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ABSTRACT

Managing large-scale data is typically memory iste&. The
current generation of GPUs has much lower memopadty
than CPUs which is often a limiting factor in presimg large
data. It is desirable to reduce memory footprintspatially
joining large-scale datasets through query optitigna In this
study, we present a technique of selectivity edtonafor

optimizing spatial join processing on GPUs. By skeasly
integrating multi-dimensional cumulative histogramsd the
summed-area-table algorithm, our technique canfligeatly

realized on GPUs with good portability. Our expemts on
spatially joining two sets of Minimum Bounding BaxéMBBSs)
derived from real point and polygon data, each aitlout one
million MBBs, have shown that computing the totahbers of
MBB pairs at four grid levels took only about 3/dcend. By
using the best grid resolution, our technique sa88s1%
memory for the spatial join. When histograms ar¢enialized,
it only took a few tens of milliseconds to searochthe best grid
level for the spatial join.

1. INTRODUCTION

Spatial data volumes are fast increasing due
advances of locating, sensing and simulation tegles. For
example, although navigation devices (e.g. GP#uylae and
WIFI network-based, and, their combinations) emieeddn
smartphones (nearly 500 million sold in 2011 [13vé already
generated large volumes of location and trajectiata, the next
generation of consumer electronics, such as Gdalgisses, are
likely to generate even larger volumes of locatimpendent
multimedia data. Objects identified from high-regimn
satellite imagery and medical imagery, when represk as
vectors of geometric coordinates, can also be densil as
spatial data. In addition, large-scale climatercasimical and
molecular simulations are likely to produce evergda spatial
datasets. Very often different spatial datasetsl teebe joined
to derive new information and knowledge to supmletision
making. For example, GPS traces can be bettepited when
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aligned with urban infrastructures, such as roanvoiks and
Point of Interests (POIs), through spatial joinss Apatial
datasets are getting increasingly larger, techmsigioe high-
performance spatial join processing on commodityd an
inexpensive parallel hardware become crucial inresking the
“BigData” challenge.

Spatial joins can be considered as extensions of
relational theta joins [2] where spatial relatiopsh such as
distance and topology, are involved in joiningemia [3]. While
considerable research on join processing for beldtional and
spatial data have been reported, including thosgetied for
parallel computing platforms [2,3], there is litttesearch on
spatial join optimization on GPUs. Compared withltircore
CPUs, the current generations of GPUs typicallyehbmited
memory capacity, which frequently becomes a coimitig
factor for parallel spatial joins on large-scalatsgd datasets. In
addition, different from multi-core CPUs that aresijned to
support coarse-grained task-level parallelism-§rained data
parallelisms are crucial in achieving hardware ptéés on
GPUs. As such, many existing spatial join technégtiet are
either sequential in nature or rely on coarse-gaiparallelisms
cannot be efficiently applied to GPUs. The combitechnical
challenges in minimizing memory footprints and nmaiging
data parallelisms has motivated us to develop nspatial join
techniques on GPUs. In our previous studies, we leaplored
several GPU-based techniques for parallel spati@n j
processing, such as distance based point-to-pelybin [4],
trajectory similarity join [5], and topology basegbint-in-
polygon-test spatial join [6]. Our techniques adty classical
two-phase spatial join framework, i.e., a filteripgase to pair
MBBs followed by a refinement phase to evaluate spatial
relationships of geometric objects inside the MBBE While
the refinement phase typically involves more flogtipoint
computation and is desirable to utilize GPUs farespng up [4-
6], we believe it is more technically challengimgimproving
the efficiency of the filtering phase on GPUs undgricter
resource constraints, e.g., GPU memory capacityngaoed
with the refinement phase that can relatively gadillize batch
processing to reduce resource requirements inghesbatch, it
is more difficult to explore a similar strategy féiltering as
global information is typically required in the pea Spatial
filtering techniques that minimize memory consumptare thus
preferred from an implementation and applicatiorspective.

