
Efficient Quadtree Construction for Indexing Large-Scale 
Point Data on GPUs: Bottom-Up vs. Top-Down

Jianting Zhang 
Department of Computer Science 

 The City College of the City University of New York 
New York, NY, 10031 

jzhang@cs.ccny.cuny.edu 

Le Gruenwald 
School of Computer Science 

University of Oklahoma 
Norman, OK 73071 

ggruenwald@ou.edu 

ABSTRACT 
Point location data are rapidly growing in volume, velocity and 

variety. GPU-acceleration is attractive for managing large-scale 

point data. In this study, we introduce a new bottom-up approach 

to constructing quadtrees for indexing large-scale point data on 

GPUs, which is significantly different from previous works that 

typically adopt a top-down strategy. In addition to sorting points 

to be indexed only once based on their Morton codes, our 

proposed bottom-up approach adopts a data parallel design and 

parallel primitive based implementation, which makes a sensible 

tradeoff between efficiency and complexity in principle and often 

results in more efficient implementations in practice.  

We also extend our previous work [1] on identifying 

leaf quadrants from large-scale point datasets by repetitively 

partitioning the indexing space into quadrants until the number of 

points in each quadrant is less than a threshold. Although our 

previous work was designed for parallelizing spatial joins on 

GPUs, the extension is able to construct the quadtree index end-

to-end in a top-down manner. As this top-down approach is more 

efficient than the quadtree construction code provided as a sample 

in Nvidia CUDA SDK, we use it as a strong baseline to compare 

with our newly proposed bottom-up approach and explore some 

aspects of duality between the top-down and the bottom-up 

approaches.  

Experiments show that the bottom-up approach is 

capable of indexing approximately 170 million taxi pickup 

locations in New York City (NYC) in less than 200 milliseconds 

and is 3.4X and 4.9X times faster than the top-down approach 

with and without including CPU/GPU data transfer time, 

respectively. The work reported in this paper is part of an effort 

to integrate spatial data management functionality into a GPU-

accelerated data management system to support both relational 

and spatial data in an integrated manner.  

 

1. INTRODUCTION 
Comparing to polygon and polyline data in geospatial 

applications, the volumes of point data have been increasing very 

fast due to significant progresses of sensing techniques and 

advanced processing tools in recent years. For example, in 

contrast to point locations captured by consumer GPS devices 

whose temporal resolution is in the order of a few to tens of 

seconds per record, locations derived from high-resolution 

cameras using Deep Learning (DL) inferencing tools can have a 

frame rate in the order of a few tens of frames per second and 

there can be tens to hundreds of detected objects in a single image. 

The combined point location data volume increases for moving 

vehicles can be 2-3 orders higher. The same tends also apply to 

human poses under different application scenarios. While parallel 

hardware and distributed systems are emerging to handle such 

“Spatial BigData”, one of the key challenges remains is to 

understand the inherent characteristics of data access patterns in 

indexing large-scale point data for various types of spatial 

queries, such as range queries and spatial joins, on different 

parallel hardware and distributed computing platforms.  

As Graphics Processing Units (GPUs) hardware are 

getting into mainstream and General Purpose Graphics 

Processing Unit (GPGPU) technologies become mature, there are 

increasing research and application interests on in-memory data 

managements on GPUs, such as the open source cuDF project 

from Nvidia [2], CoGaDB [3] and OmniDB [4]. However, none 

of these GPU databases has the capability to support spatial data 

management yet. On the other hand, while a few research projects 

have developed techniques and prototype systems for managing 

large-scale spatial data on GPUs and reported impressive 

performance [5] [6], they are yet to be widely applied due to the 

shear amount of software engineering work to integrate these 

techniques into end-to-end systems with desirable level of 

usability, in addition to performance.  

In this study, built on top of our previous work on 

managing large-scale point data on GPUs [1], we propose to 

revisit the interesting topic from both a parallel design perspective 

and its implementations on modern GPUs while keep integrating 

with mainstream GPU data management systems such as cuDF in 

mind. In addition to extending our previous technique [1] to 

construct quadtrees end-to-end for point indexing, which we call 

a top-down approach, to form a strong baseline for comparison, 

we have proposed a new bottom-up approach that is more 

efficient not only in terms of end-to-end runtimes but also with 

respect to memory footprint. We analyze the two quadtree 

construction approaches and highlight some key findings with 

respect to data accesses that largely dominate the performance 

differences between the two approaches. While our techniques 

currently adopt a non-overlapping space partitioning scheme for 

quadtree-alike indexing, we believe many of the discussions can 

 



be applied to data-driven spatial indexing, such as R-Trees  [7]., 

as well. 

The rest of the paper is arranged as follows. Section 2 

is the background, motivation and related work. Section 3 

introduces the baseline approach by extending the work we have 

reported in [1]. Section 4 presents the new bottom-up approach 

for indexing large-scale point data. Section 5 provides 

experiments and discusses results using taxi pickup locations in 

NYC. Finally, Section 6 is the conclusion and future work 

directions. 

2. BACKGROUND, MOTIVATION AND 

RELATED WORK 
Spatial indexing plays a key role in spatial data 

management [7]. For a 2D range query, aka. Window Query, by 

exploiting spatial indexing, the complexity can be reduced from 

O(n) to O(logn) or even O(1). Probably more significantly, for 

spatial joins that involve two input datasets, the complexity can 

be reduced from O(m*n) to O(m*logn)/O(n*logm) or even 

lower, where m and n are the numbers of records in the two input 

datasets in a spatial join.     

Indexing on polyline or polygon data typically 

approximates complex polylines and polygons using Minimum 

Bounding Boxes (MBBs) and subsequently indexes the MBBs. 

While technically feasible, it would be too costly to degenerate 

points as MBBs and then apply techniques such as R-Trees [7] 

for indexing for the purpose. Although various hashing 

techniques have been developed for generic multidimensional 

point data (see e.g. [8] [9] for GPU-based construction 

techniques), hierarchical indexing structures, such as space 

partition based kd-trees and quadtrees, remain popular for 

indexing geospatial point data that typically have two or three 

dimensions, partially for interpretability and visualization. In this 

study, we focus on multi-level space partition based point 

indexing for 2D geospatial point locations on GPUs and we refer 

to the previous works for spatial indexing on polylines and 

polygons on GPUs [10] [11] [12].   

While numerous spatial indexing methods have been 

proposed in the past few decades [7], most of them are designed 

for CPUs with a single processor based on a serial computing 

model. The past few years have witnessed rapid advances of 

parallel hardware, such as multi-core CPUs without and with 

SIMD (Single Instruction Multi Data) extensions [13] and GPUs 

with thousands of cores and increasingly larger memory 

capacities [14]. While multi-core CPUs allow coarse-grained 

parallelisms and can be relatively easily applied to parallelizing 

serial spatial indexing techniques, it is quite technically 

challenging to fully exploit SIMD instructions that are supported 

by Vector Processing Units (VPUs) inside CPUs due to their 

stringent parallel programming models [13]. In contrast, the 

emergence of CUDA technologies supported by Nvidia GPUs 

have provided a flexible parallel computing platform, a set of 

easy-to-use APIs, and a user-friendly and portable parallel library 

(i.e., Thrust [15]) that consists of a set of highly efficient parallel 

primitives to exploit the massive data parallel computing power 

on GPUs [14].  

