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Abstract 

The increasingly available Graphics Processing Units (GPU) hardware resources and the 
emerging General Purpose computing on GPU (GPGPU) technologies provide an alternative and 
complementary solution to existing cluster based high-performance geospatial computing. 
However, the complexities of the unique GPGPU hardware architectures and the steep learning 
curve of GPGPU programming have imposed signficant technical challenges on the geospatial 
computing community to develop efficient parallel geospatial data structures and algorithms that 
can make full use of the hardware capabilities to solve ever growing large and complex real 
world geospatial problems. In this study, we propose a practical approach to simplifying high-
performance geospatial computing on GPGPUs by using parallel primitives. We take a case 
study of quadtree construction on large-scale geospatial rasters to demonstrate the effectiveness 
of the proposed approach. Comparing the proposed parallel primitives based implementation 
with a naïve CUDA implementation, a signficant reduction on coding complexity and a 10X 
speedup have been achieved. We believe that GPGPU based software development using generic 
parallel primitives can be a first step towards developing geospatial-specific and more efficient 
parallel primitives for high-performance geospatial computing in both personal and cluster 
computing environments and boost the performance of geospatial cyberinfrastructure.  

1 Introduction 
High-performance geospatial computing is an important component of geospatial 

cyberinfrastructure and is critical to large-scale geospatial data processing and problem solving 
(Wang and Liu 2009, Yang et al 2010). While grid and cloud computing are currently the two 
leading frameworks for high performance geospatial computing in the context of geospatial 
cyberinfrastructure research and developments, there are increasing interests in GPGPU 
technologies, i.e., General Computing on Graphics Processing Units, for high-performance 
geospatial data processing. Indeed, as argued in a position paper (Zhang 2010), high-end 
workstations equipped with GPGPU devices with hundreds of processing cores that are capable 
of launching hundreds of thousands of threads simultaneously are ideal for massively data 
parallel, high-throughput and highly interactive applications in a personal computing 
environment. Recently Hong et al (2011) argued that GPU architectures closely resemble 
supercomputers as both implement the primary Parallel Random Access Machine (PRAM1) 
characteristic of utilizing a very large number of threads with uniform memory latency (such as 
Cray XMT2). Besides being cost-effective and energy efficient in solving small to medium sized 
problems directly on GPU-equipped personal workstations, more importantly, as modern grid 
                                                 
1 http://en.wikipedia.org/wiki/Parallel_Random_Access_Machine  
2 http://www.cray.com/products/XMT.aspx  
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and cloud computing technologies increasingly rely on cluster computers made of identical 
computing nodes using commodity hardware, algorithms that can fully utilize GPGPU hardware 
capability on a single node will naturally boost the performance of grid/cloud computing 
resources on cluster computers to solve larger scale problems.  

Geospatial data processing on GPGPUs have attracted signficant research and application 
interests in the past few years ranging from data management to physics based environmental 
simulation. The throughput-oriented architecture designs of GPGPUs (Garland and Kirk 2010) 
are especially suitable for geospatial data processing due to the inherent parallelism of local and 
focal geospatial operations (Theobald 2005). However, it is generally nontrivial to use GPGPUs 
for zonal global geospatial operations whose parallelism can not be easily mapped to GPGPU 
computing blocks and threads. Constructing tree indices to speed up query processing and data 
analysis is one of the most important operations in geospatial data processing which can be 
considered as a special type of global geospatial operation. Hundreds of tree indices have been 
proposed over the past few decades (Gaede and Gunther 1998, Samet 2005) and some of them 
have been efficiently implemented on CPUs. Unfortunately, the current generation of GPGPUs 
has quite different hardware features than CPUs and it is nontrivial to port such algorithms from 
CPUs to GPUs. Despite signficant research efforts in both geospatial computing and other 
related domains (e.g., Zhang et al 2010, Zhang et al 2011, Zhou et al 2008, Hou et al 2011, Zhou 
et al 2011, Luo et al 2011), constructing tree indices on GPGPUs remain difficult by using 
mainstream programming abstractions (languages, tools et al.), such as CUDA 3 and OpenCL4.  