While spatial indexing techniques, such as pretbuil
quad-trees and R-Trees [7], have been frequendy ts speed
up spatial joins in classic computing models that designed
for serial algorithms, uniprocessors and disk-rsidsystems,



their suitability on GPUs for spatial joins needs be
reevaluated. First of all, very often their hietdocal tree
structures and irregular memory access patterns significant
performance penalty on parallel hardware, espgci@lPUs.
Second, the complex data structures are expensigertstruct
and maintain (on both CPUs and GPUs) and diffidolt
manipulate (especially on GPUSs). In this study, amn at
utilizing multi-dimensional histograms as light-gkted indices
that are parallelization friendly to facilitate $ip& join

processing on GPUs. Different from heavy-weightgtisl

index structures that are associated with datasitéan direct
query processing, these histograms contain onlyenéss
statistical information to guide the choice of omi/suitable
parameters for spatial joins under resource cansdtawith or
without using spatial indices. Our technique is doaon
Cumulative Histogram (CD) in 2D space [8] to couhe

numbers of Minimum Bounding Boxes (MBBs) that istst
with cells in uniformly tessellated grids, comptlke possible
numbers of pairs in the grid cells, and choose pimal grid

level that satisfies GPU memory footprint budgethil/ CDs
have been utilized in previous studies (e.g. [8B, believe we
are the first to take advantage of data parallaisn

constructing and utilizing CDs for parallel selgiti estimation
and guide the optimization of spatial joins on GPWe provide
a simple design and implementation that can beepted as a
chain of sort-reduce-scatter-transform paralleimgiives [18,
20]. These parallel primitives are well-supportecobas multiple
parallel hardware platforms, including Nvidia aniB GPUs.

The rest of the paper is arranged as the following.

Section 2 introduces the background, motivation asldted
work. Section 3 presents the details of the pdraldectivity
estimation technique. Section 4 presents the axgets and
results. Finally, Section 5 is the conclusions #&mure work
directions.

2. BACKGROUND, MOTIVATION AND
RELATED WORK

Given two spatial datasets each with a geometridbate
the_geom, i.e., T1(id, the_geom) and T2(id, thengeahe
basic form of spatial join processing can be exgw@ésas the
following SQL statement:

SELECT *from T1, T2
WHERE ST_OP (T1.the_geom, T2 the_geom)

Here the geometric attributes in T1 and T2 can e & the
geometric types (e.g., point, polygon and polylinayd ST_OP
can be any of the spatial relationships (e.g.,réete, within)
defined by the Open Geospatial Consortium (OGC) p&m
Feature Specification (SFS) [10] which has beerctraerstone
of virtually all commercial (e.g., Oracle SpatialdaMicrosoft
SQL Server Spatial) and open source (PostgreSQt@EP)s
spatial databases. More complex queries may alsolvia
additional attributes in T1 and T2, additional aers (e.g.,
count, sum) and additional clauses (eggaup by, having and
order by). Similar to theta joins in relational queries.asal
joins can be conceptually formulated as Cartesiandyxcts
followed by evaluating spatial relationships betweévo
geometric objects based on some well-establishéttiples
(e.g., nearest neighbor) and/or computational géyme
algorithms (e.g., point-in-polygon test). Assuminthe

cardinality of T1 and T2 are nl1 and n2, respedtiveimilar to
processing relational joins, indices can be cowgtdito reduce
the complexity from O(n1*n2) to O(n1) or O(n2) pided that a
good spatial filtering strategy is available sotthapatial object
in T1 will only be paired with a limited number cpatial
objects in T2. As argued in [3], spatial joins alistinguished
from relational joins due to the fact that spatddta are
inherently multi-dimensional data that exhibits eV unique
features, e.g., lacking ordering that preservesipity (which
makes sort-merge join largely inapplicable), uretlg for
grouping due to having extents (which makes equijoi
inapplicable), and, requiring complex geometric patation
(which is typically much more expensive than arigtic
operations).

Hundreds of indexing structures have been developtte past
few decades to index and query spatial data [7hdadition, we
refer to the excellent survey paper [3] for a coehgnsive
review on spatial join techniques, including selgrarallel
spatial join techniques on traditional cluster cotg
environments. We also refer to several recent workspatial
join processing on MapReduce/Hadoop clusters []1viith
demonstrated scalability at the expenses of singelen
efficiency. Despite that shared-memory systems getting
increasingly popular and affordable in both persamal cluster
computing settings and typically are easy to pnograimost all
existing parallel spatial join techniques are desdyfor shared-
nothing architectures. As GPUs that are capablgesferal
computing typically have large numbers of proces$bé-10°),
much higher bandwidth (~100 GB/s vs. ~100 MB/s) amate
floating point computing power (by design), an @itgive to
cluster computing (including Hadoop clusters rugnin
MapReduce jobs) in solving moderate sized spat@h |
problems on single GPU devices becomes promising.ndie
that as GPUs are typically used as acceleratorimputing
nodes, it is quite possible to integrate the twts sétechniques
to solve larger scale spatial join problems whesdee.

