
Parallel Spatial Query Processing on GPUs Using R-Trees

Simin You
Dept. of Computer Science

CUNY Graduate Center
New York, NY, 10016

syou@gc.cuny.edu

Jianting Zhang
Dept. of Computer Science
City College of New York

New York, NY, 10031
jzhang@cs.ccny.cuny.edu

Le Gruenwald
School of Computer Science

University of Oklahoma
Norman, OK 73071

ggruenwald@ou.edu

ABSTRACT
R-Trees are popular spatial indexing techniques that have been
widely adopted in many geospatial applications. As commodity
GPUs (Graphics Processing Units) are increasingly becoming
available on personal workstations and cluster computers, there
are considerable research interests in applying the massive data
parallel GPGPU (General Purpose computing on GPUs)
technologies to index and query large-scale geospatial data on
GPUs using R-Trees. In this study, we aim at evaluating the
potentials of accelerating both R-Tree bulk loading and spatial
window query processing on GPUs using R-Trees. In addition to
designing an efficient data layout schema for R-Trees on GPUs,
we have implemented several parallel spatial window query
processing techniques on GPUs using both dynamically generated
R-Trees constructed on CPUs and bulk loaded R-Trees
constructed on GPUs. Extensive experiments using both synthetic
and real-world datasets have shown that our GPU based parallel
query processing techniques using R-Trees can achieve about 10X
speedups on average over 8-core CPU parallel implementations
by effectively utilizing large numbers of processors and high
memory bandwidth on GPUs.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Application – spatial
databases and GIS; I.3.1 [Computer Graphics]: Hardware
Architecture – Graphics processors

General Terms
Algorithms, Performance

Keywords
Spatial Indexing, R-Tree, GPU

1. INTRODUCTION
R-Trees [4, 6, 15] are well known spatial indexing techniques and
have been widely adopted in many applications for indexing 2-D
or higher dimensional spatial data. Many techniques have been
proposed over the past three decades to improve efficiency and
performance of R-Tree construction and R-Tree based spatial
query processing. As R-Tree construction typically incur super-
linear complexity, it is desirable to parallelize R-Tree
constructions on parallel platforms, especially when processing
large-scale geospatial data. While processing a single spatial
query on an R-Tree is typically sub-linear, there are many

applications that involve batched queries on R-Trees where
parallelization is obviously beneficial. Quite some parallel R-Tree
construction and query processing algorithms have been proposed
for different parallel architectures [9, 10, 12, 14, 16, 17]. Early
research mostly focused on shared-nothing computer clusters that
are made of identical computing nodes equipped with
uniprocessors [9, 14, 16, 17].

Modern GPU architectures closely resemble supercomputers as
both implement the Primary Parallel Random Access Machine
(PRAM1) characteristic of utilizing a very large number of threads
with uniform memory latency. Compared to modern CPUs, GPU
devices usually have larger numbers of processing cores, higher
memory bandwidths with more affordable prices. For example,
the Nvidia GTX Titan GPUs2 have nearly 3,000 processing cores,
300 GB/s bandwidth, 6 GB memory and can be purchased from
the market around $1,000. As many commodity desktop
computers have already been equipped with GPU devices that are
capable of general computing, it is desirable to use GPUs to
accelerate geospatial computing in general and R-Tree based
spatial data management in particular. Furthermore, GPUs have
been extensively used to accelerate many computing intensive
applications, such as nearest neighbor queries in databases and
ray-tracing in computer graphics. Efficient indexing structures
such as R-Trees are promising in speeding up such computing on
GPUs that are practically useful. As it is still quite expensive to
transfer data between CPUs and GPUs through PCI-E buses
(limited to 8-32 GB/s on PCI-E devices with 16 lanes), being able
to directly construct and query R-Trees on GPUs to avoid or
reduce data transfer overheads is beneficial, which motivates us to
implement both R-Tree construction and query processing on
GPUs.

In this study, we aim at exploring different design strategies on R-
Tree construction and query processing on GPUs. We have
evaluated the performance of several designs and implementations
using both synthetic and real-world datasets. First, in addition to
the re-launching overflow handling strategy (details in Section
3.2.2) for batched spatial queries implemented in [12], we have
also designed and implemented several additional overflow
handling techniques. Second, while a GPU based R-Tree bulk
loading technique called low-x packed R-Tree has been
implemented in [12], the bulk loaded R-Tree was not used for
query processing in the study. This left the performance of spatial
query processing on bulk loaded R-Trees, which typically are
faster in construction but have lower qualities, largely unknown.
In this study, we have considered both low-x packed R-Tree based
bulk loading [12] and Sort-Tile-Recursive (STR) based R-Tree
bulk loading [11]. While some of our designs and
implementations have demonstrated significant speedups over
CPU implementations on R-Tree based query processing (as
reported in Section 4), we are more interested in understanding
the relative advantages and disadvantages of GPU-based R-Tree
construction and query processing over CPU-based ones as well

Permission to make digital or hard copies of all or part of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from Permissions@acm.org.
BIGSPATIAL '13:, November 05 - 08 2013, Orlando, FL, USA
Copyright 2013 ACM 978-1-4503-2534-9/13/11…$15.00.
http://dx.doi.org/10.1145/2534921.2534949

as the impacts of R-Tree quality to provide insights and guidelines
for more systematic and more efficient implementations. For
testing purposes, we have run our implementations on a spatial
query benchmark including synthetic and realistic datasets. We
report our experiment results and provide discussions on our
findings. Our technical contributions in this paper can be
summarized as follows:

1) We have provided an improved R-Tree node layout on GPUs
which has lower memory footprint.

