
Efficient Quadtree Construction for Indexing Large-Scale
Point Data on GPUs: Bottom-Up vs. Top-Down

Jianting Zhang
Department of Computer Science

 The City College of the City University of New York
New York, NY, 10031

jzhang@cs.ccny.cuny.edu

Le Gruenwald
School of Computer Science

University of Oklahoma
Norman, OK 73071

ggruenwald@ou.edu

ABSTRACT
Point location data are rapidly growing in volume, velocity and

variety. GPU-acceleration is attractive for managing large-scale

point data. In this study, we introduce a new bottom-up approach

to constructing quadtrees for indexing large-scale point data on

GPUs, which is significantly different from previous works that

typically adopt a top-down strategy. In addition to sorting points

to be indexed only once based on their Morton codes, our

proposed bottom-up approach adopts a data parallel design and

parallel primitive based implementation, which makes a sensible

tradeoff between efficiency and complexity in principle and often

results in more efficient implementations in practice.

We also extend our previous work [1] on identifying

leaf quadrants from large-scale point datasets by repetitively

partitioning the indexing space into quadrants until the number of

points in each quadrant is less than a threshold. Although our

previous work was designed for parallelizing spatial joins on

GPUs, the extension is able to construct the quadtree index end-

to-end in a top-down manner. As this top-down approach is more

efficient than the quadtree construction code provided as a sample

in Nvidia CUDA SDK, we use it as a strong baseline to compare

with our newly proposed bottom-up approach and explore some

aspects of duality between the top-down and the bottom-up

approaches.

Experiments show that the bottom-up approach is

capable of indexing approximately 170 million taxi pickup

locations in New York City (NYC) in less than 200 milliseconds

and is 3.4X and 4.9X times faster than the top-down approach

with and without including CPU/GPU data transfer time,

respectively. The work reported in this paper is part of an effort

to integrate spatial data management functionality into a GPU-

accelerated data management system to support both relational

and spatial data in an integrated manner.

1. INTRODUCTION
Comparing to polygon and polyline data in geospatial

applications, the volumes of point data have been increasing very

fast due to significant progresses of sensing techniques and

advanced processing tools in recent years. For example, in

contrast to point locations captured by consumer GPS devices

whose temporal resolution is in the order of a few to tens of

seconds per record, locations derived from high-resolution

cameras using Deep Learning (DL) inferencing tools can have a

frame rate in the order of a few tens of frames per second and

there can be tens to hundreds of detected objects in a single image.

The combined point location data volume increases for moving

vehicles can be 2-3 orders higher. The same tends also apply to

human poses under different application scenarios. While parallel

hardware and distributed systems are emerging to handle such

“Spatial BigData”, one of the key challenges remains is to

understand the inherent characteristics of data access patterns in

indexing large-scale point data for various types of spatial

queries, such as range queries and spatial joins, on different

parallel hardware and distributed computing platforms.

As Graphics Processing Units (GPUs) hardware are

getting into mainstream and General Purpose Graphics

Processing Unit (GPGPU) technologies become mature, there are

increasing research and application interests on in-memory data

managements on GPUs, such as the open source cuDF project

from Nvidia [2], CoGaDB [3] and OmniDB [4]. However, none

of these GPU databases has the capability to support spatial data

management yet. On the other hand, while a few research projects

have developed techniques and prototype systems for managing

large-scale spatial data on GPUs and reported impressive

performance [5] [6], they are yet to be widely applied due to the

shear amount of software engineering work to integrate these

techniques into end-to-end systems with desirable level of

usability, in addition to performance.

In this study, built on top of our previous work on

managing large-scale point data on GPUs [1], we propose to

revisit the interesting topic from both a parallel design perspective

and its implementations on modern GPUs while keep integrating

with mainstream GPU data management systems such as cuDF in

mind. In addition to extending our previous technique [1] to

construct quadtrees end-to-end for point indexing, which we call

a top-down approach, to form a strong baseline for comparison,

we have proposed a new bottom-up approach that is more

efficient not only in terms of end-to-end runtimes but also with

respect to memory footprint. We analyze the two quadtree

construction approaches and highlight some key findings with

respect to data accesses that largely dominate the performance

differences between the two approaches. While our techniques

currently adopt a non-overlapping space partitioning scheme for

quadtree-alike indexing, we believe many of the discussions can

be applied to data-driven spatial indexing, such as R-Trees [7].,

as well.

The rest of the paper is arranged as follows. Section 2

is the background, motivation and related work. Section 3

introduces the baseline approach by extending the work we have

reported in [1]. Section 4 presents the new bottom-up approach

for indexing large-scale point data. Section 5 provides

experiments and discusses results using taxi pickup locations in

NYC. Finally, Section 6 is the conclusion and future work

directions.

2. BACKGROUND, MOTIVATION AND

RELATED WORK
Spatial indexing plays a key role in spatial data

management [7]. For a 2D range query, aka. Window Query, by

exploiting spatial indexing, the complexity can be reduced from

O(n) to O(logn) or even O(1). Probably more significantly, for

spatial joins that involve two input datasets, the complexity can

be reduced from O(m*n) to O(m*logn)/O(n*logm) or even

lower, where m and n are the numbers of records in the two input

datasets in a spatial join.

Indexing on polyline or polygon data typically

approximates complex polylines and polygons using Minimum

Bounding Boxes (MBBs) and subsequently indexes the MBBs.

While technically feasible, it would be too costly to degenerate

points as MBBs and then apply techniques such as R-Trees [7]

for indexing for the purpose. Although various hashing

techniques have been developed for generic multidimensional

point data (see e.g. [8] [9] for GPU-based construction

techniques), hierarchical indexing structures, such as space

partition based kd-trees and quadtrees, remain popular for

indexing geospatial point data that typically have two or three

dimensions, partially for interpretability and visualization. In this

study, we focus on multi-level space partition based point

indexing for 2D geospatial point locations on GPUs and we refer

to the previous works for spatial indexing on polylines and

polygons on GPUs [10] [11] [12].

While numerous spatial indexing methods have been

proposed in the past few decades [7], most of them are designed

for CPUs with a single processor based on a serial computing

model. The past few years have witnessed rapid advances of

parallel hardware, such as multi-core CPUs without and with

SIMD (Single Instruction Multi Data) extensions [13] and GPUs

with thousands of cores and increasingly larger memory

capacities [14]. While multi-core CPUs allow coarse-grained

parallelisms and can be relatively easily applied to parallelizing

serial spatial indexing techniques, it is quite technically

challenging to fully exploit SIMD instructions that are supported

by Vector Processing Units (VPUs) inside CPUs due to their

stringent parallel programming models [13]. In contrast, the

emergence of CUDA technologies supported by Nvidia GPUs

have provided a flexible parallel computing platform, a set of

easy-to-use APIs, and a user-friendly and portable parallel library

(i.e., Thrust [15]) that consists of a set of highly efficient parallel

primitives to exploit the massive data parallel computing power

on GPUs [14].

There has been a steady growth of interests in using

GPUs for spatial data management in the past few years (we refer

to papers in a 2014 special issue of ACM SIGSPATIAL Special

[10] [6] for more comprehensive reviews), in parallel with using

GPUs for relational data management [2] [3] [4]. In a way similar

to the fusion of Relational Database Management System

(RDBMS) and Geographical Information System (GIS) in late

2000s after major database vendors supported spatial data, we

believe there is a technical trend in developing GPU-accelerated

data management systems that support both relational and spatial

data. Among all spatial data types, point data might be the first

one that is fully supported in such systems due to practical

popularity, data layout regularity (fixed length for 2D/3D points)

and technical maturity, in a way similar to that, point data seemed

to be first supported by NoSQL databases such as Cassandra

before more complex spatial datatypes were supported [16].