As detailed in [3], spatial joins can be perfornmedtwo spatial
datasets that both, one or none of them have isdf&khough
using pre-built indices typically can significantlyoost the
performance of spatial joins on CPUs, we argue tiiaalitional
tree-based hierarchical indices are less effe¢tiviee ported to
GPUs for parallel execution directly. While moredamore
programming language constructs are increasingiylable for
GPU computing, e.g., recursions, pointers and dymamemory
allocations/deallocations, which makes porting adecode to
GPUs easier, they can bring significant performgpeealty if
applied inappropriately. Naive GPU implementationan
perform even worse than serial CPU implementations.
Furthermore, we strongly believe that identifyirge tinherent
parallelisms in spatial joins, which are likely gastain several
hardware generations, is more important than opingi a
particular design for a specific hardware platforAs such,
instead of porting existing popular tree-based iapatdexing
techniques to GPUs to speed up spatial join prougssur
focus in this research is to develop novel paralle techniques
that can make full use of GPU hardware computing power
under memory capacity constraints. The research is in parallel
with several existing research efforts on indexamgl querying
multi-dimensional spatial data on GPUs [13,14,15].



Selectivity estimation is considered a vital comganin query
optimization in both relational databases and apadtitabases.
Given a set of query items in T1, selectivity estiion

techniques estimate the numbers of items in T2atatikely to

be joined with each of the query items. Fast andurate

selectivity estimations can help database querymigers to

choose better query plans under resource constrairglightly

different problem that provides summary informatiminquery

results (e.g., counts) for a single query or a afejueries

without actually querying database records esdbntequire a

same set of techniques as selectivity estimafibese typically
can be achieved by maintaining data structures sserdial

statistics. Several techniques on selectivity estion for spatial
joins and query processing have been reportedApendix 2

for a brief review and a list of related publica), but none of
them has been researched in parallel computinggett

Among these techniques, we are particularly intetes works

that are based on regularly spaced multi-dimensiona

histograms. This is because when the histogram h#esthe
same configuration for both datasets involved ispatial join,
the total number of pairs to be processed in tfieement phase
in each bin is s£|B1|*|B2| where |Bil and |B3 are the numbers
of geometric objects that intersect with spatialents of the
common bins in T1 and T2, respectively. Howeverstasyn in
the example in Fig. 1, bin sizes of such 2D hisdotg (typically
the same as grids that used for indexing/querypigy a very
important role in determining the memory footproft spatial
filtering. As our GPU based spatial join framewdAppendix
1) requires pairing all the MBRs from both dataset¢sy often a
large number of pairs, need to be output beforquepairs can
be computed and used in the refinement phase. égthdhe

number of unique pairs might be small, the numbér o

intermediate pairs can be too large to be fit irJGRemory. On
the other hand, if a small cell size is chosen)eM@1| and |B2
are likely to be smallenN usually grows quadratically which
may also incur large numbers of intermediate pdha the
example shown in Fig. 1, the grid at the bottong(HIC) is
most memory efficient where the number of candigeties (4)
is significantly smaller than using a coarser diffdly. 1A) or
finer grid (Fig. 1B). This is also the primary mattion of our
proposed technique.
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Fig. 1 lllustration of Choosing Optimal Grid Leval
Minimizing Memory Footprint for Spatial Filtering

By observing that generating a 1D cumulative histoy is
equivalent to performing a scan (prefix-sum [18]) ¢he
original regular histogram, and generating a 2D waftive

histogram can be realized using two scans on thggnal 2D

regular histogram using both row-major order arahgposed
row-major order (to be detailed in Section 3), wavé
developed a simple yet effective parallel appraacterive|B]

and B counts for all bins from the two sets of MBBsdn
spatial join and use them to choose the appropgete level

under GPU memory constraints. The technique wilptesented
in details in Section 3.