An alternative approach is to use high level parallel programming libraries or Application 
Programming Interfaces (APIs) to hide hardware details, simplify coding and improve overall 
software development efficiency while exploiting the parallel processing power of GPUs. 
Parallel primitives refer to a collection of fundamental algorithms that can be run on parallel 
machines. The idea is similar to the development of the Standard Template Library (STL5) and 
the Boost C++ libraries6 on CPUs that have been proven to be successful in many aspects. Quite 
a few GPGPU based parallel libraries, such as CUDPP7 and Thrust8, are currently available and 
provide efficient implementations of parallel primitives on GPGPUs. While generic parallel 
primitives have been applied to quite a few domains, including relational data management {He 
et al 2009), to the best of our knowledge, we are not aware of previous research in using parallel 
primitives to simplify geospatial indexing in the context of high-performance geospatial 
computing.  

The research reported in this paper complements previous works on constructing an 
indexing data structure called Binned Min-Max Quadtree (BMMQ-Tree) on large-scale raster 
geospatial data on both CPUs (Zhang and You 2010a) and GPUs (Zhang et al 2010).  The 
motivation of the research on indexing large-scale rasters, as detailed in (Zhang and You 2010a), 
was to allow efficient dynamic queries on large-scale rasters for effective visual explorations9. 
The volumes of raster geospatial data are increasing quickly. For example, the next generation 

                                                 
3 http://www.nvidia.com/object/cuda_home_new.html  
4 http://www.khronos.org/opencl/  
5 http://www.sgi.com/tech/stl/  
6 http://www.boost.org/  
7 http://code.google.com/p/cudpp/  
8 http://code.google.com/p/thrust/  
9 A Web-based system has been developed to demonstrate the feasibility and effectiveness and can be accessed 
online at http://geoteci.engr.ccny.cuny.edu/rasterexplorer/comgeotiling/TestOverlay.html and more details on 
system development are reported in (Zhang and You 2010b).  
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geostationary weather satellite GOES-R serials10 will improve the current generation weather 
satellite by 3, 4 and 5 times with respect to spectral, spatial and temporal resolutions (Schmit et 
al 2009). Such data volume growths are well above the computing power growth rate of 
uniprocessors. While Moore’s law predicts that CPU computing power doubles every 18 months 
which has been true for more than 16 years before 2002, the growth rate of uniprocessors have 
dropped to about 20% per year from 2002 to 2006 and even lower in recent years (Hennessy and 
Patterson 2011). As such, it is natural to seek alternative parallel solutions to provide sufficient 
computing power to better understand the environments and their human impacts. A previous 
implementation on constructing BMMQ-Trees using CUDA programming model has achieved 
signficant speedups when compared with the serial CPU implementation (Zhang et al 2010). 
However, due to the complexity of the GPU hardware and the steep learning curve of the CUDA 
program model, the implementation (hereafter termed as CUDA-Naïve) is far from optimal. Our 
recent research has shown that re-implementing the BMMQ-Tree construction algorithm using 
parallel primitives can speed up the new implementation by an order (10X) while significantly 
reduce coding complexity.  

We believe the new approach on parallel primitives based high-performance geospatial 
computing on GPGPUs can be interesting to geospatial computing researchers and developers 
who are seeking the parallel computing power of new hardware architectures but do not wish to 
be overflowed by hardware or programming model details. We hope the approach introduced in 
this paper can lower the barriers of applying GPGPU computing to efficiently solve practical 
geospatial problems and the example study reported in this paper can motivate similar research 
efforts. By generalizing the common patterns of applying generic parallel primitives in 
geospatial computing, more efficient geospatial-specific parallel primitives can be further 
developed. The rest of the paper is organized as the following. Section 2 introduces background 
and related works. Section 3 reviews the BMMQ-Tree layout and its construction using the 
CUDA-Naive approach. Section 4 presents the details of BMMQ-Tree constructions on GPGPUs 
using parallel primitives. Section 5 provides experiment and evaluation details as well as some 
discussions. Finally Section 6 is the conclusion and future work directions.  

