Parallel Spatial Query Processing on GPUs Using R-Trees

Simin You

Dept. of Computer Science
CUNY Graduate Center
New York, NY, 10016

syou@gc.cuny.edu

ABSTRACT

R-Trees are popular spatial indexing techniques llaae been
widely adopted in many geospatial applications. casnmodity
GPUs (Graphics Processing Units) are increasingigoiming
available on personal workstations and cluster aderp, there
are considerable research interests in applyingnbssive data

Jianting Zhang

Dept. of Computer Science
City College of New York
New York, NY, 10031

jzhang@cs.ccny.cuny.edu

Le Gruenwald
School of Computer Science
University of Oklahoma
Norman, OK 73071

ggruenwald@ou.edu

applications that involve batched queries on R-Jreehere
parallelization is obviously beneficial. Quite soperallel R-Tree
construction and query processing algorithms haen proposed
for different parallel architectures [9, 10, 12, 146, 17]. Early
research mostly focused on shared-nothing compiusters that
are made of identical computing nodes equipped with

parallel GPGPU (General Purpose computing on GPUs) Uniprocessors [9, 14, 16, 17].

technologies to index and query large-scale ge@dpaata on
GPUs using R-Trees. In this study, we aim at evalgathe
potentials of accelerating both R-Tree bulk loadamgd spatial
window query processing on GPUs using R-Treesdtit@n to
designing an efficient data layout schema for Re$ren GPUs,
we have implemented several parallel spatial windguery
processing technigues on GPUs using both dynamigatherated

Modern GPU architectures closely resemble superateng as
both implement the Primary Parallel Random Accessctihe
(PRAMY) characteristic of utilizing a very large numbéthreads
with uniform memory latency. Compared to modern GPGPU
devices usually have larger numbers of processimgse higher
memory bandwidths with more affordable prices. Emample,
the Nvidia GTX Titan GPUshave nearly 3,000 processing cores,

R-Trees constructed on CPUs and bulk loaded R-Trees3zpp GB/s bandwidth, 6 GB memory and can be purché&sen

constructed on GPUs. Extensive experiments usitiy mthetic
and real-world datasets have shown that our GPddbparallel
query processing techniques using R-Trees canazhi@out 10X
speedups on average over 8-core CPU parallel ingritations
by effectively utilizing large numbers of processand high
memory bandwidth on GPUs.

Categories and Subject Descriptors

H.2.8 [Database Management Database Application spatial
databases and GjSI.3.1 [Computer Graphics]: Hardware
Architecture —-Graphics processors

General Terms
Algorithms, Performance

Keywords
Spatial Indexing, R-Tree, GPU

1. INTRODUCTION

R-Trees [4, 6, 15] are well known spatial indextaghniques and
have been widely adopted in many applications ridexing 2-D
or higher dimensional spatial data. Many techniquage been
proposed over the past three decades to improiaeeffy and
performance of R-Tree construction and R-Tree basmatial
query processing. As R-Tree construction typicatigur super-
linear complexity, it is desirable to parallelize -TRee
constructions on parallel platforms, especially whErocessing
large-scale geospatial data. While processing glesispatial
query on an R-Tree is typically sub-linear, theme anany

Permission to make digital or hard copies of all ot p&this work for personal or classroom use
is granted without fee provided that copies are not madkstibuted for profit or commercial
advantage and that copies bear this notice and the fulboitan the first page. Copyrights for
components of this work owned by others than ACM mustoberted. Abstracting with credit is
permitted. To copy otherwise, or republish, to post omessror to redistribute to lists, requires
prior specific permission and/or a fee. Request permissipomPermissions@acm.org
BIGSPATIAL '13:November 05 - 08 2013, Orlando, FL, USA

Copyright 2013 ACM 978-1-4503-2534-9/13/11...$15.00.
http://dx.doi.org/10.1145/2534921.2534949

the market around $1,000. As many commodity desktop
computers have already been equipped with GPU egviat are
capable of general computing, it is desirable te @&PUs to
accelerate geospatial computing in general and €R-Tryased
spatial data management in particular. FurthermGfUs have
been extensively used to accelerate many compuritegsive
applications, such as nearest neighbor queriesaiabdses and
ray-tracing in computer graphics. Efficient indexistructures
such as R-Trees are promising in speeding up soieipating on
GPUs that are practically useful. As it is stillitguexpensive to
transfer data between CPUs and GPUs through PQlidesb
(limited to 8-32 GB/s on PCI-E devices with 16 lahydeing able
to directly construct and query R-Trees on GPUsavoid or
reduce data transfer overheads is beneficial, wimativates us to
implement both R-Tree construction and query prsiogson
GPUs.

In this study, we aim at exploring different desgirategies on R-
Tree construction and query processing on GPUs. hakee
evaluated the performance of several designs apt:mentations
using both synthetic and real-world datasets. Finstddition to
the re-launching overflow handling strategy (detadit Section
3.2.2) for batched spatial queries implementedl1],[we have
also designed and implemented several additionarflow
handling techniques. Second, while a GPU based eR-Tulk
loading technique called low- packed R-Tree has been
implemented in [12], the bulk loaded R-Tree was us¢d for
query processing in the study. This left the penfamce of spatial
query processing on bulk loaded R-Trees, whichcslpi are
faster in construction but have lower qualitiesgédy unknown.
In this study, we have considered both lkwacked R-Tree based
bulk loading [12] and Sort-Tile-Recursive (STR) @&dsR-Tree
bulk loading [11]. While some of our designs and
implementations have demonstrated significant spgedover
CPU implementations on R-Tree based query proagsEis
reported in Section 4), we are more interestednidetstanding
the relative advantages and disadvantages of GB&HbR-Tree
construction and query processing over CPU-based as well

as the impacts of R-Tree quality to provide inssgdmd guidelines
for more systematic and more efficient implementsi For
testing purposes, we have run our implementations spatial
query benchmark including synthetic and realistitadets. We
report our experiment results and provide discussion our
findings. Our technical contributions in this papean be
summarized as follows:

1) We have provided an improved R-Tree node layouEBlJs
which has lower memory footprint.

