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Abstract—Data volumes of GPS recorded locations and many 

other types of geospatial data are fast increasing. Processing 

large-scale spatial joins in Cloud for performance and scalability 

is becoming increasingly popular. In this study, we compare three 

leading Cloud-based spatial data management systems, namely 

HadoopGIS, SpatialHadoop and SpatialSpark, both conceptually 

through analysis of design choices and empirically through 

experiments using real world datasets. Using both a workstation 

serving as a single-node cluster and up to 10 nodes Amazon EC2 

clusters, the results show that the combined factors, including 

Cloud platforms, data access models and the underlying 

geometry libraries, have significant impacts in their realized 

performance. While SpatialHadoop generally wins on robustness, 

SpatialSpark is the clear winner of efficiency due to in-memory 

processing. 

Keywords— Spatial Join, Query Processing, Cloud Computing, 

Design, Performance 

I. INTRODUCTION  

The recent development of Big Data systems has motivated 

processing large-scale geospatial data on commodity cluster 

computers in a distributed manner. Spatial joins [1], such as 

matching taxi pickup/drop-off locations with road segments 

through point-to-nearest polyline distance computation or 

assigning species occurrence records to ecological zones 

through point-in-polygon test, are not only data intensive but 

also computing intensive. Although efficient parallel 

algorithms on shared memory architectures have been 

explored previously [2, 3], it is desirable to scale spatial join to 

distributed computing nodes to process large-scale spatial data 

that are beyond the capacities of single computing nodes. 

While serial spatial join algorithms typically have two phases, 

i.e., spatial filtering to pair up spatial data items based on the 

spatial relationship of their Minimum Bounding Rectangles 

(MBRs) and spatial refinement to remove false positives due 

to MBR approximation by using exact geometry to test spatial 

relationships between paired spatial data items, distributed 

spatial joins require an additional partition phase and a global 

join phase to distribute workload across multiple computing 

nodes.  

Several research prototype systems have been 

developed for large-scale spatial query processing in Cloud. 

HadoopGIS1 is a pioneering system that allows spatial joins 

and several other spatial operations on Hadoop by adopting 

Hadoop Streaming2 framework and integrating several open 

source software packages for spatial indexing and geometry 

computation [4]. SpatialHadoop3, on the other hand, tightly 

integrates spatial operations including indexing and joins into 

Hadoop [5]. While HadoopGIS is mostly a collection of 

modules (Java, python and C++ wrappers) that can be nicely 

plugged into Hadoop, SpatialHadoop has 14,000 lines of Java 

code which re-implements several popular spatial operations 

from scratch in Hadoop. SpatialSpark4, which is a lightweight 

implementation of several spatial join algorithms on top of the 

Apache Spark5 in-memory Big Data system, recently becomes 

available [6]. Different from HadoopGIS and SpatialHadoop 

that were built on top of Hadoop and utilize Hadoop 

Distributed File System (HDFS6) to store intermediate results 

for scalability and fault tolerance, SpatialSpark targets at in-

memory processing for higher performance. As a lightweight 

implementation, SpatialSpark has a very small codebase 

(<2,000 lines) which makes it easy to understand, use and 

maintain. The three systems differ significantly in terms of 

distributed computing platforms (Hadoop/Spark), data access 

models (streaming/random/functional), languages 

(Java/mixed/Scala) and the underlying geometry libraries 

(GEOS7/JTS8). 

Despite the similarities among HadoopGIS, 

SpatialHadoop and SpatialSpark from an end-user perspective 

where end-to-end runtime is the primary concern, it is 

interesting to analyze their design choices, compare their 

realized performance and understand how the designs and 

implementations affect performance. We believe this is the 

first work towards comparing systems for large-scale 

geospatial processing (or Big Spatial Data systems) and gain 

insights for future enhancements. Our work shares similar 

motivation of several previous works on performance 

comparisons on Big Data systems for relational data [7]  and 

graph data [8]. In addition, although [9] provided a 

comprehensive evaluations of batched queries on point data 

(static and moving objects) using a spatial join framework on a 

shared memory machine, the systems we evaluate target at 

much larger scale spatial joins in distributed computing 

platforms for more complex geospatial data (such as polylines 

and polygons) and higher generality (both sides of a join can 

be any type of geospatial data).  

Our technical contributions are twofold. First, we 

analyze the components and stages of distributed spatial join 

implementations in HadoopGIS, SpatialHadoop and 

SpatialSpark and provide a generalized framework to set the 

context for discussing various design and implementation 



choices that have been exploited in the three systems. Second, 

we prepare several datasets derived from public sources and 

use them to evaluate the end-to-end performance of the three 

systems. The rest of the paper is arranged as follows. After a 

brief background introduction, Section 2 provides the 

generalized framework and introduces the design and 

implementation choices adopted by HadoopGIS, 

SpatialHadoop and SpatialSpark. Section 3 presents our 

experiments and results. Finally, Section 4 is the summary and 

future work directions.  

