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ABSTRACT  
R-Trees are popular spatial indexing techniques that have been 
widely adopted in many geospatial applications. As commodity 
GPUs (Graphics Processing Units) are increasingly becoming 
available on personal workstations and cluster computers, there 
are considerable research interests in applying the massive data 
parallel GPGPU (General Purpose computing on GPUs) 
technologies to index and query large-scale geospatial data on 
GPUs using R-Trees. In this study, we aim at evaluating the 
potentials of accelerating both R-Tree bulk loading and spatial 
window query processing on GPUs using R-Trees. In addition to 
designing an efficient data layout schema for R-Trees on GPUs, 
we have implemented several parallel spatial window query 
processing techniques on GPUs using both dynamically generated 
R-Trees constructed on CPUs and bulk loaded R-Trees 
constructed on GPUs. Extensive experiments using both synthetic 
and real-world datasets have shown that our GPU based parallel 
query processing techniques using R-Trees can achieve about 10X 
speedups on average over 8-core CPU parallel implementations 
by effectively utilizing large numbers of processors and high 
memory bandwidth on GPUs.   

Categories and Subject Descriptors 
H.2.8 [Database Management]: Database Application – spatial 
databases and GIS; I.3.1 [Computer Graphics]: Hardware 
Architecture – Graphics processors 

General Terms 
Algorithms, Performance 

Keywords 
Spatial Indexing, R-Tree, GPU 

1. INTRODUCTION 
R-Trees [4, 6, 15] are well known spatial indexing techniques and 
have been widely adopted in many applications for indexing 2-D 
or higher dimensional spatial data. Many techniques have been 
proposed over the past three decades to improve efficiency and 
performance of R-Tree construction and R-Tree based spatial 
query processing. As R-Tree construction typically incur super-
linear complexity, it is desirable to parallelize R-Tree 
constructions on parallel platforms, especially when processing 
large-scale geospatial data. While processing a single spatial 
query on an R-Tree is typically sub-linear, there are many 

applications that involve batched queries on R-Trees where 
parallelization is obviously beneficial. Quite some parallel R-Tree 
construction and query processing algorithms have been proposed 
for different parallel architectures [9, 10, 12, 14, 16, 17]. Early 
research mostly focused on shared-nothing computer clusters that 
are made of identical computing nodes equipped with 
uniprocessors [9, 14, 16, 17].  

Modern GPU architectures closely resemble supercomputers as 
both implement the Primary Parallel Random Access Machine 
(PRAM1) characteristic of utilizing a very large number of threads 
with uniform memory latency. Compared to modern CPUs, GPU 
devices usually have larger numbers of processing cores, higher 
memory bandwidths with more affordable prices. For example, 
the Nvidia GTX Titan GPUs2 have nearly 3,000 processing cores, 
300 GB/s bandwidth, 6 GB memory and can be purchased from 
the market around $1,000. As many commodity desktop 
computers have already been equipped with GPU devices that are 
capable of general computing, it is desirable to use GPUs to 
accelerate geospatial computing in general and R-Tree based 
spatial data management in particular. Furthermore, GPUs have 
been extensively used to accelerate many computing intensive 
applications, such as nearest neighbor queries in databases and 
ray-tracing in computer graphics. Efficient indexing structures 
such as R-Trees are promising in speeding up such computing on 
GPUs that are practically useful. As it is still quite expensive to 
transfer data between CPUs and GPUs through PCI-E buses 
(limited to 8-32 GB/s on PCI-E devices with 16 lanes), being able 
to directly construct and query R-Trees on GPUs to avoid or 
reduce data transfer overheads is beneficial, which motivates us to 
implement both R-Tree construction and query processing on 
GPUs. 

In this study, we aim at exploring different design strategies on R-
Tree construction and query processing on GPUs. We have 
evaluated the performance of several designs and implementations 
using both synthetic and real-world datasets. First, in addition to 
the re-launching overflow handling strategy (details in Section 
3.2.2) for batched spatial queries implemented in [12], we have 
also designed and implemented several additional overflow 
handling techniques. Second, while a GPU based R-Tree bulk 
loading technique called low-x packed R-Tree has been 
implemented in [12], the bulk loaded R-Tree was not used for 
query processing in the study. This left the performance of spatial 
query processing on bulk loaded R-Trees, which typically are 
faster in construction but have lower qualities, largely unknown. 
In this study, we have considered both low-x packed R-Tree based 
bulk loading [12] and Sort-Tile-Recursive (STR) based R-Tree 
bulk loading [11]. While some of our designs and 
implementations have demonstrated significant speedups over 
CPU implementations on R-Tree based query processing (as 
reported in Section 4), we are more interested in understanding 
the relative advantages and disadvantages of GPU-based R-Tree 
construction and query processing over CPU-based ones as well 
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as the impacts of R-Tree quality to provide insights and guidelines 
for more systematic and more efficient implementations. For 
testing purposes, we have run our implementations on a spatial 
query benchmark including synthetic and realistic datasets. We 
report our experiment results and provide discussions on our 
findings. Our technical contributions in this paper can be 
summarized as follows: 

1) We have provided an improved R-Tree node layout on GPUs 
which has lower memory footprint.  