2) We have implemented alternative R-Tree bulk loading
spatial window query processing strategies on GB&isg
R-Tree which are not covered by previous works 1),

3) We have performed extensive experiments usingrdiffeR-
Trees, including bulk loaded ones and dynamic tedeones,
and evaluated different R-Tree based spatial windaery
processing designs on GPUs using both synthetiasest
and real datasets. To the best of our knowledds,ishthe
most comprehensive set of evaluations of R-Treek bul
loading and spatial query processing on GPUs.

The rest of this paper is organized as followstiSe@ introduces
background and related work. Section 3 provides RtFree
designs and implementations on GPUs, including Bo#ding
and batched spatial query processing techniquestioBe4
presents experiments and results. Finally Sections 5Sthe
conclusion and future work.

2. BACKGROUND AND RELATED WORK
R-Tree based indexing techniques have been exsnstudied
in spatial databases and quite a few variants baea proposed
over the past three decades [4, 6, 15]. Althougbktragisting R-
Tree implementations are serial on a single CPUp(apessor),
there are several previous studies on parallel é&Tonstruction
and query processing based on different parallaidvhare
architectures although those based on shared-igottiinsters
clearly dominate [7, 9, 14, 16, 17]. In this studig focus on R-
Tree based spatial indexing using GPGPU
technologies that have quite a different parakkehputing model.
We also argue that our work is complementary tostelu
computing based distributed and parallel spatigrgprocessing
provided that computing nodes are equipped with GRuUices
which is becoming increasingly popular in both itsional grid
computing resources and commercial cloud compuegurces.

The most related work to ours, which is reported 18], has
implemented a Breadth-First-Search (BFS) travdraaked query
processing algorithm using R-Trees on modern GRUaddition

to the differences that have been discussed inintieduction

section, our designs and implementations are affereht from

the following aspects. First, as discussed in Getai Section
3.1.1, while both implementations use linear ars&yctures to
store R-Tree nodes in a BFS order and has a neldietdi indicate
the array position of the first child node (in aysimilar to the
design of our GPU-based Binned Min-Max Quadtree BMM
Tree [18]), our node layout has a separate fieldsttre the
number of children of an R-Tree node. By using ashone extra
byte (which can represent 256 children) in mosesawe are free
of having to store non-exist child nodes which sawe up to 50%
of required memory for a whole R-Tree. Second, evtiile work
in [12] proposed and evaluated only one overflowndtiag

mechanism (see details in Section 3.2.2), we intedwo new
overflow handling mechanisms as well as a purellea@imitive

based BFS query implementation which does not requierflow

handling. We have compared query performance based
different parallel spatial query processing straegThird, while

[12] only performed experiments on dynamic inseriedrees,
we have evaluated query processing on bulk load&ceBs using
different R-Tree bulk loading strategies.

A GPU-based R-Tree query processing algorithm tdrme
Massively Parallel Three-phase Scanning (MPTSydp@sed in
[10]. The key idea of MPTS is to minimize irregljamemory
accesses during R-Tree traversals when processatilsqueries.
During the traversals, left- and right- most nodes identified
and a parallel scan is performed from the left-muzde to the
right-most node to search for intersected MBRs. elmw, MPTS
is mostly designed for optimizing single spatiahdow query
processing instead of processing multiple queriespéarallel.
Rather than further improving query processing $if@r single
queries, which are typically already fast enougknefor large
datasets with reasonable degrees of selectivitgh@norder of a
fraction of a second), we focus on parallel quencpssing for a
large number of independent queries by fully utiigmassively
data parallel computing power on GPUs, which weekel is
more cost-effective for practical applications.

While the original R-Tree construction algorithmseudynamic
insertions, several bulk loading approaches hawn lproposed
[3, 5, 8, 11, 14]. Bulk loading approaches usuatlppt a packing
technique to construct R-Trees that maximizes spaitieation
and reduces the height of the resulting tree ashnascpossible.
Packed R-Tree guarantees better space utilizatiwh query
responses based on packed R-Trees have been deportee
comparable with R-Trees built from dynamic inserig[5, 8].
Bulk loading methods can be classified into twoegaties, i.e.,
top-down and bottom-up. Alborzi and Samet [3] dismd the
difference between top-down and bottom-up methobsey
argued that the top-down method could potentialbcpss queries
faster but non-leaf nodes might be under-packed.tf@nother
hand, R-Trees constructed by bottom-up methodshaag fewer
nodes than using top-down methods. Sort-Tile-Réa(STR) is
a simple yet efficient R-Tree packing method praubm [11]. In

computing the STR approach, R-Tree is constructed by recelssisorting

and packing in a bottom-up manner. As both soréind packing
can be easily mapped to parallel primitives (isest andreduce
respectively), it is attractive to implement R-Treelk loading
algorithms on GPUs directly. Based on the resulsugsed in
[11], low-x packing is not competitive with STR based packing.
The results have motivated us to implement STR & Thulk
loading on GPUs and compare it with the RWR-Tree bulk
loading that has been implemented in [12].