2 Background and Related Works 

2.1 GPGPU Computing and CUDA Programming Model 
A Graphics Processing Unit (GPU) is a hardware device that is originally designed to 

work with CPU to accelerate rendering of 3D or 2D graphics. The highly parallel structures of 
modern GPU devices, such as AMD/ATI Radeon11 and Nvidia GeForce/Quadro series12, make 
them more effective than general-purpose CPUs for a range of complex graphics-related 
algorithms. The concept of General Purpose computing on GPU (GPGPU) turns the massive 
floating-point computational power of a modern graphics accelerator's graphics-specific pipeline 
into general-purpose computing power. GPGPU computing technologies provide a cost effective 
alternative to cluster computing and have gained considerable interests in many scientific 
research areas in the past few years (Hwu 2011a, Hwu 2011b). According to the Nvidia website, 
when compared with the latest quad-core CPU, Tesla 20-series GPU computing processors 

                                                 
10 http://www.goes-r.gov/  
11 http://en.wikipedia.org/wiki/Radeon  
12 http://developer.nvidia.com/cuda-gpus  
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deliver equivalent performance at 1/20th of  power consumption and 1/10th of cost13. As many 
reasonably current desktop computers have already equipped with GPGPU enabled graphics 
cards, GPGPU based geospatial data processing can improve system performance significantly 
without additional costs. According to (Garland and Kirk 2010), NVIDIA alone has shipped 
almost 220 million GPGPU-enabled devices from 2006 to 2010. Despite the differences among 
the GPGPU enabled devices and development platforms, a GPGPU device can be viewed as a 
parallel Single Instruction Multiple Data (SIMD)14 machine. Major GPU hardware vendors have 
released Software Development Kits (SDKs) to facilitate application development using high-
level programming languages. Among them, the Compute Unified Device Architecture (CUDA) 
from Nvidia is arguably the most popular one which can be viewed as a C/C++ extension. The 
Accelerated Parallel Processing (APP) technology from AMD15  is based on OpenCL which is an 
open standard and is closely related to CUDA. We next briefly introduce the Nvidia GPU 
architecture and its parallel programming abstraction based on CUDA.  

While different models of Nvidia GPU devices have different architectures, CUDA-
enabled GPU devices are organized into a set of Stream Multiprocessors (SMs). Each SM has a 
certain number (e.g., 16 or 32) of computing cores. All the cores in a SM share a certain amount 
(e.g., 16k or 48k) of fast memory called shared memory and all the SMs have access to a large 
pool of global memory (e.g., 512M or 4G) on the device. According to CUDA, developers write 
special C-like code segments called kernels. The kernels are invoked by the companioning CPU 
code to run on GPU devices. CUDA based GPGPU programming makes it easier for task and 
data decomposition and subsequent parallel computing. Basically a developer specifies the sizes 
of the layout of the data to be processed in the units of data blocks and the number of threads to 
be launched inside a data block. The GPU device is responsible for mapping the data blocks to 
the SMs through space and time multiplexing which is transparent to developers/users. Since 
each SM has limited hardware resources, such as the number of registers, shared memory and 
thread scheduling slots, a SM can accommodate only a certain number of blocks subjected to the 
combination of the constraints. Carefully selecting block sizes allows a SM to accommodate 
more blocks simultaneously and, subsequently, improve parallel throughputs. While CUDA is 
designed to make parallel programming on Nvidia GPUs easier, due to the complexity of the 
massively data parallel hardware architecture, the learning curve of efficient CUDA 
programming can be steep. The Thrust library that has been shipped with the latest CUDA SDK 
is designed to balance between easiness to use and code efficiency by providing a set of high-
level APIs known as parallel primitives to be detailed next.  

