
GPU-based Spatial Indexing and Query Processing Using R-Trees
Simin You

Dept. of Computer Science
CUNY Graduate Center
New York, NY, 10016

syou@gc.cuny.edu

Jianting Zhang
Dept. of Computer Science
City College of New York

New York, NY, 10031

jzhang@cs.ccny.cuny.edu

ABSTRACT
R-trees are popular spatial indexing techniques that have been
widely used in many geospatial applications. The increasingly
available Graphics Processing Units (GPUs) for general
computing have attracted considerable research interests in
applying the massive data parallel technologies to index and
query geospatial data based on R-trees. In this paper, we
investigate on the potential of accelerating both R-tree bulk
loading construction and R-tree based spatial window query on
GPUs. Experiments show that our proposed GPU-based parallel
query processing implementation achieves 6x~18x speedup over
serial CPU implementations and is 2X faster on average over 8-
core CPU implementation using OpenMP. Our experiments also
show that the speedups are significantly affected by R-tree
qualities which warrants further investigations. Additional
comparisons between the GPU R-tree implementation and a GPU
single-level grid-file based indexing approach are performed to
understand the relative advantages and disadvantages of the two
popular spatial indexing approaches on GPUs.

Keywords
Spatial Indexing, R-trees, GPU

1. Introduction
 R-trees [1-3] are well known spatial indexing techniques and
have been widely adopted in many applications for indexing 2-D
or higher dimensional data. Several parallel R-Tree construction
and query processing algorithms [4-9] have been proposed. While
early research works mostly focused on shared-nothing computer
clusters [4-8], a few recent works (e.g., [9]) have implemented R-
Tree based construction and query processing on GPUs based on
the General Purpose computing on GPUs (GPGPU) technologies.
Modern GPU architectures closely resemble supercomputers as
both implement the Primary Parallel Random Access Machine
(PRAM1) characteristic of utilizing a very large number of threads
with uniform memory latency. Compared to modern CPUs, GPU
devices usually have larger numbers of processing cores, greater
memory bandwidth and higher computing power with more
affordable prices. For example, the Nvidia GTX 690 GPUs2 has
more than 3,000 processing cores, nearly 400 GB/s bandwidth,
nearly 6 TFLOPS/s and can be purchased from the market around
$1,000. As many commodity desktop computers have already

been equipped with GPU devices that are capable of general
computing, it is desirable to use GPUs to accelerate geospatial
computing in general and R-based spatial data management in
particular. Furthermore, GPUs have been extensively used to
accelerating more computing intensive applications, such as
nearest neighbor queries in databases and information retrieval
and ray-tracing in computer graphics. Efficient indexing
structures such as R-Trees are promising in speeding up the
computing on GPUs are practically useful. As it is still quite
expensive to transfer data between CPUs and GPUs through PCI-
E buses (limited to 4 GB/s on PCI-E 2 devices), being able to
directly construct and query R-Trees on GPUs to avoid or reduce
data transfer overheads is beneficial, even if the speedups of index
construction and query processing themselves are not significant
from a practical perspective.
Towards this end, we have explored different design strategies on
R-tree construction and query processing on GPUs and evaluated
the performances using real datasets. Compared with the work
reported in [9] that is most related to our work, in addition to the
Breadth-First Search (BFS) tree traversal based query processing,
we have also implemented the Depth-First Search (DFS) tree
traversal based query processing which leads to a different
overflow handling mechanism with certain advantages. While the
R-Tree packing based bulk loading [10, 11] has been
implemented in [9], the packed R-Tree was not used for query
processing in [9]. In contrast, we have compared the performance
of query processing using both bulk loaded R-Trees and
dynamically generated R-Trees and revealed that the inferior
quality of packed R-Trees (using different ordering) through bulk
loading may contribute to poor performance of query processing
on GPUs.
While some of our designs and implementations have resulted
significant speedups over serial CPU implementations on R-Tree
based query processing (as reported in Section 4), we are more
interested in understanding the relative advantages and
disadvantages of GPU based R-Tree construction and query
processing over CPU based ones and those over alternative
choices (such as single-level grid-file used in our applications
[14,15]) to provide insights and guidelines for more systematic
and more efficient implementations. For testing purposes, we
have experimented our implementations on the Minimum
Bounding Boxes (MBRs) of two datasets that have 990,142
MBRs (taxi quadrants) and 735,488 MBRs (tax lots) in the New
York City (NYC), respectively. We report our experiment results
and provide discussions on our findings. Our technical
contributions in this paper can be summarized as follows:
1) We have provided an improved R-tree node layout on GPUs

which has lower memory footprint.
2) We have implemented both a BFS and DFS R-Tree traversal

based query processing designs on GPUs.

3) We have presented a new overflow handling mechanism by
combining BFS and DFS based query processing with
certain advantages over [9].

4) We have performed extensive experiments to compare the
query processing performance among GPU-based R-Trees,
CPU-based R-Trees and GPU-based single-level grid-file to
support further investigations.

The rest of this paper is organized as follows. Section 2 briefly
introduces background and related work. Section 3 provides our
GPU R-tree designs and implementations on GPUs, including
bulk-loading and BFS and DFS based query processing
approaches. Section 4 presents experiments and results. Finally
Section 5 is the conclusion and future work discussions.