It is obvious that performance is the main driving force

for GPU accelerated data management on large-scale data. While

indexing is optional for moderate size datasets by fully exploiting

GPU hardware capabilities, indexing becomes indispensable for

large-scale data. Spatial indexing on point data is challenging

largely due to high data volumes and significant irregular data

accesses and data movements required for indexing. GPUs are

traditionally featured with large number of processing units, high

memory bandwidth and user managed shared memory/caches,

which are desirable from a data management perspective.

However, high memory latency and limited cache capacity have

imposed significant technical challenges, in addition to

complexity and programmability, for such purposes [14]. In our

previous studies, we have advocated for parallel primitive based

designs and implementations for spatial indexing and spatial

queries (e.g. [1] [17] [18] [19]). Parallel primitives supported by

GPU hardware, e.g., the Thrust library through CUDA SDK [15]

[14], provide a desirable isolation between our spatial data

management applications and GPU hardware details and facilitate

a well-justified tradeoff between portability and efficiency. The

set of 7 parallel primitives (with variations) used in this study are

listed in the Appendix for a quick reference.

Among various parallel primitives we have exploited,

sorting plays a key role in spatial indexing to move spatially

adjacent points close to each other and generate indices for the

underlying data. Fortunately, sorting is among the most well-

studied parallel primitives on GPUs and its implementations have

been continuously improving and fine-tuned [20] [21]. Modern

GPUs are capable of sorting hundreds of millions or even billions

of data items per second which largely contributes to the overall

high performance of GPU-based spatial indexing techniques.

Nonetheless, as detailed in Section 3 and Section 4, utilizing the

parallel primitives (including sorting) in different ways may

significantly impact the performance of spatial indexing

applications (and likely many other applications), which

motivates many of the discussions in this work. As detailed in

Section 5, the new bottom-up technique, while exploiting the

same set of parallel primitives, has achieved nearly 5X speedup

on indexing approximately 170 million points when compared

with the top-down approach.

Kd-trees and quadtrees are quite similar on indexing

point data, as both of them belong to space partition based spatial

indexing techniques. While quadtrees have been popular in the

spatial databases and GIS communities, their realizations on

GPUs appeared much later. Kd-trees have been popular in the

computer graphics community for applications such as ray

tracing, which can be dated back to the pre-GPGPU era [22]. To

the best of our knowledge, the work reported in [23] is among the

earliest on kd-tree construction on GPUs. On the other hand,

constructing kd-trees on point data for distance-based pruning of

search space completely on GPUs did not appear until recently

[24]. Nevertheless, many design strategies and implementation

techniques can be applied to both kd-tree and quadtree

constructions on GPUs.

The works in [25] [26] [27] [28] follow the idea of

treating quadtree construction on GPUs to a level-by-level bucket

sort problem where quadtree nodes are considered as buckets and

points to be indexed are sorted into the buckets based on the

quadrants that the points fall within. In particular, [25] adopts a

CPU-GPU hybrid approach where each thread processes a

quadtree node and loops over the points under the node for

subsequent subdivisions. The first few levels of quadtree

construction are performed on CPUs as the number of quadtree

nodes is small and the degree of parallelism is low. The technique

switches to GPUs only when a sufficient number of quadtree

nodes has been created and GPU parallel computing capacity can

be effectively utilized. However, as each CPU thread needs to

process a large number of points for the upper level quadtree

nodes, the within-node parallelism is not effectively utilized and

the CPU processing time could dominate. For the rest of the

quadtree nodes constructed on GPUs, it is likely that the

underlying bucket sort is performed by a single GPU thread which

can be inefficient. The two major sources of design and

implementation drawbacks make the technique rather inefficient

and the authors reported a runtime of 20 seconds for indexing 15

million points on an unspecified Nvidia GPU around 2011.

The work reported in [26] improves [25] by exploiting

block-level parallelism and letting a block of GPU threads

process all the points indexed by a quadtree node for subdivisions.

The technique can significantly increase the degree of parallelism

for constructing quadtree nodes, including top-level ones. This

makes an all-GPU based solution possible. However, there are

two new sources of overheads. The first is the cost of coordination

among threads in a block when sorting points. The second is that

threads in warps may be underutilized when the number of points

within a block is less than GPU warp size (typically 32). The

authors proposed to switch to single-thread serial construction in

this case instead (as in [25]). According to the performance report

in [26] , the technique is able to index 80 million points in about

50 seconds on an Nvidia FX 3800 GPU which seems to be more

efficient than the results reported in [25].

CUDA SDK provides a sample code on quadtree

indexing for points starting from version 5.0 for GPUs that

supports Compute Capability 3.5 as a demonstration of dynamic

parallelism [27]. The design behind the code is similar to [26] in

serval aspects but with better block/warp level reduction and scan

support for bucket sort. With hardware support of dynamic

parallelism, the end-to-end process can now be performed using

a single recursive kernel function invocation. New kernels are

launched dynamically by threads that are processing quadtree

nodes that need subdivisions. Four warps in a block are used to

bucket-sort the points where each warp is assigned to process a

quadrant. Warp level hardware intrinsic functions, such as voting

and shifting [29], are aggressively exploited for efficiency.

However, the policy on processing a quadrant using a single warp

may also limit the degree of parallelization and subsequently

affect efficiency, especially during the construction of top-level

nodes where a large number of points need to be processed. We

also note that the publically available code uses two identical

arrays to store points before bucket sort and after bucket sort,

respectively. The two arrays are swapped when processing two

consecutive levels during quadtree construction, which makes the

implementation less attractive comparing with those that support

in-place sort. Different from [26] that only expands non-empty

quadtree nodes level-by-level, the CUDA SDK sample code pre-

allocates memory for a full quadtree (i.e., a pyramid) of depth k

with a memory footprint of (4(k+1)-1)/3 before the construction

process begins, which is memory inefficient especially when

depth k is large. A more recent work [28] overcomes this memory

inefficiency by allocating memory only for the exact number of

non-empty quadtree nodes. This is achieved by first counting the

number of such non-empty quadtree nodes using hardware units

that support atomic operations (e.g., atomicAdd [29]) before

actually outputting data. However, the number of hardware units

that support atomic operations is limited on commodity GPUs and

the performance is likely to be bottlenecked by the hardware units

when indexing large numbers of points.

The implementations of all of the four techniques

discussed above seem to be based on the plain CUDA

programming syntax directly, which is expected to maximize

performance but may not be easily achievable due to

implementation complexity. They share the similar idea of using

bucket-sort for quadtree construction and they also suffer from

insufficient degree of exploitable parallelization due to the nature

of the bucket-sort design. First of all, regardless of whether

parallelizing quadtree node construction is at the thread level,

warp level or block level, a thread needs to loop over potentially

a large number of points. We note that the distribution of the point

counts can be skewed among quadrants. Real world point data are

typically unevenly distributed, such as taxi pickup locations in

NYC where most of the locations are in downtown and middle

town areas, especially around hotspots in these areas. The skewed

distribution makes parallelization very difficult due to unbalanced

workloads for parallel processing units. Second, whether utilizing

dynamic parallelization or not, as a quadtree typically has only

four child nodes at most, exploiting node level parallelism

generally results in insufficient workload when constructing the

first few levels of a quadtree. While overlapping multiple streams

of GPU jobs may potentially increase the overall GPU utilization,

it does not help end-to-end runtime when constructing a single

quadtree. Third, while bucket-sort is conceptually simple, its

GPU implementation is not as extensively fine-tuned as radix sort

on GPUs [21]. Implementing bucket sort at the block level using

a double array approach, which seems to be adopted in the

previous works, results in excessive non-coalesced GPU global

memory copy operations which could be costly with respect to

both memory footprint and runtime.