2) We have implemented alternative R-Tree bulk loading and
spatial window query processing strategies on GPUs using
R-Tree which are not covered by previous works [10, 12].

3) We have performed extensive experiments using different R-
Trees, including bulk loaded ones and dynamic inserted ones,
and evaluated different R-Tree based spatial window query
processing designs on GPUs using both synthetic datasets
and real datasets. To the best of our knowledge, this is the
most comprehensive set of evaluations of R-Tree bulk
loading and spatial query processing on GPUs.

The rest of this paper is organized as follows. Section 2 introduces
background and related work. Section 3 provides our R-Tree
designs and implementations on GPUs, including bulk loading
and batched spatial query processing techniques. Section 4
presents experiments and results. Finally Section 5 is the
conclusion and future work.

2. BACKGROUND AND RELATED WORK
R-Tree based indexing techniques have been extensively studied
in spatial databases and quite a few variants have been proposed
over the past three decades [4, 6, 15]. Although most existing R-
Tree implementations are serial on a single CPU (uniprocessor),
there are several previous studies on parallel R-Tree construction
and query processing based on different parallel hardware
architectures although those based on shared-nothing clusters
clearly dominate [7, 9, 14, 16, 17]. In this study, we focus on R-
Tree based spatial indexing using GPGPU computing
technologies that have quite a different parallel computing model.
We also argue that our work is complementary to cluster
computing based distributed and parallel spatial query processing
provided that computing nodes are equipped with GPU devices
which is becoming increasingly popular in both institutional grid
computing resources and commercial cloud computing resources.

The most related work to ours, which is reported in [12], has
implemented a Breadth-First-Search (BFS) traversal based query
processing algorithm using R-Trees on modern GPUs. In addition
to the differences that have been discussed in the introduction
section, our designs and implementations are also different from
the following aspects. First, as discussed in details in Section
3.1.1, while both implementations use linear array structures to
store R-Tree nodes in a BFS order and has a node field to indicate
the array position of the first child node (in a way similar to the
design of our GPU-based Binned Min-Max Quadtree BMMQ-
Tree [18]), our node layout has a separate field to store the
number of children of an R-Tree node. By using at most one extra
byte (which can represent 256 children) in most cases, we are free
of having to store non-exist child nodes which can save up to 50%
of required memory for a whole R-Tree. Second, while the work
in [12] proposed and evaluated only one overflow handling
mechanism (see details in Section 3.2.2), we introduce two new
overflow handling mechanisms as well as a pure parallel primitive
based BFS query implementation which does not require overflow
handling. We have compared query performance based on
different parallel spatial query processing strategies. Third, while

[12] only performed experiments on dynamic inserted R-Trees,
we have evaluated query processing on bulk loaded R-Trees using
different R-Tree bulk loading strategies.

A GPU-based R-Tree query processing algorithm termed
Massively Parallel Three-phase Scanning (MPTS) is proposed in
[10]. The key idea of MPTS is to minimize irregularly memory
accesses during R-Tree traversals when processing spatial queries.
During the traversals, left- and right- most nodes are identified
and a parallel scan is performed from the left-most node to the
right-most node to search for intersected MBRs. However, MPTS
is mostly designed for optimizing single spatial window query
processing instead of processing multiple queries in parallel.
Rather than further improving query processing times for single
queries, which are typically already fast enough even for large
datasets with reasonable degrees of selectivity (in the order of a
fraction of a second), we focus on parallel query processing for a
large number of independent queries by fully utilizing massively
data parallel computing power on GPUs, which we believe is
more cost-effective for practical applications.

While the original R-Tree construction algorithms use dynamic
insertions, several bulk loading approaches have been proposed
[3, 5, 8, 11, 14]. Bulk loading approaches usually adopt a packing
technique to construct R-Trees that maximizes space utilization
and reduces the height of the resulting tree as much as possible.
Packed R-Tree guarantees better space utilization and query
responses based on packed R-Trees have been reported to be
comparable with R-Trees built from dynamic insertions [5, 8].
Bulk loading methods can be classified into two categories, i.e.,
top-down and bottom-up. Alborzi and Samet [3] discussed the
difference between top-down and bottom-up methods. They
argued that the top-down method could potentially process queries
faster but non-leaf nodes might be under-packed. On the other
hand, R-Trees constructed by bottom-up methods may have fewer
nodes than using top-down methods. Sort-Tile-Recursive (STR) is
a simple yet efficient R-Tree packing method proposed in [11]. In
the STR approach, R-Tree is constructed by recursively sorting
and packing in a bottom-up manner. As both sorting and packing
can be easily mapped to parallel primitives (i.e., sort and reduce,
respectively), it is attractive to implement R-Tree bulk loading
algorithms on GPUs directly. Based on the results discussed in
[11], low-x packing is not competitive with STR based packing.
The results have motivated us to implement STR R-Tree bulk
loading on GPUs and compare it with the low-x R-Tree bulk
loading that has been implemented in [12].