2) We have implemented alternative R-Tree bulk loading and 
spatial window query processing strategies on GPUs using 
R-Tree which are not covered by previous works [10, 12].   

3) We have performed extensive experiments using different R-
Trees, including bulk loaded ones and dynamic inserted ones, 
and evaluated different R-Tree based spatial window query 
processing designs on GPUs using both synthetic datasets 
and real datasets. To the best of our knowledge, this is the 
most comprehensive set of evaluations of R-Tree bulk 
loading and spatial query processing on GPUs.  

The rest of this paper is organized as follows. Section 2 introduces 
background and related work. Section 3 provides our R-Tree 
designs and implementations on GPUs, including bulk loading 
and batched spatial query processing techniques. Section 4 
presents experiments and results. Finally Section 5 is the 
conclusion and future work.   

2. BACKGROUND AND RELATED WORK 
R-Tree based indexing techniques have been extensively studied 
in spatial databases and quite a few variants have been proposed 
over the past three decades [4, 6, 15]. Although most existing R-
Tree implementations are serial on a single CPU (uniprocessor), 
there are several previous studies on parallel R-Tree construction 
and query processing based on different parallel hardware 
architectures although those based on shared-nothing clusters 
clearly dominate [7, 9, 14, 16, 17]. In this study, we focus on R-
Tree based spatial indexing using GPGPU computing 
technologies that have quite a different parallel computing model. 
We also argue that our work is complementary to cluster 
computing based distributed and parallel spatial query processing 
provided that computing nodes are equipped with GPU devices 
which is becoming increasingly popular in both institutional grid 
computing resources and commercial cloud computing resources.  

The most related work to ours, which is reported in [12], has 
implemented a Breadth-First-Search (BFS) traversal based query 
processing algorithm using R-Trees on modern GPUs. In addition 
to the differences that have been discussed in the introduction 
section, our designs and implementations are also different from 
the following aspects. First, as discussed in details in Section 
3.1.1, while both implementations use linear array structures to 
store R-Tree nodes in a BFS order and has a node field to indicate 
the array position of the first child node (in a way similar to the 
design of our GPU-based Binned Min-Max Quadtree BMMQ-
Tree [18]), our node layout has a separate field to store the 
number of children of an R-Tree node. By using at most one extra 
byte (which can represent 256 children) in most cases, we are free 
of having to store non-exist child nodes which can save up to 50% 
of required memory for a whole R-Tree. Second, while the work 
in [12] proposed and evaluated only one overflow handling 
mechanism (see details in Section 3.2.2), we introduce two new 
overflow handling mechanisms as well as a pure parallel primitive 
based BFS query implementation which does not require overflow 
handling. We have compared query performance based on 
different parallel spatial query processing strategies. Third, while 

[12] only performed experiments on dynamic inserted R-Trees, 
we have evaluated query processing on bulk loaded R-Trees using 
different R-Tree bulk loading strategies.  

A GPU-based R-Tree query processing algorithm termed 
Massively Parallel Three-phase Scanning (MPTS) is proposed in 
[10]. The key idea of MPTS is to minimize irregularly memory 
accesses during R-Tree traversals when processing spatial queries. 
During the traversals, left- and right- most nodes are identified 
and a parallel scan is performed from the left-most node to the 
right-most node to search for intersected MBRs. However, MPTS 
is mostly designed for optimizing single spatial window query 
processing instead of processing multiple queries in parallel. 
Rather than further improving query processing times for single 
queries, which are typically already fast enough even for large 
datasets with reasonable degrees of selectivity (in the order of a 
fraction of a second), we focus on parallel query processing for a 
large number of independent queries by fully utilizing massively 
data parallel computing power on GPUs, which we believe is 
more cost-effective for practical applications.      

While the original R-Tree construction algorithms use dynamic 
insertions, several bulk loading approaches have been proposed 
[3, 5, 8, 11, 14]. Bulk loading approaches usually adopt a packing 
technique to construct R-Trees that maximizes space utilization 
and reduces the height of the resulting tree as much as possible. 
Packed R-Tree guarantees better space utilization and query 
responses based on packed R-Trees have been reported to be 
comparable with R-Trees built from dynamic insertions [5, 8]. 
Bulk loading methods can be classified into two categories, i.e., 
top-down and bottom-up. Alborzi and Samet [3] discussed the 
difference between top-down and bottom-up methods. They 
argued that the top-down method could potentially process queries 
faster but non-leaf nodes might be under-packed. On the other 
hand, R-Trees constructed by bottom-up methods may have fewer 
nodes than using top-down methods. Sort-Tile-Recursive (STR) is 
a simple yet efficient R-Tree packing method proposed in [11]. In 
the STR approach, R-Tree is constructed by recursively sorting 
and packing in a bottom-up manner. As both sorting and packing 
can be easily mapped to parallel primitives (i.e., sort and reduce, 
respectively), it is attractive to implement R-Tree bulk loading 
algorithms on GPUs directly. Based on the results discussed in 
[11], low-x packing is not competitive with STR based packing. 
The results have motivated us to implement STR R-Tree bulk 
loading on GPUs and compare it with the low-x R-Tree bulk 
loading that has been implemented in [12].   