Our preliminary work on identifying quadrants with

numbers of points less than a predefined threshold to balance

workloads in point-in-polygon test based spatial joins on GPUs

[1] predates or in parallel with the works discussed above [25]

[26] [27] [28]. Even though the technique only identifies such

quadrants level-by-level without actually creating a quadtree,

they share quite some commons in design. However, different

from these works, our work [1] exploits both node and point level

parallelisms and adopted a parallel primitive based strategy to

make a sensible tradeoff between efficiency and simplicity. In this

study, we extend our previous work to complete a GPU-

accelerated quadtree construction technique and refer it as our

top-down approach for point indexing (Section 3). As the

additional phase that constructs the quadtree from leaf quadrants

takes very little additional runtime, the efficiency of the technique

is largely determined by the first phase on identifying leaf

quadrants. While we defer the presentation of the technique to

Section 3, the parallel primitive based implementation avoids

several key issues encountered by other works on quadtree-based

indexing for point data directly using plain CUDA syntax. When

comparing to the implementation of the CUDA SDK sample code

[27] (the source code of the other three works is not publically

available and it is non-trivial to re-implement), the top-down

approach can achieve 2.5X higher performance (Section5), likely

due to better exploitation of parallelisms in sorting points to

appropriate quadrants and efficient implementations for parallel

primitives, in a way similar to what we have reported in [19] on

constructing multi-attributed quadtrees for complex polygons

using parallel primitives. Furthermore, by relaxing certain

requirements imposed by the top-down approach, we have

developed a new bottom-up approach (Section 4) and we use the

top-down approach as a baseline to compare with the newly

proposed bottom-up approach. We next present the top-down and

the bottom-up approaches in Section 3 and Section 4,

respectively.

3. GPU QUADTREE DATA LAYOUT AND

THE TOP-DOWN APPROACH
Before presenting the top-down approach, we first introduce the

data layout of the quadtree structure that was designed for the top-

down approach but can also be applied to the bottom-up

approach. For notation convenience, when introducing the

proposed Structure-of-Array (SoA) quadtree data layout, array

names are bolded and italicized when they are first introduced and

they will only be italicized when they are subsequently referred

to. When introducing the algorithms using parallel primitives,

parallel primitives are underscored and their input/out variables

are both bolded and italicized while temporal variables are

italicized only in figures. All of the inputs/output variables and

parallel primitives are only italicized in their accompanying text

for clarity. Some words in text are occasionally bolded (but not

italicized) for emphasis purposes. The conventions are applied to

Section 4 as well.

3.1 SoA-based Quadtree Data Layout
The structure is similar to that in the previous works [25] [26] [27]

[28] in the sense that quadtree nodes are laid out as an array in a

level-by-level order, i.e., Breadth First Search or BFS. However,

our quadtree structure adopts a Structure of Arrays (SoA) rather

than Array of Structures (AoS) strategy (as in the CUDA sample

code) for better coalesced memory accesses on GPUs. The AoS

structure in our quadtree consists of four arrays with the same

length. The Morton (Z-Order) code [7] array, termed as the key

array, stores the Morton codes of quadrants. The boolean leaf

indicator array, termed as the indicator array, stores 1/0 values to

indicate whether the respective quadtree node is a leaf node or

not. The first child/point position array, termed as f_pos array,

stores the positions of the first child node in the quadtree SoA for

a non-leaf node or the positions of the first points that fall within

the quadrants that are indexed by a leaf quadtree node, depending

on the corresponding elements in the indicator array. The last one,

termed as length array, stores the numbers of child nodes of non-

leaf nodes or the numbers of points of leaf nodes, again

depending on the indicator array elements. Note that the length

array and the f_pos array hold the information related to both

quadtree nodes and points. The combination is possible due to the

fact that leaf-nodes do not have child nodes anymore and their

corresponding elements in the length and f_pos arrays can be

reused for information on the points they index. The consolidation

of length/f_pos for both quadtree nodes and points reduces

memory footprint to a half. A running example is provided in Fig.

1, assuming that the predefined threshold representing the

maximum number of points within a quadrant denoted as nt is 12.

Further assuming the root node has a level of 0, leaf node 2 is

identified at level 1 (11 points), leaf nodes 4 and 7 are identified

at level 2 (7 and 9 points, respectively) and leaf nodes 9, 10, 11,

12, 13 and 14 are identified at level 3.

Fig. 1 SoA Data Layout of Quadtree on GPUs

Furthermore, by storing the positions of the first child

nodes or the first points in quadrants, instead of the positions of

all child nodes or points, the memory footprint can be

significantly reduced. This is possible in our design as the

quadtree nodes are laid out in a level-by-level manner and the

positions of all child nodes under a parent quadtree node can be

easily computed either sequentially or in parallel. The same

argument can be applied to computing point positions where

points among different quadrants are sorted based on the Morton

codes of the quadrants they fall within. Note that points within a

quadrant are unordered due to lack of practical needs, which also

saves data movement costs in sorting. The SoA quadtree data

layout will also help coalescing GPU memory accesses as

neighboring threads in GPU thread blocks are assigned to process

neighboring points or quadtree nodes.

We next briefly summarize in Section 3.2 the first phase

of the top-down approach on identifying leaf quadrants which

was published in [1] before introducing the new second phase on

constructing the quadtree from leaf quadrants in Section 3.3. The

top-down approach serves a baseline for comparison with our

new bottom-up design and implementation introduced in Section

4.

3.2 Phase 1: Identifying Leaf Quadrants
The basic idea of the design of phase 1 in the top-down

approach is similar to the previous works on GPU-based point

indexing discussed in Section 2 in several aspects in the sense that

they all adopt the top-down strategy that constructs quadtree

nodes level-by-level. A running example shown in Fig. 2 provides

an intuitive illustration. It can be seen that the indexing space is

hierarchically partitioned and leaf nodes are identified in a top-

down manner.

In the first step of Phase 1, Morton codes [7] of the input

points are first generated in parallel by all available threads using

a transform primitive where each thread applies a Z-order

transformation [7] function to the point that is assigned to

generate the output Morton codes. In the second step, the points

to be indexed are then sorted based on points’ Morton codes using

the GPU-efficient radix sort (stable_sort_by_key). Third, the

numbers of points in all valid quadrants are counted using a

reduce_by_key primitive for a segmented reduction on sorted

Morton codes which is also highly parallelizable where each

thread is assigned to process a point. Different from the CUDA-

based implementations in the previous works, both sort and

segmented reduction are able to utilize all the threads and blocks

in a GPU device (and potentially across multiple GPU devices

and multiple computing nodes) for a large-scale point dataset

where the number of points is typically far larger than the number

of simultaneous threads of a GPU device.

Fig. 2 Illustration of the Top-Down Quadtree Construction

Approach

The next major step in phase 1 is to identify leaf

quadrants that do not need further subdivisions and identify points

that fall within these quadrants. The identified points are moved

to the front of the point array so that the order of the last-level

quadrants (leaf nodes) is the same as the order of the points that

fall within them. Once this step is finished, the quadtree

construction procedure can move to the next level.

During the identification process, similar to the

previous works, quadrants that have fewer points than a

predefined threshold are considered as leaf nodes in the quadtree

and no further subdivisions are required. Conceptually, this is

similar to a SQL statement like “SELECT * FROM Points

WHERE #key IN (SELECT #key FROM Points GROUP BY

#key HAVING COUNT (#key) < nt)”, here #key represents the

Morton codes of quadrants. Due to space limit, we refer to [1] for

the details of its implementation by chaining copy_if,

exclusive_scan, scatter_if, inclusive_scan and gather primitives

to expand the boolean input flag array derived from the sub-query

of the SQL statement to an boolean output flag array to signal

whether a point should be indexed by a leaf node at the present

level or postponed to the next level.

Based on the boolean output flag array, in the final step

of phase 1 (for each level), the points can be rearranged (or

reordered) by using two copy_if primitives to copy the two types

of points into a temporal point array and then use a copy primitive

to copy the data back, all are highly parallelizable that can

effectively use all GPU threads for large point datasets. Although

device-to-device memory bandwidth on modern GPUs is in the

order of hundreds of GB/s, similar to the CUDA sample code that

utilizes double arrays, the extra memory footprint and data access

cost are potentially sources of inefficiency, when compared with

the newly proposed bottom-up approach (Section 4).