There has been a steady growth of interests in using 

GPUs for spatial data management in the past few years (we refer 

to papers in a 2014 special issue of ACM SIGSPATIAL Special 

[10] [6] for more comprehensive reviews), in parallel with using 

GPUs for relational data management [2] [3] [4]. In a way similar 

to the fusion of Relational Database Management System 

(RDBMS) and Geographical Information System (GIS) in late 

2000s after major database vendors supported spatial data, we 

believe there is a technical trend in developing GPU-accelerated 

data management systems that support both relational and spatial 

data. Among all spatial data types, point data might be the first 

one that is fully supported in such systems due to practical 

popularity, data layout regularity (fixed length for 2D/3D points) 

and technical maturity, in a way similar to that, point data seemed 

to be first supported by NoSQL databases such as Cassandra 

before more complex spatial datatypes were supported [16].  

It is obvious that performance is the main driving force 

for GPU accelerated data management on large-scale data. While 

indexing is optional for moderate size datasets by fully exploiting 

GPU hardware capabilities, indexing becomes indispensable for 

large-scale data. Spatial indexing on point data is challenging 

largely due to high data volumes and significant irregular data 

accesses and data movements required for indexing. GPUs are 

traditionally featured with large number of processing units, high 

memory bandwidth and user managed shared memory/caches, 

which are desirable from a data management perspective. 

However, high memory latency and limited cache capacity have 

imposed significant technical challenges, in addition to 

complexity and programmability, for such purposes [14]. In our 

previous studies, we have advocated for parallel primitive based 

designs and implementations for spatial indexing and spatial 

queries (e.g. [1] [17] [18] [19]). Parallel primitives supported by 

GPU hardware, e.g., the Thrust library through CUDA SDK [15] 

[14], provide a desirable isolation between our spatial data 

management applications and GPU hardware details and facilitate 

a well-justified tradeoff between portability and efficiency. The 

set of 7 parallel primitives (with variations) used in this study are 

listed in the Appendix for a quick reference.   

Among various parallel primitives we have exploited, 

sorting plays a key role in spatial indexing to move spatially 

adjacent points close to each other and generate indices for the 

underlying data. Fortunately, sorting is among the most well-

studied parallel primitives on GPUs and its implementations have 

been continuously improving and fine-tuned [20] [21]. Modern 

GPUs are capable of sorting hundreds of millions or even billions 

of data items per second which largely contributes to the overall 

high performance of GPU-based spatial indexing techniques. 

Nonetheless, as detailed in Section 3 and Section 4, utilizing the 

parallel primitives (including sorting) in different ways may 

significantly impact the performance of spatial indexing 

applications (and likely many other applications), which 

motivates many of the discussions in this work. As detailed in 

Section 5, the new bottom-up technique, while exploiting the 

same set of parallel primitives, has achieved nearly 5X speedup 

on indexing approximately 170 million points when compared 

with the top-down approach. 

Kd-trees and quadtrees are quite similar on indexing 

point data, as both of them belong to space partition based spatial 

indexing techniques. While quadtrees have been popular in the 

spatial databases and GIS communities, their realizations on 

GPUs appeared much later. Kd-trees have been popular in the 

computer graphics community for applications such as ray 

tracing, which can be dated back to the pre-GPGPU era [22]. To 

the best of our knowledge, the work reported in [23] is among the 

earliest on kd-tree construction on GPUs. On the other hand, 



constructing kd-trees on point data for distance-based pruning of 

search space completely on GPUs did not appear until recently 

[24]. Nevertheless, many design strategies and implementation 

techniques can be applied to both kd-tree and quadtree 

constructions on GPUs.  

The works in [25] [26] [27] [28] follow the idea of 

treating quadtree construction on GPUs to a level-by-level bucket 

sort problem where quadtree nodes are considered as buckets and 

points to be indexed are sorted into the buckets based on the 

quadrants that the points fall within. In particular, [25] adopts a 

CPU-GPU hybrid approach where each thread processes a 

quadtree node and loops over the points under the node for 

subsequent subdivisions. The first few levels of quadtree 

construction are performed on CPUs as the number of quadtree 

nodes is small and the degree of parallelism is low. The technique 

switches to GPUs only when a sufficient number of quadtree 

nodes has been created and GPU parallel computing capacity can 

be effectively utilized. However, as each CPU thread needs to 

process a large number of points for the upper level quadtree 

nodes, the within-node parallelism is not effectively utilized and 

the CPU processing time could dominate. For the rest of the 

quadtree nodes constructed on GPUs, it is likely that the 

underlying bucket sort is performed by a single GPU thread which 

can be inefficient. The two major sources of design and 

implementation drawbacks make the technique rather inefficient 

and the authors reported a runtime of 20 seconds for indexing 15 

million points on an unspecified Nvidia GPU around 2011.  

The work reported in [26] improves [25] by exploiting 

block-level parallelism and letting a block of GPU threads 

process all the points indexed by a quadtree node for subdivisions. 

The technique can significantly increase the degree of parallelism 

for constructing quadtree nodes, including top-level ones. This 

makes an all-GPU based solution possible. However, there are 

two new sources of overheads. The first is the cost of coordination 

among threads in a block when sorting points. The second is that 

threads in warps may be underutilized when the number of points 

within a block is less than GPU warp size (typically 32). The 

authors proposed to switch to single-thread serial construction in 

this case instead (as in [25]). According to the performance report 

in [26]  , the technique is able to index 80 million points in about 

50 seconds on an Nvidia FX 3800 GPU which seems to be more 

efficient than the results reported in [25]. 

CUDA SDK provides a sample code on quadtree 

indexing for points starting from version 5.0 for GPUs that 

supports Compute Capability 3.5 as a demonstration of dynamic 

parallelism [27]. The design behind the code is similar to [26] in 

serval aspects but with better block/warp level reduction and scan 

support for bucket sort. With hardware support of dynamic 

parallelism, the end-to-end process can now be performed using 

a single recursive kernel function invocation. New kernels are 

launched dynamically by threads that are processing quadtree 

nodes that need subdivisions. Four warps in a block are used to 

bucket-sort the points where each warp is assigned to process a 

quadrant. Warp level hardware intrinsic functions, such as voting 

and shifting [29], are aggressively exploited for efficiency. 

However, the policy on processing a quadrant using a single warp 

may also limit the degree of parallelization and subsequently 

affect efficiency, especially during the construction of top-level 

nodes where a large number of points need to be processed.  We 

also note that the publically available code uses two identical 

arrays to store points before bucket sort and after bucket sort, 

respectively. The two arrays are swapped when processing two 

consecutive levels during quadtree construction, which makes the 

implementation less attractive comparing with those that support 

in-place sort. Different from [26] that only expands non-empty 

quadtree nodes level-by-level, the CUDA SDK sample code pre-

allocates memory for a full quadtree (i.e., a pyramid) of depth k 

with a memory footprint of (4(k+1)-1)/3 before the construction 

process begins, which is memory inefficient especially when 

depth k is large. A more recent work [28] overcomes this memory 

inefficiency by allocating memory only for the exact number of 

non-empty quadtree nodes. This is achieved by first counting the 

number of such non-empty quadtree nodes using hardware units 

that support atomic operations (e.g., atomicAdd [29]) before 

actually outputting data. However, the number of hardware units 

that support atomic operations is limited on commodity GPUs and 

the performance is likely to be bottlenecked by the hardware units 

when indexing large numbers of points.    