II. GENERALIZED FRAMEWORK FOR ANALYZING DESIGN 

AND IMPLEMENTATION CHOICES 

Techniques on distributed spatial joins exist long before 

Hadoop and Spark were developed [1]. However, the 

significant burden of handling distributed data 

communications and spatial join logic in a tightly intertwined 

manner has made the traditional techniques difficult to adopt 

in practical applications. Both Hadoop and Spark separate data 

communication and processing logic to make distributed data 

management much easier for application developer, although 

in a related but different way. All the three systems to be 

evaluated are built on top of either Hadoop or Spark. As a 

consequence, their design and implementation choices are 

significantly impacted by the underlying platforms. Similar to 

the discussions in [5], we divide a complete distributed spatial 

join process into three stages: (1) preprocessing (2) global join 

and (3) local join. The components of the implementations of 

a complete distributed spatial join in the three systems, 

however, have a complex relationships with respect to the 

three stages.  

Assuming neither of the two input datasets in a 

spatial join is indexed, the preprocessing stage is responsible 

for loading data into a distributed file system, performing data 

format transformation if necessary, building indexes at one or 

multiple levels and logically or physically partition the 

datasets into chunks (referred as partitions hereafter) that may 

be beneficial to the subsequent stages. The global join stage 

can be considered as a distributed extension to spatial filtering 

in serial spatial join algorithms. In all the three systems, input 

data items are first grouped into partitions and a spatial join on 

the MBRs of the partitions is first performed to pair up 

partitions whose MBRs spatially intersect, typically on a 

single computing node (e.g. the master node in a Hadoop or 

Spark cluster). The list of paired partitions is then dispatched 

to distributed computing nodes for the final local spatial join 

stage. Fig. 1 represents a generalized framework that are 

shared by the three systems and serves as the context for the 

discussions of the implementation choices. 

      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. I Illustration of a Generalized Framework for Analyzing Design Choices of HadoopGIS, SpatialHadoop and SpatialSpark 
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Given two input datasets (A and B, respectively), 

subplots of Fig. 1 illustrate how the three stages are 

implemented in HadoopGIS (Fig. 1(a), top left), 

SpatialHadoop (Fig. 1 (b), top right) and SpatialSpark (Fig. 1 

(c), bottom left), respectively. We use SA and SB to represent 

the sampled dataset of A and B, respectively. We also use SI 

to represent the spatial index that is used for global join, which 

can be built either from both SA and SB (HadoopGIS and 

SpatialHadoop) or from SA or SB (SpatialSpark), and used 

either in both the Map phase and Reduce phase (HadoopGIS) 

or the Map phase only (SpatialHadoop) in a MR job, or a 

standalone step that uses an implicit Join parallel primitive 

which is equivalent to the shuffle phase in a MR job 

(SpatialSpark). Note that the shaded region in Fig. 1(a) and 

Fig. 1(b) represent the most important (and the final) MR job 

in the end-to-end distributed spatial join process. The shaded 

region in Fig. 1(c) represents steps that are functionally 

equivalent to the MR job in the shaded region in Fig. 1(a) and 

Fig. 2(b). 

While HadoopGIS processes data items sequentially 

and is transparent to partition boundaries (streaming data 

access), SpatialHadoop is aware of partition boundaries and 

explicitly pair up partitions based on the spatial relationships 

among the MBRs of partitions (random data access). 

SpatialSpark, on the other hand, adopts a data parallel 

(functional) model due to the underlying Spark platform. 

While SpatialSpark is similar to HadoopGIS with respect to 

sequential data access within a partition, it is aware of 

partition boundary as partitions are defined by keys. However, 

different from SpatialHadoop, SpatialSpark does not have the 

ability to randomly access data items within a partition and we 

use “functional data access” to reflect the fact that both Spark 

and SpatialSpark use Scala which is a functional programming 

language. The different data access models largely imposed by 

the underlying system infrastructures have significant impacts 

on many design choices and performance subsequently. While 

the implementation choices will be discussed in more details 

in the subsequent three subsections on the three stages, 

respectively, from Fig. 1, it is clear that SpatialHadoop and 

HadoopGIS have much more interactions (including reading 

inputs, writing outputs and shuffling intermediate results) with 

HDFS while SpatialSpark touches HDFS only when input data 

are read from HDFS to memory of computing nodes. As we 

shall see in the experiment section, reducing disk I/O to a 

minimum level contributes significantly to the efficiency of 

SpatialSpark.  