We note that rearranging points based on the separation

between leaf and non-leaf quadtree nodes allows apply the same

algorithm on the rest of the points (yet-to-be-indexed points)

corresponding to the non-leaf quadtree nodes to construct next-

level quadtree nodes. Upon the completion of Phase 1, among the

four arrays of our SoA structure for quadtree, the Morton code

array (key) and the leaf indicator array (indicator) have been filled

level-by-level. Note that indicator array is filled by comparing the

numbers of points in the resulting quadrants with the threshold

value nt after the reduce_by_key primitive. The key array is filled

directly by the output of the key field after the reduce_by_key

primitive.

3.3 Phase 2: Construction Quadtree from

Leaf Quadrants
To complete the top-down quadtree construction technique, the

remaining task is to fill the length array and the f-pos array. We

have developed a new approach which is much simpler than the

one presented in our earlier technical report [30] (not part of [1]).

The overall process is provided in Fig. 3 with explanations to

follow next. Note that “+=” is used to denote appending an array

to an existing one and “~” denotes element-wise negation in an

array. Arrays inside a pair of curly brackets form a zipped array,

0..n indicates a sequence, and a scalar number inside a pair of

square bracket denotes lifting the scalar to an array. Finally,

expression inside a pair of round brackets can be either

parameters of a complicated functor (with implementation

skipped) or the simple implementation of the functor for the

corresponding primitive.

Assuming that the root node sits at level 0, starting from level 1

and for each level, line 3 computes the Morton codes for the

parent nodes of all the nodes at the current level using a simple

transform primitive with a functor that simply divides an input

Mortan code by 4 (or right-shift 2 bits). Note that Morton codes

of higher level quadrants have fewer bits. Line 4 uses a

reduce_by_key primitive to count the numbers of child nodes of

the parent nodes. Note that only non-leaf nodes that have one or

more child nodes will appear in the resulting p_key array and

n_child array, respectively.

Fig. 3 Algorithm to Construct Quadtree from Leaf Nodes

The rest of the steps are to populate the length and f_pos

arrays properly. Line 5 first accumulates the leaf node positions

based on the Indicator array to generate a mapping array n_map

Inputs: l_key: array of Morton Codes of leaf

quadrants；n_point: Array of numbers of points in leaf

quadrants; indicator: leaf/non-leaf indictor array; max_level

output: f_pos, length (Section 3.1)

Algorithm td_leafquad2tree

1 t-keyl_key

2 for k=0, max_level-1

3 t_keytransform(t_key) …(t_key[i]/=4)

4 (p_key, n_child)+=reduce_by_key(t_key)

5 n_mapexclusive_scan (indicator)

6 lengthgather_if(n_point, n_map, indicator)

7 p_posexclsive_scan(n_point)

8 f_posgather_if(p_pos, n_map,indicator)

9 lengthcopy_if(n_child, ~indicator)

10 n_childreplace_if (n_child, indicator,0)

11 c_posexclusive_scan(n_child)

12 f_poscopy_if(c_pos, ~indicator)

using an exclusive_scan primitive. Line 6 puts n_point elements

in the proper positions in the length array (for quadrants

represented by leaf nodes) using a gather_if primitive and n_map

and indicator as the inputs. Line 7 accumulates the first point

positions for the quadrants represented by leaf nodes by using an

exclusive_scan primitive again on n_point. A gather_if primitive

is used in Line 8 in a way similar to Line 6.

The rest of the four lines populate the length and the

f_pos arrays for non-leaf nodes. Line 9 uses a copy_if primitive

and is based on the negates of the elements in the indicator array

to populate the numbers of child nodes for non-leaf nodes in the

length array. Line 10 sets the n_child elements to 0 for leaf nodes

(using a replace_if primitive) to correctly compute the

accumulated positions for non-leaf nodes in Line 11 using an

exclusive_scan primitive. Finally, Line 12 populates the first child

positions of non-leaf nodes based on the results of Line 11 using

a copy_if primitive, which completes Phase 2 of the top-down

approach.

Experiments show that the runtime of the Phase 2 code

is insignificant comparing with that of Phase 1 (Section 5). This

is expected as the numbers of the resulting quadrants and quadtree

nodes are typically much smaller than the number of points,

especially when the maximum number of points threshold is set

to be relatively large (e.g., nt=50). More details on the

experiments are provided in Section 5.

4. THE NEWLY PROPOSED BOTTOM-

UP APPROACH

4.1 Key ideas and Conceptual Design
While preliminary experiment results have shown that the top-

down approach is capable of indexing ~170 million points of

NYC taxi pick up locations in about a second on a RTX 2080 Ti

GPU and is more efficient than the sample CUDA SDK code

(Section 5), a question to ask is whether sorting yet-to-be-indexed

points at all levels to maintain the correspondence between the

BFS ordering of quadtree nodes and points they indexed is

necessary, which turns to be the most expensive part of the top-

down approach. Conceptually, since leaf quadtree nodes keep

track of the points they index using the first point position values

and the numbers of points that fall within the quadrants, by

following the first child position values of intermediate quadtree

nodes from the root to a leaf node, the points in the quadrants that

satisfy the query criteria can be correctly retrieved. As such, it can

be argued that the correspondence may not be essential, although

it is typically the case for quadtree indexing approaches that

follow a top-down strategy as in our previous work [1].

Without such a requirement, it turns out that points to

be indexed need only be sorted once to generate quadtree nodes

representing quadrants at the finest level based on their Morton

codes (termed as full quadrants). Subsequently, a quadtree can be

fully constructed from the full quadrants in a bottom-up manner

with a few parallel primitives. By significantly reducing the

workload on sorting points which is the bottleneck in our top-

down approach, the overall performance of the newly proposed

bottom-up approach can be significantly improved. We note that

while the quadtrees constructed by the two approaches are

identical, the orderings of the points that the quadtrees index may

be different, as points in the two approaches are sorted differently.

That is, the top-down approach sorts points based on Morton

codes at multiple levels and the bottom-up approach sorts points

based on Morton codes at the finest level.

It is worthy of noticing that, for the bottom-up approach, as points

are sorted based on Morton codes, the order of points does not

need to be changed for correct indexing when lower level

quadrants are aggregated to upper level quadrants. Aggregation

alone a space partitioning hierarchy will result in larger numbers

of points (sum) and smaller first point positions (minimum) for

upper level quadrants. The characteristics are fundamental to the

correctness of the bottom-up approach while achieving

efficiency. The running example in Fig. 4 provides an intuitive

idea on the bottom-up approach where the lower level quadrants

are aggregated bottom-up and the unqualified nodes are removed

to construct a quadtree. We next present the design and

implementation details of the newly proposed bottom-up

approach.

4.2 Data Parallel Design and Primitive-

based Implementation
The bottom-up approach starts with sorting points (using a

stable_sort_by_key primitive) based on their Morton codes at the

finest level (with the maximum depth) generated by a transform

primitive. While both steps look similar to the steps discussed

previously when presenting the top-down approach, we note that

the top-down approach begins with the coarsest level Morton

codes and the bottom-up approach begins with the finest level

Morton codes. Subsequently, for the bottom-up approach, a

reduce_by_key parallel primitive is applied to compute the

Morton codes of the finest-level quadrants and count the numbers

of points that fall within these quadrants.

Using these Morton codes and the counted numbers as

the input arrays, in a way similar to Phase 2 in the top-down

approach (Line 2-4 in Fig. 3 of Section 3), for each level of the

quadtree, by using a reduce_by_key primitive, the Morton codes

and the numbers of child quadtree nodes of the parent quadrant

nodes can be computed. The process is repeated until reaching the

root node. Although they share some similarities again, the

difference is that, the inputs to the top-down and bottom

approaches for this part are the leaf quadrants and the full

quadrants, respectively.

We argue that the combined steps so far are

conceptually equivalent to Phase 1 of the top-down approach.