As more recent GPUs increasingly support unifiedmomy

addressing on both CPUs and GPUSs, it becomes po$sibse
CPU memory and/or external memories to virtuallgréase
GPU memory to avoid GPU memory capacity limit. \@hthis

may be promising for certain applications, such castain

relational joins as reported in [16,17] where slaiata
movement across GPU/CPU/disk boundaries can beshitg

computing, it may not be efficient for spatial diling based on
our current framework for spatial join processidggendix 1).

This is because sort/search/unique primitives atiapfiltering

are largely bounded by memory bandwidth and doexbibit

blocked memory access patterns unless specialigross

3. PARALLEL SELECTIVITY
ESTIMATION ON GPUs

The parallel selectivity estimation algorithm presel in this
section is an important component in our GPU basadllel

spatial join framework using regularly spaced diliel structure
[7,14] for spatial filtering (see Appendix 1 for tdés). The

algorithm aims at estimating the total numbersafgof MBBs

that will be generated during the spatial filteripfpase at
multiple grid levels and guide the query optimizerchoose an
optimal grid level that minimizes GPU memory fodtpduring

spatial filtering.
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Fig. 2 lllustration of Spatial Cumulative Histogratimg and
Selectivity Estimation for a Single Query Window

Four 2D cumulative histograms (HH,, Hy and H,) are
required to store the numbers of MBBs whose lowér-lower-
right, upper-left and upper-right corners fall viithgrid cells
[8]. Assuming the bin values of a regular histoga® m then
the corresponding bin values of a cumulative histog are
m, :Zi“jm . Given a query window Wgy:,X,,y,) where X%,

Y1, X and y are given as grid coordinates, the number of MBBs

that intersect with W can be calculated as N&xkly,) - Hi(Xs-

1.y) - Hu(Xa,y1-1) + Hy (x-1,y5-1) (we refer to [8] for the
derivation). As an example shown in Fig. 2, thenbar of
MBBs that intersect with the query window shownaadashed



rectangle is N=2 by accessing the four highlightéts in the
four cumulative histograms. While the approach vedlo
arbitrarily shaped rectangles, we set x1=x2 and/21so that N
will be the number of MBBs that intersect with thad cell

(histogram bin) at (x1,y1). It is easy to see thatcomputation

the result is B’),transpose B’ to B”, applying the same
(inclusive) scan primitive on B” to derive B before finally
transpose B™’ back to the original row-major order to deeH.

The complete algorithm is provided in Fig. 3. Nttat we use
upper case variables to represent vectors and |lmese

has perfect data parallelism on GPUs.

To derive each of the four cumulative histograms &t grid
cells, we first re-use the design and implementatid point
aggregation approach in our previous work [4,19cd¢onpute
regular 2D histograms (B) where corner points emasformed
to cell identifiers by applying &ransform parallel primitive. A
reduce (by key) parallel primitive is then applied to count the
number of corner points that fall within each gcell/bin. As
the grids/histograms might be sparse, the countsl ie be
scattered to the respective histogram bins by amgplg scatter
parallel primitive. The second step in computingumulative
histogram is to apply the parallel summed-areaetaldorithm
outlined in [9] that includes four sub-steps: apmdy an
(inclusive) scan primitive on row-majored grid cells (assuming

variables to represent scalars. In case we neetefey to

individual vector elements, we put indices as ssgrgsts on the
corresponding vectors. In the presentation, paralienitives

that are used in the algorithms are both boldeditatidized. As
these parallel primitives are either directly suped by CUDA
SDK (through its Thrust library [20]) or have beendely

implemented on GPUs (e.granspose), we will not further
explain the implementations of these functions amedrefer to
the interested readers to the Thrust library docdat®n. To
better illustrate algorithm&ompute counts and gen_sat, an

example using the same data as in Fig. 2 is showaigi 4. The
example calculates jHusing algorithmgen_sat and calculates
the N grid in Step 2 of algorithmompute_counts after all the
four cumulative histograms have been derived.