The implementations of all of the four techniques 

discussed above seem to be based on the plain CUDA 

programming syntax directly, which is expected to maximize 

performance but may not be easily achievable due to 

implementation complexity. They share the similar idea of using 

bucket-sort for quadtree construction and they also suffer from 

insufficient degree of exploitable parallelization due to the nature 

of the bucket-sort design. First of all, regardless of whether 

parallelizing quadtree node construction is at the thread level, 

warp level or block level, a thread needs to loop over potentially 

a large number of points. We note that the distribution of the point 

counts can be skewed among quadrants. Real world point data are 

typically unevenly distributed, such as taxi pickup locations in 

NYC where most of the locations are in downtown and middle 

town areas, especially around hotspots in these areas. The skewed 

distribution makes parallelization very difficult due to unbalanced 

workloads for parallel processing units. Second, whether utilizing 

dynamic parallelization or not, as a quadtree typically has only 

four child nodes at most, exploiting node level parallelism 

generally results in insufficient workload when constructing the 

first few levels of a quadtree. While overlapping multiple streams 

of GPU jobs may potentially increase the overall GPU utilization, 

it does not help end-to-end runtime when constructing a single 

quadtree. Third, while bucket-sort is conceptually simple, its 

GPU implementation is not as extensively fine-tuned as radix sort 

on GPUs [21]. Implementing bucket sort at the block level using 

a double array approach, which seems to be adopted in the 

previous works, results in excessive non-coalesced GPU global 

memory copy operations which could be costly with respect to 

both memory footprint and runtime.  

Our preliminary work on identifying quadrants with 

numbers of points less than a predefined threshold to balance 

workloads in point-in-polygon test based spatial joins on GPUs 

[1] predates or in parallel with the works discussed above [25] 

[26] [27] [28]. Even though the technique only identifies such 

quadrants level-by-level without actually creating a quadtree, 

they share quite some commons in design. However, different 

from these works, our work [1] exploits both node and point level 

parallelisms and adopted a parallel primitive based strategy to 

make a sensible tradeoff between efficiency and simplicity. In this 

study, we extend our previous work to complete a GPU-

accelerated quadtree construction technique and refer it as our 

top-down approach for point indexing (Section 3). As the 

additional phase that constructs the quadtree from leaf quadrants 



takes very little additional runtime, the efficiency of the technique 

is largely determined by the first phase on identifying leaf 

quadrants. While we defer the presentation of the technique to 

Section 3, the parallel primitive based implementation avoids 

several key issues encountered by other works on quadtree-based 

indexing for point data directly using plain CUDA syntax. When 

comparing to the implementation of the CUDA SDK sample code 

[27] (the source code of the other three works is not publically 

available and it is non-trivial to re-implement), the top-down 

approach can achieve 2.5X higher performance (Section5), likely 

due to better exploitation of parallelisms in sorting points to 

appropriate quadrants and efficient implementations for parallel 

primitives, in a way similar to what we have reported in [19] on 

constructing multi-attributed quadtrees for complex polygons 

using parallel primitives. Furthermore, by relaxing certain 

requirements imposed by the top-down approach, we have 

developed a new bottom-up approach (Section 4) and we use the 

top-down approach as a baseline to compare with the newly 

proposed bottom-up approach. We next present the top-down and 

the bottom-up approaches in Section 3 and Section 4, 

respectively. 

3. GPU QUADTREE DATA LAYOUT AND 

THE TOP-DOWN APPROACH 
Before presenting the top-down approach, we first introduce the 

data layout of the quadtree structure that was designed for the top-

down approach but can also be applied to the bottom-up 

approach. For notation convenience, when introducing the 

proposed Structure-of-Array (SoA) quadtree data layout, array 

names are bolded and italicized when they are first introduced and 

they will only be italicized when they are subsequently referred 

to. When introducing the algorithms using parallel primitives, 

parallel primitives are underscored and their input/out variables 

are both bolded and italicized while temporal variables are 

italicized only in figures. All of the inputs/output variables and 

parallel primitives are only italicized in their accompanying text 

for clarity. Some words in text are occasionally bolded (but not 

italicized) for emphasis purposes.  The conventions are applied to 

Section 4 as well.  

3.1 SoA-based Quadtree Data Layout 
The structure is similar to that in the previous works [25] [26] [27] 

[28] in the sense that quadtree nodes are laid out as an array in a 

level-by-level order, i.e., Breadth First Search or BFS. However, 

our quadtree structure adopts a Structure of Arrays (SoA) rather 

than Array of Structures (AoS) strategy (as in the CUDA sample 

code) for better coalesced memory accesses on GPUs. The AoS 

structure in our quadtree consists of four arrays with the same 

length. The Morton (Z-Order) code [7] array, termed as the key 

array, stores the Morton codes of quadrants. The boolean leaf 

indicator array, termed as the indicator array, stores 1/0 values to 

indicate whether the respective quadtree node is a leaf node or 

not. The first child/point position array, termed as f_pos array, 

stores the positions of the first child node in the quadtree SoA for 

a non-leaf node or the positions of the first points that fall within 

the quadrants that are indexed by a leaf quadtree node, depending 

on the corresponding elements in the indicator array. The last one, 

termed as length array, stores the numbers of child nodes of non-

leaf nodes or the numbers of points of leaf nodes, again 

depending on the indicator array elements. Note that the length 

array and the f_pos array hold the information related to both 

quadtree nodes and points. The combination is possible due to the 

fact that leaf-nodes do not have child nodes anymore and their 

corresponding elements in the length and f_pos arrays can be 

reused for information on the points they index. The consolidation 

of length/f_pos for both quadtree nodes and points reduces 

memory footprint to a half. A running example is provided in Fig. 

1, assuming that the predefined threshold representing the 

maximum number of points within a quadrant denoted as nt is 12.  

Further assuming the root node has a level of 0, leaf node 2 is 

identified at level 1 (11 points), leaf nodes 4 and 7 are identified 

at level 2 (7 and 9 points, respectively) and leaf nodes 9, 10, 11, 

12, 13 and 14 are identified at level 3.   

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 SoA Data Layout of Quadtree on GPUs 

Furthermore, by storing the positions of the first child 

nodes or the first points in quadrants, instead of the positions of 

all child nodes or points, the memory footprint can be 

significantly reduced. This is possible in our design as the 

quadtree nodes are laid out in a level-by-level manner and the 

positions of all child nodes under a parent quadtree node can be 

easily computed either sequentially or in parallel. The same 

argument can be applied to computing point positions where 

points among different quadrants are sorted based on the Morton 

codes of the quadrants they fall within. Note that points within a 

quadrant are unordered due to lack of practical needs, which also 

saves data movement costs in sorting. The SoA quadtree data 

layout will also help coalescing GPU memory accesses as 

neighboring threads in GPU thread blocks are assigned to process 

neighboring points or quadtree nodes.  

We next briefly summarize in Section 3.2 the first phase 

of the top-down approach on identifying leaf quadrants which 

was published in [1]  before introducing the new second phase on 

constructing the quadtree from leaf quadrants in Section 3.3. The 

top-down approach serves a baseline for comparison with our 

new bottom-up design and implementation introduced in Section 

4. 

3.2 Phase 1: Identifying Leaf Quadrants  
The basic idea of the design of phase 1 in the top-down 

approach is similar to the previous works on GPU-based point 

indexing discussed in Section 2 in several aspects in the sense that 

they all adopt the top-down strategy that constructs quadtree 

nodes level-by-level. A running example shown in Fig. 2 provides 

an intuitive illustration. It can be seen that the indexing space is 

hierarchically partitioned and leaf nodes are identified in a top-

down manner.  



