many-Core GPUs," Information Systems, vol. 4, 134–154.

3. J. Zhang and S. You. (2012). Speeding up large-scale point-in-
polygon test based spatial join on GPUs. In Proc. ACM
BigSpatial, 23-32.

4. A.Aji et al (2013) Hadoop-GIS: A High Performance Spatial
Data Warehousing System over MapReduce. In Proc. VLDB,
6(11), 1009-1020, 2013.

5. Eldawy and M. F. Mokbel, "SpatialHadoop: A MapReduce
Framework for Spatial Data," in Proc. IEEE ICDE'15.

6. S. You, J. Zhang and L. Gruenwald (2015). Large-Scale Spatial
Join Query Processing in Cloud," in Proceedings of IEEE
CloudDM'15.

7. A. Floratou, U. F. Minhas and F. Ozcan (2014). SQL-on-
Hadoop: Full Circle Back to Shared-nothing Database
Architectures. Proc. VLDB Endow., 7(12), pp. 1295-1306

8. Y. Lu, J. Cheng, D. Yan and H. Wu (2014). Large-scale
Distributed Graph Computing Systems: An Experimental
Evaluation. Proc. VLDB Endow., 8(3), pp. 281-292

9. B. Sowell, M. V. Salles, T. Cao, A. Demers and J. Gehrke
(2013). An Experimental Analysis of Iterated Spatial Joins in
Main Memory," Proc. VLDB Endow.,6(14), pp. 1882-1893.

10. H. Vo, A. Aji and F. Wang (2014). SATO: a spatial data
partitioning framework for scalable query processing. in Proc.
ACM-GIS.

11. S. You, J. Zhang and L. Gruenwald (2015). Scalable and
Efficient Spatial Data Management on Multi-Core CPU and
GPU Clusters: A Preliminary Implementation based on Impala,
in Proc. IEEE HardBD’15.

12. M. Kornacker, A. Behm, et al. "Impala: A Modern, Open-
Source SQL Engine For Hadoop," in Proc. CIDR'15.

13. J. Zhang, S. You and L.Gruenwald (2015). A Lightweight
Distributed Execution Engine for Large-Scale Spatial Join
Query Processing. To appear in Proc. IEEE Big Data Congress.

1 https://sites.google.com/site/hadoopgis/
2 http://hadoop.apache.org/docs/r1.2.1/streaming.html
3 http://spatialhadoop.cs.umn.edu/
4 http://simin.me/projects/spatialspark/
5 https://spark.apache.org/
6 http://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
7 http://trac.osgeo.org/geos
8 http://www.vividsolutions.com/jts/
9 http://libspatialindex.github.io/
10 http://www.andresmh.com/nyctaxitrips/
11 http://www.nyc.gov/html/dcp/html/bytes/applbyte.shtml
12 https://www.census.gov/geo/maps-data/data/tiger.html
13 http://spatialhadoop.cs.umn.edu/datasets.html
14 https://thrift.apache.org/

http://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
http://trac.osgeo.org/geos
http://libspatialindex.github.io/