A. Preprocessing 

HadoopGIS uses the following steps to partition an input 

dataset: (1) a map-only job to convert the input to a tab 

separated file while the dataset is being loaded to HDFS, (2) a 

map-only job to sample data items and extract MBRs of the 

sampled data items, (3) a MR job to compute the spatial extent 

of the dataset based on the samples (with a single reducer), (4) 

a map-only job to normalize the sample MBRs, (5) a local 

program to generate partitions based on the sample MBRs, (6) 

a MR job to assign each input data items with an partition by 

querying the partitions it intersects.  Although step 2-4 involve 

only MBRs of samples which can be significantly smaller than 

the input dataset (assuming sample rate is far less than 1.0), 

step 1 and 5 require reading and/or writing all the input data 

items with all attributes, which can be very expensive with 

respect to disk I/O. Step 6 is the most expensive step with 

respect to both I/O and computation for three reasons. First, 

each mapper needs to build a spatial index from sample 

MBRs. Second, since data items are stored as strings (due to 

the requirement imposed by Hadoop Streaming), each input 

data item needs to be parsed and the parsed MBR needs to 

query against the spatial index. Third, each input data item, in 

addition to its assigned partition ID, needs to be written out to 

HDFS to be processed in the reduce step. The reducer is 

currently implemented as a python script which uses a 

pipelined cat-sort-unique combination to remove duplicated 

data items in a partition. Note that Linux command cat is used 

to retrieve data from HDFS to feed the subsequent sort and 

unique modules. However, removing duplication through 

sorting is typically suboptimal. Furthermore, Step 5 uses a 

local serial program and requires copy data back and forth 

between a local file system and HDFS, which can be 

expensive as well. Conceptually, Step 1-5 can be combined to 

simplify both the process workflow, and more importantly, to 

reduce disk I/O overheads. Disk I/Os are known to be 

excessive (and quite often unnecessary) in Hadoop when 

compared with Spark which is designed for in-memory 

processing.  

Compared with HadoopGIS that adopts a Hadoop 

Streaming framework which requires it to process input data 

items sequentially (as a string per line) in both a mapper and 

reducer, SpatialHadoop is tightly integrated with Hadoop 

which allows it to use low-level APIs for more efficient 

processing. Assuming that neither of the input datasets has 

been indexed, the preprocessing stage in SpatialHadoop is 

implemented using two MapReduce (MR) jobs. The first MR 

job samples both input datasets and generate partitions based 

on the samples. The MBRs of the partitions for an input 

dataset are stored in a special HDFS file that is accessible to 

the subsequent MR jobs due to HDFS runtime (i.e., disk-based 

broadcast). In the second MR job, the mapper queries against a 

spatial index built from the MBRs to assign a partition ID for 

each data item from an input dataset. By using the partition ID 

as the key and the geometry as the value, after the shuffle 

stage of the MR job, all data items that belong to the same 

partition are naturally written to a same HDFS block file. A 

spatial index for all the data items within the block can be built 

and written to the beginning of the HDFS block file. From a 

developer’s perspective, since SpatialHadoop has random data 

accesses to block files in HDFS, it is both convenient and 

efficient than the Hadoop steaming approach adopted by 

HadoopGIS, although much deeper knowledge of Hadoop is 

required to develop SpatialHadoop than HadoopGIS which 

can be both an advantage and a disadvantage form a 

development perspective. As disk I/Os are typically more 

expensive than computing required for spatial indexing, the 

intra-partition indexes are built virtually for free.  



SpatialSpark supports both spatial partitioning and 

sequence-based partitioning. While sequence-based (non-

spatial) partition does not require preprocessing and is more 

efficient when the left side of a spatial join is a point dataset, 

we will focus on spatial partitioning in this study to make it 

comparable with HadoopGIS and SpatialHadoop. Similar to 

HadoopGIS, SpatialSpark supports creating partitions through 

sampling using different approaches as discussed in [10] and 

partially implemented (on top of Hadoop) in HadoopGIS. As 

the aggregated memory of a reasonably up-to-date cluster is 

typically larger than both of the input datasets in a spatial join, 

the end-to-end sampling process can be completed in-memory 

without touching HDFS, which is clearly more efficient. The 

built-in sampling function in Spark/Scala makes the 

implementation much easier. Different from HadoopGIS and 

SpatialHadoop where data items in a dataset (that may or may 

not participate in a distributed spatial join) are physically 

reordered and stored in HDFS, reordered data items are 

generated for query processing only in SpatialSpark. It may 

not need to be stored in HDFS which can be efficient in both 

computing and storage. Again, the advantage of SpatialSpark 

is due to the in-memory processing feature brought by Spark.  