2. Background and Related Work
R-Tree based indexing has been extensively studied in spatial
databases and quite a few variants have been proposed over the
past two decades [1-3]. Although most existing R-Tree
implementations are serial on a single CPU, there are several
previous studies on parallel R-Tree construction and query
processing based on different parallel hardware architectures with
the ones based on shared-nothing clusters dominate [4-8]. In this
study, we focus on the R-Tree based spatial indexing using
GPGPU computing technologies that have a quite different
parallel computing model. However, we argue that our work is
complementary to cluster computing based distributed and
parallel spatial query processing provided that the computing
nodes are equipped with GPU devices which is becoming
increasingly popular in both institutional grid computing
resources and commercial cloud computing resources.
The most related work to ours, which is reported in [9], has
implemented a BFS traversal based query processing algorithm on
modern GPUs. In addition to the differences that have been
discussed in the introduction section, our implementations are
also different from [9] in the following aspects. First, as discussed
in details in Section 3.1, while both implementations use linear
array structures to store R-Tree nodes in a BFS order and has a
node field to indicate the array position of the first child node (in
a way similar to the design of our GPU-based Binned Min-Max
Quadtree BMMQ-Tree [13]), our node layout has a separate field
to store the number of children of a R-Tree node. By using at
most an extra byte (which can represent 256 children) in most
cases, we are free of having to store non-exist child nodes which
can save up to 50% of required memory for a whole R-Tree.
Second, while the work in [9] focused on the performance of a
single R-Tree query processing implementation, we have
compared two different R-Tree query processing implementations
and compared with single-level grid-file based query processing,
all on GPUs.
An interesting observation in [5] pointed out that space-driven
indexes (e.g., quadtree variants) worked better than data-driven
indexes (e.g., R-Tree variants) in a parallel context (e.g., the
Thinking Machine CM-5 used in the experiments). However, it is
unclear to what degree the observation still holds on modern
GPUs which have a quite different parallel hardware architecture.
Although we are only able to compare the R-Tree based
implementations with a single-level grid-file based
implementation on GPUs due to the complexities in implementing
the PMR-quadtree used in [5] on GPUs, as quadtrees are closely
related to grid-file, the comparison may shed some light on the

comparisons between PMR-quadtree and R-Trees. A more
comprehensive comparison is left for our future work.
While the original R-Tree construction algorithms use dynamic
insertions, several bulk loading approaches have been proposed
[10-12, 8]. Bulk loading approaches usually adopt a packing
technique to construct R-trees which maximize space utilization
and reduce height of the resulting trees as much as possible.
Packed R-tree guarantees better space utilization and query
responses have been reported to be at least as fast as R-trees built
from dynamic insertion [10, 11]. Bulk loading methods can be
classified into two categories, i.e., top-down and bottom-up.
Alborzi and Samet [12] discussed the difference between top-
down and bottom-up strategies. They claimed that the top-down
method could potentially process queries faster but non-leaf nodes
might be underpacked. On the other hand, R-trees constructed by
bottom-up methods have fewer nodes than using top-down
methods. On GPUs, Luo etc. argued that for both methods there
are no fundamental differences as both of them were constructed
by sorting and packing [9].
Bulk loading is more suitable for static read-only data in OLAP3
(Online Analytic Processing) settings in many applications.
Assuming that MBRs of geospatial data can fit into processor
memory (which is increasingly becoming practical due to the
decreasing prices of memories), the cost of bulk loading is largely
determined by in-memory sorting in the order of O(nlogn). The
required sorting for bulk loading can be significantly accelerated
on GPUs by utilizing the parallel computing power which makes
GPU implementations attractive. However, for MBRs with varies
sizes of degrees of overlapping, the qualities of constructed R-
Trees through bulk loading can be very different which may
significantly affect query performance on both CPUs and GPUs.
While a bulk loading algorithm has been implemented on GPUs,
the bulk loaded R-Trees were not used for querying in [9]. In
contrast, in this study, we compare the query performance of bulk
loaded R-Trees using different orderings and provide discussions
on the effects of query performance due to R-Tree qualities. A
promising research idea is to exploit the parallel computing power
of GPUs to improve the qualities during R-Tree bulk loading
which is also left for future work.
We have implemented a single-level grid-file based spatial
indexing for the filtering phase of spatial joins and used it
extensive in several applications [14,15,17]. As spatial filtering is
closely related to batched spatial query, the comparison among
the two classic spatial indexing approaches [2, 3] on GPUs are
interesting. To be self-contained, we next briefly introduce our
implementation of the single-level grid-file based spatial indexing
and query processing on GPUs. The indexing approach is based
on the decomposition of two sets of MBRs according to a uniform
grid space whose resolution is pre-defined by users. Using the
example shown in Fig. 1, we assume that {P1, P2} and {Q1, Q2}
are the query MBRs and data MBRs, respectively. To find the P-
Q pairs that spatially intersect, first, Q1 and Q2 are decomposed
onto the grid to generate two vectors, assuming they are VQQ and
VQC, respectively. VQQ stores original identifiers of Q1 and Q2
and VQC stores the corresponding grid cell identifiers (derived
from x, y coordinates in the grid space) decomposed from Q1 and
Q2. VQQ are sorted in parallel by using VQC as the key so that Q
MBRs that overlap with a same grid cell are stored consecutively
in VQQ. Second, P1 and P2 are decomposed in the same way and
VPC and VPP are generated. Here VPC stores cell identifiers and
VPP stores the original identifiers of P1 and P2. A MBR