3. METHODOLOGY 
3.1 Parallel R-Tree Bulk-loading 
3.1.1 Node Layout of Linearized R-Tree 
We use simple linear array based data structures to represent an 
R-Tree. Simple linear data structures can be easily streamed 
between CPU main memory and GPU device memory without 
serialization and are also cache friendly on both CPUs and GPUs. 
In our design, each non-leaf node is represented as a tuple {MBR, 
pos, len}, where MBR is the minimum bounding rectangle of the 
corresponding node, pos and len are the first child position and the 
number of children, respectively, as illustrated in Fig. 1. In 
contrast, previous work [12] stored entries for all children in non-
leaf nodes, which will use more memory than our method. The 
tree nodes are serialized into an array based on the Breadth-First-
Search (BFS) ordering. The decision to record only the first child 
node position instead of recording the positions of all child nodes 
in our approach is to reduce memory footprint. Since sibling 



nodes are stored sequentially, their positions can be easily 
calculated by adding the offsets back to the first child node 
position. In addition to memory efficiency, the feature is desirable 
on GPUs as it facilitates parallelization by using thread identifiers 
as the offsets. In this study, we have used R-Trees constructed 
from two approaches: bulk loading on GPUs and dynamic 
insertions on CPUs. The algorithm to fill the pos and len fields 
using bulk loading on GPUs are discussed in the next section. 
When an R-Tree is generated on CPUs, the two fields can be 
filled easily by sequentially looping through R-Tree nodes 
through pointer chasing.  

 

 
3.1.2 Parallel R-Tree Bulk Loading on GPUs 
In this study, we implement both low-x packing (used in [12]) and 
STR packing [11] for bulk loading R-Trees. Instead of using 
native GPU programming languages (such as Nvidia CUDA3) 
directly, our implementations are built on top of several parallel 
primitives provided by the Thrust library that comes with CUDA 
SDK. The decision has significantly reduced coding complexity 
and improved portability.  

For the low-x packing approach, in the sorting stage, the original 
data (MBRs) is sorted by applying a linear ordering schema (low-
x in this case) using a sort_by_key parallel primitive. The 
algorithm is shown in Fig. 2 where the R-Tree is constructed by 
packing MBRs bottom-up. Every d items are packed into one 
node at the upper level until the root is created. We first calculate 
the number of levels (��������) and the number of nodes at each 
level for memory allocation and addressing during the packing 
iteration. We then construct the R-Tree level by level bottom-up 
using a reduce_by_key primitive. Step 1 sorts the original dataset 
using any 1-D ordering (low-x in this case). From steps 2 to 6, R-
Tree is iteratively packed from lower levels. In step 4 and 6, same 
keys need to be generated every d items for parallel reduction 
purpose. This can be done by combining transform_iterator and 
counting_iterator iterators provided by the Thrust parallel library. 
The MBRs, first child positions and numbers of children are 
evaluated from the data items at the lower levels as follows. For 
the d items with a same key, the MBR for the parent node is the 
union of MBRs of the children nodes. For each R-Tree node, the 
first child position (pos) is computed as the minimum sequential 
index of lower level nodes (by using a counting_iterator) and the 
length (len) is calculated as the sum of 1s (by using a 
const_iterator initially set to 1) for each child node. While we 
have skipped the details of the auxiliary iterators (which are 
nonessential to understanding the implementation of the 
construction process) for the interests of space, we would like to 

note that reduce_by_key and min/sum based scans are well 
supported by parallel libraries (e.g. Thrust).  

We also implement the Sort-Tile-Recursive (STR) R-Tree bulk 
loading algorithm on GPUs using parallel primitives as follows. 
First, MBRs are sorted along one direction, i.e., using x 
coordinates from lower left corners, which is implemented by 
using sort_by_key. Then the space is divided into slices according 
to the predefined fanout d, and each slice is sorted along the other 
direction, such as y-coordinates. Finally every d MBRs in a slice 
are packed as parent nodes which will be used as the input for the 
next iteration. This process is iteratively executed until the root of 
the tree is constructed. Fig. 3 outlines the STR R-Tree 
construction algorithm. Steps 2 to 4 check whether the number of 
MBRs is smaller than the fanout d. If this is the case, the MBRs 
will be packed as root and the iteration is terminated. Otherwise, 
the MBRs are first sorted using low-x coordinates (Step 6), and N 

MBRs are divided into �� 	⁄  slices where each slice is sorted 
according to low y-coordinates (Step 7). After sorting on each 
slice, parent nodes are generated via packing every d MBRs (Step 
8). Finally, � 	⁄  nodes are used as input for the next iteration 
(Step 9). The first sort can be easily implemented by using 
sort_by_key where x-coordinates are used as the key. To 
implement the second sort where each slice is sorted individually, 
we use an auxiliary array to identify items that belong to the same 
slice. This is achieved by assigning the same unique identifier for 
all items belong to the same slice, i.e., a sequence identifier is 
assigned for each slice and stored in the auxiliary array. With the 
help of the auxiliary array, Step 7 can be accomplished by 
invoking sort_by_key twice, where the first sort is on y-
coordinates and the second sort uses the unique identifiers in the 
auxiliary array. Step 8 is the same as the packing phase introduced 
previously (steps 4 and 6 in Fig. 2). The difference between the 
two packing algorithms is that the low-x packing algorithm only 
sorts once while the STR packing algorithm requires multiple 
sorts at each level. 