3. METHODOLOGY
3.1 Parallel R-Tree Bulk-loading
3.1.1 Node Layout of Linearized R-Tree
We use simple linear array based data structures to represent an
R-Tree. Simple linear data structures can be easily streamed
between CPU main memory and GPU device memory without
serialization and are also cache friendly on both CPUs and GPUs.
In our design, each non-leaf node is represented as a tuple {MBR,
pos, len}, where MBR is the minimum bounding rectangle of the
corresponding node, pos and len are the first child position and the
number of children, respectively, as illustrated in Fig. 1. In
contrast, previous work [12] stored entries for all children in non-
leaf nodes, which will use more memory than our method. The
tree nodes are serialized into an array based on the Breadth-First-
Search (BFS) ordering. The decision to record only the first child
node position instead of recording the positions of all child nodes
in our approach is to reduce memory footprint. Since sibling

nodes are stored sequentially, their positions can be easily
calculated by adding the offsets back to the first child node
position. In addition to memory efficiency, the feature is desirable
on GPUs as it facilitates parallelization by using thread identifiers
as the offsets. In this study, we have used R-Trees constructed
from two approaches: bulk loading on GPUs and dynamic
insertions on CPUs. The algorithm to fill the pos and len fields
using bulk loading on GPUs are discussed in the next section.
When an R-Tree is generated on CPUs, the two fields can be
filled easily by sequentially looping through R-Tree nodes
through pointer chasing.

3.1.2 Parallel R-Tree Bulk Loading on GPUs
In this study, we implement both low-x packing (used in [12]) and
STR packing [11] for bulk loading R-Trees. Instead of using
native GPU programming languages (such as Nvidia CUDA3)
directly, our implementations are built on top of several parallel
primitives provided by the Thrust library that comes with CUDA
SDK. The decision has significantly reduced coding complexity
and improved portability.

For the low-x packing approach, in the sorting stage, the original
data (MBRs) is sorted by applying a linear ordering schema (low-
x in this case) using a sort_by_key parallel primitive. The
algorithm is shown in Fig. 2 where the R-Tree is constructed by
packing MBRs bottom-up. Every d items are packed into one
node at the upper level until the root is created. We first calculate
the number of levels (��������) and the number of nodes at each
level for memory allocation and addressing during the packing
iteration. We then construct the R-Tree level by level bottom-up
using a reduce_by_key primitive. Step 1 sorts the original dataset
using any 1-D ordering (low-x in this case). From steps 2 to 6, R-
Tree is iteratively packed from lower levels. In step 4 and 6, same
keys need to be generated every d items for parallel reduction
purpose. This can be done by combining transform_iterator and
counting_iterator iterators provided by the Thrust parallel library.
The MBRs, first child positions and numbers of children are
evaluated from the data items at the lower levels as follows. For
the d items with a same key, the MBR for the parent node is the
union of MBRs of the children nodes. For each R-Tree node, the
first child position (pos) is computed as the minimum sequential
index of lower level nodes (by using a counting_iterator) and the
length (len) is calculated as the sum of 1s (by using a
const_iterator initially set to 1) for each child node. While we
have skipped the details of the auxiliary iterators (which are
nonessential to understanding the implementation of the
construction process) for the interests of space, we would like to

note that reduce_by_key and min/sum based scans are well
supported by parallel libraries (e.g. Thrust).

We also implement the Sort-Tile-Recursive (STR) R-Tree bulk
loading algorithm on GPUs using parallel primitives as follows.
First, MBRs are sorted along one direction, i.e., using x
coordinates from lower left corners, which is implemented by
using sort_by_key. Then the space is divided into slices according
to the predefined fanout d, and each slice is sorted along the other
direction, such as y-coordinates. Finally every d MBRs in a slice
are packed as parent nodes which will be used as the input for the
next iteration. This process is iteratively executed until the root of
the tree is constructed. Fig. 3 outlines the STR R-Tree
construction algorithm. Steps 2 to 4 check whether the number of
MBRs is smaller than the fanout d. If this is the case, the MBRs
will be packed as root and the iteration is terminated. Otherwise,
the MBRs are first sorted using low-x coordinates (Step 6), and N

MBRs are divided into �� 	⁄ slices where each slice is sorted
according to low y-coordinates (Step 7). After sorting on each
slice, parent nodes are generated via packing every d MBRs (Step
8). Finally, � 	⁄ nodes are used as input for the next iteration
(Step 9). The first sort can be easily implemented by using
sort_by_key where x-coordinates are used as the key. To
implement the second sort where each slice is sorted individually,
we use an auxiliary array to identify items that belong to the same
slice. This is achieved by assigning the same unique identifier for
all items belong to the same slice, i.e., a sequence identifier is
assigned for each slice and stored in the auxiliary array. With the
help of the auxiliary array, Step 7 can be accomplished by
invoking sort_by_key twice, where the first sort is on y-
coordinates and the second sort uses the unique identifiers in the
auxiliary array. Step 8 is the same as the packing phase introduced
previously (steps 4 and 6 in Fig. 2). The difference between the
two packing algorithms is that the low-x packing algorithm only
sorts once while the STR packing algorithm requires multiple
sorts at each level.

Input : fanout d; dataset D
Output : packed R-Tree
1. while (true)
2. if (�	 ≤)
3. root ←pack � MBRs
4. break;
5. else
6. sort_by_key on x-coordinates
7. sort_by_key on y-coordinates for each slice
8. reduce_by_key packed every d MBRs
9. � ← � 	⁄

(MBR, pos, len)

R1(MBR1,3,3) R2(MBR2,6,2) R0(MBR0,1,2)

R3(-,8,3) R4(-,11,2) R6(-,15,2) R7(-,17,3) R5(-,13,2)

0 1 2

3 4 5 6 7

Node layout

R1 R2

R3 R5 R4 R6 R7

R8 R10 R9 R11 R12 R13 R14 R15 R16 R17 R19 R18

Fig. 1 Illustration of Linear R-Tree Node layout

Fig. 2 Low-x R-Tree Bulk Loading on GPUs

Input : fanout d; dataset D
Output : packed R-Tree
1. sort D using 1-D ordering (e.g. low-x)
2. for level ← �������� decrease to 1
3. if (level is last level)
4. reduce_by_key from original data D
5. else
6. reduce_by_key from lower level

Fig. 3 STR R-Tree Bulk Loading on GPUs

3.2 GPU based R-Tree batched query
Instead of accelerating a single query, our goal is to support
efficient batched query processing on the GPU in parallel. To
leverage massively parallel processing power of GPUs, we need
to balance workload among all parallel processing units while
minimizing expensive global memory operations on GPUs. In this
section we will present different approaches of utilizing GPUs to
speed up batched spatial window query processing.