Different from the top-down approach that generates leaf

quadrants with BFS order in Phase 1 which makes its Phase 2

much easier, Phase 1 of the bottom-up approach generates all

possible non-empty quadrants (i.e., full quadrants) which makes

its Phase 2 much more difficult. The rest of Section 4 is dedicated

for Phase 2 of the bottom-up approach. As a summary, after the

above three steps (Phase 1), the outputs have four arrays which

also serve as the input for Phase 2: an array of Morton codes of

quadrants (pkey), an array of the numbers of non-empty sub-

quadrants (clen), an array of the numbers of points in these

quadrants (nlen), and finally, an array of sorted points based on

the Morton codes of the quadrants at the last level (pnt), where

pkey, clen and nlen have the same lengths and their elements have

a one-to-one correspondence.

Two major issues remain in Phase 2. First, as shown in

Fig. 4, it can be seen that, among the full quadrants, some cannot

be represented as valid quadtree nodes and should be removed

(more details shortly). Second, although the key and the length

arrays are filled during the bottom-up level-by-level iterations,

the f_pos array and the indicator array need to be computed. The

algorithm to tackle these two issues and generate a quadtree from

full quadrants are provided in Fig. 5 and its details are provided

in the two subsections to follow next.

Fig. 4 Illustration of the Bottom-Up Quadtree Construction

Approach

Fig. 5 Bottom-Up Quadtree Construction Algorithm from Full

Quadrants

4.2.1 Identifying Valid Quadtree Nodes
Recall that, in the top-down approach, leaf nodes can be simply

identified by comparing the number of points that fall within the

quadrants, i.e., nk, with the threshold value nt. As points that

belong to leaf nodes and non-leaf nodes are re-ordered in the

output point array at each level, the positions of the first points in

the leaf nodes are simply pre-fix sums (exclusive scan) of the

numbers of points in these quadrants. As discussed in Section 3.1,

points under the quadrants represented by non-leaf nodes need to

be re-ordered and sorted based on their Morton codes at each level

to maintain the order, which is the major bottleneck of the top-

down approach.

For the bottom-up approach, it can be seen that whether

a quadrant is represented by a leaf node or non-leaf node depends

not only on nk but also on the number of points that fall within its

parent node (np). The nodes corresponding to the last level

quadrants with nk> nt automatically qualify as leaf nodes.

However, for the rest of the quadrants, only when nk<=nt <np can

the node be qualified as a valid leaf node. Otherwise, the

quadrants need to be aggregated until a valid leaf node can be

identified. Nodes representing such lower level quadrants are not

part of the final quadtree and must be removed. As shown in Fig.

4, all the quadrants covered by the leaf node with 11 points (the

lower-left part of the four sub-panels, highlighted) should be

removed and only the leaf node should appear in the final

constructed quadtree. The problem can be trivially solved if we

keep a pointer (or array offset) to the parent node of the current

node but our SoA quadtree data structure has only the length and

the f_pos arrays for the memory efficiency reason (Section 3.1

and Fig. 1).

To construct a quadtree with only the numbers of points

in the last-level quadrant and the numbers of child nodes for all

quadrants derived from the last-level quadrants, our approach

transforms the criteria for identifying leaf-nodes into new ones.

The new criteria can be verified in two successive steps where

each step can be implemented by one or more parallel primitives.

The new criteria are that, first, if a quadrant whose parent

quadrant has no more than nt points, i.e., np<= nt, it should be

removed. For the remaining quadrants, if nk<=nt, they should be

represented by leaf nodes; otherwise, they should be represented

by non-leaf nodes. The algorithm with the primitive based

implementation is illustrated in the first five lines of Fig. 5.

Lines 1-3 compute the numbers of points in the

quadrants’ parent quadrants, given the numbers of points of child

quadrants under these parent quadrants. Essentially this is

equivalent to computing the offsets of parent quadrants for all

child quadrants on-the-fly as the numbers of points and their

quadrants have a one-to-one correspondence in their respective

arrays as part of the input. At an abstract level, this can be realized

by a special expand parallel primitive which is a chain of

exclusive_scan - scatter - inclusive_scan. The exclusive_scan

primitive takes the default “plus” as the functor parameter to

accumulate the numbers of children into the positions of the first

child nodes as we have discussed before. The scatter primitive

puts the sequence numbers of the parent nodes into these first

child node positions. Finally, the inclusive_scan primitive with

“maximum” as the functor fills in the blanks between the

consecutive first node positions with the sequence identifier of the

first child node. This is because of the fact that all child nodes

have the same sequence identifiers of their parent nodes. The

compound expand primitive is special for two reasons. First, as

the numbers of child nodes of a parent node are always greater

than 0 and thus scatter, instead of the conditional scatter_if, can

be used, which is more efficient. Second, as the sequence

identifiers of parent quadtree nodes, which are sequential and

range from 0 to |clen|, are exactly what we want to expand, the

last step with a gather primitive to actually replicate the input data

items (especially when these data items are not comparable) can

be omitted.

Line 5 is the key step where the unqualified quadrants

are removed by using a remove_if primitive. To keep the

correspondence among qkey, clen and nlen arrays, we zip them

together as a single input vector for the primitive. This brings a

caveat that needs special attention, due to the reason that

remove_if is an in-place primitive. When the elements of the input

array are applied to the remove_if primitive in parallel, they are

being modified during the primitive’s execution. Unfortunately,

the primitives’ functor also rely on nlen to compare its elements

with nt where we expect nlen array to be constant, which results

in a semantic conflict. The issue is solved by duplicating the nlen

array and use its copy for the functor (Line 4). The duplicate is

then deleted after its lifecycle is over to reduce GPU memory

footprint.

Inputs: pkey: array of Morton codes of quadrants; clen:

numbers of non-empty sub-quadrants; nlen: array of the

numbers of points in these quadrants; nt

Output: indicator, f_pos

Algorithm genValidQuadrants

1 tposexclusive_scan(clen)

2 tmapscatter ([0..|clen|],tpos)

3 tmapinclusive_scan(tmap, maximum)

4 tlenclen

5{pkey,clen,nlen,tmap}remove_if({pkey,clen,

nlen,tmap}, (nlen, nt))

6 indicatortransform(clen,(nt))

7 nlenreplace_if(nlen, indicator)

8 pposexclusive_scan(nlen)

9 clenreplace_if(clen, ~ indicator)

10 cposexclusive_scan(clen)

11 f_postransform({ppos,cpos}, indicator)

4.2.2 Populating INDICATOR and F_POS arrays
The leaf and non-leaf indicator array can be populated by

applying the second criteria discussed previously to the output of

Phase 1 to decide whether a quadtree node above the last level is

a leaf node or not. This is implemented by a transform primitive

using a simple comparison functor by comparing the numbers of

points under the quadrants with the threshold nt as shown in Line

6 of Fig. 5. The elements are set to non-leaf when nk>nt. Line 7

takes care of the quadrants at the last level where they are

considered as leaf nodes even if nk>nt. This can be simply

implemented by a transform primitive to set the respective

elements in the indicator array to true.

The last five lines in Fig. 5 are used to fill the length

array in the quadtree data structure based on clen, nlen and the

indicator arrays. Line 8 changes the elements in the nlen array to

0 for non-leaf quadtree nodes by a replace_if primitive before

applying an exclusive_scan primitive to accumulate the nlen array

into a ppos array to record the offsets of the first point positions

at Line 9. Note that the nlen array elements with zero values (for

non-leaf nodes) do not increase the corresponding ppos values

and these values are irrelevant to the final length array. Similarly,

the clen array are accumulated into the cpos array after setting the

clen elements corresponding to the leaf nodes to 0 in Line 10 and

Line 11, respectively. Again, the clen elements with zero values

do not increase the corresponding cpos elements. Finally, step 11

assembles the ppos and cpos arrays into the first position array

f_pos based on the leaf indicator array, which is naturally

implemented as a transform primitive using a simple switch

function as the functor with ppos and cpos as the inputs. Using

classic C syntax, the functor can be expressed as

f_pos[i]=(indicator[i])?ppos[i]:cpos[i] for easy interpretation.