 

 

 

 

 

 

 

 

 

 

 
 

 

Input : fanout d; dataset D 
Output : packed R-Tree  
1. while (true)  
2.   if (�	 ≤ 		) 
3.     root ←pack � MBRs 
4.     break; 
5.   else 
6.     sort_by_key  on x-coordinates 
7.     sort_by_key  on y-coordinates for each slice 
8.     reduce_by_key packed every d MBRs 
9.     � ← � 	⁄      

(MBR, pos, len) 

R1(MBR1,3,3) R2(MBR2,6,2) R0(MBR0,1,2) 

R3(-,8,3) R4(-,11,2) R6(-,15,2) R7(-,17,3) R5(-,13,2) 

0 1 2 

3 4 5 6 7 

Node layout 

R1 R2 

R3 R5 R4 R6 R7 

R8 R10 R9 R11 R12 R13 R14 R15 R16 R17 R19 R18 

Fig. 1 Illustration of Linear R-Tree Node layout 

Fig. 2 Low-x R-Tree Bulk Loading on GPUs  

Input : fanout d; dataset D 
Output : packed R-Tree  
1. sort D using 1-D ordering (e.g. low-x) 
2. for  level ← �������� decrease to 1 
3.   if  (level is last level) 
4.     reduce_by_key from original data D 
5.   else  
6.     reduce_by_key from lower level  

Fig. 3 STR R-Tree Bulk Loading on GPUs  



3.2 GPU based R-Tree batched query 
Instead of accelerating a single query, our goal is to support 
efficient batched query processing on the GPU in parallel. To 
leverage massively parallel processing power of GPUs, we need 
to balance workload among all parallel processing units while 
minimizing expensive global memory operations on GPUs. In this 
section we will present different approaches of utilizing GPUs to 
speed up batched spatial window query processing.   

3.2.1 Depth-First-Search based Method 
In this approach, each thread processes a query in a Depth-First-
Search (DFS) manner and thus a stack is required to track visited 
nodes for each query. A naïve implementation can be maintaining 
the stack on GPU global memory and each thread does its own 
work. Note that the stack is frequently read and write but the 
global memory accesses are not coalesced in the naive 
implementation. To improve the performance, we utilize per-
block shared memory for the stack structure instead. While it is 
well known that GPU shared memory is usually limited for many 
applications, we show that this is not a disabling factor for DFS 
based R-Tree query processing although it does affect the 
scalability of the approach. For an R-Tree with a depth of h, 
which is typically in the order of a few tens, a stack of size larger 
than h is sufficient for DFS-based queries. As we assign a thread 
to a query in a batch, the total required shared memory M is in the 
order of h*t, where t is the number of threads in a computing 
block (or the number of queries in a batch).  Even for t as large as 
256, M is still significantly less than the typical 16 KB or 48 KB 
limit. To keep track of visited information in DFS traversals, the 
data items in the stack are organized using two fields, index and 
visit. The index field is the position to the R-Tree node array that 
provides access to the corresponding R-Tree node. The visit field 
is used for recording the number of visited children under the 
current R-Tree node.  

The DFS-based query is divided into two phases which follows 
the “count and write” pattern. Two kernels are launched during 
the query process. The first one, termed as “count”, is to count the 
numbers of hits (leaf R-Tree nodes whose MBRs intersect with 
query windows) for all individual queries in order to output query 
results in parallel. Fig. 3 shows the implementation of the “count” 
phase. In addition to the stack pool structure in shared memory 
discussed before, an array Pos is allocated for storing counting 
results. After the counting phase completes, a parallel prefix scan 

is performed on the Pos array to compute the output positions for 
the second phase which actually outputs the query results in 
parallel based on the computed positions. Since the length of the 
output array can be derived by the prefix scan results before 
memory allocation, no memory space is wasted in the DFS query 
approach which is a desirable feature. The implementation of the 
“write” phase is almost identical to the “count” phase with some 
modifications in Steps 16 and 19 in Fig. 4; i.e., instead of simply 
counting the number of hits, the query results are output to the 
allocated array. 

Despite that the DFS-based query processing technique has a low 
shared memory footprint on GPUs, the nearly duplicated 
count/write phases may hurt the performance of the DFS based 
query processing implementation. The counting phase is 
essentially the overhead for thread coordination in parallel 
computing. Another disadvantage of the DFS-based query 
processing technique is that, workloads among the threads in a 
computing block may be imbalanced as threads work 
independently. As shown in Section 4, it is not surprising that the 
DFS-based technique has poor performance when compared to 
alternatives to be presented next.  