1 1 1 2 2 2 2 21

2 3 … … 3 5 2 ……

1 5 … 2 4 …3

1 1 2 2 21

VQQ

VQC

VPP

VPC

Q1
P1

Q1
P1

Q2
P1

Q1
P2

Q2
P2

2 1 2 2 ...1

2 3 3 5 …2

VQQ

VQC

Lower bound binary search
Upper bound binary search

Q1
P1

Q2
P1

Q2
P2

Unique

Q1
P1

Q1
P1

Q2
P1

Q2
P1

Q2
P2

Sort

Q2

5

3

2

Q1
P1

P2

Sort
1

2

3
4

decomposition kernel on GPUs is developed for the first two
steps. Third, to query P MBRs over Q MBRs, two binary searches
(one for lower bound search and one for upper bound search) of
the elements in VPC over VPC are performed to match the MBRs
stored in VPP and VQQ. Finally, duplicated pairs are removed by
combining a parallel sort and a parallel unique operation. As all
the involved operations except MBR decomposition, i.e., sort,
search, unique, can be efficiently parallelized in quite a few

parallel libraries including Thrust4 that comes with CUDA SDK,
the single-level grid-file based spatial query can be relatively
easily implemented on GPUs. Despite that the implementation has
been extensively used in our previous studies, it has not been
compared with alternative implementations. The R-Tree
implementations reported in this paper serve as a good
opportunity.

Fig. 1 Example of grid based index

3. GPU Based R-tree Indexing and Querying
In this section, we present our implementations of parallel
construction of R-Trees and query processing based on R-tree
indexing on GPUs. We will first introduce the node layout of our
linearized R-tree design followed by the implementation details of
R-Tree construction using parallel bulk loading. We then focus on
both BFS and DFS R-Tree traversal based query processing on
GPUs and discuss some of the design and implementation
choices.

3.1 Node Layout of Linearized R-tree
We use simple array based linear data structures to represent an
R-tree. Simple linear data structures can be easily streamed
between CPU main memory and GPU memory without
serialization and is also cache friendly (on both CPUs and GPUs).
In our design, each non-leaf node is represented as a tuple {MBR,
pos, len}, where MBR is the minimum bounding box of the
corresponding node, pos and len are first child position and
number of children, respectively. The node layout is illustrated in
Fig. 2. The tree nodes are sequenced into an array based on the
DFS ordering. The decision to record only the first child node
position instead of recording the positions of all child nodes is to
reduce memory footprint. Since sibling nodes are stored
sequentially, their positions can be easily calculated by adding the
offsets back to the first child node position. In addition to memory
efficiency, the feature is desirable on GPUs as it facilitates
parallelization by using thread identifiers as the offsets. In this
study, we have used R-Trees constructed from two approaches:
bulk loading on GPUs and dynamic insertions on CPUs. The
algorithm to fill the pos and len fields using bulk loading on
GPUs are discussed in Section 3.2. When the R-Tree is generated
on CPUs, the two fields can be filled easily by sequentially
looping through R-Tree nodes through pointer chasing.
Both Array of Structures (AoS) and Structure of Arrays (SoA) can
be adopted to physically store R-Tree nodes. We choose SoA on
GPUs in this study as it is more beneficial for coalesced memory

accesses to GPU global memory. As an example, assuming, two
threads read two consecutive R-Tree nodes from global memory.
In AoS, two structures representing the two nodes are loaded.
Since each structure has a size of 24 bytes (4 floats for MBR, 2
integers for pos and len), it will result in non-coalesced global
memory access on the current GPU architecture. On the contrary,
SoA splits the node structures into multiple single value arrays.
With the same example, each time a single value (4 bytes for
either floats or integers) is read and the accesses are coalesced.

Fig. 2 Illustration of Linear R-tree Node layout

3.2 Parallel Bulk Loading R-Tree on GPUs
In this study, we have chosen to adopt the bottom-up approach
that has also been used in [9] for bulk loading R-Tree with two
phases: sorting and packing. However, instead of using CUDA
programming directly, our implementation is built on top of the
parallel primitives provided by Thrust that comes with CUDA.
SDK. The decision has significantly reduced coding complexity
and improved portability. In the sorting stage, the original data
(MBRs) is sorted by applying a linear ordering schema using a
sort_by_key primitive. We note that the linear ordering schema
will directly impact the qualities of constructed R-trees and
subsequently impact the query performance on R-Trees [10,11].

(MBR, pos, len)

R1(MBR1,3,3) R2(MBR2,6,2)R0(MBR0,1,2)

R3(-,8,3) R4(-,11,2) R6(-,15,2) R7(-,17,3)R5(-,13,2)

0 1 2

3 4 5 6 7

Node layout

R1 R2

R3 R5 R4 R6 R7

R8 R10R9 R11 R12 R13 R14 R15 R16 R17 R19R18

This is because spatial adjacency in 2-D may not be well
preserved in 1-D, an issue that has been well studied in spatial
databases [16,2,3].

Fig. 3 Implemenation of Parallel R-tree Bulk Loading on GPUs
with a Running Example

In the packing phase, as shown in Fig. 3, the R-tree is constructed
by packing MBRs bottom-up. Every d items are packed into one
node at the upper level until the root is created. We first calculate
the number of levels and the number of nodes at each level for
memory allocation and addressing during the packing iteration.
We then construct the R-tree level by level from bottom up using
a reduce_by_key primitive. For the algorithm shown in the top of
Fig. 3, Steps 1 to 6 calculate the number of levels and the number
of nodes at each level. Steps 7 to 11 construct the tree level by
level. In step 9 and 11, same keys are need to be generated every
d items for parallel reduction purpose. This can be achieved by
combining transform_iterator and counting_iterator primitives
provided by Thrust. The MBRs, first child positions and numbers
of children are evaluated from the data items at the lower levels as
follows. For the d items with a same key, the MBR for the parent
node is the union of MBRs of the children nodes. For each R-Tree
node, the first child position (pos) is computed as the minimum
sequential index of lower level nodes (by using a
counting_iterator) and the length (len) is calculated as the sum of
1s (by using a const_iterator set to 1) for each child node. While
we have skipped the details of the auxiliary iterators (which are
nonessential to understanding the implementation of the
construction process) for the interests of space, we would like to
note that reduce_by_key and min/sum based scans are well
supported by parallel libraries (e.g. Thrust). A running example is
included in bottom of Fig. 3.