2.2 Parallel Primitives in the Thrust Library 
Parallel primitives refer to a collection of fundamental algorithms that can be run on 

parallel machines. The behaviors of popular parallel primitives on vector data are well-
understood. Parallel primitives usually are implemented on top of native parallel programming 
languages (such as CUDA) but provide a set of simple yet powerful interfaces (or APIs) to end 
users. Technical details are hidden from the end users and parameters are fine-tuned for typical 
applications so that users do not need to specify such parameters explicitly. On the other hand, 
such APIs usually use template or generic based programming16 techniques so that the same set 
                                                 
13 http://www.nvidia.com/object/io_1227008280995.html  
14 http://en.wikipedia.org/wiki/SIMD  
15 http://developer.amd.com/sdks/AMDAPPSDK/  
16 http://en.wikipedia.org/wiki/Generic_programming 
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of APIs can be used for many data types. Due to the nature of high-level abstractions, the APIs 
may not be the most efficient ones when compared with handwritten programs using native 
programming languages with fine-tuned parameters. However, the APIs usually provide good 
tradeoffs between coding complexity and code efficiency. Indeed, most of the parallel primitives 
in the Thrust library are very similar to their STL counterparts and are very appealing to 
experienced STL users. The high level abstractions also bring signficant portability. In fact, 
while originally designed for CUDA-enabled GPUs, the latest Thrust library can also run on 
multicore computing platforms. This unique feature further makes parallel primitives based 
algorithm developments attractive when compared to using CUDA directly. While it is beyond 
the scope of this paper to provide a full introduction to parallel primitives and their 
implementations in the Thrust library (of which we refer to Bell and Hoberock 2011 and Thrust 
website), we next briefly introduce a few popular parallel primitives that we will use in 
developing our quadtree construction algorithm.  

 (1) Scan. The Scan primitive computes the cumulative sum of a vector. Both the 
inclusive and exclusive scans are available. For example, exclusive_scan([3,2,0,1]) ([0,3,5,5]) 
while inclusive_scan ([3,2,0,1]) ([3,5,5,6]). The Scan primitive can also take a user defined 
associative binary function to replace the default plus/sum binary function. To better illustrate 
the concept of the scan parallel primitive which is important in our implementation, a CUDA 
implementation of the scan primitive using four threads are provided in Fig. 1. In general, to scan 
2n data items, 2n+1 intermediate storage units is required. After the initialization step, the n data 
items are copied to the right half of the storage array while the first half of the storage array is 
cleared up. In step i of the process, data items that are 2i elements away are added up in parallel 
and the whole scan process completes in n+1 steps.  

 
 
 
 
 
 
 
 
 
 
Fig. 1 A simplify illustration of Scan implementation using four threads in CUDA 
 
(2) Copy and Copy_if. The functionality of the two primitives is self-evident. In this 

research, we use Copy to move groups of entries from one location to another, mostly within a 
same vector, i.e., in-place copy. The Copy_if primitive takes an additional unary function as a 
parameter to tell weather the corresponding vector element should be copied to the output vector 
or not.  

(3) Transform. The basic form of Transform applies a unary function to each entry of an 
input vector and stores the result in the corresponding position in an output vector. Transform is 
more general than Copy as it allows a user defined operation to be applied to vector elements 

0 0 0 0 3 2 0 1 

__device__ inline ushort scan4(ushort num)   
{ 
     __shared__  ushort ptr[2*Tn]; 
    ushort val=num; 
    uint idx = threadIdx.x; 
    ptr[idx] = 0; 
    idx += Tn; 
    ptr[idx] =num; 
    __syncthreads(); 
    val += ptr[idx -   1]; __syncthreads(); ptr[idx] = val; __syncthreads(); 
    val += ptr[idx -   2]; __syncthreads(); ptr[idx] = val; __syncthreads(); 
    val += ptr[idx -   4]; __syncthreads(); ptr[idx] = val; __syncthreads(); 
     … 
    val = ptr[idx - 1]; 
    return val; 
} 
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rather than simply copying. Similar to Copy_if, there is also a Transform_if primitive where only 
vector elements are evaluated to true based on a second unary function is transformed using the 
first unary function.  

(4) Scatter. Scatter copies elements from a source range into an output vector according 
to a map. For example, Scatter([3,0,2],[12,4,8],[*,*,*,*,*,*]) ([4,*,8,*,12,*]). Note * values are 
those unchanged in the third input vector. Clearly when there is a one-to-one map between the 
inputs and outputs, the output vector will have no * values.  