3.2.2 Breadth-First-Search based Method 
As an improvement to the DFS-based spatial window query 
processing technique, the BFS-based technique is developed to 
balance the workload within a GPU computing block. A queue is 
maintained for all the threads inside a computing block to process 
all the batched queries assigned to a computing block. Each 
element of the queue is represented in the form of { index, qid} 
where index is the position to the R-Tree node array so that the 
corresponding R-Tree node can be retrieved (the same as in DFS 
based one). The qid field represents the identifier of the query that 
is being processed. In the BFS-based technique, R-Tree nodes 
whose MBRs intersect with any of the query windows are 
expanded in parallel and stored in the queue level by level.  

Unlike the DFS-based query processing where the sizes of outputs 
are computed in a separate phase for each query, in the BFS-based 
query processing, a computing block has its own global memory 
space for writing out query results which are pre-allocated. In our 
implementation, the size is set to the same as the queue capacity 
in shared memory so that computing blocks that successfully 
complete their BFS-based queries can easily copy the queue, 
which represent the query results, to global memory by 
synchronizing all the threads assigned to the computing block. 
Since the memory accesses are coalesced, the cost of copying the 
query results to global memory is minimized. However, as the 
queries may vary in window sizes and large query windows may 
intersect with a large number of R-Tree nodes, during level-wise 
query expansions, there are chances that the pre-allocated memory 
space to a computing block may overflow. As such, overflow 
handling must be used to correctly report query results in 
overflowed blocks. The essential idea of overflow handling is to 
complete query processing even when overflow happens. We will 
introduce three different strategies in the following subsections. 

3.2.2.1 Kernel re-launching  
In the previous work presented in [12], the authors suggested 
using additional resolving kernels to complete queries in overflow 
blocks. While an overflow happens during the process, a per-
block overflow tag is set and all elements of the queue at the level 
before the overflow happens are copied to GPU global memory. 
The resolving kernel is then launched to continue BFS-based 
queries on the saved queues in GPU global memory. In order to 

1. //DFS count kernel 
2. __shared__ STACK_POOL[] 
3. i = get_thread_index(); 
4. STACK[] = &STACK_POOL[i*STACK_SZ]; 
5. Push(STACK, {0, 0}); //push root to stack 
6. Hit = 0 
7. while (Size(STACK)>0) 
8.   {index, visit} = Pop(STACK) 
9.   if  (R[index].len == visit)  
10.     continue; //all children are visited 
11.   next = R[index].pos + visit; 
12.   visit++; 
13.   Push(STACK, {index, visit}); 
14.   if  (Intersect(MBR[i], R[next].MBR)) 
15.     if  (Leaf(R[next])) 
16.       Hit++;  
17.     else 
18.       Push(STACK, {next, 0}); 
19. Pos[i+block_offset] = Hit; 

Fig. 4 Implementation of the Counting Phase of the DFS based 
Query Processing on GPUs 



complete the queries, multiple blocks are assigned to the batched 
queries that are originally dedicated to one block. During the 
execution of resolving kernel, overflow may happen again. In 
such a case, new kernels are repetitively launched until all queries 
have been successfully processed. This process of addressing 
overflow cases is termed as kernel re-launching. A major 
drawback of this approach is that additional kernel invocation 
overhead is imposed when iteratively launching the kernel. The 
imposed overhead will hurt the overall performance especially 
when overflow cases are frequent. Furthermore, [12] used shared 
memory for the per-block queue and the size of shared memory 
queue is thus another limiting factor.  

3.2.2.2 DFS based overflow handling 
To minimize the number of kernel launches, we propose a new 
approach to addressing the overflow issue by using DFS batched 
queries on the saved queues for BFS batched queries. As such, we 
term the approach as BFS-DFS Hybrid or simply Hybrid for short. 
In this technique, each data element is assigned to a thread and the 
DFS-based query processing technique is used to continue 
searching on the saved queue. Because the stack in DFS will not 
overflow as we discussed previously, only two kernels launches 
are required. An example is given in Fig. 5 where two queries are 
showing as red (query 1) and green (query 2), respectively. The 
queue capacity in this example is 3. While an overflow happens in 
the BFS stage, elements (B1, C1, D2) in the queue are saved to 
GPU global memory. The DFS stage subsequently takes the saved 
queue as its input. For each element in the queue, a DFS query is 
performed to complete the query. However, in cases when DFS-
based queries are highly unbalanced, the overall performance will 
be dominated by the overflow handling module. Thus, this 
approach is only useful when overflow cases are infrequent.  