3.3 Parallel Query on R-Trees
Different from bulk-loading, we have chosen to implement R-
Tree based queries on GPUs using CUDA for both efficiency and
flexibilities. This is partially because the difficulties in mapping
irregular tree-traversals that are required for processing spatial
queries that involve 2D operations while the parallel primitives in
parallel libraries that predominately support 1D structures only.
For GPUs that support Nvidia CUDA programming model, there
are two levels of parallelism, i.e., computing block level and
thread level. In a way similar to the strategy adopted in [9],
queries are assigned to computing blocks to utilize the first level

parallelism. Each computing block processes a batch of queries
by coordinating the threads within the computing block to utilize
the second level of parallelism. The query problem can be
formulated as the following. Given a set of query rectangles Q
and a set of MBRs P that has been indexed, a query on an R-Tree
returns a list of pairs {(q, p) | q Q, p P, q and p intersects.
Without further optimization at the computing block level (which
is left for future work), by sequentially assigning every S queries
to a computing block, we next present two approaches, i.e., DFS
and BFS based batched query processing algorithms on R-Trees
within a computing block

3.3.1 Depth First Search Based Query
In this approach, each thread processes a query in a DFS manner
and thus a stack is required to track visited nodes. A naïve
implementation can be maintaining the stack on global memory
and each thread does its own work. Observing that the stack is
frequently read and write but the global memory access pattern is
not coalesced, we utilize per-block shared memory for the stack
structure instead. While it is well known that GPU shared
memory is usually limited for many applications, we show that
this is not a disabling factor for DFS based R-Tree query
processing although it does affect the scalability of the approach.
For an R-tree has a depth of l, a stack with size larger than l is
sufficient. Since our construction algorithm guarantees the depth
of R-tree to be logd (n), an appropriate fanout d value will give a
reasonable depth less than l. For example, with a fanout of 8, the
R-tree of a dataset with 990,141 items (a dataset that will be used
in the experiments) only has 7 levels.

Figure 4 A Running Example of Batched DFS Queries

For batched query within a computing block, the number of
batched queries m is determined by size of available shared
memory (sm_sz) in a computing block using a stack size stack_sz,
m = floor(sm_sz/stack_sz). To keep track of visited information in
DFS traversals, the data items in the stack are organized using
two fields, index and visit. index is the index to the R-tree node
array that provides access to the corresponding R-tree node. The
other field visit is used for recording the number of visited
children under the current R-Tree node. Fig. 4 (best viewed in
color) is a running example of the batched DFS based query
processing where three queries (Q1, Q2 , Q3) are executed in
parallel, each by a thread. In the example, grey nodes indicate
nodes that have been visited by at least one thread while white
nodes indicate pruned nodes. A stack pool is maintained in shared
memory where each query/thread works on its own stack. Among
the three queries, Q1 requires back tracing to B after visiting E
before finally reaching F by using the stack of the corresponding
thread. E and F are the leaf R-Tree nodes that should be returned.
Differently, Q2 and Q3 only follow a single path and results the
queries result in a single R-Tree leaf node.
The DFS based query is divided into two phases which follows
the “count and write” pattern. Two kernels are launched during
the query process. The first one, termed as “count”, is to count the

1. R_sz = 0; num_lev = 0;
2. while(length != 1)
3. length = ceil(length/d);
4. nodes_by_lev.push_back(num_nodes);
5. num_lev++;
6. R_sz += length;
7. for level = num_lev decreasae to 1
8. if (num_lev == num_lev)
9. reduce_by_key from original data
10. else
11. reduce_by_key from lower level

{MBR3, 10, 3} {MBR2, 7, 3} {MBR1, 4, 3}

{MBR0, 1, 3}

D

A

B C

E H

A B E

A B F

Stack Pool

Q1

Q2

A C G Q3

X

X

IF G K

numbers of hits (leaf R-Tree nodes whose MBRs intersect with
query windows) for all individual queries in order to output query
results in parallel. Fig. 5 is the detailed implementation of the
“count” phase. In addition to the stack pool structure in shared
memory discussed before, an array Pos is allocated for counting
results. After the counting phase completes, a parallel prefix scan
is performed on the Pos array to compute the output positions for
the second phase which actually outputs the query results in
parallel based on the computed positions. Since the length of
output array can be derived by the prefix scan results before
memory allocation, no memory space is wasted in the DFS query
approach which is a desirable feature. The implementation of the
“write” phase is almost identical to the “count” phase with some
modification in Steps 16 and 19, i.e., instead of simply counting
number of hits, the query results are output to the allocated array.

 Fig. 5 Implementation of the Counting Phase of the DFS based
Query Processing on GPUs

As the alert readers might have observed, the duplicated processes
may hurt the performance of the DFS based query processing
implementation. The counting phase is essentially the overhead
for thread coordination in parallel computing. In addition to the
fact that the parallelism of DFS based query is limited by the size
of shared memory in terms of the available number of threads in a
computing block (as discussed earlier), workloads among the
threads in a computing block may be imbalanced as threads work
independently. When large query windows such as Q1 in Fig. 4
(which requires significant back tracking) and small query
windows such as Q2 and Query 3 in Fig. 4 (which usually follow
a single query path) are assigned to the same computing block,
the imbalanced workloads may significantly hurt the
performance.