3.2.1 Depth-First-Search based Method
In this approach, each thread processes a query in a Depth-First-
Search (DFS) manner and thus a stack is required to track visited
nodes for each query. A naïve implementation can be maintaining
the stack on GPU global memory and each thread does its own
work. Note that the stack is frequently read and write but the
global memory accesses are not coalesced in the naive
implementation. To improve the performance, we utilize per-
block shared memory for the stack structure instead. While it is
well known that GPU shared memory is usually limited for many
applications, we show that this is not a disabling factor for DFS
based R-Tree query processing although it does affect the
scalability of the approach. For an R-Tree with a depth of h,
which is typically in the order of a few tens, a stack of size larger
than h is sufficient for DFS-based queries. As we assign a thread
to a query in a batch, the total required shared memory M is in the
order of h*t, where t is the number of threads in a computing
block (or the number of queries in a batch). Even for t as large as
256, M is still significantly less than the typical 16 KB or 48 KB
limit. To keep track of visited information in DFS traversals, the
data items in the stack are organized using two fields, index and
visit. The index field is the position to the R-Tree node array that
provides access to the corresponding R-Tree node. The visit field
is used for recording the number of visited children under the
current R-Tree node.

The DFS-based query is divided into two phases which follows
the “count and write” pattern. Two kernels are launched during
the query process. The first one, termed as “count”, is to count the
numbers of hits (leaf R-Tree nodes whose MBRs intersect with
query windows) for all individual queries in order to output query
results in parallel. Fig. 3 shows the implementation of the “count”
phase. In addition to the stack pool structure in shared memory
discussed before, an array Pos is allocated for storing counting
results. After the counting phase completes, a parallel prefix scan

is performed on the Pos array to compute the output positions for
the second phase which actually outputs the query results in
parallel based on the computed positions. Since the length of the
output array can be derived by the prefix scan results before
memory allocation, no memory space is wasted in the DFS query
approach which is a desirable feature. The implementation of the
“write” phase is almost identical to the “count” phase with some
modifications in Steps 16 and 19 in Fig. 4; i.e., instead of simply
counting the number of hits, the query results are output to the
allocated array.

Despite that the DFS-based query processing technique has a low
shared memory footprint on GPUs, the nearly duplicated
count/write phases may hurt the performance of the DFS based
query processing implementation. The counting phase is
essentially the overhead for thread coordination in parallel
computing. Another disadvantage of the DFS-based query
processing technique is that, workloads among the threads in a
computing block may be imbalanced as threads work
independently. As shown in Section 4, it is not surprising that the
DFS-based technique has poor performance when compared to
alternatives to be presented next.

3.2.2 Breadth-First-Search based Method
As an improvement to the DFS-based spatial window query
processing technique, the BFS-based technique is developed to
balance the workload within a GPU computing block. A queue is
maintained for all the threads inside a computing block to process
all the batched queries assigned to a computing block. Each
element of the queue is represented in the form of { index, qid}
where index is the position to the R-Tree node array so that the
corresponding R-Tree node can be retrieved (the same as in DFS
based one). The qid field represents the identifier of the query that
is being processed. In the BFS-based technique, R-Tree nodes
whose MBRs intersect with any of the query windows are
expanded in parallel and stored in the queue level by level.

Unlike the DFS-based query processing where the sizes of outputs
are computed in a separate phase for each query, in the BFS-based
query processing, a computing block has its own global memory
space for writing out query results which are pre-allocated. In our
implementation, the size is set to the same as the queue capacity
in shared memory so that computing blocks that successfully
complete their BFS-based queries can easily copy the queue,
which represent the query results, to global memory by
synchronizing all the threads assigned to the computing block.
Since the memory accesses are coalesced, the cost of copying the
query results to global memory is minimized. However, as the
queries may vary in window sizes and large query windows may
intersect with a large number of R-Tree nodes, during level-wise
query expansions, there are chances that the pre-allocated memory
space to a computing block may overflow. As such, overflow
handling must be used to correctly report query results in
overflowed blocks. The essential idea of overflow handling is to
complete query processing even when overflow happens. We will
introduce three different strategies in the following subsections.

3.2.2.1 Kernel re-launching
In the previous work presented in [12], the authors suggested
using additional resolving kernels to complete queries in overflow
blocks. While an overflow happens during the process, a per-
block overflow tag is set and all elements of the queue at the level
before the overflow happens are copied to GPU global memory.
The resolving kernel is then launched to continue BFS-based
queries on the saved queues in GPU global memory. In order to

1. //DFS count kernel
2. __shared__ STACK_POOL[]
3. i = get_thread_index();
4. STACK[] = &STACK_POOL[i*STACK_SZ];
5. Push(STACK, {0, 0}); //push root to stack
6. Hit = 0
7. while (Size(STACK)>0)
8. {index, visit} = Pop(STACK)
9. if (R[index].len == visit)
10. continue; //all children are visited
11. next = R[index].pos + visit;
12. visit++;
13. Push(STACK, {index, visit});
14. if (Intersect(MBR[i], R[next].MBR))
15. if (Leaf(R[next]))
16. Hit++;
17. else
18. Push(STACK, {next, 0});
19. Pos[i+block_offset] = Hit;

Fig. 4 Implementation of the Counting Phase of the DFS based
Query Processing on GPUs

complete the queries, multiple blocks are assigned to the batched
queries that are originally dedicated to one block. During the
execution of resolving kernel, overflow may happen again. In
such a case, new kernels are repetitively launched until all queries
have been successfully processed. This process of addressing
overflow cases is termed as kernel re-launching. A major
drawback of this approach is that additional kernel invocation
overhead is imposed when iteratively launching the kernel. The
imposed overhead will hurt the overall performance especially
when overflow cases are frequent. Furthermore, [12] used shared
memory for the per-block queue and the size of shared memory
queue is thus another limiting factor.