5. EXPERIMENTS & RESULTS

5.1 Data and Experiment Setup
Among the four top-down approaches discussed in details by the

end of Section 2, only the CUDA SDK sample code is publically

available. We thus compare the end-to-end runtimes produced by

the CUDA SDK sample code (or simply SDK), our top-down

approach (TD), and our bottom-up approach (BU). However, the

SDK code’s memory allocation scheme prevents it from

constructing large quadtrees with the maximum level/depth larger

than 14 on typical GPUs (e.g., RTX 2080 Ti with 11 GB memory

and Titan V with 12 GB memory). As such, max_level in the SDK

code is set to 14. For the top-down and bottom-up approaches

that we have developed, the memory footprints are generally

linear with respect to the numbers of points to index and not

directly related to the maximum depth/level limits. Using a

max_level =16 is already capable of indexing points in a space of

216*216. For resolution as high as 1 meter, which is much higher

than typical GPS location accuracy around 30 meters, the index

space is about 65*65 kilometers, which should be sufficient for

most city scale applications. As such, we set the maximum

depth/level to 16 in our top-down and bottom-up approaches. The

maximum number of points in a leaf quadrant (except for the last

level) nt is set to 200.

While it would be also interesting to use synthetic data

with random distribution or some skewed distributions, we are

more interested in the performance on real world data that are

typically unevenly distributed and difficult to be approximated by

simple mathematical distributions. We have picked a popular

dataset which is the taxi trip pickup/drop-off locations in New

York City (NYC) with yearly ~170 million points [31] for

experiments. In this study, we have chosen the pickup locations

in 2009 which has 168,898,952 points. The original

latitude/longitude coordinates have been re-projected into the

standard EPSG 2263 projection that is typically adopted for city-

level geospatial applications in NYC and its neighboring Long

Island area [32]. The unit of the projected coordinates is foot

which is suitable for direct distance computation without further

processing. To test the scalability of the designs and the

implementations of the approaches, we accumulate the first 1-12

months’ pickup location data and treat them as 12 datasets, each

for an experiment.

All experiments are performed on a Nvidia GTX 2080

Ti GPU with 4,325 CUDA cores running at 1.65 GZ and 11 GB

GDDR5 memory with 352-bit memory bandwidth. All

implementations are compiled with CUDA SDK version 10.1,

computing capability 7.5 and -O3 optimization flag. We

measured the maximum memory footprints for the top-down and

the bottom-up approaches, which are 5.99GB and 3.15GB,

respectively. Although we leave fine-tuning memory

management for future work, e.g., reusing temporal arrays and

finer-grained memory allocation/deallocation, the current

implementations can run on inexpensive commodity GPUs with

8GB memory, which is becoming the mainstream for the current

generation of Nvidia GPUs. As the bottom-up approach requires

only about half of the GPU memory of the top-down approach, it

is suitable to run on even lower-end GPUs with as little as 4GB

memory for the yearly NYC taxi trip data.

5.2 Results
The numbers of points and the end-to-end runtimes of the three

approaches for the 12 experiments are listed in Table 1. The last

two columns of Table 1 also list the speedup of our top-down

implementation over the CUDA SDK sample code and the

speedup of the bottom-up approach over the top-down approach.

It can be seen that the top-down approach (max_level=16) is about

2.5X faster than the CUDA SDK sample code (max_level=14)

while the bottom-up approach is 3.4X faster than the top-down

approach. The speedups are quite consistent across the 12

experiments for both comparisons. This is likely due to the similar

distributions of taxi pickup locations in NYC across different

months (and likely across multiple years). Due to the inferior

performance of the CUDA SDK sample code, we exclude it from

further discussion. As a summary, the bottom-up approach not

only runs faster (3.4X) but also is more memory efficient (~2X),

when compared with the top-down approach.

Table 1 Runtimes of Three Approaches (in milliseconds):

CUDA SDK Sample Code (SDK), Top-Down (TD) and

Bottom-up (BU) and Speedups

Mo. #of points

SDK

(T1)

TD

(T2)

BU

(T3)

Speedup

=T1/T2

Speedup

=T2/T3

1 13,887,620 360.4 143.3 40.8 2.52 3.51

2 27,079,723 619.4 244.4 68.5 2.53 3.57

3 41,284,081 833.4 336.7 98.6 2.48 3.41

4 55,383,596 1057.1 426.7 128.8 2.48 3.31

5 69,970,743 1290.6 535.5 150.1 2.41 3.57

6 84,035,490 1549.0 608.8 189.3 2.54 3.22

7 97,553,533 1769.2 711.5 199.1 2.49 3.57

8 111,127,610 1977.6 786.8 226.4 2.51 3.48

9 124,993,700 2206.7 869.3 253.9 2.54 3.42

10 140,444,141 2463.6 966.0 287.8 2.55 3.36

11 154,523,740 2685.2 1050.0 314.5 2.56 3.34

12 168,898,952 2959.5 1124.9 339.1 2.63 3.32

To further understand the performance differences

between the top-down and the bottom-up approach, we have

listed the breakdown times of the three components in both

approaches, i.e., the initialization time, Phase 1 time and Phase 2

time. The initialization part is responsible for GPU memory

allocation and CPU to GPU data transfer; the initialization times

are listed as TD-I and BU-I in Table 2 for the two approaches,

respectively. Although the top-down and the bottom-up

approaches utilize slightly different data structures, the runtime

on transferring point data from CPU to GPU which is common to

both approaches, dominates both TD-I and BU-I. As a result, TD-

I and BU-I are very close. For situations that point data is already

on GPU devices, TD-I and BU-I will be close to 0 and can be

excluded from their respective runtimes.

Table 2 Breakdown Runtimes (in milliseconds) of the Top-

Down Approach (TD) and Bottom-Up Approach

Mo. TD-I TD-P1 TD-P2 BU-I BU-P1 BU-P2 Speedup

1 11.9 119.9 11.5 11.9 13.4 15.5 4.55

2 22.7 207.2 14.5 22.8 22.2 23.4 4.86

3 34.3 287.2 15.2 34.7 31.7 32.2 4.73

4 45.8 365.9 14.9 45.9 41.2 41.7 4.59

5 58.4 456.1 21.0 57.5 52.0 40.6 5.15

6 69.6 517.2 22.0 69.7 61.4 58.2 4.51

7 80.3 609.3 21.8 80.2 71.6 47.3 5.31

8 91.4 674.0 21.5 91.6 80.3 54.6 5.16

9 102.3 744.4 22.6 104.8 89.7 59.4 5.14

10 115.2 829.3 21.5 115.8 96.4 75.7 4.94

11 126.8 900.8 22.4 128.3 111.7 74.5 4.96

12 138.6 965.4 20.9 139.6 120.7 78.9 4.94

I: Initialization time – GPU memory allocation and CPU->GPU

data transfer

P1 and P2: phase 1 and phase 2

Speedup=(TD-P1+TD-P2)/(BU-P1+BU-P2)

From Table 2, it can be seen that the runtime for Phase

1 (TD-P1) in the top-down approach is much larger than that of

Phase 2 (TD-P2) as we have discussed in the previous sections.

In fact, the difference between TD-P1 and TD-P2 gets larger as

the numbers of points increase. As a matter of fact, TD-P1 over

TD-P2 increases from 10.4X (119.9/11.9) to 46.2X (965.4/20.9)

from 1 month to 12 months. When comparing TD-P1 and TD-P2

for 1 month and 12 months, TD-P1 increases 8.1X while TD-P2

increases only 1.8X. This is because the resulting numbers of leaf

quadrants which are the inputs of TD’s Phase 1, grow sub-linearly

with respect to the numbers of points, which are the input for

Phase 2. As a result, it is likely that, as the number of points to

index increases, the resulting leaf nodes become more full, but the

numbers of points in these quadrants are still less than the

threshold nt. When comparing BU-P1 and BU-P2, we can see that

they are much closer, although BU-P2 is still lower than BU-P1

for all months.