3.3.2 Breadth First Search Based Query
Similar to [9], a global queue in a computing block is used for all
threads inside the block to process all the batched queries
assigned to a computing block. The queue node is represented in
the form of {index, qid} where index is the index to the R-tree
node array so that the corresponding R-Tree node can be retrieved
(the same as in DFS based one). qid represents the identifier of
the query that is being processed. R-Tree nodes whose MBRs
intersect with any of the queries are expanded in parallel and
stored in the queue level by level.
Unlike DFS based query processing where the sizes of outputs are
computed in a separate phase for each query/thread, in BFS-based

query processing a computing block has its own global memory
space for writing out query results which are predefined. In our
implementation, the size is set to the same as the queue capacity
in shared memory so that computing blocks that successfully
complete their BFS queries can easily copy the queue, which
represent the query results, to global memory by synchronizing all
the threads assigned to the computing block. Since the memory
accesses are coalesced, the cost of copying the query results to
global memory is minimized. However, as the queries may vary
in window sizes and large query windows may intersect with a
large number of R-Tree nodes, during level-wise query
expansions, there are chances that the pre-allocated memory space
to a computing block may overflow. As such, a per-block flag is
needed to indicate whether BFS based query processing in a
computing block is successful. The flag will be set if an overflow
happens and the query process in the computing block will stop.
If one or more overflows happens during BFS based query
processing among all computing blocks, an overflow handling
mechanism is needed to complete the query process. The solution
adopted in [9] is to launch new kernels repetitively until no
overflow happens. The queue size is increased for each successive
round of kernel launch to reduce the probability of overflows
while minimizing wasting global memory. In this study, we have
adopted a different strategy to handle overflows by integrating
DFS and BFS based query processing. When an overflow happens
in a computing block, the overflow flag is set and the current BFS
queue in the computing block is copied to global memory. After
the BFS kernel is complete, a DFS kernel introduced in Section
3.3.1 is then started by assigning each queue node of blocks that
overflow to a thread and the query process continues by switching
to DFS based query processing. As DFS query processing adopts
the “count-and-write” pattern, there will be no more overflow
happens. As such, the combined BFS+DFS based query
processing (herein referred as the hybrid approach) only needs
two kernel launches. Correspondingly, only one additional global
memory allocation is needed after the “count” phase is completed
in the DFS based query processing. In contrast, the solution in [9]
needs more kernel launches and more memory allocations whose
numbers cannot predetermined.

Fig. 6 Implementation of the BFS based Query Processing on
GPUs

1. //count
2. __shared__ STACK_POOL[]
3. i = get_thread_index();
4. STACK[] = &STACK_POOL[i*STACK_SZ];
5. Push(STACK, {0, 0}); //push root to stack
6. Hit = 0
7. while (Size(STACK)>0)
8. {index, visit} = Pop(STACK)
9. if (R[index].len == visit)
10. continue; //all children are visited
11. next = R[index].pos + visit;
12. visit++;
13. Push(STACK, {index, visit});
14. if (intersect(MBR[i], R[next].MBR))
15. if (Leaf(R[next]))
16. Hit++;
17. else
18. Push(STACK, {next, 0});
19. Pos[i] = Hit;

1. __shared__ QUEUE[]
2. for each query i parallel do
3. QUEUE[i] = {0, qid};
4. while (!done & !overflow)
5. for each thread parallel do
6. {index, qid} = QUEUE[threadIdx]
7. hit = 0
8. for each child i of R[index]
9. if (intersect(MBR[qid], R[i].MBR))
10. hit++
11. pos = Prefix_Scan(hit)
12. if (threadIdx == NUM_THREADS‐1)
13. if (pos+hit == 0) done = true
14. if (pos+hit > Q_SZ) overflow = true
15. if (!done & !overflow)
16. for each thread parallel do
17. {index, qid} = QUEUE[threadIdx]
18. for each child i of R[index]
19. if (intersect(MBR[qid], R[i].MBR))
20. QUEUE[pos++] = {i, qid}
21. for each thread parallel do
22. save QUEUE to global memory

The implementation of the BFS based query processing design is
listed in Fig. 6. Note that the algorithm presented in Fig. 6 is only
for BFS based query processing and a complete listing of the
hybrid approach for end-to-end application would require
combining the algorithms listed in Fig. 6 and Fig. 5. In Fig. 6,
during the initialization phase (line 2~3), each query is loaded
into the per-block queue in parallel with the index field set to 0 to
start from the root of the R-tree. Line 4~20 process the batched
queries in parallel on the R-Tree tree level by level with each
thread works on an entry of the queue. Each thread first
determines how many nodes need to be expanded for the next
level by accessing the len field of the R-tree node whose array
index is the value in the index field of the queue node. A
computing block level prefix scan is then used to computes the
positions for outputting the child nodes of the current R-Tree
node whose MBRs intersect with the window of the query that is
assigned to the thread. The process is repeated for all R-Tree
levels until either the R-Tree leaf nodes are reached (with a done
flag) or overflows are detected (with an overflow flag). Finally, in
the normal termination case, the queue is saved from shared
memory to global memory as the output (Line 21 and 22). In the
overflow case, a DFS based query processing is started to
continue the query processing as discussed previously.
To better illustrate the BFS based query processing and the hybrid
approach, Fig. 7 provides a running example for the BFS based
query processing with no overflows and Fig. 8 provides a running
example for the hybrid BFS+DFS approach where an overflow
happens. The two figures are best viewed in color. In both figures,
grey nodes represent non-leaf R-Tree nodes whose MBRs
intersect with query windows and their child nodes should be
further testes for spatial intersection tests on the respective MBRs.
The white nodes represent the opposite case and they should be
pruned for further tests. In addition, black nodes represent the leaf
nodes whose MBRs intersect with query windows and the pairs of
the corresponding R-Tree node identifiers and the query window
identifiers should be returned. In both examples, we assume there
are two batched queries (whose query paths are symbolized using
red and green arrows, respectively) in a computing block (with
two threads) and the queue capacity is 3.