3. METHODOLOGY
3.1 Parallel R-Tree Bulk-loading

3.1.1 Node Layout of Linearized R-Tree

We use simple linear array based data structurespieesent an
R-Tree. Simple linear data structures can be eastilgamed
between CPU main memory and GPU device memory witho
serialization and are also cache friendly on bd#J€ and GPUs.
In our design, each non-leaf node is representedtagle MBR,
pos len}, where MBR is the minimum bounding rectangle of the
corresponding nod@osandlen are the first child position and the
number of children, respectively, as illustrated Rig. 1. In
contrast, previous work [12] stored entries forcdlildren in non-
leaf nodes, which will use more memory than ourhmdt The
tree nodes are serialized into an array based @Bithadth-First-
Search (BFS) ordering. The decision to record ¢imyfirst child
node position instead of recording the positionalbthild nodes
in our approach is to reduce memory footprint. 8irsibling

nodes are stored sequentially, their positions ban easily
calculated by adding the offsets back to the faktld node
position. In addition to memory efficiency, the tige is desirable
on GPUs as it facilitates parallelization by usihgead identifiers
as the offsets. In this study, we have used R-Toeestructed
from two approaches: bulk loading on GPUs and dyoam
insertions on CPUs. The algorithm to fill tpes andlen fields
using bulk loading on GPUs are discussed in the segtion.
When an R-Tree is generated on CPUs, the two fields be
filled easily by sequentially looping through R-&renodes
through pointer chasing.

R3[| R4
R8| RgiRla RlﬂRli RliRlZI

Node layou | (MBR, pos, len

1)
RO(MBRO,1,2 —->|Fl(MBR1,3,3)| R2(MBR21,6,2)|_>

[0]
B @ [B¢ [

[R3(,8,3 [R4(,11,2 [R5(-,13,2 |- ®[R6(-,15,2 | R7(-,17,3 |

E
a1

Rlilququ

Fig. 1 lllustration of Linear R-Tree Node layout

3.1.2 Parallel R-Tree Bulk Loading on GPUs

In this study, we implement both lowpacking (used in [12]) and
STR packing [11] for bulk loading R-Trees. Insteafl using
native GPU programming languages (such as NvididD&Y)
directly, our implementations are built on top eWeral parallel
primitives provided by the Thrust library that cangith CUDA
SDK. The decision has significantly reduced cod@ognplexity
and improved portability.

For the lowx packing approach, in the sorting stage, the origina
data (MBRs) is sorted by applying a linear ordescbema (low-

x in this case) using @ort_by keyparallel primitive. The
algorithm is shown in Fig. 2 where the R-Tree isstaucted by
packing MBRs bottom-up. Evergl items are packed into one
node at the upper level until the root is creaWe. first calculate
the number of levelsngum,,,.;) and the number of nodes at each
level for memory allocation and addressing durihg packing
iteration. We then construct the R-Tree level byelebottom-up
using areduce_by keyprimitive. Step 1 sorts the original dataset
using any 1-D ordering (low-in this case). From steps 2 to 6, R-
Tree is iteratively packed from lower levels. les# and 6, same
keys need to be generated everytems for parallel reduction
purpose. This can be done by combintransform_iteratorand
counting_iteratoriterators provided by the Thrust parallel library.
The MBRs, first child positions and numbers of dheh are
evaluated from thelataitems at the lower levels as follows. For
the d items with a same key, the MBR for the parent nigdie
union of MBRs of the children nodes. For each ReTmede, the
first child position pog is computed as the minimum sequential
index of lower level nodes (by usingcaunting_iteratoy and the
length (en) is calculated as the sum of 1s (by using a
const_iteratorinitially set to 1) for each child node. While we
have skipped the details of the auxiliary iteratGngich are
nonessential to understanding the implementation tloé
construction process) for the interests of spaeewauld like to

note thatreduce_by keyand min/sum basedscans are well
supported by parallel libraries (e.g. Thrust).

We also implement the Sort-Tile-Recursive (STR) feeT bulk
loading algorithm on GPUs using parallel primitives follows.
First, MBRs are sorted along one direction, i.esing x
coordinates from lower left corners, which is impented by
usingsort_by_keyThen the space is divided into slices according
to the predefined fanowgt and each slice is sorted along the other
direction, such ag-coordinates. Finally everg MBRs in a slice
are packed as parent nodes which will be usedeamput for the
next iteration. This process is iteratively exeduti@til the root of
the tree is constructed. Fig. 3 outlines the STRIré&e
construction algorithm. Steps 2 to 4 check whethemumber of
MBRs is smaller than the fanodt If this is the case, the MBRs
will be packed as root and the iteration is terrr@da Otherwise,
the MBRs are first sorted using lowneoordinates (Step 6), amd

MBRs are divided into/N/d slices where each slice is sorted
according to lowy-coordinates (Step 7). After sorting on each
slice, parent nodes are generated via packing eVBtBRs (Step
8). Finally, N/d nodes are used as input for the next iteration
(Step 9). The first sort can be easily implemenbsd using
sort_by_keywhere x-coordinates are used as the key. To
implement the second sort where each slice isagantividually,

we use an auxiliary array to identify items thalobg to the same
slice. This is achieved by assigning the same @nidentifier for

all items belong to the same slice, i.e., a sequedentifier is
assigned for each slice and stored in the auxibargy. With the
help of the auxiliary array, Step 7 can be accoshell by
invoking sort_by keytwice, where the first sort is ory-
coordinates and the second sort uses the uniguéfiees in the
auxiliary array. Step 8 is the same as the pagiirase introduced
previously (steps 4 and 6 in Fig. 2). The diffeemetween the
two packing algorithms is that the lowpacking algorithm only
sorts once while the STR packing algorithm requinagtiple
sorts at each level.