 
The alert readers many have observed that these parallel primitives work on flat 1D 

vectors only and we term them as generic primitives. From a geospatial computing perspective, 
this is indeed insufficient to process geospatial data which is usually multi-dimensional. 
However, as we shall show in Section 4, we can use these flat 1D vector based generic parallel 
primitives as the building blocks to construct parallel geospatial processing modules. On the 
other hand, the current generation of GPGPU devices work best with flat 1D vectors in many 
cases. Mapping between multi-dimensional geospatial data to flat 1D vectors can potentially help 
identifying parallelisms in geospatial computing and facilitate designing more efficient, 
geospatial-specific data structures and algorithms on GPGPUs for geospatial computing.  

2.3 Parallel Processing of Geospatial Data 
Parallel processing of geospatial data is not a completely new concept. Quite a few works 

on parallel spatial data structures (Kamel and Faloutsos 1992, Ali et al 2005), spatial join (Zhou 
et al 1998, Patel and DeWitt 2000), spatial clustering (Xu 1999), spatial statistics (Armstrong et 
al 1994, Wang and Armstrong 2003) and polygonization (Hoel 2003, Mineter 2003) have been 
reported. However, as discussed in (Clematis et al 2003), research on parallel (and distributed) 
processing of geospatial data prior to 2003 has very little impact on mainstream geospatial data 
processing applications, possibly due to the accessibility of hardware and infrastructures in the 
past. The situation has been significantly changed over the past few years due to the wide 
availability of grid (Wang and Liu 2009) and cloud computing (Yang et al 2011) resources and 
the maturity of GPGPU technologies (Zhang 2011). Work reported in (Wang et al 2008) has 
demonstrated significant speedups by using grid computing for spatial statistics. Parallel 
computing on LIDAR data using cluster computers (Han et al 2009) is getting increasingly 
popular due to its computation intensive nature. The development of a general-purpose parallel 
raster processing programming library on top of the MPI (Message Passing Interface17) parallel 
communication protocol is reported in (Guan 2010) and a test application using a geographical 
cellular automata model has achieved a speedup of 24 using a 32-node cluster computer. We also 
refer to (Yang et al 2010) for a review on environmental modeling on cluster computers in a 
cyberinfrastructure environment. Recently, there are considerable research interests in geospatial 
data processing using the MapReduce parallel computing framework (Dean and Ghemawat 
2010) and the open source Hadoop implementation18 on cluster computers, such as R-Tree 
construction on point data and image tile quality computation (Cary et al 2009), spatial join 
(Zhang et al 2009), geostatistics (Liu et al 2010) and nearest neighbor queries on voronoi 
diagrams (Akdogan et al 2010). Similar to MapReduce/Hadoop applications, there are also 
considerable recent works on GPGPU applications to geospatial computing, including 
environmental modeling (Molna et al 2010), flow accumulation (Ortega and Rueda 2010), 
                                                 
17 http://en.wikipedia.org/wiki/Message_Passing_Interface  
18 http://hadoop.apache.org/ 
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drainage network computation (Qin and Zhan et al 2012), LIDAR data reduction (Oryspayev, in 
press) and raster analysis (Steinbach and Hemmerling, in press). Most of these works are related 
to local or focal geospatial operations which are relatively straightforward to parallelize on 
GPGPUs. In addition, it seems that these works (except Molna et al 2010) have focused on 
utilizing GPGPU’s large number of threads to speed up computation but have not used GPGPU’s 
fast shared memory to speed up data accesses yet. As such, there are signficant potentials to 
improve the efficiencies of the respective implementation although it is nontrivial to understand 
data access patterns and make full use of GPGPU’s fast shared memory. GPGPU technologies 
have also been applied for coding raster bitplane bitmaps (Zhang et al 2011), polygon 
rasterization (Zhang 2011) and vector data indexing using R-Tree (Luo et al 2011) where zonal 
and global geospatial operations are involved and more sophisticated parallelization schemes 
have been designed to optimize performance.  