In the first step of Phase 1, Morton codes [7] of the input 

points are first generated in parallel by all available threads using 

a transform primitive where each thread applies a Z-order 

transformation [7] function to the point that is assigned to 

generate the output Morton codes. In the second step, the points 

to be indexed are then sorted based on points’ Morton codes using 

the GPU-efficient radix sort (stable_sort_by_key). Third, the 

numbers of points in all valid quadrants are counted using a 

reduce_by_key primitive for a segmented reduction on sorted 

Morton codes which is also highly parallelizable where each 

thread is assigned to process a point. Different from the CUDA-

based implementations in the previous works, both sort and 

segmented reduction are able to utilize all the threads and blocks 

in a GPU device (and potentially across multiple GPU devices 

and multiple computing nodes) for a large-scale point dataset 

where the number of points is typically far larger than the number 

of simultaneous threads of a GPU device.  

 

 

 

 

 

Fig. 2 Illustration of the Top-Down Quadtree Construction 

Approach 

The next major step in phase 1 is to identify leaf 

quadrants that do not need further subdivisions and identify points 

that fall within these quadrants. The identified points are moved 

to the front of the point array so that the order of the last-level 

quadrants (leaf nodes) is the same as the order of the points that 

fall within them. Once this step is finished, the quadtree 

construction procedure can move to the next level.  

During the identification process, similar to the 

previous works, quadrants that have fewer points than a 

predefined threshold are considered as leaf nodes in the quadtree 

and no further subdivisions are required. Conceptually, this is 

similar to a SQL statement like “SELECT * FROM Points 

WHERE #key IN (SELECT #key FROM Points GROUP BY 

#key HAVING COUNT (#key) < nt )”, here #key represents the 

Morton codes of quadrants. Due to space limit, we refer to [1] for 

the details of its implementation by chaining copy_if, 

exclusive_scan, scatter_if, inclusive_scan and gather primitives 

to expand the boolean input flag array derived from the sub-query 

of the SQL statement to an boolean output flag array to signal 

whether a point should be indexed by a leaf node at the present 

level or postponed to the next level.  

Based on the boolean output flag array, in the final step 

of phase 1 (for each level), the points can be rearranged (or 

reordered) by using two copy_if primitives to copy the two types 

of points into a temporal point array and then use a copy primitive 

to copy the data back, all are highly parallelizable that can 

effectively use all GPU threads for large point datasets. Although 

device-to-device memory bandwidth on modern GPUs is in the 

order of hundreds of GB/s, similar to the CUDA sample code that 

utilizes double arrays, the extra memory footprint and data access 

cost are potentially sources of inefficiency, when compared with 

the newly proposed bottom-up approach (Section 4).  

We note that rearranging points based on the separation 

between leaf and non-leaf quadtree nodes allows apply the same 

algorithm on the rest of the points (yet-to-be-indexed points) 

corresponding to the non-leaf quadtree nodes to construct next-

level quadtree nodes. Upon the completion of Phase 1, among the 

four arrays of our SoA structure for quadtree, the Morton code 

array (key) and the leaf indicator array (indicator) have been filled 

level-by-level. Note that indicator array is filled by comparing the 

numbers of points in the resulting quadrants with the threshold 

value nt after the reduce_by_key primitive. The key array is filled 

directly by the output of the key field after the reduce_by_key 

primitive.     

3.3 Phase 2: Construction Quadtree from 

Leaf Quadrants  
To complete the top-down quadtree construction technique, the 

remaining task is to fill the length array and the f-pos array. We 

have developed a new approach which is much simpler than the 

one presented in our earlier technical report [30] (not part of [1]). 

The overall process is provided in Fig. 3 with explanations to 

follow next. Note that “+=” is used to denote appending an array 

to an existing one and “~” denotes element-wise negation in an 

array. Arrays inside a pair of curly brackets form a zipped array, 

0..n indicates a sequence, and a scalar number inside a pair of 

square bracket denotes lifting the scalar to an array. Finally, 

expression inside a pair of round brackets can be either 

parameters of a complicated functor (with implementation 

skipped) or the simple implementation of the functor for the 

corresponding primitive.   

Assuming that the root node sits at level 0, starting from level 1 

and for each level, line 3 computes the Morton codes for the 

parent nodes of all the nodes at the current level using a simple 

transform primitive with a functor that simply divides an input 

Mortan code by 4 (or right-shift 2 bits). Note that Morton codes 

of higher level quadrants have fewer bits. Line 4 uses a 

reduce_by_key primitive to count the numbers of child nodes of 

the parent nodes. Note that only non-leaf nodes that have one or 

more child nodes will appear in the resulting p_key array and 

n_child array, respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Algorithm to Construct Quadtree from Leaf Nodes 

The rest of the steps are to populate the length and f_pos 

arrays properly. Line 5 first accumulates the leaf node positions 

based on the Indicator array to generate a mapping array n_map 

Inputs: l_key: array of Morton Codes of leaf 

quadrants；n_point: Array of numbers of points in leaf 

quadrants; indicator:  leaf/non-leaf indictor array; max_level 

output:  f_pos, length (Section 3.1)  

 

Algorithm td_leafquad2tree  

1  t-keyl_key 

2  for k=0, max_level-1 

3        t_keytransform(t_key) …(t_key[i]/=4)  

4          (p_key, n_child)+=reduce_by_key(t_key) 

5  n_mapexclusive_scan (indicator) 

6  lengthgather_if(n_point, n_map, indicator) 

7  p_posexclsive_scan(n_point) 

8  f_posgather_if(p_pos, n_map,indicator) 

9  lengthcopy_if(n_child, ~indicator) 

10  n_childreplace_if (n_child, indicator,0) 

11  c_posexclusive_scan(n_child) 

12  f_poscopy_if(c_pos, ~indicator) 



using an exclusive_scan primitive. Line 6 puts n_point elements 

in the proper positions in the length array (for quadrants 

represented by leaf nodes) using a gather_if primitive and n_map 

and indicator as the inputs. Line 7 accumulates the first point 

positions for the quadrants represented by leaf nodes by using an 

exclusive_scan primitive again on n_point. A gather_if primitive 

is used in Line 8 in a way similar to Line 6.  

The rest of the four lines populate the length and the 

f_pos arrays for non-leaf nodes. Line 9 uses a copy_if primitive 

and is based on the negates of the elements in the indicator array 

to populate the numbers of child nodes for non-leaf nodes in the 

length array. Line 10 sets the n_child elements to 0 for leaf nodes 

(using a replace_if primitive) to correctly compute the 

accumulated positions for non-leaf nodes in Line 11 using an 

exclusive_scan primitive. Finally, Line 12 populates the first child 

positions of non-leaf nodes based on the results of Line 11 using 

a copy_if primitive, which completes Phase 2 of the top-down 

approach.      

Experiments show that the runtime of the Phase 2 code 

is insignificant comparing with that of Phase 1 (Section 5). This 

is expected as the numbers of the resulting quadrants and quadtree 

nodes are typically much smaller than the number of points, 

especially when the maximum number of points threshold is set 

to be relatively large (e.g., nt=50). More details on the 

experiments are provided in Section 5. 