Input: fanoutd; dataseD

Output: packed R-Tree

1. sortD using 1-D ordering (e.g. low)}
2. for level < num,,,, decrease to 1
3. if (level is last level)

4. reduce_by key from original datdD
5. else

6. reduce by key from lower level

Fig. 2 Lowx R-Tree Bulk Loading on GPUs

Input: fanoutd; dataseD

Output: packed R-Tree

1. while (true)

if (N < d)
root—packN MBRs
break;

else
sort_by key onx-coordinates
sort_by key ony-coordinates for each slice
reduce by key packed evergd MBRs
N« N/d

CeNOarWN

Fig. 3 STR R-Tree Bulk Loading on GPUs

1.//DFS count kernel

2.__shared__ STACK_POOL]J]
3.i=get_thread_index();

4. STACK]] = &STACK_POOLJ[i*STACK_SZ];
5. Push(STACK, {0, 0}); //push root to stack
6.Hit=0

7. while (Size(STACK)>0)

8. {index, visit} = Pop(STACK)

9. if (R[index].len == visit)

10. continue; //all children are visited

11. next = R[index].pos + visit;

12. visit++;

13. Push(STACK, {index, visit});

14. if (Intersect(MBR(i], R[next]. MBR))
15. if (Leaf(R[next]))

16. Hit++;

17. else

18. Push(STACK, {next, 0});

19. Posl[i+block_offset] = Hit;

Fig. 4 Implementation of the Counting Phase of th®FS based
Query Processing on GPUs

3.2 GPU based R-Tree batched query

Instead of accelerating a single query, our goatoissupport
efficient batched query processing on the GPU il To
leverage massively parallel processing power of §Rik need
to balance workload among all parallel processingsuwhile
minimizing expensive global memory operations orlJSRAnN this
section we will present different approaches dfaitig GPUs to
speed up batched spatial window query processing.

3.2.1 Depth-First-Search based Method

In this approach, each thread processes a queryDepth-First-
Search (DFS) manner and thus a stack is requiré@ak visited
nodes for each query. A naive implementation camaitaining
the stack on GPU global memory and each thread ideesvn
work. Note that the stack is frequently read andenbut the
global memory accesses are not coalesced in thee nai
implementation. To improve the performance, weiagilper-
block shared memory for the stack structure inst¥¥dhlile it is
well known that GPU shared memory is usually lighifer many
applications, we show that this is not a disabfactor for DFS
based R-Tree query processing although it doesctaffiee
scalability of the approach. For an R-Tree with eptt of h,
which is typically in the order of a few tens, acit of size larger
thanh is sufficient for DFS-based queries. As we assighread
to a query in a batch, the total required sharechongM is in the
order of h*t, wheret is the number of threads in a computing
block (or the number of queries in a batch). Efeert as large as
256, M is still significantly less than the typical 16 ki3 48 KB
limit. To keep track of visited information in DR&versals, the
data items in the stack are organized using twidsfjegndex and
visit. Theindexfield is the position to the R-Tree node arrayt tha
provides access to the corresponding R-Tree nduevigit field

is used for recording the number of visited childiender the
current R-Tree node.

The DFS-based query is divided into two phases hwifdtlows
the “count and write” pattern. Two kernels are leheed during
the query process. The first one, termed as “cousitb count the
numbers of hits (leaf R-Tree nodes whose MBRs $eter with
query windows) for all individual queries in orderoutput query
results in parallel. Fig. 3 shows the implementatié the “count”
phase. In addition to the stack pool structurehiared memory
discussed before, an arr@ps is allocated for storing counting
results. After the counting phase completes, allphmefix scan

is performed on th@osarray to compute the output positions for
the second phase which actually outputs the quesylts in
parallel based on the computed positions. Sincéethgth of the
output array can be derived by the prefix scan ltedoefore
memory allocation, no memory space is wasted irR8 query
approach which is a desirable feature. The impleatiem of the
“write” phase is almost identical to the “count”’gs® with some
modifications in Steps 16 and 19 in Fig. 4; i.astéad of simply
counting the number of hits, the query results @rput to the
allocated array.

Despite that the DFS-based query processing tegartigs a low
shared memory footprint on GPUs, the nearly dufdita
count/write phases may hurt the performance ofDRS based
query processing implementation. The counting phase
essentially the overhead for thread coordination piarallel
computing. Another disadvantage of the DFS-base@ryqu
processing technique is that, workloads among hineatls in a
computing block may be imbalanced as threads work
independently. As shown in Section 4, it is noipsising that the
DFS-based technique has poor performance when cethpa
alternatives to be presented next.

3.2.2 Breadth-First-Search based Method

As an improvement to the DFS-based spatial windawery
processing technique, the BFS-based technique vislafeed to
balance the workload within a GPU computing bloslqueue is
maintained for all the threads inside a computiloglto process
all the batched queries assigned to a computingkbl&ach
element of the queue is represented in the forirafex, qid
whereindexis the position to the R-Tree node array so that th
corresponding R-Tree node can be retrieved (the2 sssrin DFS
based one). Theid field represents the identifier of the query that
is being processed. In the BFS-based techniquereR-fiodes
whose MBRs intersect with any of the query window®
expanded in parallel and stored in the queue leyével.

Unlike the DFS-based query processing where thes ©if outputs
are computed in a separate phase for each quehg BFS-based
query processing, a computing block has its owbajlanemory
space for writing out query results which are pteeated. In our
implementation, the size is set to the same agjtieeie capacity
in shared memory so that computing blocks that essfally
complete their BFS-based queries can easily copy gieue,
which represent the query results, to global memabny
synchronizing all the threads assigned to the caimgublock.
Since the memory accesses are coalesced, thefaaghying the
query results to global memory is minimized. Howews the
queries may vary in window sizes and large querndais may
intersect with a large number of R-Tree nodes,rdukevel-wise
query expansions, there are chances that the lpeatad memory
space to a computing block may overflow. As suckertiow
handling must be used to correctly report queryultgsin
overflowed blocks. The essential idea of overfloandiling is to
complete query processing even when overflow happéfe will
introduce three different strategies in the follogvsubsections.

3.2.2.1 Kernel re-launching

In the previous work presented in [12], the authsuggested
using additional resolving kernels to complete gsein overflow
blocks. While an overflow happens during the preces per-
block overflow tag is set and all elements of theug at the level
before the overflow happens are copied to GPU ¢jloteamory.