The results of Table 2 also support our previous

discussions that Phase 1 in the top-down approach is more

complex than Phase 1 in the bottom-up approach due to the fact

that TD-P1 sorts yet-to-be indexed points at each and every level

while BU-P2 sorts all points to be indexed only once at the finest

level. In contrast, TD-P2 is much simpler than BU-P2 as TD-P2

constructs a quadtree from leaf quadrants only while BU-P2

constructs a quadtree from full quadrants. In addition to the

reason that the number of full quadrants can be several times

larger than the number of leaf quadrants, BU-P2 also needs

sophisticated logic to remove quadrants that cannot be qualified

as leaf quadtree nodes among the full quadrants.

 Assuming that the point data to be indexed are already

on GPU devices, the total runtime of the top-down approach (TD-

tot) would be just TD-P1+TD-P2 and the total runtime of the

bottom-up approach (BU-tot) would be just BU-P1+BU-P2. The

speedup, defined as TD-tot/BU-tot, is computed. As shown in the

last column of Table 2, the speedup is about 4.9X across the 12

experiments, which is higher than 3.4X when the initialization

time (mostly CPU to GPU data transfer time) is included.

Although the exact runtimes of quadtree constructions

reported in [28] are unavailable, it can be seen from its Fig. 8 that

it takes about 21 milliseconds to index 9.5 million points for

skewed distribution, which is already the largest in the experiment

that generates the figure. Our bottom-up approach indexes 13.9

million points (the first month in the NYC taxi trip dataset) in

about 28.9 milliseconds, which suggests slightly higher

performance of our bottom-up approach, i.e., 481 million points/s

vs. 452 million points/s, for relatively small-scale data. Since Fig.

8 of [28] exhibits super-liner increase of runtime with respect to

the numbers of points for skewed data, extrapolating the runtime

to 169 million points would not be accurate or even possible.

Nevertheless, even assuming a linear extrapolation for [28], the

achieved performance of our bottom-up approach, i.e., indexing

169 million points in 199.6 ms which is equivalent to 846 million

points per second, would still perform about 2X faster.

Overall, the total runtime of the proposed bottom-up

approach is capable of indexing approximately 170 million points

in about 200ms. With an indexing rate of 850 million points per

second, it may suggest the possibility of real-time and on-the-fly

indexing for point datasets at scale, even on commodity GPUs

that cost around $1200 or less. The high-performance may open

opportunities for interactive explorations through the emerging

GPU-based data management systems such as Nvidia cuDF [2],

as discussed in the introduction section. We are in the process of

integrating the quadtree indexing approach as well as several

other GPU-based spatial query techniques into cuDF.

6. CONCLUSION AND FUTURE WORK
In this study, after extending our previous work on identifying

leaf quadrants from a large-scale point dataset by repetitively

partitioning space into quadrants until the numbers of points in

each quadrant is smaller than a predefined threshold for

parallelizing spatial joins to a full quadtree indexing approach,

termed as the top-down approach, we have developed a new and

more efficient bottom-up approach. While not exactly, the top-

down and the bottom-up approaches share some duality features

in indexing point data which makes exploring the two approaches

simultaneously interesting. We present the design and

implementation details of the extension of the top-down approach

and the complete bottom-up approach. Different from previous

works whose implementations adopt plain CUDA programming,

our implementations are based on parallel primitives which are

simple to understand, easy to implement, and offer high level of

portability.

Experiments on the yearly 170 million taxi pickup

locations in NYC in 2009 have shown that the top-down

implementation is about 2.5X faster than the quadtree

construction code that is shipped as a CUDA SDK sample even

though our top-down implementation indexes with a maximum

level/depth of 16 while the SDK code is only capable of indexing

with a maximum level/depth of 14 before running out of memory.

Both running at a maximum level/depth of 16, the bottom-up

approach is 3.4X better than the top-down approach when CPU

to GPU data transfer time is included. The speedup increases to

4.9X when the point data to be indexed are already on GPU

devices and the data transfer time is not needed. With an indexing

time of about 200 milliseconds to index about 170 million points,

our bottom-up approach seems to be capable of real-time and on-

the-fly indexing for interactive explorations, even on inexpensive

commodity GPUs.

 For future work, first, as discussed inline, we would

like to fine-tune the memory management part to reduce both

memory allocation/deallocation time and to minimize memory

footprint. The RAPIDS Memory Manager (rmm [33]), which is

also used in cuDF, can be a good option for the more efficient

memory allocation/deallocation on GPUs. Carefully analyzing

the lifecycle of each temporal variables and deallocating (or

offloading to CPU memory) promptly on variables that are no

longer needed or cannot be reused seem to be a low hanging fruit

for this purpose. The task could be easier for data parallel designs

and primitive-based implementations as most of their important

variables are arrays and the number of such variables tends to be

small. Second, we plan to integrate the indexing techniques into

GPU-based data management systems such as Nvidia cuDF (part

of RAPIDS) to extend such systems to manage both relational and

spatial (and spatiotemporal/trajectory) data with indexing

support. There are considerable software engineering challenges

to make such a system available and we plan to tackle them.

ACKNOWLEDGEMENT

This work is supported through NSF Grants IIS-1302423 and IIS-

1302439 and PSC-CUNY 60777-00 48. Part of the work is done

while Jianting Zhang is visiting Nvidia Corporation.

7. REFERENCES
[1] J. Zhang and S. You:, "Speeding up large-scale point-in-polygon

test based spatial join on GPUs.," in Proc. ACM SIGSPATIAL

BigSPatial Workshop, 2012.

[2] Nvidia, "cuDF - GPU DataFrames," [Online]. Available:
https://github.com/rapidsai/cudf.

[3] S. Breß, H. Funke and J. Teubner:, "Robust Query Processing in

Co-Processor-accelerated Databases," Proc. ACM SIGMOD,
2016.

[4] S. Zhang, J. He, B. He and M. Lu, "OmniDB: Towards Portable

and Efficient Query Processing on Parallel CPU/GPU
Architectures," Proc. VLDB Endow., vol. 6, no. 12, pp. 1374--

1377, 2013.

[5] J. Zhang, S. You and L. Gruenwald, "Large-Scale Spatial Data
Processing on GPUs and GPU-Accelerated Clusters," ACM

SIGSPATIAL Special, vol. 6, no. 3, pp. 27-34, 2014.

[6] S. K. Prasad, M. McDermott, S. Puri, D. Shah, D. Aghajarian, S.

Shekhar and X. Zhou, "A vision for GPU-accelerated parallel

computation on geo-spatial datasets," ACM SIGSPATIAL Special,

vol. 6, no. 3, pp. 19-26, 2014.

[7] H. Samet, Foundations of Multidimensional and Metric Data

Structures, Morgan Kaufmann, 2006.

[8] D. A. lcantara, Sharf, rei, F. Abbasinejad, S. Sengupta, M.
Mitzenmacher, J. D. Owens and N. Amenta, "Real-time Parallel

Hashing on the GPU," ACM Trans. Graph., 28(5), #154, 2009.

[9] M. Nießner, M. Zollhöfer and M. Stamminger, "Real-time 3D
reconstruction at scale using voxel hashing," ACM Trans. Graph.,

vol. 32, no. 6, #169, 2013.

[10] J. Zhang, S. You and L. Gruenwald:, "Parallel online spatial and
temporal aggregations on multi-core CPUs and many-core

GPUs.," Information Systems, vol. 44, pp. 134-154 , 2014.

[11] D. Aghajarian, S. Puri and S. K. Prasad:, "CMF: an efficient end-
to-end spatial join system over large polygonal datasets on GPGPU

platform," in SIGSPATIAL/GIS 2016, 2016.

[12] S. You, J. Zhang and L. Gruenwald, "High-Performance Polyline
Intersection based Spatial Join on GPU-Accelerated Clusters," in

Proc. ACM SIGSPATIAL BigSpatial Workshop, 2016.