Fig. 7 Running Example for BFS based Query Processing without

Overflows
In Fig. 7, as the MBRs of the two queries intersect with node A
(root node) at the level 0, two queue nodes {A,1} and {A, 2} are
enqueued. Thread 1 processes query 1 by dequeuing {A,1} and
tests whether the MBRs of the three child nodes (B,C,D) intersect
with the MBR of query 1. Assuming that only the MBRs of node
B intersects with the MBR of query 1, {B,1} is thus enqueued.
Similarly, thread 2 dequeues {A,2} and enqueus {C,2} at the
level 1. Following the same procedure, thread 1 dequeues {B,1}
and enqueues {F,1} and thread 2 dequeues {C,2} and enqueues

{G,2} and {H,2}, respectively, at the level 2. Since the capacity
of the queue is 3, no overflows happen.
In Fig. 8, following the same BFS based query processing
procedure, the queue at the level 1 would be {B,1}, {C, 1} and
(D,2). We have abbreviated {index, qid} as index qid.in Fig. 8 due
to space limit for presentation. For example, {B,1}is abbreviated
as B1. However, following the same procedure, there would be 4
nodes in the queue at the level 2 which is beyond the capacity of
the queue size. As such, the previous queue state (B1 C1 D2) is
copied to GPU global memory and the BFS stage for the
computing block terminates. When the DFS stage in the hybrid
approach begins, the batched queries that have overflow flags are
processed by first copying back the respective queue to shared
memory and then using the values of the index field of the queue
nodes as the stack tops (c.f. Fig. 4). For this particular example,
the leaf nodes F and G are reached by an one-step node expansion
from B and C, respectively. Differently, for node D, a back
tracking process is needed to retrieve its two child nodes as both
of their MBRs intersect with the MBR of query 2.

Fig. 8 Running Example for BFS based Query Processing with
Overflows – the Hybrid Approach

3.3.3 Discussions
3.3.3.1 Comparing DFS and BFS based Approaches
For BFS based query processing, the memory access pattern is
generally better than that of DFS based one. First, DFS traversal
order does not match the level-by-level (BFS) based R-tree node
sequence where BFS traversal is a better match. BFS based query
processing may better utilize the L2 cache introduced in Fermi
GPU architecture better. As BFS uses a global queue for all
threads that process all batched queries simultaneously,
workloads are better balanced among threads. At any tree level, if
a queue has N nodes and there are K threads assigned to a
computing block, then the N expansion tasks are almost evenly
distributed to the K threads although the workload within an
expansion might be uneven as R-Tree nodes may have different
numbers of child nodes whose MBRs are needed to be checked
with the MBR of the query window that is assigned to the
corresponding thread. That being said, as the number of child
nodes of an R-tree node is between M/2 and M, the degree of
imbalance is well bounded which makes BFS based query
processing desirable from a load balancing perspective which
usually have a positive impact on overall performance.
Furthermore, as neighboring threads access neighboring nodes in
the queue, memory accesses are better coalesced for DFS based
query processing.
On the other hand, as discussed earlier, DFS based query
processing has a better memory utilization because the output
memory is allocated after first counting the size of results. In
contrast, DFS-based query processing is prone to either overflows
or memory underutilization. For applications where GPU memory
capacity is a limiting factor, DFS based method can be a choice.

Overflow
I2
J2

Queue:

D

A

B C

E F G H

A1 A2

B1 C1 D2

I J

F1 G1 I2 J2

B1 C1 D2

F1 G1

DFS StageBFS Stage

Queue:

D

A

B C

E F G H

{A,1}, {A,2}

{B,1}, {C,2}

{F,1}, {G, 2}, {H,2}

I J

However, due to the duplicated computing overheads, unbalanced
workloads and limited scalability, the performance of DFS based
query processing is expected to be inferior to BFS based ones
which is supported by our experiments. This makes the hybrid
approach attractive by balancing probabilities of memory
underutilization and overflows. In general, when memory is not a
limiting factor, BFS based query processing will have better
performance and should be preferred.

3.3.3.2 Impacts of R-tree Quality
The qualities of R-trees are known to have great impacts on query
performance on CPUs. The same effect remains true on GPUs.
For BFS based method, R-trees with large overlapping MBRs
cannot prune branches at the top levels. Thus, more nodes need to
be loaded into the queue and tested for intersections. As the
number of nodes that are loaded into the queue increases, more
global memory accesses are needed which are quite expensive on
GPUs. Even worse, the probability of queue overflowing will also
increase as more nodes are loaded at each level. For the example
shown in Fig. 9, assume two packed R-trees are constructed using
the Z-order (left) and lowx ordering (right), respectively. Further
assume that two queries whose MBRs are represented by the red
and green rectangles, respectively, are provided. Also assume the
queue capacity is 3. The BFS query processing on the R-Tree in
the left of Fig. 9 will result in enqueuing 4 nodes (A1, B1, A2, B2)
which leads to an overflow. On the contrary, the BFS based query
processing using the R-Tree in the right part of Fig. 9 will only
enqueue two entries (B1, B2) are and thus no overflow will occur.
For DFS based query processing, more node examinations are
needed when querying the low quality R-Tree (left) than the high-
quality R-Tree (right). The analysis highlights the needs to
construct high quality R-Trees to improve query performance and
to make tradeoffs between R-Tree construction time and R-Tree
query time which is left for future work.