The resolving kernel is then launched to continueStased
queries on the saved queues in GPU global memorgrder to

complete the queries, multiple blocks are assigodtie batched
queries that are originally dedicated to one blobkiring the

execution of resolving kernel, overflow may happegain. In

such a case, new kernels are repetitively launanditlall queries
have been successfully processed. This procesddressing
overflow cases is termed as kernel re-launching.major

drawback of this approach is that additional kermelocation

overhead is imposed when iteratively launching keeel. The
imposed overhead will hurt the overall performamspecially
when overflow cases are frequent. Furthermore, {58d shared
memory for the per-block queue and the size ofeshanemory
gueue is thus another limiting factor.

3.2.2.2 DFS based overflow handling

To minimize the number of kernel launches, we psepa new
approach to addressing the overflow issue by uBiR§ batched
gueries on the saved queues for BFS batched quAsesich, we
term the approach as BFS-DFS Hybrid or simply Hytior short.
In this technique, each data element is assignadheead and the
DFS-based query processing technique is used tdinoen
searching on the saved queue. Because the stdakSnwill not
overflow as we discussed previously, only two ké&rdaunches
are required. An example is given in Fig. 5 wheve ueries are
showing as red (query 1) and green (query 2), ciispdy. The
gueue capacity in this example is 3. While an deerhappens in
the BFS stage, elements,(BC,, D,) in the queue are saved to
GPU global memory. The DFS stage subsequently thikesaved
gueue as its input. For each element in the que S query is
performed to complete the query. However, in caglesn DFS-
based queries are highly unbalanced, the overethipeance will
be dominated by the overflow handling module. Thtlss
approach is only useful when overflow cases amredufent.

BF< Staau DFS Staar

A Queue

PN T ==

B1 C, D,

N £ FiGi 1,3 | :¢_¢_¢__
E F G H I

iFlGllz i
% |

Overflow |

Fig. 5 Running Example for BFS based Query Procesgj with
Overflows — the Hybrid Approach

::t g it scan+scatter+
ransfor artition
! ™S P ~

1
1
transfor !
! n’N :
Initializati ! Check Remove non-| 1
nitialization : intersection intersected !
n
II
II
II
1

Generate nex
level iteration
Queue is

1 initialized to Iterate until queue is empty
1

i {qid, root} :: or reaches leaves
1

1
L= e e e e e e e = =

Fig. 6 Parallel primitive based BFS batch query

3.2.2.3 Dynamic Memory Allocation

Both methods for handling overflow cases that aeoduced

previously require invoking new kernels. In otheards, when an
overflow happens, the query kernel is terminateth véaved

overflowed queue written into GPU global memory,dan

overflow handling kernels are launched to contimmecess
overflow blocks. Here we propose a new methoditheapable of
performing query within a single kernel executidnstead of
using additional resolving kernels, this new methoahdles
overflow cases without terminating a query kerrel.order to
achieve this goal, additional global memory spacallocated to
hold overflow elements. These elements will beeston GPU
global memory when an overflow happens and dyndipica
loaded into GPU shared memory when being procedéatd. that
the query processing kernel is not interrupted andadditional
resolving kernels are needed. To efficiently mandgememory
during kernel execution, a global memory pool is-gliocated
before kernel launches. The pool is organized agroap of
memory chunks. The size of the chunks is set tcs#tme as the
queue capacity so that each chunk can be diremlyed into the
queue in shared memory for subsequent BFS quemgegsmg.
When a query queue is overflowed, memory chunks are
dynamically allocated at runtime for the overflowelbck with
the help of GPU atomic operations. Overflowed eletheare
written into the newly allocated chunks so that ¢erent GPU
computing block can continue BFS query using theetu queue.
Once a chunk is processed, another chunk is loastedthe
shared memory queue iteratively. Although curreRtJS support
dynamic allocation during the kernel execution,stit choose to
maintain our own memory pool because our light-Wisd
memory management is more efficient for this patsc
application.

3.2.3 BFS based query using parallel primitives
The methods discussed in the previous subsectiang @ batch
of queries and assign them to a computing blocler&fore, the
workload is limited within a computing block. Inate of
maintaining a queue for each computing block, dallgqueue for
all queries can be maintained to maximize worklbathncing in
order to achieve maximum parallelism. In this ngyraach, an
R-Tree is traversed level by level for all queri@sly intersected
R-Tree nodes are expanded for the next iteratioottier words,
the global queue contains children of intersectebré® nodes in
a previous iteration. Since R-Trees are balancacckerees (all
leaves are at the same height), intersected notehealast
iteration of the queue can be output as the quesylis. As this
method only maintains a single global queue, tliere need of
overflow handling. Instead of using native langusageich as
CUDA, we have developed a parallel primitive based
implementation that not only works on GPUs but atsm be
easily ported to other parallel platforms such adtingore CPUs.

Fig 6 outlines the parallel primitives based tequei First, a
global queue is maintained and it is initializedngsthe root of
the R-Tree being queried for each query. Secondngiteach
iteration, all queries are checked for intersectiwith its
corresponding R-Tree node in parallel usirtgpasformprimitive
which applies the intersection test operator fdrtla¢ queries.
Third, during each iteration, non-intersected pare removed
from the queue and the queue is compacted. Fottrsected
nodes then need to be expanded for the next terafihis step is
a combination of several parallel primitives sustsean, scatter
andtransform The iteration terminates when the queue is empty
or the query processing procedure reaches théelast of the R-
Tree that is being queried. Finally query results eopied from
the queue to an output array.

We note that there are two weak points for this magthod.
Firstly, the queue is maintained on global memohjctv cannot
fully take advantage of fast shared memory on GPAiseach

level, the expansion of the current nodes incupersgive global
memory accesses, which may hurt performance. Ségotic:
parallel primitives-based implementation imposesditamhal
overhead by primitive libraries when compared witfing native
parallel programming languages such as CUDA.