As a brief summary for the preprocessing stage, 

HadoopGIS samples and partitions both input datasets using 

several partition techniques. SpatialHadoop partitions sampled 

data items into grid cells which can be used to pair up partition 

MBRs to be detailed next. SpatialSpark, on the other hand, 

samples only one input dataset and uses partition MBRs to 

build a spatial index to assign partitions IDs for data items on 

both sides of a join. HadoopGIS is likely to be the most 

expensive technique among the three due to excessive 

geometry parsing and disk I/Os in multiple MR jobs which can 

be potentially combined or simplified. 

B. Global Join 

Global Join is to pair up spatial partitions of both input 

datasets before distributing the pairs to computing nodes for 

local join. Implementations of global join techniques are 

largely determined by the underlying distributed computing 

platforms (i.e., Hadoop and Spark) and data access models 

(random or streaming in Hadoop).  

In HadoopGIS, after spatial partition, each data item 

in both input datasets is assigned a partition ID. Unfortunately, 

the spatial relationships among the partitions in the two 

joining datasets cannot be derived and used for pairing 

directly. To spatially pair up partitions, HadoopGIS reuses 

samples of these two datasets by concatenating them and 

creating new partitions based on the combined data. As this 

step is implemented on a local machine in a serial manner, the 

input sample files need to be copied from HDFS to local file 

system and the output partitions need to be copied back to 

HDFS. While the input datasets are sampled to reduce 

computing overheads, both I/O overhead and scalability are 

likely to be a serious performance issue when sampling rates 

are high. The HDFS file that stores the locally built partitions 

serves as one of the inputs to the distributed join MR job, 

which is essentially broadcast to all map tasks in the job. Each 

map task builds a spatial index (using R-Tree implemented in 

libspatialindex9) based on the MBRs of the new partitions. 

Each item in the input datasets query against the spatial index 

to compute its partition ID and append the ID to the item as 

the output of the map task in the MR job. By using the 

partition ID as the key, data items that spatially belong to the 

same partition in both input datasets are shuffled by Hadoop 

runtime and sent to a reducer task. The process is very similar 

to the last MR job in the preprocessing stage (spatial partition) 

in HadoopGIS, except that the reducer there only needs to 

write out shuffled data items to HDFS while the reducer in the 

distributed spatial join MR job needs to perform local spatial 

job (to be discussed in the next subsection). The design is 

smart in the sense that it avoids the limitation imposed by 

Hadoop Streaming framework. We note that it is very difficult 

(and may be even impossible) to pair partitions in the two 

input datasets in HadoopGIS otherwise, as this would require 

accesses to individual partitions whose information is invisible 

to Hadoop Streaming applications. However, a serious 

consequence is that the partition IDs assigned to data items in 

the two input datasets cannot be reused in the distributed 

spatial join job, which is wasteful. Querying each data item in 

both input datasets against the new spatial index is both disk 

I/O intensive (HDFS) and memory intensive (traversing R-

Trees). Although data items that spatially belong to a same 

partition may have been physically shuffled to an HDFS block 

for both input datasets after the preprocessing stage, they still 

need to go through the shuffle step in the distributed spatial 

join MR job. The expensive shuffle operation, however, is 

again wasteful. The implementation decisions in HadoopGIS 

are clearly limited by Hadoop Streaming.   

Global join in SpatialHadoop is much simpler and is 

likely to be more efficient. Pairing partitions in SpatialHadoop 

is actually implemented as a preprocessing step in a MR job 

by overloading the getSplits(…) function in FileInputFormat 

class in Hadoop. For the two partitioned input datasets, 

SpatialHadoop stores the MBRs of all their partitions as a 

HDFS file (indicated by _master keyword in its file name). 

After a MR job is started, the master node of the job will 

execute the getSplits function defined in a custom 

FileInputFormat class (BinarySpatialInputFormat in 

SpatialHadoop to be precise) to generate a list of splits that 

will be distributed to map tasks. Given the two MBR files, any 

in-memory spatial join technique can be applied to spatially 

pair up partitions based on their MBRs. For each split that is 

assigned to a map task, the HDFS block file names 

corresponding to the two paired partitions of the two input 

datasets are provided to the map task which allows it to 

perform local spatial join (to be detailed next) within the map 

task. As a map-only MR job, the implementation is very 

efficient and is quite different from HadoopGIS where local 

spatial joins are implemented in reducers. Different from 

HadoopGIS that only data items (lines of string text) are 

invisible to the mappers and reducers (due to Hadoop 

Streaming), SpatialHadoop has the location information of all 

the blocks in a HDFS file and can randomly access the data 

block files. The random data access flexibility allows 



SpatialHadoop to easily adapt traditional serial spatial join 

techniques (see [1] for a review) for global join.  