4. THE NEWLY PROPOSED BOTTOM-

UP APPROACH 

4.1 Key ideas and Conceptual Design 
While preliminary experiment results have shown that the top-

down approach is capable of indexing ~170 million points of 

NYC taxi pick up locations in about a second on a RTX 2080 Ti 

GPU and is more efficient than the sample CUDA SDK code 

(Section 5), a question to ask is whether sorting yet-to-be-indexed 

points at all levels to maintain the correspondence between the 

BFS ordering of quadtree nodes and points they indexed is 

necessary, which turns to be the most expensive part of the top-

down approach. Conceptually, since leaf quadtree nodes keep 

track of the points they index using the first point position values 

and the numbers of points that fall within the quadrants, by 

following the first child position values of intermediate quadtree 

nodes from the root to a leaf node, the points in the quadrants that 

satisfy the query criteria can be correctly retrieved. As such, it can 

be argued that the correspondence may not be essential, although 

it is typically the case for quadtree indexing approaches that 

follow a top-down strategy as in our previous work [1].  

Without such a requirement, it turns out that points to 

be indexed need only be sorted once to generate quadtree nodes 

representing quadrants at the finest level based on their Morton 

codes (termed as full quadrants). Subsequently, a quadtree can be 

fully constructed from the full quadrants in a bottom-up manner 

with a few parallel primitives. By significantly reducing the 

workload on sorting points which is the bottleneck in our top-

down approach, the overall performance of the newly proposed 

bottom-up approach can be significantly improved. We note that 

while the quadtrees constructed by the two approaches are 

identical, the orderings of the points that the quadtrees index may 

be different, as points in the two approaches are sorted differently. 

That is, the top-down approach sorts points based on Morton 

codes at multiple levels and the bottom-up approach sorts points 

based on Morton codes at the finest level.  

It is worthy of noticing that, for the bottom-up approach, as points 

are sorted based on Morton codes, the order of points does not 

need to be changed for correct indexing when lower level 

quadrants are aggregated to upper level quadrants. Aggregation 

alone a space partitioning hierarchy will result in larger numbers 

of points (sum) and smaller first point positions (minimum) for 

upper level quadrants. The characteristics are fundamental to the 

correctness of the bottom-up approach while achieving 

efficiency.  The running example in Fig. 4 provides an intuitive 

idea on the bottom-up approach where the lower level quadrants 

are aggregated bottom-up and the unqualified nodes are removed 

to construct a quadtree. We next present the design and 

implementation details of the newly proposed bottom-up 

approach. 

4.2 Data Parallel Design and Primitive-

based Implementation 
The bottom-up approach starts with sorting points (using a 

stable_sort_by_key primitive) based on their Morton codes at the 

finest level (with the maximum depth) generated by a transform 

primitive. While both steps look similar to the steps discussed 

previously when presenting the top-down approach, we note that 

the top-down approach begins with the coarsest level Morton 

codes and the bottom-up approach begins with the finest level 

Morton codes. Subsequently, for the bottom-up approach, a 

reduce_by_key parallel primitive is applied to compute the 

Morton codes of the finest-level quadrants and count the numbers 

of points that fall within these quadrants. 

Using these Morton codes and the counted numbers as 

the input arrays, in a way similar to Phase 2 in the top-down 

approach (Line 2-4 in Fig. 3 of Section 3), for each level of the 

quadtree, by using a reduce_by_key primitive, the Morton codes 

and the numbers of child quadtree nodes of the parent quadrant 

nodes can be computed. The process is repeated until reaching the 

root node. Although they share some similarities again, the 

difference is that, the inputs to the top-down and bottom 

approaches for this part are the leaf quadrants and the full 

quadrants, respectively.   

We argue that the combined steps so far are 

conceptually equivalent to Phase 1 of the top-down approach. 

Different from the top-down approach that generates leaf 

quadrants with BFS order in Phase 1 which makes its Phase 2 

much easier, Phase 1 of the bottom-up approach generates all 

possible non-empty quadrants (i.e., full quadrants) which makes 

its Phase 2 much more difficult. The rest of Section 4 is dedicated 

for Phase 2 of the bottom-up approach. As a summary, after the 

above three steps (Phase 1), the outputs have four arrays which 

also serve as the input for Phase 2: an array of Morton codes of 

quadrants (pkey), an array of the numbers of non-empty sub-

quadrants (clen), an array of the numbers of points in these 

quadrants (nlen), and finally, an array of sorted points based on 

the Morton codes of the quadrants at the last level (pnt), where 

pkey, clen and nlen have the same lengths and their elements have 

a one-to-one correspondence.   

Two major issues remain in Phase 2. First, as shown in 

Fig. 4, it can be seen that, among the full quadrants, some cannot 

be represented as valid quadtree nodes and should be removed 

(more details shortly). Second, although the key and the length 

arrays are filled during the bottom-up level-by-level iterations, 



the f_pos array and the indicator array need to be computed. The 

algorithm to tackle these two issues and generate a quadtree from 

full quadrants are provided in Fig. 5 and its details are provided 

in the two subsections to follow next. 

 

 

 

 

 

Fig.  4 Illustration of the Bottom-Up Quadtree Construction 

Approach 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 Bottom-Up Quadtree Construction Algorithm from Full 

Quadrants 

4.2.1 Identifying Valid Quadtree Nodes 
Recall that, in the top-down approach, leaf nodes can be simply 

identified by comparing the number of points that fall within the 

quadrants, i.e., nk, with the threshold value nt. As points that 

belong to leaf nodes and non-leaf nodes are re-ordered in the 

output point array at each level, the positions of the first points in 

the leaf nodes are simply pre-fix sums (exclusive scan) of the 

numbers of points in these quadrants. As discussed in Section 3.1, 

points under the quadrants represented by non-leaf nodes need to 

be re-ordered and sorted based on their Morton codes at each level 

to maintain the order, which is the major bottleneck of the top-

down approach.  

For the bottom-up approach, it can be seen that whether 

a quadrant is represented by a leaf node or non-leaf node depends 

not only on nk but also on the number of points that fall within its 

parent node (np). The nodes corresponding to the last level 

quadrants with nk> nt automatically qualify as leaf nodes. 

However, for the rest of the quadrants, only when nk<=nt <np can 

the node be qualified as a valid leaf node. Otherwise, the 

quadrants need to be aggregated until a valid leaf node can be 

identified. Nodes representing such lower level quadrants are not 

part of the final quadtree and must be removed. As shown in Fig. 

4, all the quadrants covered by the leaf node with 11 points (the 

lower-left part of the four sub-panels, highlighted) should be 

removed and only the leaf node should appear in the final 

constructed quadtree. The problem can be trivially solved if we 

keep a pointer (or array offset) to the parent node of the current 

node but our SoA quadtree data structure has only the length and 

the f_pos arrays for the memory efficiency reason (Section 3.1 

and Fig. 1).   

To construct a quadtree with only the numbers of points 

in the last-level quadrant and the numbers of child nodes for all 

quadrants derived from the last-level quadrants, our approach 

transforms the criteria for identifying leaf-nodes into new ones. 

The new criteria can be verified in two successive steps where 

each step can be implemented by one or more parallel primitives. 

The new criteria are that, first, if a quadrant whose parent 

quadrant has no more than nt points, i.e., np<= nt, it should be 

removed. For the remaining quadrants, if nk<=nt, they should be 

represented by leaf nodes; otherwise, they should be represented 

by non-leaf nodes. The algorithm with the primitive based 

implementation is illustrated in the first five lines of Fig. 5. 