Table 1 Datasets Sizes

Dataset| Size

abs02 1,000,00
dia02 1,000,000
par02 1,048,576
rea02 1,888,017

4. EXPERIMENTS AND EVALUATION

All experiments are performed on a workstation witfo Intel

E5405 processors at 2.0 GHz (8 cores in total) @mel Nvidia
Quadro 6000 GPU with CUDA 5.0 installed. For alpesiments,
-03 flag is used for optimization. To evaluate geeformance of
the proposed techniques, we use benchmark dafesetfR-Tree
benchmark [1]. The specifications of the datasets lsted in
Table 1 and Table 2. We use [13] as the baselin€RiJ-based
dynamic R-Tree implementation.

Table 2 Specs of Queries

Ql_Jery Min # of | Max # of | Avg # of

Size answers answers answers
abs02-Q1 | 1,000,000 1 1 1
abs02-Q2 10,000 50 150 99.4
abs02-Q3 3,164 500 1,500 993
dia02-Q1 | 1,000,000 1 4 1.26
dia02-Q2 10,000 50 150 99.4
dia02-Q3 3,164 500 1,500 991
par02-Q1 | 1,048,576 1 10 2.11
par02-Q2 10,485 50 150 99.9
par02-Q3 3,318 500 1,500 997
rea02-Q1 | 1,888,012 1 9 1.2
rea02-Q2 18,880 50 162 101
rea02-Q3 5,974 501 1,514 99

4.1 Experiments on R-Tree Bulk-loading

using Synthetic Datasets

The major component in R-Tree construction that idates the
overall performance is the sorting phase. We used s
implementations in existing libraries such as $TIBB® and
Thrust. In this set of experiments, we empiricatigt R-Tree
fanout to 4 and usg-coordinates of MBR centroids as keys for
sorting. The experiment results are given in Figwiere ‘CPU-
serial’ denotes CPU serial implementationCPU-parallel
denotes the CPU parallel implementation, ar@PU-primitive’
denotes the GPU implementation based on paralietitpres.
From Fig. 7 we can see that, when datasets arévetyasmall,
parallel CPU implementations outperform GPU implatagons.
One explanation is that GPU parallel processinggsasvnot fully
exploited for small datasets and the overheadsildfing parallel
library cannot be hidden. We also observe thatrtiitimes for

GPU implementations increase much slower than thbparallel
CPU implementations which might indicate betterlauitity of
the GPU implementations. In particular, when dasa$ecome
large enough that can hide library overheads, GPU
implementations are several times faster than lghr&lPU
implementations. Following this trend, we might bble to
predict that GPUs are capable of achieving bettgfopmance
when bulk loading larger datasets. However, we khba aware
that GPU memory capacities are usually limited whempared
with CPU memory capacities. Therefore large dasasgght not
be able to completely reside in GPU memory. In tbase,
however, we still can process such large datasitgudata
partition techniques which are left for future work

We have implemented and evaluated the STR R-Trdk bu
loading algorithm on multi-core CPUs and the GPUe results
are given in Fig. 8 whereSTR-CPU-Parall€l denotes the multi-
core CPU implementation andSTR-GPU denotes the GPU
implementation. From the results, our GPU impleratonh has
achieved about 4X speedup over the multi-core CPU
implementation. Based on the results shown in Fignd Fig. 8,
low-x bulk loading is faster than STR bulk loading fottbb&€PU
and GPU implementations. The STR R-Tree bulk logdas we
discussed in Section 3.1, requires multiple sotteaxh level.
Thus, it is understandable that the overall peréoroe of the STR
R-Tree bulk loading technique is not as fast aslthex bulk
loading technique that only sorts once. Howeveweashall show

in Section 4.2.1, R-tree generated by the STR Ha#ding
technique usually has better quality comparing vdtv-x bulk
loading and results in faster query processingeaufe that is
desirable.

300
250 | B CPU-serial
E CPU-parallel
200 +
’g ®m GPU-primitive
o 150
£
T 100
50
0
abs02 dia02 par02 rea02
Fig. 7 Lowx R-Tree Bulk-Loading
600 B STR-CPU-Parallel
500 + ®STR-GPU
% 400 |
E
o 300 |
£
= 200 |
100
0 L L L
abs02 dia02 par02 rea02

Fig. 8 Performance of STR R-Tree Bulk-Loading on Milti-
Core CPUs and GPUs

4.2 Spatial Query Processing Performance

using Synthetic Datasets

In this section, we conduct a set of comparisonsvauate R-
Tree based spatial window query processing perfocaaon
GPUs. We first present query performance resultsRefrees
generated from different approaches and then disthesimpact
of R-Tree quality in query processing which was addressed in
[12].
processing techniques. For the BFS-based technique,
evaluated different overflow handling approaches.

4.2.1 Comparisons on using different R-Trees

As discussed previously, the quality of R-Treed wlpact the
query performance. In this set of experiments, aeectused three
different R-Trees, including lowpacked R-Tree (low), STR R-
Tree (STR) and R-Tree generated via dynamic irmserti
(dynamic), and the results are presented in Figr@n the results
we can see that, for small datasets such as abgD&ia02, the
difference of the three R-Trees is negligible. Hogre when the
size of dataset increases, the impact of R-Treelitgquis
significant, especially for the largest dataseDfeaNe can also
observe that STR R-Tree almost always has bettaryqu
performance than R-Tree generated via dynamictiogein this
set of experiments. We note that, while STR R-Trek loading
has been implemented on the GPU, dynamic insedipR-Tree
is still difficult to parallelize. Furthermore, asoth R-Tree
construction and query processing can be acconegligin the
GPU without transferring data back and forth betweePU
memory and GPU memory, STR R-Tree is more preferdblie
to its excellent performance and the desirablaifeat for the rest
of our experiments, we will use STR R-Tree as thfadt R-Tree
construction algorithm unless otherwise explicégted.