The programming model in Spark gives SpatialSpark 

more flexibility in pairing up partitions in the global join 

stage. Recall that, in the preprocessing stage, SpatialSpark 

only partitions one input dataset (assuming the right side of the 

spatial join) through sampling. A spatial index is built for the 

MBRs of the partitions. The index, as an in-memory data 

structure, can be sent (through broadcasting) to all computing 

nodes by Spark runtime without involving HDFS, which is 

more efficient than HadoopGIS (each map task builds its own 

index by reading the MBR file from HDFS) and could be 

more scalable than SpatialHadoop (the master node reads 

MBR files of both input datasets from HDFS and perform a 

serial spatial join). Subsequently, in SpatialSpark, the data 

items of both input datasets are used to query the index to 

compute that partition ID that each data item should be 

assigned to. We note that while the spatial query logic is 

expressed at the individual data item level in SpatialSpark, 

Spark runtime system actually divides the input data items into 

chunks (sequentially) and dispatch them for distributed 

execution. This step is functionally equivalent to the map step 

of the distributed MR job in HadoopGIS but is much more 

efficient due to in-memory processing. The partitioned data 

items are subsequently grouped based on partition IDs at the 

both sides, respectively. This can be easily achieved by using a 

groupByKey member function of RDDs (Resilient Distributed 

Dataset) that is natively supported by Spark. As a result of the 

step, each partition is associated with a list of data items that 

are assigned to the partition, for both input datasets. Finally, 

another RDD member function (i.e., join) is used to join 

{partition ID,{Left item ID}}  and {partition ID,{Right item 

ID}} based on partition ID and generate the {partition ID, 

{Left item ID}X{Right item ID}} list. A disadvantage of 

SpatialSpark is that, similar to many Spark applications, 

available memory capacity is crucial to its success and 

efficiency. When available memory is insufficient, as 

presented in the experiment section, SpatialSpark may fail to 

work properly.  

We note that the partition-based spatial join technique 

we discuss here is different from the broadcast-based spatial 

join that was originally implemented in the early version of 

SpatialSpark [6]. Although the built spatial index from 

sampled data items in the partition-based spatial join technique 

is broadcast to all computing nodes using Spark distributed 

computing infrastructure as discussed in [6], neither data items 

in the dataset of the right side of a spatial join nor their full 

index are broadcast to the left side. The data volume of the 

sample index to be broadcast can be controlled by adjusting 

sample rate which makes the partition-based spatial join more 

scalable at the expense of joining partitions based on partition 

IDs. In contrast, in broadcast-based spatial join technique, 

each data item can query against the broadcast full index tree 

(and/or the data items they index) to pair up data items 

directly. We leave a thorough comparison between broadcast-

based and partition-based spatial join techniques in Cloud for 

future work. In this study, we focus on evaluating partition-

based spatial join technique in the three systems.  

The combination of the two steps in SpatialSpark is 

essentially equivalent to the shuffle step of the distributed MR 

Job in HadoopGIS. However, Spark is able to maximize the 

utilization of aggregated cluster memory capacity for fast in-

memory processing, provided that there are sufficient memory 

available for the application. The join result can subsequently 

be treated as an RDD. A RDD map function can then be used 

to distribute a partition to a processing unit, in a way similar to 

the reducer in HadoopGIS and mapper in SpatialHadoop in 

their distributed spatial join MR jobs, respectively. Comparing 

SpatialSpark with SpatialHadoop, the work that is done in the 

global join stage in SpatialSpark is essentially equivalent to 

SpatialHadoop that requires re-partitioning [5]. We note that, 

in SpatialHadoop, even though both input datasets in a spatial 

join may have been indexed in the preprocessing stage, when 

the underlying grid configurations are not compatible and the 

cells in the two datasets cannot be directly used for pairing, 

repartition is required. On the other hand, the on-demand 

indexing in SpatialSpark makes re-partitioning unnecessary, 

although SpatialHadoop can run faster when re-partitioning 

can be skipped.  