Lines 1-3 compute the numbers of points in the 

quadrants’ parent quadrants, given the numbers of points of child 

quadrants under these parent quadrants. Essentially this is 

equivalent to computing the offsets of parent quadrants for all 

child quadrants on-the-fly as the numbers of points and their 

quadrants have a one-to-one correspondence in their respective 

arrays as part of the input. At an abstract level, this can be realized 

by a special expand parallel primitive which is a chain of 

exclusive_scan - scatter - inclusive_scan. The exclusive_scan 

primitive takes the default “plus” as the functor parameter to 

accumulate the numbers of children into the positions of the first 

child nodes as we have discussed before. The scatter primitive 

puts the sequence numbers of the parent nodes into these first 

child node positions. Finally, the inclusive_scan primitive with 

“maximum” as the functor fills in the blanks between the 

consecutive first node positions with the sequence identifier of the 

first child node. This is because of the fact that all child nodes 

have the same sequence identifiers of their parent nodes. The 

compound expand primitive is special for two reasons. First, as 

the numbers of child nodes of a parent node are always greater 

than 0 and thus scatter, instead of the conditional scatter_if, can 

be used, which is more efficient. Second, as the sequence 

identifiers of parent quadtree nodes, which are sequential and 

range from 0 to |clen|, are exactly what we want to expand, the 

last step with a gather primitive to actually replicate the input data 

items (especially when these data items are not comparable) can 

be omitted.  

Line 5 is the key step where the unqualified quadrants 

are removed by using a remove_if primitive. To keep the 

correspondence among qkey, clen and nlen arrays, we zip them 

together as a single input vector for the primitive. This brings a 

caveat that needs special attention, due to the reason that 

remove_if is an in-place primitive. When the elements of the input 

array are applied to the remove_if primitive in parallel, they are 

being modified during the primitive’s execution. Unfortunately, 

the primitives’ functor also rely on nlen to compare its elements 

with nt where we expect nlen array to be constant, which results 

in a semantic conflict. The issue is solved by duplicating the nlen 

array and use its copy for the functor (Line 4). The duplicate is 

then deleted after its lifecycle is over to reduce GPU memory 

footprint. 

Inputs: pkey: array of Morton codes of quadrants; clen: 

numbers of non-empty sub-quadrants; nlen: array of the 

numbers of points in these quadrants; nt  

Output: indicator, f_pos 

 

Algorithm genValidQuadrants 

1 tposexclusive_scan(clen) 

2 tmapscatter ([0..|clen|],tpos) 

3 tmapinclusive_scan(tmap, maximum) 

4 tlenclen  

5{pkey,clen,nlen,tmap}remove_if({pkey,clen, 

nlen,tmap}, (nlen, nt)) 

6 indicatortransform(clen,( nt )) 

7 nlenreplace_if(nlen, indicator) 

8 pposexclusive_scan(nlen) 

9 clenreplace_if(clen, ~ indicator) 

10 cposexclusive_scan(clen) 

11 f_postransform({ppos,cpos}, indicator) 

 

 



4.2.2 Populating INDICATOR and F_POS arrays 
The leaf and non-leaf indicator array can be populated by 

applying the second criteria discussed previously to the output of 

Phase 1 to decide whether a quadtree node above the last level is 

a leaf node or not. This is implemented by a transform primitive 

using a simple comparison functor by comparing the numbers of 

points under the quadrants with the threshold nt as shown in Line 

6 of Fig. 5. The elements are set to non-leaf when nk>nt.  Line 7 

takes care of the quadrants at the last level where they are 

considered as leaf nodes even if nk>nt. This can be simply 

implemented by a transform primitive to set the respective 

elements in the indicator array to true.  

The last five lines in Fig. 5 are used to fill the length 

array in the quadtree data structure based on clen, nlen and the 

indicator arrays. Line 8 changes the elements in the nlen array to 

0 for non-leaf quadtree nodes by a replace_if primitive before 

applying an exclusive_scan primitive to accumulate the nlen array 

into a ppos array to record the offsets of the first point positions 

at Line 9. Note that the nlen array elements with zero values (for 

non-leaf nodes) do not increase the corresponding ppos values 

and these values are irrelevant to the final length array. Similarly, 

the clen array are accumulated into the cpos array after setting the 

clen elements corresponding to the leaf nodes to 0 in Line 10 and 

Line 11, respectively. Again, the clen elements with zero values 

do not increase the corresponding cpos elements. Finally, step 11 

assembles the ppos and cpos arrays into the first position array 

f_pos based on the leaf indicator array, which is naturally 

implemented as a transform primitive using a simple switch 

function as the functor with ppos and cpos as the inputs. Using 

classic C syntax, the functor can be expressed as 

f_pos[i]=(indicator[i])?ppos[i]:cpos[i] for easy interpretation. 

5. EXPERIMENTS & RESULTS 

5.1 Data and Experiment Setup 
Among the four top-down approaches discussed in details by the 

end of Section 2, only the CUDA SDK sample code is publically 

available. We thus compare the end-to-end runtimes produced by 

the CUDA SDK sample code (or simply SDK), our top-down 

approach (TD), and our bottom-up approach (BU). However, the 

SDK code’s memory allocation scheme prevents it from 

constructing large quadtrees with the maximum level/depth larger 

than 14 on typical GPUs (e.g., RTX 2080 Ti with 11 GB memory 

and Titan V with 12 GB memory). As such, max_level in the SDK 

code is set to 14.  For the top-down and bottom-up approaches 

that we have developed, the memory footprints are generally 

linear with respect to the numbers of points to index and not 

directly related to the maximum depth/level limits. Using a 

max_level =16 is already capable of indexing points in a space of 

216*216.  For resolution as high as 1 meter, which is much higher 

than typical GPS location accuracy around 30 meters, the index 

space is about 65*65 kilometers, which should be sufficient for 

most city scale applications. As such, we set the maximum 

depth/level to 16 in our top-down and bottom-up approaches. The 

maximum number of points in a leaf quadrant (except for the last 

level) nt is set to 200.     

While it would be also interesting to use synthetic data 

with random distribution or some skewed distributions, we are 

more interested in the performance on real world data that are 

typically unevenly distributed and difficult to be approximated by 

simple mathematical distributions. We have picked a popular 

dataset which is the taxi trip pickup/drop-off locations in New 

York City (NYC) with yearly ~170 million points [31] for 

experiments. In this study, we have chosen the pickup locations 

in 2009 which has 168,898,952 points. The original 

latitude/longitude coordinates have been re-projected into the 

standard EPSG 2263 projection that is typically adopted for city-

level geospatial applications in NYC and its neighboring Long 

Island area [32]. The unit of the projected coordinates is foot 

which is suitable for direct distance computation without further 

processing. To test the scalability of the designs and the 

implementations of the approaches, we accumulate the first 1-12 

months’ pickup location data and treat them as 12 datasets, each 

for an experiment.   

All experiments are performed on a Nvidia GTX 2080 

Ti GPU with 4,325 CUDA cores running at 1.65 GZ and 11 GB 

GDDR5 memory with 352-bit memory bandwidth. All 

implementations are compiled with CUDA SDK version 10.1, 

computing capability 7.5 and -O3 optimization flag. We 

measured the maximum memory footprints for the top-down and 

the bottom-up approaches, which are 5.99GB and 3.15GB, 

respectively. Although we leave fine-tuning memory 

management for future work, e.g., reusing temporal arrays and 

finer-grained memory allocation/deallocation, the current 

implementations can run on inexpensive commodity GPUs with 

8GB memory, which is becoming the mainstream for the current 

generation of Nvidia GPUs. As the bottom-up approach requires 

only about half of the GPU memory of the top-down approach, it 

is suitable to run on even lower-end GPUs with as little as 4GB 

memory for the yearly NYC taxi trip data.     