Algorithm selectivity _estimation
Inputs: MBB setd1 andM2
Outputs: optimal grid resolution

For each candidate resolutign r

Step 1 call compute_counisg, r, N1)

Step 2 call compute_counkd2, r,, N2)
Step 3:N3<transform(N1,N2) whereN3'=N1'*N2'
Step 4:s5-reduce(N3)

Step 5: ifs, exceeds memory budget then break
Return  that corresponds to the smallgst

Algorithm compute_counts
Inputs: MBB setM and resolutiom

Outputs: gridN representing the numbers of MBBs intersect witthegrid cell
Step 1 For each ¢f in {H,, H,, H, andH,}

Step 1.1V €Transform(M) whereV'={lower-left, lower-right, upper-

right, upper-right} corner coordinates i

Step 1.2 Call point_aggregatiadiB,r)

Step 1.3 Call gen_s&H) _
Step 2Transform onH,;, H,,, H, andH,, and put the result iNl whereN'=
Hi(X2,Y2) - Hr(X1-1,¥2) - Hu(X2,y1-1) + Hyr (x-1,¥1-1) andxy=x,=i%c and
yi=Y,=ilc (=29

Algorithm gen_sat
Inputs: GridB
Outputs: summed area talble

Step 1 H<inclusive scan_by key(B) using
identifiers as keys

Step 2:H < transpose(H)

Step 3: H<inclusive_scan_by key(H) using
identifiers as keys

roy

roy

Algorithm point_aggregation

Inputs: Point seY in the form of k,y) pairs and grid resolution
Coordinate system origixy andy, (global variables)

Outputs: GridB representing the numbers of corner points

Step ltransform V to generate cell identifiers=gy-yo)/r*COL+(x-Xo)/r

Step 2sort C

Step 3 reduce C (by key), count the numbers of keyis,D) €reduce_by_ket)
Step 4:scatter D to B according tdK where(row,col)' €K'

Step 4:H < transpose(H)
Fig. 3 Algorithms for Parallel Selectivity Estimatti
B 0]1]0/{0]O0 Scan 5 olololo B” 1117170 Scan B™ i g g g
0loj1joyp olol1]1 1112 ]0]wmyrow
0|1] 00| byrow) o111 Transpose 1TTiToTo o 1]2] 22
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, Transpose
N'= Hi(X2,Y2) - Hi(Xa-1,¥2) - Hu(X2,y1-1) + Hyr (%-1,%1-1) v
11 0[O0 1]1 01223 1{2/3]|3 01223 1{2[3]3
o L 0 1|11 0l2[2]3]|[1]2[2]2]|[0]2[2]2]| [1]2]3]3
0 110 0 012/ 2]2 111]1]1 0l1/1]1 112|12]2
L 11l o0]o0 ol a2 2222022l 1(1]1]1
— > N H Hu Hur H

Fig. 4 An example to illustrate algorithms compuigunts and gen_sat



We next provide a brief time and space analysih®fproposed
technique. For algorithmoint_aggregation, assume the number
of grid cells is Ng and the number of points is Wgn the time
complexity is O(Np) for Stepl, O(Np) for Step Angsradix
sort (which is the case for our GPU implementation)
max(O(Np),O(Ng)) for Step 3, and O(Ng) for StepAé. such,
the total time complexity of algorithnpoint_aggregation is
O(Np)+O(Ng). The time complexity for the algorittgen_sat is
O(Ng) for all the four steps. As the time complexir Step 1.1
and Step 2 of algorithrmrompute_counts are O(Np) and O(Ng),
respectively, the total time complexity of the algum is
4(O(Np)+O(Np)+O(Ng)+4*O(Ng))+O(Ng)=0(Np)+O(Ng).
Assuming that the numbers of MBBs in T1 and T2|&&|=U1
and [M2|=U2 and the number of grid cells (histogtains) at
the grid level ¢ is Wk, by substituting Np with U1/U2 and
substituting Ng with Wk, the time complexity of tHiest two
steps in algorithnselectivity_estimation is

O(U1)+O(WK)+O(U2)+O(Wk)=0(U1)+O(U2)+O(WK).