10000

lg B Jow-x
$1000 I m=STR
8 dynamic
UJ— 100 B
E
[
= 10
1

oIS I
I I I & Y

oIS S
INANIENGENSENAENGINGINGI
FFPIFTIEITITL

Fig. 9 Query Performance on Different R-Trees

4.2.2 Comparison between DFS and BFS based

approaches

As shall show in Section 4.2.3, the BFS-based qpeogessing
technique with dynamic memory allocation based fiver
handling achieves the best performance. As suchysesdt as the
baseline to compare against the DFS-based quergegsing
implementation. Based on the results shown in Eiy.the BFS
implementation outperforms its counterpart in aluedes
significantly. As discussed previously, DFS batcheeéry suffers
from two disadvantages. First, the “count and Wrjgattern in
DFS actually requires two nearly identical kernele@utions
which nearly doubles the running time. Second, withensize of
returning results for each query increases (e.g, QB likely that
global memory accesses in “write” kernel are notlesced
because each thread writes its own results indaliglu

We also compare DFS-based and BFS-based query 280 |

180
160 |
140
120 |
E£100

EGPU-BFS
GPU-DFS

=60
40 |
20 I i
0

PP

NN NN NN NN N
TS EFFFPFFFF e

Fig. 10 Performance Comparisons among DFS- and BFS-
Based Query Processing

4.2.3 Comparisons of different overflow handling

mechanisms in BFS-based query processing

We use STR R-Tree as the spatial index in thisfsexperiments.
The experiment results of using different overfldvandling
approaches are given in Fig. 11 whe@®PU-hybrid denotes
DFS based overflow handlingGPU-memory denotes dynamic
memory overflow handling, GPU-relaunch denotes using the
re-launching mechanism, andGPU-primitivé denotes the
parallel primitive based implementation on GPUs.r Fall
experiments, the number of queries in a block dred dize of
queue are empirically set. As mentioned before, DRS-based
overflow handling mechanism fails in some scenaesgecially
when queries generate large number of elementssults. For
example, Q3 queries return approximately 1,000 li®san
average and have very bad performance when compaitbd
other techniques. In contrast, the dynamic memdiycation
approach is almost the best in all queries. Théauwrehing
method suffers from queries that have large resuien overflow
happens frequently and multiple rounds of invocetioof
overflow handling kernels are required in thoserigse which
hurt the overall performance. We also observe thatallel
primitive based implementation is not as fast as dthers,
especially when query results are small in sizegaaallel library
overheads may dominate. However, parallel primgtigased
implementation is more scalable and no expliciapsater tuning
is required which is desirable. For instance, ia kybrid query
processing strategy, the queue size for a batchedyqgn a
computing block has to be carefully chosen. ForB&S-based
query processing techniques, the number of quessigned to a
block also needs to be tuned. Furthermore, thelplapimitive
based implementation makes the design easily atpdido other
parallel environments such as multi-core CPUs, Wwhi also
desirable.

4.2.4 Comparisons on query processing performance

on multi-core CPUs and GPUs

In this section, we compare the performance ofHeatcquery
processing on the GPU with multi-core CPU impleraganhs.

The multi-core CPU implementations utilize all dable cores (8
cores in total) in the system based on Opehiiere each core is
responsible for a single query. As can be seen ff@m12, our

GPU implementations have achieved about 10X speeatup
average when compared with multi-core CPU impleatéonts.

For small queries such Q1 queries, GPU implememsatdid not
show advantages over multi-core CPU
However, as the size of query results in each quéndow
increases, GPU based
counterparts significantly.

180
160 +
140 +
@20 |
&o00 |

g80 -

u GPU-hybrid

B GPU-memory
GPU-relaunch

B GPU-primitive

VNN WQ\ ’1«& ’bd) WQ\ ’\z& Wd) '\»Q\ '\»&'\»&
NGNS bb &Q &‘DQ Q‘&Q Q&Q Q&Q @@ @‘9 @Q

Fig. 11 Query results on the GPU

NSNS RPN Q‘b‘ Q‘b‘ FE&EL
Fig. 12 Speedups of GPU-based Implementations owvigtulti-

Core CPU-based Implementations for Spatial Window Qery
Processing on Synthetic Data

4.3 Experiments using Real-world Datasets

In addition to performing evaluations on benchmaakasets, we
also conduct experiments using datasets from reddw
applications. Two real-world datasets are extraftech a point-
in-polygon test based spatial join application. dilst of the
application and the datasets are provided in oawipus work
[19]. The first dataset, termed &i, is derived from 170 million
taxi pickup location in 2009 in NYC that contains485,981
MBRs. The second dataset, calfg@dto, comes from NYC tax lot
dataset that consists 735,488 MBRs. The fanout-ofd®s in the
set of experiments is empirically set to 8.

The first experiment is to compare R-Tree bulk Ingd
performance between the CPU and GPU implementatidss
discussed earlier, both implementations adopt thR R-Tree

bulk loading algorithm. The CPU implementation algiizes all

available cores in the system (8 cores in totaBsd8l on the
results shown in Table 3, GPU implementation agseabout 4X
speedup against CPU parallel implementation whsckimilar to

our findings in Section 4.1.

For the experiments on query processing, one datashosen as

implementations indexed dataset and the other is considered ay quedows for

both datasets. The results of the four experimangslisted in

implementations outperformir the Table 4. From the results we can see that GPU mmpi¢ations
CPU

have achieved about 8X speedups over parallel
implementations, which is similar to the resultpased in
Section 4.2.