5.2 Results  
The numbers of points and the end-to-end runtimes of the three 

approaches for the 12 experiments are listed in Table 1. The last 

two columns of Table 1 also list the speedup of our top-down 

implementation over the CUDA SDK sample code and the 

speedup of the bottom-up approach over the top-down approach. 

It can be seen that the top-down approach (max_level=16) is about 

2.5X faster than the CUDA SDK sample code (max_level=14) 

while the bottom-up approach is 3.4X faster than the top-down 

approach. The speedups are quite consistent across the 12 

experiments for both comparisons. This is likely due to the similar 

distributions of taxi pickup locations in NYC across different 

months (and likely across multiple years). Due to the inferior 

performance of the CUDA SDK sample code, we exclude it from 

further discussion. As a summary, the bottom-up approach not 

only runs faster (3.4X) but also is more memory efficient (~2X), 

when compared with the top-down approach.   

Table 1 Runtimes of Three Approaches (in milliseconds):  

CUDA SDK Sample Code (SDK), Top-Down (TD) and 

Bottom-up (BU) and Speedups 

# Mo. #of points 

SDK 

(T1) 

TD 

(T2) 

BU 

(T3) 

Speedup 

=T1/T2 

Speedup 

=T2/T3 

1 13,887,620 360.4 143.3 40.8 2.52 3.51 

2 27,079,723 619.4 244.4 68.5 2.53 3.57 

3 41,284,081 833.4 336.7 98.6 2.48 3.41 

4 55,383,596 1057.1 426.7 128.8 2.48 3.31 

5 69,970,743 1290.6 535.5 150.1 2.41 3.57 

6 84,035,490 1549.0 608.8 189.3 2.54 3.22 

7 97,553,533 1769.2 711.5 199.1 2.49 3.57 

8 111,127,610 1977.6 786.8 226.4 2.51 3.48 

9 124,993,700 2206.7 869.3 253.9 2.54 3.42 

10 140,444,141 2463.6 966.0 287.8 2.55 3.36 

11 154,523,740 2685.2 1050.0 314.5 2.56 3.34 

12 168,898,952 2959.5 1124.9 339.1 2.63 3.32 



 

To further understand the performance differences 

between the top-down and the bottom-up approach, we have 

listed the breakdown times of the three components in both 

approaches, i.e., the initialization time, Phase 1 time and Phase 2 

time. The initialization part is responsible for GPU memory 

allocation and CPU to GPU data transfer; the initialization times 

are listed as TD-I and BU-I in Table 2 for the two approaches, 

respectively. Although the top-down and the bottom-up 

approaches utilize slightly different data structures, the runtime 

on transferring point data from CPU to GPU which is common to 

both approaches, dominates both TD-I and BU-I. As a result, TD-

I and BU-I are very close. For situations that point data is already 

on GPU devices, TD-I and BU-I will be close to 0 and can be 

excluded from their respective runtimes.  

Table 2 Breakdown Runtimes (in milliseconds) of the Top-

Down Approach (TD) and Bottom-Up Approach 

# Mo. TD-I TD-P1 TD-P2 BU-I BU-P1 BU-P2 Speedup 

1 11.9 119.9 11.5 11.9 13.4 15.5 4.55 

2 22.7 207.2 14.5 22.8 22.2 23.4 4.86 

3 34.3 287.2 15.2 34.7 31.7 32.2 4.73 

4 45.8 365.9 14.9 45.9 41.2 41.7 4.59 

5 58.4 456.1 21.0 57.5 52.0 40.6 5.15 

6 69.6 517.2 22.0 69.7 61.4 58.2 4.51 

7 80.3 609.3 21.8 80.2 71.6 47.3 5.31 

8 91.4 674.0 21.5 91.6 80.3 54.6 5.16 

9 102.3 744.4 22.6 104.8 89.7 59.4 5.14 

10 115.2 829.3 21.5 115.8 96.4 75.7 4.94 

11 126.8 900.8 22.4 128.3 111.7 74.5 4.96 

12 138.6 965.4 20.9 139.6 120.7 78.9 4.94 

I: Initialization time – GPU memory allocation and CPU->GPU 

data transfer 

P1 and P2: phase 1 and phase 2  

Speedup=(TD-P1+TD-P2)/(BU-P1+BU-P2) 

 

From Table 2, it can be seen that the runtime for Phase 

1 (TD-P1) in the top-down approach is much larger than that of 

Phase 2 (TD-P2) as we have discussed in the previous sections. 

In fact, the difference between TD-P1 and TD-P2 gets larger as 

the numbers of points increase. As a matter of fact, TD-P1 over 

TD-P2 increases from 10.4X (119.9/11.9) to 46.2X (965.4/20.9) 

from 1 month to 12 months. When comparing TD-P1 and TD-P2 

for 1 month and 12 months, TD-P1 increases 8.1X while TD-P2 

increases only 1.8X. This is because the resulting numbers of leaf 

quadrants which are the inputs of TD’s Phase 1, grow sub-linearly 

with respect to the numbers of points, which are the input for 

Phase 2. As a result, it is likely that, as the number of points to 

index increases, the resulting leaf nodes become more full, but the 

numbers of points in these quadrants are still less than the 

threshold nt. When comparing BU-P1 and BU-P2, we can see that 

they are much closer, although BU-P2 is still lower than BU-P1 

for all months.         

The results of Table 2 also support our previous 

discussions that Phase 1 in the top-down approach is more 

complex than Phase 1 in the bottom-up approach due to the fact 

that TD-P1 sorts yet-to-be indexed points at each and every level 

while BU-P2 sorts all points to be indexed only once at the finest 

level. In contrast, TD-P2 is much simpler than BU-P2 as TD-P2 

constructs a quadtree from leaf quadrants only while BU-P2 

constructs a quadtree from full quadrants. In addition to the 

reason that the number of full quadrants can be several times 

larger than the number of leaf quadrants, BU-P2 also needs 

sophisticated logic to remove quadrants that cannot be qualified 

as leaf quadtree nodes among the full quadrants. 

 Assuming that the point data to be indexed are already 

on GPU devices, the total runtime of the top-down approach (TD-

tot) would be just TD-P1+TD-P2 and the total runtime of the 

bottom-up approach (BU-tot) would be just BU-P1+BU-P2. The 

speedup, defined as TD-tot/BU-tot, is computed. As shown in the 

last column of Table 2, the speedup is about 4.9X across the 12 

experiments, which is higher than 3.4X when the initialization 

time (mostly CPU to GPU data transfer time) is included.  

Although the exact runtimes of quadtree constructions 

reported in [28] are unavailable, it can be seen from its Fig. 8 that 

it takes about 21 milliseconds to index 9.5 million points for 

skewed distribution, which is already the largest in the experiment 

that generates the figure. Our bottom-up approach indexes 13.9 

million points (the first month in the NYC taxi trip dataset) in 

about 28.9 milliseconds, which suggests slightly higher 

performance of our bottom-up approach, i.e., 481 million points/s 

vs. 452 million points/s, for relatively small-scale data. Since Fig. 

8 of [28] exhibits super-liner increase of runtime with respect to 

the numbers of points for skewed data, extrapolating the runtime 

to 169 million points would not be accurate or even possible. 