As both Step 3 and Step 4 in algorithm
selectivity_estimation have a time complexity of O(Wk) and
Step 5 has a time complexity of O(1), the totaleticomplexity
for grid level i is thus

O(U1)+O(U2)+O(Wk)-+O(WK)+O(WK)+O(1)
=0(U1)+O(U2)+O(WK)

As k is limited to a small number in practice, thheal time
complexity of the algorithm is linear with respéctUl1, U2 and
max(WKk). With respect to space complexity, whileogptually
memory storage for M1, M2, N1, N2, N3y,H,, H, H,;, Cand
K is required at the same time, we note that ogttions to
consolidate among N1/N2/N3 and,/H,H,/H, might be
possible through GPU kernel fusion/fission [21]s B1 and U2
are typically in the order of millions and Wk isptgally
between Wy=1024*1024 and \W=8192*8192, the proposed
approach can be applied to GPU devices with a favs of
megabytes memory capacity, which can be easilgfiati

Despite the linear time and space complexity of pheposed
approach, we note that the two parallel primitiyesan and
transpose) in thegen_sat algorithm are invoked eight times each
for the two input MBB sets. Similarly, the four pdel
primitives ¢ransform, sort, reduce and scatter) in the
point_aggregation algorithm are invoked four times. As such,
the efficiency of the implementations of these fpararimitives

is crucial for the overall efficiency of the progalstechnique. In
our implementation, we implement ttranspose primitive using
CUDA and shared memory is used to further improle t
efficiency. For the rest of the parallel primitivage use those
provided by the Thrust library although we beli¢ivere are still
rooms to further improve their efficiency (e.g.,deEmonstrated
by the MGPU library [22]). The improvements aret liefr our
future work.

4. EXPERIMENTSAND RESULTS

To validate our design and implementation, we wse teal
datasets in our experiments. The first datasetagut168
million taxi trip records each with a pick-up andop-off
location. We generate quadrants from the point sgatdy
setting the maximum number of points in each quadia

K=1024 points [6]. We use the MBBs of the pointstire
quadrants. We call the first MBB set as Taxi anel tiamber of
MBBs in the set Ul=|Taxi|= 990,142. The second s#at&o
participate in the spatial join is the NYC Mapluax lot data
[23] with 735,488 polygons and 4,698,986 vertidd® use the
MBBs of the polygons as our second MBB set, i.e.,
U2=|MapPluto|= 735,488. We use four grid leveks, Kk varies
from 10 to 13 and grid size varies from 1024*102 t
8192*8192 for both selectivity estimation and splafiltering.
All experiments are performed on an Nvidia Quaddé®GPU
device with 448 cores and 6 GB memory.

Table 1 lists the computed numbers of pairs of MEgs and
query estimation times (Ts) at the four levels. &aod level 10,
there are 86 million pairs. The two data vectoiat ttore the
pairs require nearly 700 megabytes of GPU memotyy{ds for
each of the two identifiers in a pair). The spdiledring module
may fail on certain GPU devices due to memory cépémit.
On the other hand, if level k=12 is chosen, the prgrfootprint
will be reduced by more than half which clearly destrates
the importance of query optimization. Assuming th& chance
of picking all grid levels for spatial filtering the same, then the
expected number of estimated pairs is AvgN#4. After
applying the selectivity estimation algorithm, we able to pick
the grid level that incurs the minimum number ofirpa
minN=min(N). As such, the benefit is (AvgN-
minN)/AvgN=34.8%. The total cost of the optimizatids
simply the total runtimeXTs=744 ms. In other words, we are
able to reduce the memory footprint of the spédim by 34.8%
in 744 ms, which is desirable in many cases.

Table 1 Memory Footprints and Runtimes for Seléigtiv
Estimation and Spatial Filtering at Multiple Grig\els

Grid Grid Size # of Estimated Ts Tf
Level k Pairs (N) (ms) (ms)

13 8192*8192 78,328,554 496 1090
12 4096*4096 40,414,590 146 432
11 2048*2048 43,121,126 62 332
10 1024*1024 86,103,593 39 525