Fig. 9 Examples Showing the Impacts of R-Tree Qualities

4. Experiments
All experiments are performed on a workstation with two dual
quadcore Intel E5405 processors at 2.0 GHz (8 cores in total) and
a Nvidia Quadro 6000 GPU. For all experiments, -O2 flag is used
for optimization. Two MBR datasets are used for evaluations.
One (taxi quadrants or simply taxi) consists of 990,142 MBRs is
derived from the quadrants of about 170 million taxi pickup
locations in 2009 in NYC. The details of generating the quadrants
are provided in [17]. The other dataset (pluto tax lots or simply
pluto) has 735,488 MBRs, which comes from the NYC MapPluto5
tax lot dataset. Because both taxi and pluto datasets are in the
NYC area, experiments can be performed by using one as the
query dataset the other and as the indexed dataset among the four

possible combinations (taxi-taxi, pluto-pluto, taxi-pluto, and
pluto-taxi). In all experiments, the batch size m is empirically set
to 16, i.e., 16 queries are processed within a computing block.

Table 1 Results of CPU and GPU queries

 CPU-1
(ms)

CPU-8
(ms)

GPU
(ms)

Speedup

taxi-taxi 1925 290 105 18.33
pluto-taxi 833 220 130 6.41
taxi-pluto 1494 253 124 12.05
Pluto-pluto 1711 269 169 10.12

Our experiments include three groups. The first group
experiments (Section 4.1) are designed to compare the
performance of query processing on R-Trees using the DFS and
BFS+DFS (or hybrid) approaches. We do not experiment on the
BFS based query processing alone as the overflows need to be
handled. The second group of experiments (Section 4.2) compares
the many-core GPU based hybrid implementation with an open
source serial CPU-based R-Tree implementation from [18] as well
as its multicore CPU accelerated implementation based on
OpenMP6 directive based parallelization to compare the
performance under different computing settings. We note that the
R-Tree implementation from [18] was also used in [9] for
comparison purposes. Finally, the third group experiments
(Section 4.3) compare the GPU hybrid implementation with an
alternative single-level grid-file based implementation. We note
that while we have tested the performance of GPU based R-Tree
bulk loading implementation, we have found that the query
performance on bulk loaded R-Trees are much inferior to that on
R-Trees using dynamic insertion on CPUs. As such, we will only
use the dynamically generated R-Tree using [18] for
experimenting the performance of query processing in the first
two groups of experiments. The performance of queries on bulk
loaded R-Trees based on two orderings are provided in the third
experiment group.

4.1 Comparison between DFS and the Hybrid
Because the DFS approach has two phases, i.e., “count” and
“write”, we report the running times for both phases when DFS
based query processing is used. The results are shown in Table 1.
Clearly the hybrid BFS+DFS approach outperforms DFS
approach significantly in all the four experiments.
Table 1 Runtimes of DFS and Hybrid Approaches of Four Tests

DFS BFS+DFS
Runtimes

(ms) count write BFS DFS count DFS write

taxi-taxi 141 136 105 0 0

pluto-taxi 317 276 89 20 21

taxi-pluto 111 108 106 8 10

pluto-pluto 313 302 163 3 3

4.2 Comparisons between CPU and GPU
Implementations
 The experiment results are reported in Table 2 where “CPU-1”
denotes the serial CPU implementation and “CPU-8” stands for 8-
Core CPU implementation. The runtimes of the GPU
implementation are based on the hybrid BFS+DFS
implementation. As can be seen from Table 2, the hybrid
approach has achieved 6X~18X speedups over serial CPU

2

4

1

4

1

2 3 3 A
A

1 2 3 4

A B

4 1 2 3

A B

B
B
2

implementation and is about 2X faster over the 8-core CPU
implementation. As one single E5405 has 820 million transistors
and Fermi GPUs have about 3 billion transistors, we conclude that
CPUs and GPUs have comparable per transistor performance as
3/(0.82*2)≈ 2.

Table 2 Runtimes of of CPU and GPU queries
 Runtime (ms) CPU-1 CPU-8 GPU Speedup
taxi-taxi 1925 290 105 18.33
pluto-taxi 833 220 130 6.41
taxi-pluto 1494 253 124 12.05
pluto-pluto 1711 269 169 10.12

4.3 Comparison between R-trees and Single-
Level Grid-file based Indexing on GPUs
The runtimes of query processing using the hybrid BFS+DFS
approach on the dynamically generated R-Tree (column R-tree-0)
and the single-level grid-file based indexing (column Grid) are
shown in Table 3. Note that since the dynamic R-Tree is created
on CPUs, we have included the data transfer time to the end-to-
end query processing times for fair comparison. As such, the
runtimes listed in the R-tree-0 column of Table 3 are slightly
larger than the runtimes listed in the GPU column of Table 2.
From the results we can see that R-Tree based query processing is
about an order (10X) times faster than the single-level grid-file
which makes it attractive in many applications.
Table 3 Runtimes of Query Processing on Dynamically Generated