3.2.2.2 DFS based overflow handling
To minimize the number of kernel launches, we propose a new
approach to addressing the overflow issue by using DFS batched
queries on the saved queues for BFS batched queries. As such, we
term the approach as BFS-DFS Hybrid or simply Hybrid for short.
In this technique, each data element is assigned to a thread and the
DFS-based query processing technique is used to continue
searching on the saved queue. Because the stack in DFS will not
overflow as we discussed previously, only two kernels launches
are required. An example is given in Fig. 5 where two queries are
showing as red (query 1) and green (query 2), respectively. The
queue capacity in this example is 3. While an overflow happens in
the BFS stage, elements (B1, C1, D2) in the queue are saved to
GPU global memory. The DFS stage subsequently takes the saved
queue as its input. For each element in the queue, a DFS query is
performed to complete the query. However, in cases when DFS-
based queries are highly unbalanced, the overall performance will
be dominated by the overflow handling module. Thus, this
approach is only useful when overflow cases are infrequent.

Fig. 5 Running Example for BFS based Query Processing with

Overflows – the Hybrid Approach

3.2.2.3 Dynamic Memory Allocation
Both methods for handling overflow cases that are introduced
previously require invoking new kernels. In other words, when an
overflow happens, the query kernel is terminated with saved
overflowed queue written into GPU global memory, and,

overflow handling kernels are launched to continue process
overflow blocks. Here we propose a new method that is capable of
performing query within a single kernel execution. Instead of
using additional resolving kernels, this new method handles
overflow cases without terminating a query kernel. In order to
achieve this goal, additional global memory space is allocated to
hold overflow elements. These elements will be stored in GPU
global memory when an overflow happens and dynamically
loaded into GPU shared memory when being processed. Note that
the query processing kernel is not interrupted and no additional
resolving kernels are needed. To efficiently manage the memory
during kernel execution, a global memory pool is pre-allocated
before kernel launches. The pool is organized as a group of
memory chunks. The size of the chunks is set to the same as the
queue capacity so that each chunk can be directly loaded into the
queue in shared memory for subsequent BFS query processing.
When a query queue is overflowed, memory chunks are
dynamically allocated at runtime for the overflowed block with
the help of GPU atomic operations. Overflowed elements are
written into the newly allocated chunks so that the current GPU
computing block can continue BFS query using the current queue.
Once a chunk is processed, another chunk is loaded into the
shared memory queue iteratively. Although current GPUs support
dynamic allocation during the kernel execution, we still choose to
maintain our own memory pool because our light-weighted
memory management is more efficient for this particular
application.

3.2.3 BFS based query using parallel primitives
The methods discussed in the previous subsections group a batch
of queries and assign them to a computing block. Therefore, the
workload is limited within a computing block. Instead of
maintaining a queue for each computing block, a global queue for
all queries can be maintained to maximize workload balancing in
order to achieve maximum parallelism. In this new approach, an
R-Tree is traversed level by level for all queries. Only intersected
R-Tree nodes are expanded for the next iteration. In other words,
the global queue contains children of intersected R-Tree nodes in
a previous iteration. Since R-Trees are balanced search trees (all
leaves are at the same height), intersected nodes at the last
iteration of the queue can be output as the query results. As this
method only maintains a single global queue, there is no need of
overflow handling. Instead of using native languages such as
CUDA, we have developed a parallel primitive based
implementation that not only works on GPUs but also can be
easily ported to other parallel platforms such as multi-core CPUs.

Fig 6 outlines the parallel primitives based technique. First, a
global queue is maintained and it is initialized using the root of
the R-Tree being queried for each query. Second, during each
iteration, all queries are checked for intersection with its
corresponding R-Tree node in parallel using a transform primitive
which applies the intersection test operator for all the queries.
Third, during each iteration, non-intersected pairs are removed
from the queue and the queue is compacted. Fourth, intersected
nodes then need to be expanded for the next iteration. This step is
a combination of several parallel primitives such as scan, scatter
and transform. The iteration terminates when the queue is empty
or the query processing procedure reaches the last level of the R-
Tree that is being queried. Finally query results are copied from
the queue to an output array.

We note that there are two weak points for this new method.
Firstly, the queue is maintained on global memory which cannot
fully take advantage of fast shared memory on GPUs. At each

Iterate until queue is empty
or reaches leaves

scan+scatter+
transform

Initialization Check
intersection

Remove non-
intersected

Queue is
initialized to
{qid, root}

transform transform partition

Generate next
level iteration

Fig. 6 Parallel primitive based BFS batch query

Overflow
I2

J2

Queue:

D

A

B C

E F G H

A1 A2

B1 C1 D2

I J

F1 G1 I2 J2

B1 C1 D2

F1 G1

DFS Stage BFS Stage

level, the expansion of the current nodes incurs expensive global
memory accesses, which may hurt performance. Secondly, the
parallel primitives-based implementation imposes additional
overhead by primitive libraries when compared with using native
parallel programming languages such as CUDA.