For comparison purposes, we also list the spatlarifig
runtimes (Tf) among the two datasets (without usthg
selectivity estimation module) in the last colunfriTable 1. We
can see that Ts is significantly lower than Tf ktgaid levels,
especially for grids with lower sizes, e.g., 102924 when
k=10. The observation that Ts grows superlinearith vgrid
level can be explained by the fact that Ts is alioation of the
cost that is linear with Np (U1/U2) and the cosittis linear
with Ng (W) but quadratic with grid resolution {2 based on
the cost model presented in Section 4. In conted$tpugh the
details were skipped in Section 3, Tf is a combamaof the cost
that is linear with U1/U2 and the cost that is #inevith N.
Different from cumulative histograms that requirsing 2D
grids in selectivity estimation, vectors represemtsparse 2D
grids are used in spatial filtering which is mofficent. As the
grid size gets higher, selectivity estimation beesmmore costly
and the performance advantage of selectivity esitimaover
complete spatial filtering decreases. It is possiblat theXTs
can be larger than Jfat a certain point. Selectivity estimation
overhead could become a significant portion of ehd-to-end



spatial filtering runtime when the selectivity estition module
is included. Since we increase grid level (k) gadiyu we can
include the projected spatial filtering cost inte tstop criteria in
Step 5 of algorithnselectivity _estimation in Fig. 3 in addition to
memory budget. Given that using high grid resolutiwill
increase selectivity estimation times superlinearigl may not
always be able to improve memory consumption foatiap
filtering, we recommend stop increasing k as sosnzas
reaches a time budget limit (e.g., 100-500 ms).

By observing that N1 and N2 histograms (grids) #ratused to
computegy are only related to their respective MBB sets dod
not depend on each other, a viable solution to awer
selectivity performance is to use prebuilt N1 an? @fids to
compute N3 ands As such, algorithrselectivity estimation
needs only to compute N3 on-the-fly (Step 3) befa@ucing
N3 to calculate,s(Step 4). These two steps are extremely fast on
GPUs as they are embarrassingly parallelizable camd make
full use of GPU hardware resources. Our experimérge
shown that the runtimes vary from about 3 ms foe th
1024*1024 grid size (k=10) to about 10 ms for tH®38192
grid size (k=13) which is fast enough for most salatasets.
However, as the prebuilt N1 and N3 grids need tstbeamed
from hard drives to CPU memories and then to GPlthones,
1/0 overheads can be significant. For an 8192*8h®&yer grid,
the storage requirement is about 256 megabyteshwimay
require 3-5 seconds to read from disks to CPU mgrand 50-
200 ms to transfer from CPU memory to GPU memorgteN
these I/0O overheads do not exist when N1 and N2arguted
on-the-fly on GPUs. Fortunately, as many real wasjhtial
datasets are highly clustered, N1 and N2 gridslikesy to be
sparse and many data compression techniques capplied to
reduce storage overheads and data transfer timetheFmore,
as approximateysvalues are sufficient for finding the optimal
grid level (k) in most cases, lossy compressiohragies such
as wavelet based ones, are acceptable. In addéi®nCPU
memory capacity limit can reach hundreds of gigebyon
commodity workstations in an economically sound winese
grids can be pre-loaded to CPU memory to avoid ssice disk
I/0 latency. While it is beyond the scope of thisidy to
evaluate these data compression and buffer manageme
techniques, we will explore this direction in outure work.

5. CONCLUSION AND FUTURE WORK

In this study, we have provided a parallel seldgtigstimation
technique to reduce memory footprint in spatiah jprocessing
on GPUs where memory capacity is typically a lingtfactor in
processing large-scale data. Experiments on joirtfrey two
MBB sets with nearly a million MBBs each have shaWwat our
technique is able to reduce memory footprint byi38in about
750 milliseconds when histograms are computed omade at
multiple scales. When histograms are materialiteshly takes
a few tens of milliseconds to search the bestlgsid| for spatial
join across multiple grid levels. The design istbeimple and
portable by utilizing well researched parallel gtives. GPU
implementation is efficient and the proposed teghai is
effective in query optimization on large-scale &igoins.