 
Fig. 5 Running Example for BFS based Query Processing with 

Overflows – the Hybrid Approach 

 

 

3.2.2.3 Dynamic Memory Allocation 
Both methods for handling overflow cases that are introduced 
previously require invoking new kernels. In other words, when an 
overflow happens, the query kernel is terminated with saved 
overflowed queue written into GPU global memory, and, 

overflow handling kernels are launched to continue process 
overflow blocks. Here we propose a new method that is capable of 
performing query within a single kernel execution. Instead of 
using additional resolving kernels, this new method handles 
overflow cases without terminating a query kernel. In order to 
achieve this goal, additional global memory space is allocated to 
hold overflow elements. These elements will be stored in GPU 
global memory when an overflow happens and dynamically 
loaded into GPU shared memory when being processed. Note that 
the query processing kernel is not interrupted and no additional 
resolving kernels are needed. To efficiently manage the memory 
during kernel execution, a global memory pool is pre-allocated 
before kernel launches. The pool is organized as a group of 
memory chunks. The size of the chunks is set to the same as the 
queue capacity so that each chunk can be directly loaded into the 
queue in shared memory for subsequent BFS query processing. 
When a query queue is overflowed, memory chunks are 
dynamically allocated at runtime for the overflowed block with 
the help of GPU atomic operations. Overflowed elements are 
written into the newly allocated chunks so that the current GPU 
computing block can continue BFS query using the current queue. 
Once a chunk is processed, another chunk is loaded into the 
shared memory queue iteratively. Although current GPUs support 
dynamic allocation during the kernel execution, we still choose to 
maintain our own memory pool because our light-weighted 
memory management is more efficient for this particular 
application.  

3.2.3 BFS based query using parallel primitives 
The methods discussed in the previous subsections group a batch 
of queries and assign them to a computing block. Therefore, the 
workload is limited within a computing block. Instead of 
maintaining a queue for each computing block, a global queue for 
all queries can be maintained to maximize workload balancing in 
order to achieve maximum parallelism. In this new approach, an 
R-Tree is traversed level by level for all queries. Only intersected 
R-Tree nodes are expanded for the next iteration. In other words, 
the global queue contains children of intersected R-Tree nodes in 
a previous iteration. Since R-Trees are balanced search trees (all 
leaves are at the same height), intersected nodes at the last 
iteration of the queue can be output as the query results. As this 
method only maintains a single global queue, there is no need of 
overflow handling. Instead of using native languages such as 
CUDA, we have developed a parallel primitive based 
implementation that not only works on GPUs but also can be 
easily ported to other parallel platforms such as multi-core CPUs.  

Fig 6 outlines the parallel primitives based technique. First, a 
global queue is maintained and it is initialized using the root of 
the R-Tree being queried for each query. Second, during each 
iteration, all queries are checked for intersection with its 
corresponding R-Tree node in parallel using a transform primitive 
which applies the intersection test operator for all the queries. 
Third, during each iteration, non-intersected pairs are removed 
from the queue and the queue is compacted. Fourth, intersected 
nodes then need to be expanded for the next iteration. This step is 
a combination of several parallel primitives such as scan, scatter 
and transform. The iteration terminates when the queue is empty 
or the query processing procedure reaches the last level of the R-
Tree that is being queried. Finally query results are copied from 
the queue to an output array.   

We note that there are two weak points for this new method. 
Firstly, the queue is maintained on global memory which cannot 
fully take advantage of fast shared memory on GPUs. At each 
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Fig. 6 Parallel primitive based BFS batch query 
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level, the expansion of the current nodes incurs expensive global 
memory accesses, which may hurt performance. Secondly, the 
parallel primitives-based implementation imposes additional 
overhead by primitive libraries when compared with using native 
parallel programming languages such as CUDA. 

Table 1 Datasets Sizes 

Dataset Size 

abs02 1,000,000 

dia02 1,000,000 

par02 1,048,576 

rea02 1,888,012 

 

4. EXPERIMENTS AND EVALUATION 
All experiments are performed on a workstation with two Intel 
E5405 processors at 2.0 GHz (8 cores in total) and one Nvidia 
Quadro 6000 GPU with CUDA 5.0 installed. For all experiments, 
-O3 flag is used for optimization. To evaluate the performance of 
the proposed techniques, we use benchmark datasets from R-Tree 
benchmark [1]. The specifications of the datasets are listed in 
Table 1 and Table 2. We use [13] as the baseline for CPU-based 
dynamic R-Tree implementation. 

Table 2 Specs of Queries 

 Query 
size 

Min # of 
answers 

Max # of 
answers 

Avg # of 
answers 

abs02-Q1 1,000,000 1 1 1 

abs02-Q2 10,000 50 150 99.8 

abs02-Q3 3,164 500 1,500 992 

dia02-Q1 1,000,000 1 4 1.26 

dia02-Q2 10,000 50 150 99.8 

dia02-Q3 3,164 500 1,500 992 

par02-Q1 1,048,576 1 10 2.11 

par02-Q2 10,485 50 150 99.8 

par02-Q3 3,318 500 1,500 992 

rea02-Q1 1,888,012 1 9 1.2 

rea02-Q2 18,880 50 162 101 

rea02-Q3 5,974 501 1,514 999 

 

4.1 Experiments on R-Tree Bulk-loading 
using Synthetic Datasets 
The major component in R-Tree construction that dominates the 
overall performance is the sorting phase. We used sort 
implementations in existing libraries such as STL4, TBB5 and 
Thrust. In this set of experiments, we empirically set R-Tree 
fanout to 4 and use x-coordinates of MBR centroids as keys for 
sorting. The experiment results are given in Fig. 7, where “CPU-
serial” denotes CPU serial implementation, “CPU-parallel” 
denotes the CPU parallel implementation, and, “GPU-primitive” 
denotes the GPU implementation based on parallel primitives. 
From Fig. 7 we can see that, when datasets are relatively small, 
parallel CPU implementations outperform GPU implementations. 
One explanation is that GPU parallel processing power is not fully 
exploited for small datasets and the overheads of utilizing parallel 
library cannot be hidden. We also observe that the runtimes for 