While it is possible for SpatialSpark to adopt a 

similar strategy as what has been done in SpatialHadoop, i.e., 

assigning data items of both input datasets to partitions in the 

preprocessing step and using a serial spatial join algorithm to 

pair up the partitions (at a master node), it would require 

SpatialSpark to incorporate quite some Hadoop/HDFS APIs 

which is likely to increase system complexity and reduce 

compatibility and interoperability. From a performance 

perspective, assigning partition IDs to input data items in 

SpatialSpark has the same level of overhead as re-partitioning 

in SpatialHadoop. However, we argue that SpatialSpark can 

be more I/O efficient as SpatialHadoop requires writing 

repartitioned datasets to HDFS before its data items are read 

back for local joins. We also argue that shuffling the grouped 

item lists in memory (in SpatialSpark) should be more 

efficient than shuffling lists of (partition ID, Item) pairs on 

disks (in HadoopGIS and SpatialHadoop), especially when 

Item has a large data volume. Furthermore, a (hash) join based 

on partition IDs (one-to-one integer matching) in parallel in 

SpatialSpark could be more efficient than a serial spatial join 

on a single computing node in SpatialHadoop. As such, we 

expect SpatialSpark to be more efficient in the global join 

stage.  

C. Local Join 

Data items that are aligned to a same partition (regardless how 

the partitions are generated) is assigned to a processing unit in 

all of the three systems. The implementations for this stage are 

much similar when compared with the other two stages: first 

build a spatial index for data items in a partition of one input 

dataset and the query the index for all the data items in the 

other input dataset to pair up data items based on their MBRs 

before the final local refinement.  

As only a single processing unit is assigned to a 

partition pair in the current Cloud computing platforms 



running Hadoop/Spark, no more parallelisms need to be 

exploited to improve performance in this stage. SpatialHadoop 

actually provides both a plane-sweep based and a 

synchronized R-Tree traversal based serial spatial join 

implementation within a partition [1]. While the same module 

can be implemented in HadoopGIS, it is natural to use indexed 

nested loop join in SpatialSpark, due to the underlying Scala 

functional language. Implementing a plane-sweep based serial 

spatial join is more difficult than implementing an indexed 

nested loop join in Scala but can be an interesting 

improvement in its future work.  

In a local join, a spatial refinement [1] step can be 

applied by using a geometry library, i.e., GEOS7 (Geometry 

Engine - Open Source) for HadoopGIS and JTS8 (Java 

Topology Suit) for SpatialHadoop and SpatialSpark, to check 

the spatial relationship between the paired data items using 

their exact geometry. While GEOS is a language port of JTS, 

we have found that JTS can be several times faster than GEOS 

[6]. As shown in the experiment section, this might be a major 

factor in causing HadoopGIS to have long runtimes, in 

additional to the inefficiency caused by Hadoop Streaming.  

 

III. EXPERIMENT AND RESULTS 

A. Experiment Setup 

In order to conduct a reasonably comprehensive and fair 

performance study, we have prepared several real world 

datasets that are publically available for two experiments. The 

first experiment is designed to evaluate point-in-polygon test 

based spatial join, which uses pickup locations from New 

York City taxi trip data10 in 2013 (referred as taxi) and New 

York City 2010 census blocks11 (referred as nycb). The second 

experiment is designed to evaluate polyline-with-polyline 

intersection based spatial join using two US Census Bureau 

TIGER12 datasets provided by SpatialHadoop data portal13 , 

namely edges and linearwater. In addition to utilizing full 

datasets for experiments, we have also derived three sampled 

datasets, which is 1 month data from the full taxi dataset 

(referred as taxi1m) and 10% sample of the TIGER datasets, 

including linearwater0.1 and edges0.1. Table 1 lists the sizes 

of all datasets. The reason that we use 10% sample datasets is 

because not all experiment settings are able to handle all full 

datasets successfully. The performance of the sample datasets 

may provide an idea of the relative performance among the 

three prototype systems when one or more systems cannot 

handle the full datasets successfully.  

We have prepared several hardware configurations. 

The first configuration (WS) is a single node cluster with a 

workstation that has dual 8 core CPUs at 2.6 GHz and 128 GB 

memory. The large memory capacity makes it possible to 

experiment spatial joins that require significant amount of 

memory. A 10-node Amazon EC2 cluster, in which each node 

is a g2.2xlarge instance consists of 8 vCPUs and 15 GB 

memory, is used to test scalability of the three systems. We 

vary the number of nodes from 10 to 6 for scalability test and 

term the configurations as EC2-10, EC2-8, EC2-6, 

respectively. We have excluded EC2-4 and EC2-2 

configurations due to insufficient memory issue for most of 

the testing. Both clusters are installed with Cloudera CDH-

5.2.0 for the Hadoop system for running HadoopGIS1 (Github 

version as of 10/2014) and SpatialHadoop3 Version 2.3. 