[13] M. McCool, A. Robison and J. Reinders, Structured Parallel
Programming: Patterns for Efficient Computation, Morgan

Kaufmann, 2012.

[14] D. B. Kirk and W.-m. W. Hwu, Programming Massively Parallel

Processors: A Hands-on Approach, 2nd ed., Morgan Kaufmann,

2012.

[15] Nvidia, "Thrust Parallel Library," [Online]. Available:

https://thrust.github.io/.

[16] M. B. Brahim, W. Drira, F. Filali and N. Hamdi, "Spatial data
extension for Cassandra NoSQL database," Journal of Big Data,

vol. 3, no. 11, 2016.

[17] J. Zhang and S. You:, "High-performance quadtree constructions
on large-scale geospatial rasters using GPGPU parallel

primitives," International Journal of Geographical Information
Science , vol. 27, no. 11, pp. 2207-2226, 2013.

[18] J. Zhang, S. You and L. Gruenwald:, "Parallel Selectivity
Estimation for Optimizing Multidimensional Spatial Join

Processing on GPUs.," in Proc. ICDE HardDB Workshop, 2017.

[19] J. Zhang, S. You and L. Gruenwald, "Data Parallel Quadtree
Indexing and Spatial Query Processing of Complex Polygon Data

on GPUs," in Proc. ADMS@VLDB, 2014.

[20] N. Satish, M. J. Harris and M. Garland, "Designing efficient
sorting algorithms for manycore GPUs," in Proc. IPDPS, 2009.

[21] D. Merrill and A. S. Grimshaw:, "High Performance and Scalable

Radix Sorting: a Case Study of Implementing Dynamic
Parallelism for GPU Computing," Parallel Processing Letters, vol.

21, no. 2, pp. 245-272, 2011.

[22] C. Lauterbach, M. Garland, S. Sengupta, D. Luebke and D.
Manocha, "Fast BVH Construction on GPUs," Computer Graphics

Forum, vol. 28, no. 2, pp. 375-384, 2009.

[23] K. Zhou, Q. Hou, R. Wang and B. Guo, "Real-time KD-tree
Construction on Graphics Hardware," ACM Trans. Graph., vol.

27, no. 5, pp. 126:1--126:11, 2008.

[24] F. Gieseke, J. Heinermann, C. Oancea and C. Igel, "Buffer K-d
Trees: Processing Massive Nearest Neighbor Queries on GPUs,"

in Proc. ICML, 2014.

[25] M. Kelly and A. Breslow, "Quadtree Construction on the GPU: A
Hybrid CPU-GPU Approach," 2011.

[26] J. Gluck and A. Danner, "Fast GPGPU Based Quadtree

Construction," 2014.

[27] Nvidia, "Quad Tree Construction," [Online]. Available:

https://github.com/huoyao/cudasdk/tree/master/6_
Advanced/cdpQuadtree.

[28] Z. Nouri and Y.-C. Tu, "GPU-based parallel indexing for

concurrent spatial query processing," in Proc. SSDBM, 2018.

[29] Nvidia, "CUDA C Programming Guide," [Online]. Available:
https://docs.nvidia.com/cuda/cuda-c-programming-

guide/index.html.

[30] J. Zhang and L. Gruenwald, "Spatial Indexing of Large-Scale
Geo-Referenced Point Data on GPGPUs," Technical Report,

2012. [Online]. Available:
http://geoteci.engr.ccny.cuny.edu/primcsptp/CSPTP_tr.pdf

[31] NYC TLC, "TLC Trip Record Data," [Online]. Available:

https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page.

[32] EPSG, "EPSG:2263 Projection," [Online]. Available:
https://epsg.io/2263.

[33] Nvidia, "RMM: RAPIDS Memory Manager," [Online]. Available:

https://github.com/rapidsai/rmm.

Appendix: A Quick Reference of Thrust

Parallel Primitives

(1) Sort, sort_by_key and stable_sort_by_key.

https://thrust.github.io/doc/group__sorting.html

While sort performs a key-only sort, sort_by_key also takes a

value array and performs a key-value sort. Stable_sort_by_key

preserves the relative ordering of equivalent elements which is

more expensive than sort_by_key but may be desirable in certain

applications.

(2) Reduce and reduce_by_key.

https://thrust.github.io/doc/group__reductions.html

Reduce is used to accumulate a vector array to a scalar value. For

example, reduce([3,2,4])11. While the summation (using a

default “plus” functor) is frequently used in reductions, Thrust

allows using a user defined associative binary function for

tailored summation, such as determining the maximum entry

(“maximum” functor) or computing bounding boxes of points

(useful to have an additional bbox array in the quadtree SOA

structure). Reduce_by_key is a generalization of Reduce to key-

value pairs based on groups where consecutive keys in the groups

are the same. For example, reduce

([1,3,3,2],[2,1,3,4])([1,3,2],[2,4,6]).

(3) Scan and scan_by_key.

https://thrust.github.io/doc/scan_8h.html

The Scan primitive computes the cumulative sums of a

vector/array. The Scan primitive can also take a user defined

associative binary function. Both the inclusive and exclusive

scans are available. For example, exclusive_scan works as

([3,2,4])([0,3,5]) while inclusive_scan works as

([3,2,4])([3,5,9]). Similarly, scan_by_key works on

consecutive key groups instead of a whole vector/array. In this

research, inclusive_scan_by_key and exclusive_scan_by_key are

extensively used to compute the positions of entries in a vector

after applying reduce_by_key which outputs numbers of entries

with same keys.

(4) Copy and copy_if.

https://thrust.github.io/doc/group__copying.html

https://thrust.github.io/doc/group__stream__compaction.html

The functionality of the two primitives is self-evident by names.

In this research, we use copy to move groups of entries from one

location to another, mostly within a same vector. The conditional

copy_if primitive is mostly used for identifying points and keys

that satisfy certain criteria expressed as a boolean array and output

the identified entries to a new vector for further processing.

(5) Remove_if.

https://thrust.github.io/doc/group__stream__compaction.html

Remove_if marks elements in a vector that satisfy a predicate and

compact the unmarked elements to the beginning of the vector so

that the marked elements are removed. For example, Remove_if

works as ([1, 4, 2, 8, 5, 7,is_even])[1,5,7]. Remove_if is

functionally equivalent to copy_if but it allows in-place operation

in the Thrust library. In contrast, using copy_if would require a

temporary vector and remove_if is more convenient in this case.

(6) Transform.

https://thrust.github.io/doc/group__transformations.html

The basic form of Transform applies a unary function to each

entry of an input sequence and stores the result in the

corresponding position in an output sequence. Transform is more

general than copy as it allows a user defined operation (functor)

to be applied to entries rather than simply copying. The functor

can be reasonably complex as long as each and every element in

the input array is expected to apply the same logic in the functor.

The functor can also takes global memory pointers as its input

parameter so that the functor can access additional data besides

its input element from the input array.

(7) Gather, Gather_if, Scatter and Scatter_if.

https://thrust.github.io/doc/group__gathering.html

https://thrust.github.io/doc/group__scattering.html

Gather copies elements from a source array into a destination

range according to a map and Scatter copies elements from a

source range into an output array according to a map. For

example, Gather([3,0,2],[4,7,8,12,15])([12,4,8]) and

Scatter([3,0,2],[12,4,8],[*,*,*,*,*,*])([4,*,8,*12,*]). Similar

to copy_if and remove_if, gather_if and scatter_if take an

additional boolean sign array and perform gather/scatter on the

input elements only when the corresponding sign values are true.

https://thrust.github.io/doc/group__sorting.html
https://thrust.github.io/doc/group__reductions.html
https://thrust.github.io/doc/scan_8h.html
https://thrust.github.io/doc/group__copying.html
https://thrust.github.io/doc/group__stream__compaction.html
https://thrust.github.io/doc/group__stream__compaction.html
https://thrust.github.io/doc/group__transformations.html
https://thrust.github.io/doc/group__gathering.html
https://thrust.github.io/doc/group__scattering.html