Table 1 Datasets Sizes

Dataset Size

abs02 1,000,000

dia02 1,000,000

par02 1,048,576

rea02 1,888,012

4. EXPERIMENTS AND EVALUATION
All experiments are performed on a workstation with two Intel
E5405 processors at 2.0 GHz (8 cores in total) and one Nvidia
Quadro 6000 GPU with CUDA 5.0 installed. For all experiments,
-O3 flag is used for optimization. To evaluate the performance of
the proposed techniques, we use benchmark datasets from R-Tree
benchmark [1]. The specifications of the datasets are listed in
Table 1 and Table 2. We use [13] as the baseline for CPU-based
dynamic R-Tree implementation.

Table 2 Specs of Queries

 Query
size

Min # of
answers

Max # of
answers

Avg # of
answers

abs02-Q1 1,000,000 1 1 1

abs02-Q2 10,000 50 150 99.8

abs02-Q3 3,164 500 1,500 992

dia02-Q1 1,000,000 1 4 1.26

dia02-Q2 10,000 50 150 99.8

dia02-Q3 3,164 500 1,500 992

par02-Q1 1,048,576 1 10 2.11

par02-Q2 10,485 50 150 99.8

par02-Q3 3,318 500 1,500 992

rea02-Q1 1,888,012 1 9 1.2

rea02-Q2 18,880 50 162 101

rea02-Q3 5,974 501 1,514 999

4.1 Experiments on R-Tree Bulk-loading
using Synthetic Datasets
The major component in R-Tree construction that dominates the
overall performance is the sorting phase. We used sort
implementations in existing libraries such as STL4, TBB5 and
Thrust. In this set of experiments, we empirically set R-Tree
fanout to 4 and use x-coordinates of MBR centroids as keys for
sorting. The experiment results are given in Fig. 7, where “CPU-
serial” denotes CPU serial implementation, “CPU-parallel”
denotes the CPU parallel implementation, and, “GPU-primitive”
denotes the GPU implementation based on parallel primitives.
From Fig. 7 we can see that, when datasets are relatively small,
parallel CPU implementations outperform GPU implementations.
One explanation is that GPU parallel processing power is not fully
exploited for small datasets and the overheads of utilizing parallel
library cannot be hidden. We also observe that the runtimes for

GPU implementations increase much slower than those of parallel
CPU implementations which might indicate better scalability of
the GPU implementations. In particular, when datasets become
large enough that can hide library overheads, GPU
implementations are several times faster than parallel CPU
implementations. Following this trend, we might be able to
predict that GPUs are capable of achieving better performance
when bulk loading larger datasets. However, we should be aware
that GPU memory capacities are usually limited when compared
with CPU memory capacities. Therefore large datasets might not
be able to completely reside in GPU memory. In that case,
however, we still can process such large dataset using data
partition techniques which are left for future work.

We have implemented and evaluated the STR R-Tree bulk
loading algorithm on multi-core CPUs and the GPUs. The results
are given in Fig. 8 where “STR-CPU-Parallel” denotes the multi-
core CPU implementation and “STR-GPU” denotes the GPU
implementation. From the results, our GPU implementation has
achieved about 4X speedup over the multi-core CPU
implementation. Based on the results shown in Fig. 7 and Fig. 8,
low-x bulk loading is faster than STR bulk loading for both CPU
and GPU implementations. The STR R-Tree bulk loading, as we
discussed in Section 3.1, requires multiple sorts at each level.
Thus, it is understandable that the overall performance of the STR
R-Tree bulk loading technique is not as fast as the low-x bulk
loading technique that only sorts once. However, as we shall show
in Section 4.2.1, R-tree generated by the STR bulk loading
technique usually has better quality comparing with low-x bulk
loading and results in faster query processing, a feature that is
desirable.

Fig. 7 Low-x R-Tree Bulk-Loading

Fig. 8 Performance of STR R-Tree Bulk-Loading on Multi-

Core CPUs and GPUs

0

50

100

150

200

250

300

abs02 dia02 par02 rea02

tim
e

(m
s)

CPU-serial

CPU-parallel

GPU-primitive

0

100

200

300

400

500

600

abs02 dia02 par02 rea02

tim
e

(m
s)

STR-CPU-Parallel
STR-GPU

4.2 Spatial Query Processing Performance
using Synthetic Datasets
In this section, we conduct a set of comparisons to evaluate R-
Tree based spatial window query processing performance on
GPUs. We first present query performance results on R-Trees
generated from different approaches and then discuss the impact
of R-Tree quality in query processing which was not addressed in
[12]. We also compare DFS-based and BFS-based query
processing techniques. For the BFS-based technique, we
evaluated different overflow handling approaches.

4.2.1 Comparisons on using different R-Trees
As discussed previously, the quality of R-Trees will impact the
query performance. In this set of experiments, we have used three
different R-Trees, including low-x packed R-Tree (low-x), STR R-
Tree (STR) and R-Tree generated via dynamic insertion
(dynamic), and the results are presented in Fig. 9. From the results
we can see that, for small datasets such as abs02 and dia02, the
difference of the three R-Trees is negligible. However, when the
size of dataset increases, the impact of R-Tree quality is
significant, especially for the largest dataset rea02. We can also
observe that STR R-Tree almost always has better query
performance than R-Tree generated via dynamic insertion in this
set of experiments. We note that, while STR R-Tree bulk loading
has been implemented on the GPU, dynamic insertion on R-Tree
is still difficult to parallelize. Furthermore, as both R-Tree
construction and query processing can be accomplished on the
GPU without transferring data back and forth between CPU
memory and GPU memory, STR R-Tree is more preferable. Due
to its excellent performance and the desirable features, for the rest
of our experiments, we will use STR R-Tree as the default R-Tree
construction algorithm unless otherwise explicitly stated.