2.4 Indexing Raster Geospatial Data 
There are relative fewer works on indexing raster geospatial data when compared with 

indexing vector geospatial data. While interval trees (Cignoni et al 1997), octrees (Wilhelms and 
Vangelder 1992, Wang and Chiang 2009) and kd-trees (Gress and Klein 2004) have been 
extensively used in 3D graphics such as iso-surface rendering and ray-tracing, quadtrees have 
been proposed to compress binary and gray scale 2D rasters (Samet 1985, Lin 1997, Chan and 
Chang 2004, Chung et al 2006) in computer graphics and image processing communities, 
respectively. However, we note that data structures and algorithms designed for compression are 
not necessarily suitable for query processing.  Pyramid and tiling techniques have also been used 
to speed up image display but usually they do not allow queries on the underlying raster data. 
Oracle GeoRaster19 allows storing the bounding boxes and derived attributes of tile images as 
vector geospatial data, which subsequently can be indexed and queried so that only selected tile 
images need to be retrieved for display. A few of existing works have addressed the issue of 
managing a set of similar/related rasters for efficient query processing based on the concept of 
overlapping quadtrees (Tzouramanis et al 1998, Manolopoulos et al 2001, Manouvrier et al 
2002). The techniques are similar to indexing spatial-temporal vector geospatial data such as 
Historical R-Tree (Nascimento et al 1998), MV3R-Tree (Tao and Papadias 2001) and TPR-Tree 
(Saltenis 2000) from a methodological perspective. All the above indices construction algorithms 
are serial. It is desirable to investigate how modern GPU hardware devices and GPGPU parallel 
computing technologies can be effectively used to index large-scale raster geospatial data to 
support efficient queries, such as the Region-of-Interest (ROIs) type queries that we have used 
for Web-based visual explorations (Zhang and You 2010a, Zhang and You 2010b).  

Techniques such as linear quadtrees (Samet 1984) have been developed to externalized 
main-memory based quadtrees and make them disk-resident. Linear quadtrees can be used to 
support certain types of queries on top of B+-Tree (Tzouramanis et al 1998, Aboulnaga and Aref 
2001, Manolopoulos et al 2001. A recent work on managing large-scale species distribution data 
(Zhang et al 2009) associates a set of species identifiers with linear quadtree nodes and uses the 
PostgreSQL LTREE module20 to perform window queries by coordinating both the query client 
and the database server. A main-memory implementation has improved query performance by 2-

                                                 
19  http://docs.oracle.com/html/B10827_01/geor_intro.htm 
20 http://www.postgresql.org/docs/9.1/static/ltree.html  
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3 orders as reported in (Zhang 2012, also see online demo at21). A Binned Min-Max Quadtree 
(BMMQ-Tree) data structure that associates min/max statistics of raster cells of a quadrant to the 
corresponding quadtree node to speed up processing of certain types of queries in a Web 
environment has been developed (Zhang and You 2010a). BMMQ-Tree is a CPU main-memory 
data structure constructed through a recursive procedure. More recently, the BMMQ-Tree 
construction algorithm has been implemented on Nvidia GPUs using CUDA directly (Zhang et 
al 2010). In this paper, we will introduce the BMMQ-Tree data structure and its CUDA-based 
construction algorithm (i.e., the CUDA-Naïve implementation) in more details in Section 3 
before we present our parallel primitives based implementation in Section 4.  

3 BMMQ-Tree and its CUDA-based Construction 
The Binned Min-Max Quadtree (BMMQ-Tree) (Zhang and You 2010a, Zhang et al 

2010) can be considered as a special type of quadtree where statistics (min/max in this case) are 
associated with quadtree nodes and the raster cell values are binned to enhance spatial 
homogeneity and reduce tree complexity. The BMMQ-Tree node layout in the original CPU-
based design has been adapted to GPGPUs by replacing four pointers to four child nodes with an 
array index to point to the first child node. The layout of the BMMQ-Tree data structure is 
illustrated in Fig. 2. A BMMQ-Tree node has a data field and a position field. The data field, 
while only the minimum (minB) and maximum (maxB) values of the raster cells under the node 
is currently recorded for a BMMQ-Tree, in principle, can store any statistical values, such as 
mean and deviation. The position field stores the starting position of the first child node in the 
data stream that holds all the tree nodes linearly based on a breadth-first traversal. As discussed 
in (Zhang et al 2010), the BMMQ-Tree structure is cache conscious since sibling nodes are 
consecutive in the data stream and is likely to be fetched together into hardware cache lines. The 
quadtree data structure also has a small memory footprint as only the position of the first child 
node, instead of the four pointers to all child nodes, are stored. More importantly, the quadtree 
data structure is GPU-friendly as the data stream of quadtree nodes can be easily held in a one 
dimensional array and transferred back and forth between CPU and GPU memories (as well as 
disks and CPU memories) without serialization.  