Nevertheless, even assuming a linear extrapolation for [28], the 

achieved performance of our bottom-up approach, i.e., indexing 

169 million points in 199.6 ms which is equivalent to 846 million 

points per second, would still perform about 2X faster.  

Overall, the total runtime of the proposed bottom-up 

approach is capable of indexing approximately 170 million points 

in about 200ms. With an indexing rate of 850 million points per 

second, it may suggest the possibility of real-time and on-the-fly 

indexing for point datasets at scale, even on commodity GPUs 

that cost around $1200 or less. The high-performance may open 

opportunities for interactive explorations through the emerging 

GPU-based data management systems such as Nvidia cuDF [2], 

as discussed in the introduction section. We are in the process of 

integrating the quadtree indexing approach as well as several 

other GPU-based spatial query techniques into cuDF.  

6. CONCLUSION AND FUTURE WORK 
In this study, after extending our previous work on identifying 

leaf quadrants from a large-scale point dataset by repetitively 

partitioning space into quadrants until the numbers of points in 

each quadrant is smaller than a predefined threshold for 

parallelizing spatial joins to a full quadtree indexing approach, 

termed as the top-down approach, we have developed a new and 

more efficient bottom-up approach. While not exactly, the top-

down and the bottom-up approaches share some duality features 

in indexing point data which makes exploring the two approaches 

simultaneously interesting. We present the design and 

implementation details of the extension of the top-down approach 

and the complete bottom-up approach. Different from previous 

works whose implementations adopt plain CUDA programming, 

our implementations are based on parallel primitives which are 

simple to understand, easy to implement, and offer high level of 

portability.  

Experiments on the yearly 170 million taxi pickup 

locations in NYC in 2009 have shown that the top-down 

implementation is about 2.5X faster than the quadtree 

construction code that is shipped as a CUDA SDK sample even 

though our top-down implementation indexes with a maximum 

level/depth of 16 while the SDK code is only capable of indexing 



with a maximum level/depth of 14 before running out of memory. 

Both running at a maximum level/depth of 16, the bottom-up 

approach is 3.4X better than the top-down approach when CPU 

to GPU data transfer time is included. The speedup increases to 

4.9X when the point data to be indexed are already on GPU 

devices and the data transfer time is not needed. With an indexing 

time of about 200 milliseconds to index about 170 million points, 

our bottom-up approach seems to be capable of real-time and on-

the-fly indexing for interactive explorations, even on inexpensive 

commodity GPUs.  

 For future work, first, as discussed inline, we would 

like to fine-tune the memory management part to reduce both 

memory allocation/deallocation time and to minimize memory 

footprint. The RAPIDS Memory Manager (rmm [33]), which is 

also used in cuDF, can be a good option for the more efficient 

memory allocation/deallocation on GPUs. Carefully analyzing 

the lifecycle of each temporal variables and deallocating (or 

offloading to CPU memory) promptly on variables that are no 

longer needed or cannot be reused seem to be a low hanging fruit 

for this purpose. The task could be easier for data parallel designs 

and primitive-based implementations as most of their important 

variables are arrays and the number of such variables tends to be 

small. Second, we plan to integrate the indexing techniques into 

GPU-based data management systems such as Nvidia cuDF (part 

of RAPIDS) to extend such systems to manage both relational and 

spatial (and spatiotemporal/trajectory) data with indexing 

support. There are considerable software engineering challenges 

to make such a system available and we plan to tackle them.    
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Appendix: A Quick Reference of Thrust 

Parallel Primitives 
 

(1) Sort, sort_by_key and stable_sort_by_key. 

https://thrust.github.io/doc/group__sorting.html 

While sort performs a key-only sort, sort_by_key also takes a 

value array and performs a key-value sort. Stable_sort_by_key 

preserves the relative ordering of equivalent elements which is 

more expensive than sort_by_key but may be desirable in certain 

applications.  

 

(2) Reduce and reduce_by_key. 

https://thrust.github.io/doc/group__reductions.html  

Reduce is used to accumulate a vector array to a scalar value. For 

example, reduce([3,2,4])11. While the summation (using a 

default “plus” functor) is frequently used in reductions, Thrust 

allows using a user defined associative binary function for 

tailored summation, such as determining the maximum entry 

(“maximum” functor) or computing bounding boxes of points 

(useful to have an additional bbox array in the quadtree SOA 

structure). Reduce_by_key is a generalization of Reduce to key-

value pairs based on groups where consecutive keys in the groups 

are the same. For example, reduce 

([1,3,3,2],[2,1,3,4])([1,3,2],[2,4,6]).  

 

(3) Scan and scan_by_key. 

https://thrust.github.io/doc/scan_8h.html 

The Scan primitive computes the cumulative sums of a 

vector/array. The Scan primitive can also take a user defined 

associative binary function. Both the inclusive and exclusive 

scans are available. For example, exclusive_scan works as 

([3,2,4])([0,3,5]) while inclusive_scan works as 

([3,2,4])([3,5,9]). Similarly, scan_by_key works on 

consecutive key groups instead of a whole vector/array. In this 

research, inclusive_scan_by_key and exclusive_scan_by_key are 

extensively used to compute the positions of entries in a vector 

after applying reduce_by_key which outputs numbers of entries 

with same keys.  

 

(4) Copy and copy_if.  

https://thrust.github.io/doc/group__copying.html 

https://thrust.github.io/doc/group__stream__compaction.html 

The functionality of the two primitives is self-evident by names. 

In this research, we use copy to move groups of entries from one 

location to another, mostly within a same vector. The conditional 

copy_if primitive is mostly used for identifying points and keys 

that satisfy certain criteria expressed as a boolean array and output 

the identified entries to a new vector for further processing.  

 

(5) Remove_if.  

https://thrust.github.io/doc/group__stream__compaction.html 

Remove_if marks elements in a vector that satisfy a predicate and 

compact the unmarked elements to the beginning of the vector so 

that the marked elements are removed. For example, Remove_if 

works as ([1, 4, 2, 8, 5, 7,is_even])[1,5,7]. Remove_if is 

functionally equivalent to copy_if but it allows in-place operation 

in the Thrust library. In contrast, using copy_if would require a 

temporary vector and remove_if is more convenient in this case.  

 

(6) Transform. 

https://thrust.github.io/doc/group__transformations.html 

The basic form of Transform applies a unary function to each 

entry of an input sequence and stores the result in the 

corresponding position in an output sequence. Transform is more 

general than copy as it allows a user defined operation (functor) 

to be applied to entries rather than simply copying. The functor 

can be reasonably complex as long as each and every element in 

the input array is expected to apply the same logic in the functor. 

The functor can also takes global memory pointers as its input 

parameter so that the functor can access additional data besides 

its input element from the input array.   

 

(7) Gather, Gather_if, Scatter and Scatter_if.  

https://thrust.github.io/doc/group__gathering.html 

https://thrust.github.io/doc/group__scattering.html 

Gather copies elements from a source array into a destination 

range according to a map and Scatter copies elements from a 

source range into an output array according to a map. For 

example, Gather([3,0,2],[4,7,8,12,15])([12,4,8]) and 

Scatter([3,0,2],[12,4,8],[*,*,*,*,*,*])([4,*,8,*12,*]).  Similar 

to copy_if and remove_if, gather_if and scatter_if take an 

additional boolean sign array and perform gather/scatter on the 

input elements only when the corresponding sign values are true.    
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