For future work, first, we would like to identifp¢ performance
bottleneck in the parallel primitives based implatagion, re-
implement the relevant parallel primitives and firiene
parameters to improve the overall performance. &&oee plan
to systematically investigate whether to includgéda grid sizes

(e.g., 4096*4096 and up) in our selectivity estiomtalgorithm
as they both provide memory footprint reductionepdials and
incur high computing and memory overheads. Finallg,plan
to compare our technique with alternative ones,, euging
pinned CPU memory, in reducing GPU memory condisaim
processing large-scale data.
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Appendix 1: A parallel Spatial join framework on GPUs

Spatial data is rich in data types and differeratisp data types
may allow different spatial operations, for exampiéstance
calculation between points and polylines and pwifgolygon
tests among points and polygons. We refer to th€ GBS [10]
for more details on spatial data modeling. Whilesmof the
existing spatial databases adopt Object-Relatidatd models
for spatial data to extend relational databasestiomality to
spatial data, extensive dynamic memory allocattonsonstruct
spatial objects in memory is not cache friendly acah
significantly degrade the performance. To boostpirdormance
of the in-memory data structures for complex anadrenly

spatial data, we have designed an array-based gahydata
layout scheme [19]. For complex spatial objectshsas
polylines and polygons, in addition to their vertexrays,
auxiliary index arrays are also created. Pointésedrrays and
index arrays can be efficiently streamed among sgiskPU
memories and GPU memories. While we are still abiv
experimenting the performance of R-Tree and Quadbased
spatial indexing and query processing techniquéj, [ih this
study, we assume spatial index structures are adolail for
neither datasets involved in a spatial join andhwes resort to a
simple grid file based approach for spatial filbgri(middle of
Fig. Al).
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While points can be easily grouped into grid célschaining
sorting and reduction (using grid cell identifias keys), MBBs
of polylines and polygons may intersect with mudigrid cells.
After both geometric objects are aligned with omemore grid
cells, generating (P, Q) pairs can be transforréal & binary
search problem. For each grid cell in the VPC aeotvhich
stores the one-to-many mappings between the MBBa of
geometric object in T1 to the grid cells that th8Blintersects,
we search the cell in the VQC vector, which stdhesone-to-
many mappings between the MBB of a geometric olife€® to
the grid cells that the MBB intersects (as illusdiin the center
of Fig. Al). The matched objects in T1 and T2 W&l paired for
subsequent refinement. Clearly, for MBB pairs tleatver
multiple grid cells, the (P, Q) pairs will be dugdied and need
to be removed to avoid redundant spatial refinement

During the refinement phase, (P, Q) pairs will be
assigned to computing blocks as shown at the botiarh of
Fig. Al. As there will be multiple points/vertexiesboth P and
Q (here we treat grouped points as a point colaabbject), we
assign one set of points/vertexes to threads inctmeputing
block while looping through all the other sets ofrgs/vertexes
to derive results that will be associated with aith
points/vertexes or the pairs of MBBs assigned &adbmputing
block. This nested-loop style design is very effition GPUs as
neighboring threads read neighing points/verteresnie object
(assuming P) before a loop begins and write tghi®ring
positions for outputting results after the loogdires while they
access the same point/vertex in another objecuiféiag Q)
throughout the looping process. The memory accaserp is
perfectly coalesced which is critical in GPU conipgt

As an example, assuming P contains M points in a
grid cell and Q contains the N vertices of a polygwe can
assign M points to threads while looping through khvertices.
Depending on the sizes of points/vertexes in P @nahd the
configurations of GPU computing blocks, we may need
reshape the O(M*N) computation to maximize theization of
GPU hardware. For example, when M is less thamtémp size
(currently 32 on CUDA enabled GPUs [20]), we camplo
through K (>=2) points in the Q polygon simultansiyuand
reduce the number of the looping steps to ceilifig{N
Similarly, when M is larger than the number threadsthe
computing block (assuming T), we may need to loegr the M
points in ceiling(M/T) rounds. The parallel desigrad
implementations of point grouping, MBB rasterizaticpatial
filtering and several spatial filtering are docureeh in our
previous work [4,5,6].

Appendix 2 A brief review on Multi-Dimensional Histograms
for Selectivity Estimation and Data Summation

Multi-dimensional histograms can be built througégular
gridding [24,31,32,36,38], non-regular gridding3[37,39,41],
clustering [25,40,43,46], quad-tree [44], R-Tred, 5] and
ECDF-tree [35] constructions. They can be used stimate
selectivity to facilitate overview style browsing,8,15), range
queries [25,26,28,31,32,35,36,40] and spatial  joins
[27,28,33,39]. In addition to regular simple stéts advanced
statistics such as topology [32], sketches [34hsitg [35,37]
and wavelet [39,42] may also be used.
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