GPU implementations increase much slower than those of parallel 
CPU implementations which might indicate better scalability of 
the GPU implementations. In particular, when datasets become 
large enough that can hide library overheads, GPU 
implementations are several times faster than parallel CPU 
implementations. Following this trend, we might be able to 
predict that GPUs are capable of achieving better performance 
when bulk loading larger datasets. However, we should be aware 
that GPU memory capacities are usually limited when compared 
with CPU memory capacities. Therefore large datasets might not 
be able to completely reside in GPU memory. In that case, 
however, we still can process such large dataset using data 
partition techniques which are left for future work.  

We have implemented and evaluated the STR R-Tree bulk 
loading algorithm on multi-core CPUs and the GPUs. The results 
are given in Fig. 8 where “STR-CPU-Parallel” denotes the multi-
core CPU implementation and “STR-GPU” denotes the GPU 
implementation. From the results, our GPU implementation has 
achieved about 4X speedup over the multi-core CPU 
implementation. Based on the results shown in Fig. 7 and Fig. 8, 
low-x bulk loading is faster than STR bulk loading for both CPU 
and GPU implementations. The STR R-Tree bulk loading, as we 
discussed in Section 3.1, requires multiple sorts at each level. 
Thus, it is understandable that the overall performance of the STR 
R-Tree bulk loading technique is not as fast as the low-x bulk 
loading technique that only sorts once. However, as we shall show 
in Section 4.2.1, R-tree generated by the STR bulk loading 
technique usually has better quality comparing with low-x bulk 
loading and results in faster query processing, a feature that is 
desirable.  

  

Fig. 7 Low-x R-Tree Bulk-Loading 
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4.2 Spatial Query Processing Performance 
using Synthetic Datasets 
In this section, we conduct a set of comparisons to evaluate R-
Tree based spatial window query processing performance on 
GPUs. We first present query performance results on R-Trees 
generated from different approaches and then discuss the impact 
of R-Tree quality in query processing which was not addressed in 
[12]. We also compare DFS-based and BFS-based query 
processing techniques. For the BFS-based technique, we 
evaluated different overflow handling approaches.  

4.2.1 Comparisons on using different R-Trees 
As discussed previously, the quality of R-Trees will impact the 
query performance. In this set of experiments, we have used three 
different R-Trees, including low-x packed R-Tree (low-x), STR R-
Tree (STR) and R-Tree generated via dynamic insertion 
(dynamic), and the results are presented in Fig. 9. From the results 
we can see that, for small datasets such as abs02 and dia02, the 
difference of the three R-Trees is negligible. However, when the 
size of dataset increases, the impact of R-Tree quality is 
significant, especially for the largest dataset rea02. We can also 
observe that STR R-Tree almost always has better query 
performance than R-Tree generated via dynamic insertion in this 
set of experiments. We note that, while STR R-Tree bulk loading 
has been implemented on the GPU, dynamic insertion on R-Tree 
is still difficult to parallelize.  Furthermore, as both R-Tree 
construction and query processing can be accomplished on the 
GPU without transferring data back and forth between CPU 
memory and GPU memory, STR R-Tree is more preferable. Due 
to its excellent performance and the desirable features, for the rest 
of our experiments, we will use STR R-Tree as the default R-Tree 
construction algorithm unless otherwise explicitly stated.  

 
Fig. 9 Query Performance on Different R-Trees  

4.2.2 Comparison between DFS and BFS based 
approaches 
As shall show in Section 4.2.3, the BFS-based query processing 
technique with dynamic memory allocation based overflow 
handling achieves the best performance. As such, we use it as the 
baseline to compare against the DFS-based query processing 
implementation. Based on the results shown in Fig. 10, the BFS 
implementation outperforms its counterpart in all queries 
significantly. As discussed previously, DFS batched query suffers 
from two disadvantages. First, the “count and write” pattern in 
DFS actually requires two nearly identical kernel executions 
which nearly doubles the running time. Second, when the size of 
returning results for each query increases (e.g. Q3), it is likely that 
global memory accesses in “write” kernel are not coalesced 
because each thread writes its own results individually. 