Table 3 Runtimes of R-Tree Bulk Loading on Real Datsets

Dataset| GPU (ms) CPU (ms)
Taxi 207 1,111
Pluto 70 247

Table 4 Query performance on Real Datasets

Indexed dataset Query dataset GPU (|\ns) CPU (ms)
taxi pluto 338 2,974
pluto taxi 1,191 10,538
taxi taxi 1,414 12,255
pluto pluto 322 2,736

5. CONCLUSIONS AND FUTURE WORK

In this study, we have implemented parallel desighsbulk

loading R-Trees and several parallel query proongstEchniques
on GPUs using R-Trees. Our extensive experiments bhown

that the GPU parallel query implementations can ieseh
significant speedups over multi-core CPU based emphtations
which makes the GPU-based R-Tree construction ameryq
processing techniques attractive for many real dvagdplications.
Our experiments also have shown that R-Tree geslitan have
significant impacts on query performance on GPUsldig high

quality R-Tree on the GPU is crucial to achievenhigrformance
in query processing.

An interesting observation in [7] pointed out trsgace-driven
indexes (e.g., quadtree variants) worked betten thata-driven
indexes (e.g., R-Tree variants) in a parallel cotimgucontext
(e.g., the Thinking Machine CM-5 used in the experits).
However, it is unclear to what degree the obsewmatitill holds
on modern GPUs which have a quite different pdraldedware
architecture. For our future work, in addition tarther
investigations on GPU based bulk loading that hdeen
discussed inline, we also plan to compare R-Treedbéndexing
approaches with quadtree based ones on GPUs teffiekplore
their respective advantages and disadvantageshénotsearch
direction we plan to follow is to investigate onwhto reorder or
index query windows for more efficient parallel querocessing
on GPUs. Finally, we plan to evaluate other R-tratk loading
heuristics on the GPU, such as adopting dynamigrproming
based optimization proposed in [2].

6. ACKNOWLEDGEMENT

This work is supported in part by NSF Grant [1S-28P3 and by
the Doctoral Student Research Grant program fromN€U
Graduate Center.

7. REFERENCES

[1] A Benchmark for Multidimensional Index Structst
http://www.mathematik.uni-marburg.de/~rstar/benchitha

[2] Achakeev, D. et al. 2012. Sort-based paradiatiing of R-
trees.Proceedings of the 1st ACM SIGSPATIAL

(3]

[4]

(5]

(6]

[7]

(8]

9]

[10]

International Workshop on Analytics for Big Geosplat
Data - BigSpatial '1262-70.

Alborzi, H. and Samet, H. 2007. Execution tiarealysis of
a top-down R-tree construction algorithimformation
Processing Lettersl01, 1 (Jan. 2007), 6-12.

Gaede, V. and Ginther, O. 1998. Multidimenslatxess
methodsACM Computing Survey80, 2 (Jun. 1998), 170—
231.

Garcia R, Y.J. et al. 1998. A greedy algoritfonbulk
loading r-treesProceedings of the sixth ACM international
symposium on Advances in geographic informatiotesys
- GIS '98 163-164.

Guttman, A. 1984. R-Trees: A Dynamic Index $ture for
Spatial Searchind?roceedings of the 1984 ACM SIGMOD
international conference on Management of data -
SIGMOD '84 47.

Hoel, E.G. and Samet, H. 1994. Performance atbb
Parallel Spatial OperationgLDB '94 Proceedings of the
20th International Conference on Very Large Dats@&a
(Sep. 1994), 156-167.

Kamel, I. and Faloutsos, C. 1993. On packingrdes.
Proceedings of the second international conferance
Information and knowledge management - CIKM, ‘30—
499.

Kamel, |. and Faloutsos, C. 1992. Parallel &4
Proceedings of the 1992 ACM SIGMOD international
conference on Management of data - SIGMOD, 15—
204.

Kim, J. et al. 2013. Parallel multi-dimensibnange query
processing with R-trees on GPldurnal of Parallel and
Distributed Computing73, 8 (Apr. 2013), 1195-1207.

! http://en.wikipedia.org/wiki/Parallel_Random_Acces&chine
2 http://www.geforce.com/hardware/desktop-gpus/gefayx-titan/specifications
3 https://developer.nvidia.com/category/zone/cudaezo
4 http://www.sgi.com/tech/stl/

° http://www.threadingbuildingblocks.org/

6 http://openmp.org/

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

Leutenegger, S.T. et al. 1997. STR: a simpk efficient
algorithm for R-tree packind?roceedings 13th
International Conference on Data Engineerifi®97), 497—
506.

Luo, L. et al. 2012. Parallel implementatidiiFRetrees on
the GPU17th Asia and South Pacific Design Automation
ConferencdJan. 2012), 353-358.

Open source R-Tree Implmenenation:
http://superliminal.com/sources/sources.htm
Papadopoulos, A. and Manolopoulos, Y. 2003aka
bulk-loading of spatial dat®arallel Computing29, 10
(Oct. 2003), 1419-1444.

Samet, H. 2005-oundations of Multidimensional and
Metric Data StructuresMorgan Kaufmann Publishers Inc.
Schnitzer, B. and Leutenegger, S.T. 1998. Bfaslient R-
trees: a new parallel R-tree architectifeceedings.
Eleventh International Conference on Scientific and
Statistical Database Managemégtl. 1998), 68—77.
Wang, B. et al. Parallel R-tree search algonion DSVM.
Proceedings. 6th International Conference on Adeanc
Systems for Advanced Applicatidt®7—-244.

Zhang, J. et al. 2011. Parallel quadtree apdinlarge-scale
raster geospatial data on GPGPBmceedings of the 19th
ACM SIGSPATIAL International Conference on Advances
in Geographic Information Systems - GIS ,'457.

Zhang, J. and You, S. 2012. Speeding up lamgde point-
in-polygon test based spatial join on GPBrceedings of
the 1st ACM SIGSPATIAL International Workshop on
Analytics for Big Geospatial Data - BigSpatial ;123—32.