SpatialSpark4 is deployed using Spark 1.1. No further 

parameter fine-tuning were attempted.  

Table 1 Experiment Dataset Sizes and Volumes 

Dataset #of Records Size 

Taxi 169,720,892 6.9   GB 

nycb 38,839 19    MB 

linearwater 5,857,442 8.4   GB 

edges 72,729,686 23.8 GB 

linearwater0.1 585,809 852  MB 

Edges0.1 7,271,983 2.3   GB 

 

B. Results using Full Datasets 

The end-to-end runtimes (in seconds) for the two experiments 

(taxi-nycb and edge-linearwater) under the four configurations 

on the three systems are listed in Table 2. The reported 

runtimes include indexing the two input datasets and 

performing the distributed join, i.e., end-to-end runtimes. It 

can be seen that HadoopGIS failed all the experiments using 

the full datasets, SpatialHadoop was successful in all the 

experiments while SpatialSpark was in between. The top 

reason for HadoopGIS to fail is broken pipeline, which is 

typical in Hadoop Streaming when the data that pipes through 

multiple processors is too big. The top reason for SpatialSpark 

to fail is out of memory and Spark is not able to spill data to 

external storage. While SpatialSpark was successful for both 

the workstation and EC2-10 configurations, it failed under 

EC2-8 and EC2-6 configurations. We note the workstation has 

128 GB memory and the aggregated memory capacity of the 

EC2-10 cluster is 150 GB, which were sufficient for 

SpatialSpark to experiment on the full datasets.  

 
Table 2 End-to-End Runtimes of Experiment Results of Full Datasets 

(in seconds) 
  WS EC2-10 EC2-8 EC2-6 

taxi-nycb HadoopGIS - - - - 

SpatialHadoop 3,327 2,361 2,472 3,349 

SpatialSpark 3,098 813 - - 

edge-
linearwater 

HadoopGIS - - - - 

SpatialHadoop 14,135 5,695 8,043 9,678 

SpatialSpark 4,481 1,119 - - 

 

When the available memory capacity is sufficient, it 

can be seen from Table 2 that SpatialSpark can be 

significantly faster than SpatialHadoop. Under EC2-10 

configuration, SpatialSpark is 2.9X and 5.1X faster than 

SpatialHadoop for the two experiments, respectively. The 

results are different under the workstation configuration where 

SpatialSpark is 3.2X faster for the edge-linearwater 

experiment but is only 1.07X faster for the taxi-nycb 

experiment. A possible explanation is that the taxi-nycb 

experiment is much more disk I/O intensive than the edge-

linearwater experiment and the performance of the 

workstation is significantly limited by its single-node disk I/O 



bandwidth. When disk I/O is not a limiting factor (either by 

using distributed I/O or the experiment is more computing 

bound in the edge-linearwater experiment), the speedups of 

SpatialSpark over SpatialHadoop have clearly demonstrated 

the efficiency of in-memory processing. 

C. Results Using Sample Datasets 

The runtimes of the taxi1m-nycb and edge0.1-linearwater0.1 

experiments are listed in Table 3. Since the performance of the 

three EC2 configurations are roughly the same for all the three 

systems (which may indicate poor scalability), we only show 

the results under the workstation and EC2-10 configurations. 

We list the breakdown runtimes to provide a better idea on the 

runtime distributions: column IA is the runtime for indexing 

the left side input dataset (taxi1m and edge0.1), column IB is 

the runtime for indexing the right side input dataset (nycb and 

linearwater0.1), column DJ is the runtime for distributed 

spatial join, and, column TOT is the summation of the three.  

 

Table 3 Breakdown Runtimes of Experiment Results Using Sample Datasets (in seconds) 
  WS EC2-10 

  IA IB DJ TOT IA IB DJ TOT 

taxi1m-nycb HadoopGIS 206 54 3,273 3,533 - 

SpatialHadoop 227 52 230 482 647 187 183 1,017 

SpatialSpark 216 67 

edge0.1-linearwater0.1 HadoopGIS 1,550 488 1,249 3,287 - 

SpatialHadoop 1,013 307 220 1,540 756 596 106 1,458 

SpatialSpark 765 48 

 

Although HadoopGIS still failed under the EC2-10 

configuration for both experiments, it was successful under the 

workstation configuration. This makes it possible to compare 

its performance with SpatialHadoop and SpatialSpark 

directly. The runtimes for SpatialSpark are end-to-end times 

as it is difficult to measure each individual step due to the 

asynchronous data communication/computation in Spark. The 

results listed in Table 3 suggest that, while the indexing times 

are comparable in both HadoopGIS and SpatialHadoop, 

SpatialHadoop is 14X and 5.7X faster than HadoopGIS for 

distributed joins (as reported in the DJ column) in the two 

experiments, respectively. While excessive disk I/O and string 

parsing might be important factors in contributing to the poor 

performance of HadoopGIS, our previous results have 

identified that the C++ based GEOS geometry library used in 

HadoopGIS can be several time slower than the java-based 

JTS geometry library used in SpatialHadoop and SpatialSpark 

[6], which might be another major factor. We thus exclude 

HadoopGIS from further comparisons.  