 

 
Fig. 10 Performance Comparisons among DFS- and BFS-

Based Query Processing 

 

4.2.3 Comparisons of different overflow handling 
mechanisms in BFS-based query processing   
We use STR R-Tree as the spatial index in this set of experiments. 
The experiment results of using different overflow handling 
approaches are given in Fig. 11 where “GPU-hybrid” denotes 
DFS based overflow handling, “GPU-memory” denotes dynamic 
memory overflow handling, “GPU-relaunch” denotes using the 
re-launching mechanism, and, “GPU-primitive” denotes the 
parallel primitive based implementation on GPUs. For all 
experiments, the number of queries in a block and the size of 
queue are empirically set. As mentioned before, the DFS-based 
overflow handling mechanism fails in some scenarios especially 
when queries generate large number of elements in results. For 
example, Q3 queries return approximately 1,000 results on 
average and have very bad performance when compared with 
other techniques. In contrast, the dynamic memory allocation 
approach is almost the best in all queries. The re-launching 
method suffers from queries that have large results when overflow 
happens frequently and multiple rounds of invocations of 
overflow handling kernels are required in those queries, which 
hurt the overall performance. We also observe that parallel 
primitive based implementation is not as fast as the others, 
especially when query results are small in sizes as parallel library 
overheads may dominate. However, parallel primitives-based 
implementation is more scalable and no explicit parameter tuning 
is required which is desirable. For instance, in the hybrid query 
processing strategy, the queue size for a batched query in a 
computing block has to be carefully chosen. For all BFS-based 
query processing techniques, the number of queries assigned to a 
block also needs to be tuned. Furthermore, the parallel primitive 
based implementation makes the design easily applicable to other 
parallel environments such as multi-core CPUs, which is also 
desirable.  

4.2.4 Comparisons on query processing performance 
on multi-core CPUs and GPUs  
In this section, we compare the performance of batched query 
processing on the GPU with multi-core CPU implementations. 
The multi-core CPU implementations utilize all available cores (8 
cores in total) in the system based on OpenMP6 where each core is 
responsible for a single query. As can be seen from Fig. 12, our 
GPU implementations have achieved about 10X speedup on 
average when compared with multi-core CPU implementations. 
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For small queries such Q1 queries, GPU implementations did not 
show advantages over multi-core CPU implementations. 
However, as the size of query results in each query window 
increases, GPU based implementations outperform their 
counterparts significantly.  

 
Fig. 11 Query results on the GPU 

 

 
Fig. 12 Speedups of GPU-based Implementations over Multi-
Core CPU-based Implementations for Spatial Window Query 

Processing on Synthetic Data 

 

4.3 Experiments using Real-world Datasets 
In addition to performing evaluations on benchmark datasets, we 
also conduct experiments using datasets from real-world 
applications. Two real-world datasets are extracted from a point-
in-polygon test based spatial join application. Details of the 
application and the datasets are provided in our previous work 
[19]. The first dataset, termed as taxi, is derived from 170 million 
taxi pickup location in 2009 in NYC that contains 3,415,981 
MBRs. The second dataset, called pluto, comes from NYC tax lot 
dataset that consists 735,488 MBRs. The fanout of R-Trees in the 
set of experiments is empirically set to 8.  

The first experiment is to compare R-Tree bulk loading 
performance between the CPU and GPU implementations. As 
discussed earlier, both implementations adopt the STR R-Tree 
bulk loading algorithm. The CPU implementation also utilizes all 
available cores in the system (8 cores in total). Based on the 
results shown in Table 3, GPU implementation achieves about 4X 
speedup against CPU parallel implementation which is similar to 
our findings in Section 4.1.  

For the experiments on query processing, one dataset is chosen as 
indexed dataset and the other is considered as query windows for 
both datasets. The results of the four experiments are listed in 
Table 4. From the results we can see that GPU implementations 
have achieved about 8X speedups over parallel CPU 
implementations, which is similar to the results reported in 
Section 4.2. 

 

Table 3 Runtimes of R-Tree Bulk Loading on Real Datasets 

Dataset GPU (ms) CPU (ms) 
Taxi 207 1,111 
Pluto 70 247 

 

Table 4 Query performance on Real Datasets  

Indexed dataset Query dataset GPU (ms) CPU (ms) 
taxi pluto 338 2,974 
pluto taxi 1,191 10,538 
taxi taxi 1,414 12,255 
pluto pluto 322 2,736 

 

5. CONCLUSIONS AND FUTURE WORK 
In this study, we have implemented parallel designs of bulk 
loading R-Trees and several parallel query processing techniques 
on GPUs using R-Trees. Our extensive experiments have shown 
that the GPU parallel query implementations can achieve 
significant speedups over multi-core CPU based implementations 
which makes the GPU-based R-Tree construction and query 
processing techniques attractive for many real world applications. 
Our experiments also have shown that R-Tree qualities can have 
significant impacts on query performance on GPUs. Building high 
quality R-Tree on the GPU is crucial to achieve high performance 
in query processing.  

An interesting observation in [7] pointed out that space-driven 
indexes (e.g., quadtree variants) worked better than data-driven 
indexes (e.g., R-Tree variants) in a parallel computing context 
(e.g., the Thinking Machine CM-5 used in the experiments). 
However, it is unclear to what degree the observation still holds 
on modern GPUs which have a quite different parallel hardware 
architecture. For our future work, in addition to further 
investigations on GPU based bulk loading that have been 
discussed inline, we also plan to compare R-Tree based indexing 
approaches with quadtree based ones on GPUs to further explore 
their respective advantages and disadvantages. Another research 
direction we plan to follow is to investigate on how to reorder or 
index query windows for more efficient parallel query processing 
on GPUs. Finally, we plan to evaluate other R-tree bulk loading 
heuristics on the GPU, such as adopting dynamic programming 
based optimization proposed in [2].  
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