R-Tree, Single-Level Grid-File and Two Bulk Loaded R-Trees
Runtime (ms) R-tree-0 Grid R-Tree-1 R-Tree-2

taxi-taxi 133 1544 5722 1768

pluto-taxi 145 1007 8453 1048
taxi-pluto 143 1420 41218 6247
pluto-pluto 185 1440 72322 18279
R-Tree-0: Dynamically Generated R-Tree on CPUs
R-Tree-1: Bulk Loaded R-tree using Z-order
R-Tree-2: Bulk Loaded R-tree using lowx ordering
To better understand the impacts of R-Tree qualities on query
processing on GPUs, we have also included the runtimes of query
processing on two bulk loaded R-Trees, one is based on Z-
ordering and the other is based on lowx ordering where MBRs are
sorted based on x1 values of MBRs defined as (x1,y1,x2,y2)
tuples. From table 3, we can see that the performance of the two
bulk loaded R-Trees are significantly worse than the dynamically
generated R-Tree which warrants further research.

5. Conclusion and Future Work
In this study, we have implemented designs to bulk load R-Trees
and query constructed R-Trees on GPUs based on different
strategies. Our extensive experiments have shown that the hybrid
BFS+DFS approach can achieve 6-18X speedup over a main-
memory based serial CPU R-Tree implementation which makes it
attractive for many real world applications. Our experiments also
have shown that R-Tree qualities can have signficant impacts on
query performance. The query performance of bulk loaded R-
Trees on GPUs are far inferior to the serial CPU implementation
which necessitates the need to seek approaches to building high-
quality R-Trees. Intelligently using massively data parallel
computing power for R-Tree bulk loading to generate high-
quality R-Trees and support efficient query processing on GPUs
is an interesting research topic.

For future work, in addition to further investigations on GPU
based bulk loading that have been discussed inline, we also plan
to compare R-Tree based indexing approaches with quadtree
based ones on GPUs to explore their advantages and
disadvantages. Another research direction is how to reorder or
index the query windows for more efficient parallel query
processing on GPUs. Finally, as the batched queries on R-Trees
are closely related to spatial joins, we also would like to
incorporate the R-tree implementations into spatial joins.

6. References
[1] Guttman, A. (1984) R-trees: a dynamic index structure for spatial

searching. Proc. ACM SIGMOD Conference, 47-57.
[2] Gaede, V. and O. Gunther (1998). Multidimensional access methods.

ACM Computing Surveys 30(2): 170-231.
[3] Samet, H. (2005). Foundations of Multidimensional and Metric Data

Structures. Morgan Kaufmann.
[4] Kamel, I. and C. Faloutsos (1992). Parallel R-trees. Proc. of ACM

SIGMOD Conference, 195-204.
[5] Hoel, E.G. and H. Samet (1994), Performance of Data-Parallel

Spatial Operations, Proc. of VLDB Conference, 156-167.
[6] Schnitzer, B. and S.T. Leutenegger (1999), Master-Client R-Trees: A

New Parallel R-Tree Architecture, Proc. of SSDBM Conference, 68-
77

[7] Wang, B., et al. (1999), Parallel R-Tree Search Algorithm on DSVM.
Proc. of DAFSAA.

[8] Apostolos, P. and Yannis, M. (2003). Parallel bulk-loading of spatial
data. Journal of Parallel Computing. 29(10): 1419-1444.

[9] Luo, L., Wong, M.D.F. and Leong, L. (2012). Parallel
implementation of R-trees on the GPU. Proc. ASP-DAC

[10] Kamel, I. and Faloutsos, C. (1993) On packing R-trees. Proc. CIKM
Conference, 490-499.

[11] Garcia, Y.J., M.A. Lopez, and S.T. Leutenegger (1998) A greedy
algorithm for bulk loading R-trees, Proc. ACM GIS, 163-164

[12] Alborzi, H. and H. Samet (2007). Execution time analysis of a top-
down R-tree construction algorithm. Information Processing letters,
101(1): p. 6-12.

[13] Zhang, J., You, S. and Gruenwald, L. (2011) Parallel Quadtree
Coding of Large-Scale Raster Geospatial Data on Multicore CPUs
and GPGPUs. Proc. ACM-GIS Conference.

[14] Zhang, J., You., S. and Gruenwald, (2012). U2STRA: High-
Performance Data Management of Ubiquitous Urban Sensing
Trajectories on GPGPUs. To appear in Proc. ACM CDMW
workshop. http://geoteci.engr.ccny.cuny.edu/pub/u2stra_tr.pdf

[15] Zhang, J., You., S. and Gruenwald, L (2012). High-Performance
Online Spatial and Temporal Aggregations on Multi-core CPUs and
Many-Core GPUs. To appear in Proc. ACM DOLAP workshop.
http://www-cs.ccny.cuny.edu/~jzhang/papers/aggr_tr.pdf

[16] Mokbel, M. and Aref, W. (2011). Irregularity in high-dimensional
space-filling curves. Distributed and Parallel Databases 29(3): 217-
238.

[17] Zhang, J. and You., S. (2012). Speeding up Large-Scale Point-in-
Polygon Test Based Spatial Join on GPUs. Technical report online at
http://geoteci.engr.ccny.cuny.edu/pub/pipsp_tr.pdf

[18] Open source R-Tree Implmenenation available at
http://superliminal.com/sources/sources.htm.

1 http://en.wikipedia.org/wiki/Parallel_Random_Access_Machine
2http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-
690/specifications
3 http://en.wikipedia.org/wiki/Online_analytical_processing
4 http://thrust.github.com/
5 http://www.nyc.gov/html/dcp/html/bytes/applbyte.shtml
6 http://en.wikipedia.org/wiki/OpenMP

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