When comparing the end-to-end runtimes between 

SpatialHadoop and SpatialSpark using the sampled datasets, 

SpatialSpark is about 2.2X faster under the workstation 

configuration but is about 15X faster under the EC2-10 

configuration for the taxi1m-nycb experiment. Similar results, 

i.e., 2.0X and 30X under the EC2-10 configuration, can be 

observed in the edge0.1-linearwater0.1 experiment. The result 

was a surprise when compared with the speedups using the full 

datasets. A careful investigation revealed that indexing times 

under the EC2-10 configuration dominates in both 

experiments using the sampled datasets. These are quite 

different from the full dataset experiment results where 

distributed join (DJ) consumes most of the runtime, which are 

1,950s out of 3,327s for taxi-nycb experiment under 

workstation configuration, 1,282s out of 2,361s for taxi-nycb 

experiment under EC2-10 configuration, 9,887s out of 14,135s 

for edge-linearwater under workstation configuration and 

3,886s out of 5,695s for edge-linearwater under EC2-10 

configuration. An explanation is that, indexing under EC2-10 

configuration involve significant data shuffling among the 10 

distributed computing nodes which can be very expensive for 

SpatialHadoop. In contrast, distributed joins under the EC2-10 

configuration can be significantly sped up by distributed I/Os 

in SpatialSpark.  

When comparing the distributed join times (DJ) only, 

SpatialHadoop takes only 220s in edge0.1-linearwater0.1 

experiment under the workstation configuration, which is 

significantly lower than the indexing runtimes. This may 

indicate the Hadoop infrastructure overheads for small 

datasets on a single computing node may be high. We note 

that the end-to-end runtime of SpatialSpark (765s), which is 

much larger than the distributed join (DJ) runtime but only 

half of the total (TOT) runtime of SpatialHadoop.  

Under EC2-10 configuration, SpatialSpark is 2.7X 

and 2.2X faster than SpatialHadoop with respect to distributed 

join (DJ) runtimes for the two experiments, respectively. The 

results are consistent with the experiments using the full 

datasets, which are 1.8X (1282/712) and 3.5X (3886/1119) for 

the two experiments under EC2-10 configuration. However, 

similar to the workstation configuration, the indexing runtimes 

are several times larger than the distributed join runtimes for 

SpatialHadoop. The results may suggest that indexing in 

SpatialHadoop are quite expensive when compared with 

distributed joins, possibly due to distributed data shuffling and 

excessive disk I/Os. It is clear that the speedups of 

SpatialSpark over SpatialHadoop are mostly due to the ability 

to reduce unnecessary disk accesses by pipelining the process 

completely in memory. 

IV. CONCLUSION AND FUTURE WORK 

In this study, we have compared three leading Cloud-based 

spatial data management systems, both conceptually through 

architectural analysis and empirically through experiments 

using real world datasets on both a workstation serving as a 

single-node cluster and on Amazon EC2 clusters using up to 

10 nodes. The analytical and experimental results suggest that, 



Cloud system platforms (Hadoop/Spark), data access models 

(streaming/random/functional), languages (Java/mixed/Scala) 

and the underlying geometry libraries (GEOS/JTS) have 

significant impacts in their realized performance. While 

SpatialHadoop generally is the winner of robustness, partially 

because it is built on top of the mature Hadoop platform, 

SpatialSpark is the winner with respect to efficiency in large-

scale spatial join processing, due to the efficiency of in-

memory processing provided by Spark.  

All the three systems we have evaluated in this study 

run on Java Virtual Machines (JVMs), which do not support 

Single Instruction Multiple Data (SIMD) computing power 

yet. We have developed two sets of techniques, i.e., ISP-MC+ 

and ISP-GPU [11] by integrating spatial join techniques with 

Cloudera Impala [12] and LDE-MC+ and LDE-GPU [13] by 

developing distributed spatial join techniques directly on top 

of Apache Thrift14 for distributed data communications. All of 

them are capable exploiting SIMD computing power on both 

multi-core CPUs and Graphics Processing Units (GPUs). For 

future work, we plan to include analyzing their data parallel 

designs and performance comparisons.  
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