Fig. 9 Query Performance on Different R-Trees

4.2.2 Comparison between DFS and BFS based
approaches
As shall show in Section 4.2.3, the BFS-based query processing
technique with dynamic memory allocation based overflow
handling achieves the best performance. As such, we use it as the
baseline to compare against the DFS-based query processing
implementation. Based on the results shown in Fig. 10, the BFS
implementation outperforms its counterpart in all queries
significantly. As discussed previously, DFS batched query suffers
from two disadvantages. First, the “count and write” pattern in
DFS actually requires two nearly identical kernel executions
which nearly doubles the running time. Second, when the size of
returning results for each query increases (e.g. Q3), it is likely that
global memory accesses in “write” kernel are not coalesced
because each thread writes its own results individually.

Fig. 10 Performance Comparisons among DFS- and BFS-

Based Query Processing

4.2.3 Comparisons of different overflow handling
mechanisms in BFS-based query processing
We use STR R-Tree as the spatial index in this set of experiments.
The experiment results of using different overflow handling
approaches are given in Fig. 11 where “GPU-hybrid” denotes
DFS based overflow handling, “GPU-memory” denotes dynamic
memory overflow handling, “GPU-relaunch” denotes using the
re-launching mechanism, and, “GPU-primitive” denotes the
parallel primitive based implementation on GPUs. For all
experiments, the number of queries in a block and the size of
queue are empirically set. As mentioned before, the DFS-based
overflow handling mechanism fails in some scenarios especially
when queries generate large number of elements in results. For
example, Q3 queries return approximately 1,000 results on
average and have very bad performance when compared with
other techniques. In contrast, the dynamic memory allocation
approach is almost the best in all queries. The re-launching
method suffers from queries that have large results when overflow
happens frequently and multiple rounds of invocations of
overflow handling kernels are required in those queries, which
hurt the overall performance. We also observe that parallel
primitive based implementation is not as fast as the others,
especially when query results are small in sizes as parallel library
overheads may dominate. However, parallel primitives-based
implementation is more scalable and no explicit parameter tuning
is required which is desirable. For instance, in the hybrid query
processing strategy, the queue size for a batched query in a
computing block has to be carefully chosen. For all BFS-based
query processing techniques, the number of queries assigned to a
block also needs to be tuned. Furthermore, the parallel primitive
based implementation makes the design easily applicable to other
parallel environments such as multi-core CPUs, which is also
desirable.

4.2.4 Comparisons on query processing performance
on multi-core CPUs and GPUs
In this section, we compare the performance of batched query
processing on the GPU with multi-core CPU implementations.
The multi-core CPU implementations utilize all available cores (8
cores in total) in the system based on OpenMP6 where each core is
responsible for a single query. As can be seen from Fig. 12, our
GPU implementations have achieved about 10X speedup on
average when compared with multi-core CPU implementations.

1

10

100

1000

10000

tim
e

(m
s,

 lo
g

sc
al

e) low-x
STR
dynamic

0
20
40
60
80

100
120
140
160
180

tim
e

(m
s)

GPU-BFS

GPU-DFS

For small queries such Q1 queries, GPU implementations did not
show advantages over multi-core CPU implementations.
However, as the size of query results in each query window
increases, GPU based implementations outperform their
counterparts significantly.

Fig. 11 Query results on the GPU

Fig. 12 Speedups of GPU-based Implementations over Multi-
Core CPU-based Implementations for Spatial Window Query

Processing on Synthetic Data

4.3 Experiments using Real-world Datasets
In addition to performing evaluations on benchmark datasets, we
also conduct experiments using datasets from real-world
applications. Two real-world datasets are extracted from a point-
in-polygon test based spatial join application. Details of the
application and the datasets are provided in our previous work
[19]. The first dataset, termed as taxi, is derived from 170 million
taxi pickup location in 2009 in NYC that contains 3,415,981
MBRs. The second dataset, called pluto, comes from NYC tax lot
dataset that consists 735,488 MBRs. The fanout of R-Trees in the
set of experiments is empirically set to 8.

The first experiment is to compare R-Tree bulk loading
performance between the CPU and GPU implementations. As
discussed earlier, both implementations adopt the STR R-Tree
bulk loading algorithm. The CPU implementation also utilizes all
available cores in the system (8 cores in total). Based on the
results shown in Table 3, GPU implementation achieves about 4X
speedup against CPU parallel implementation which is similar to
our findings in Section 4.1.

For the experiments on query processing, one dataset is chosen as
indexed dataset and the other is considered as query windows for
both datasets. The results of the four experiments are listed in
Table 4. From the results we can see that GPU implementations
have achieved about 8X speedups over parallel CPU
implementations, which is similar to the results reported in
Section 4.2.

Table 3 Runtimes of R-Tree Bulk Loading on Real Datasets

Dataset GPU (ms) CPU (ms)
Taxi 207 1,111
Pluto 70 247

Table 4 Query performance on Real Datasets

Indexed dataset Query dataset GPU (ms) CPU (ms)
taxi pluto 338 2,974
pluto taxi 1,191 10,538
taxi taxi 1,414 12,255
pluto pluto 322 2,736

5. CONCLUSIONS AND FUTURE WORK
In this study, we have implemented parallel designs of bulk
loading R-Trees and several parallel query processing techniques
on GPUs using R-Trees. Our extensive experiments have shown
that the GPU parallel query implementations can achieve
significant speedups over multi-core CPU based implementations
which makes the GPU-based R-Tree construction and query
processing techniques attractive for many real world applications.
Our experiments also have shown that R-Tree qualities can have
significant impacts on query performance on GPUs. Building high
quality R-Tree on the GPU is crucial to achieve high performance
in query processing.

An interesting observation in [7] pointed out that space-driven
indexes (e.g., quadtree variants) worked better than data-driven
indexes (e.g., R-Tree variants) in a parallel computing context
(e.g., the Thinking Machine CM-5 used in the experiments).
However, it is unclear to what degree the observation still holds
on modern GPUs which have a quite different parallel hardware
architecture. For our future work, in addition to further
investigations on GPU based bulk loading that have been
discussed inline, we also plan to compare R-Tree based indexing
approaches with quadtree based ones on GPUs to further explore
their respective advantages and disadvantages. Another research
direction we plan to follow is to investigate on how to reorder or
index query windows for more efficient parallel query processing
on GPUs. Finally, we plan to evaluate other R-tree bulk loading
heuristics on the GPU, such as adopting dynamic programming
based optimization proposed in [2].

6. ACKNOWLEDGEMENT
This work is supported in part by NSF Grant IIS-1302423 and by
the Doctoral Student Research Grant program from CUNY
Graduate Center.

7. REFERENCES
[1] A Benchmark for Multidimensional Index Structures:

http://www.mathematik.uni-marburg.de/~rstar/benchmark/.
[2] Achakeev, D. et al. 2012. Sort-based parallel loading of R-

trees. Proceedings of the 1st ACM SIGSPATIAL

0
20
40
60
80

100
120
140
160
180

tim
e

(m
s)

GPU-hybrid
GPU-memory
GPU-relaunch
GPU-primitive

0

5

10

15

20

25

30

35

S
pe

ed
up

International Workshop on Analytics for Big Geospatial
Data - BigSpatial ’12, 62–70.

[3] Alborzi, H. and Samet, H. 2007. Execution time analysis of
a top-down R-tree construction algorithm. Information
Processing Letters. 101, 1 (Jan. 2007), 6–12.

[4] Gaede, V. and Günther, O. 1998. Multidimensional access
methods. ACM Computing Surveys. 30, 2 (Jun. 1998), 170–
231.

[5] García R, Y.J. et al. 1998. A greedy algorithm for bulk
loading r-trees. Proceedings of the sixth ACM international
symposium on Advances in geographic information systems
- GIS ’98, 163–164.

[6] Guttman, A. 1984. R-Trees: A Dynamic Index Structure for
Spatial Searching. Proceedings of the 1984 ACM SIGMOD
international conference on Management of data -
SIGMOD ’84, 47.

[7] Hoel, E.G. and Samet, H. 1994. Performance of Data-
Parallel Spatial Operations. VLDB ’94 Proceedings of the
20th International Conference on Very Large Data Bases
(Sep. 1994), 156–167.

[8] Kamel, I. and Faloutsos, C. 1993. On packing R-trees.
Proceedings of the second international conference on
Information and knowledge management - CIKM ’93, 490–
499.

[9] Kamel, I. and Faloutsos, C. 1992. Parallel R-trees.
Proceedings of the 1992 ACM SIGMOD international
conference on Management of data - SIGMOD ’92, 195–
204.

[10] Kim, J. et al. 2013. Parallel multi-dimensional range query
processing with R-trees on GPU. Journal of Parallel and
Distributed Computing. 73, 8 (Apr. 2013), 1195–1207.

[11] Leutenegger, S.T. et al. 1997. STR: a simple and efficient
algorithm for R-tree packing. Proceedings 13th
International Conference on Data Engineering (1997), 497–
506.

[12] Luo, L. et al. 2012. Parallel implementation of R-trees on
the GPU. 17th Asia and South Pacific Design Automation
Conference (Jan. 2012), 353–358.

[13] Open source R-Tree Implmenenation:
http://superliminal.com/sources/sources.htm.

[14] Papadopoulos, A. and Manolopoulos, Y. 2003. Parallel
bulk-loading of spatial data. Parallel Computing. 29, 10
(Oct. 2003), 1419–1444.

[15] Samet, H. 2005. Foundations of Multidimensional and
Metric Data Structures. Morgan Kaufmann Publishers Inc.

[16] Schnitzer, B. and Leutenegger, S.T. 1998. Master-client R-
trees: a new parallel R-tree architecture. Proceedings.
Eleventh International Conference on Scientific and
Statistical Database Management (Jul. 1998), 68–77.

[17] Wang, B. et al. Parallel R-tree search algorithm on DSVM.
Proceedings. 6th International Conference on Advanced
Systems for Advanced Applications 237–244.

[18] Zhang, J. et al. 2011. Parallel quadtree coding of large-scale
raster geospatial data on GPGPUs. Proceedings of the 19th
ACM SIGSPATIAL International Conference on Advances
in Geographic Information Systems - GIS ’11, 457.

[19] Zhang, J. and You, S. 2012. Speeding up large-scale point-
in-polygon test based spatial join on GPUs. Proceedings of
the 1st ACM SIGSPATIAL International Workshop on
Analytics for Big Geospatial Data - BigSpatial ’12, 23–32.

1 http://en.wikipedia.org/wiki/Parallel_Random_Access_Machine
2 http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-titan/specifications
3 https://developer.nvidia.com/category/zone/cuda-zone
4 http://www.sgi.com/tech/stl/
5 http://www.threadingbuildingblocks.org/
6 http://openmp.org/