The original implementation of the construction algorithm of the BMMQ-Tree tree using 
CUDA directly, i.e., the CUDA-Naïve implementation, is fairly complicated. The process first 
builds a min/max pyramid from the original raster data. For each cell of a raster at each level in 
the pyramid, the minB and maxB values are derived bottom-up. Starting from the top level of the 
pyramid, the algorithm then performs two Z-order (Morton 1966) based prefix sums (scans)22 to 
compute the position of each of the nodes on the output data stream and fill the position of the 
first child node in the stream for each node. The first scan to fill the position of the first child 
node on the stream for each node is performed on a sequence of child numbers ci where ci is 0 if 
all minB and maxB values of the node are exactly the same (i.e., the quadrant is homogeneous 
and there is no need for further subdivision) and ci is 4 otherwise. The second scan to compute 
the position of each of the node on the output data stream is performed on a sequence of values 
of pi where pi is 0 if ci is 0 and pi is 1 if ci is not 0. An example of the parallel tree construction 
process is illustrated in Fig. 3. 

                                                 
21 http://geoteci.engr.ccny.cuny.edu/geoteci/SPTestMap.html 
22 http://en.wikipedia.org/wiki/Prefix_sum  
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Fig. 2 Layout of a BMMQ-Tree  
 

While we refer to (Zhang et al 2010) for more details regarding to the CUDA-Naive 
implementation, we would like to note that quite some of our coding effort were spent on level-
wise kernel launches. In order to fully utilize GPU threads, we had designed a sophisticated 
kernel launch schema. As shown in Fig. 4, at the finest level (K), for a raster dataset has a size of 
N*N (N=2K), we have set the data grid dimension to P*P (P=2L) and thread block dimension to 
T*T (T=2U) and each thread was responsible for processing Q*Q raster cells (Q=2K-L-U). During 
the bottom-up process to compute the min/max values of all pyramid elements, from level K to 
level L+U, the workload of each thread is reduced to 1/4 due to the aggregations of pyramid 
elements. At the level L+U, each thread will only process four elements of the level L+U+1 
matrix in the pyramid. The sizes of the matrices between level L and level L+U are below the 
number of threads that are allocated to the previously defined kernel. To utilize the GPU device 
fully, the block size and thread size per block are reduced gradually by launching new kernels at 
each level. The top S levels of the tree were built in CPU as there was not enough parallelism to 
make full use of the GPU threads. As GPU cores are usually slower (with respect to clock rate) 
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and less powerful (with respect to cache utilization and handling branching) than CPUs, it is 
more beneficial to process the top S levels in the CPU.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3 Example of the parallel construction process of a BMMQ-Tree: min/max pairs and 

numbers of children are computed for all pyramid levels in step 1, positions of the first child 
nodes are computed by prefix-sums (scans) using the numbers of children array in step 2, and 

finally, positions of all the quadtree nodes in the output array are computed also through a prefix-
sum (scan) process. The data fields are filled and the quadtree nodes are output in parallel to 

construct a BMMQ-Tree after the three steps. 
 
Besides determining the schema to map GPGPU computing blocks and threads to raster 

cells, another key issue in the CUDA-Naive implementation was to perform Z-order based 
prefix-sums (scans) to compute proper values of the first child positions and the node positions 
as discussed earlier. Mixing Z-order based data accesses to pyramid matrixes and prefix-sums 
(scans) makes the code fairly complicated. While we were able to make the CUDA program 
work and gained signficant speedups using an Nvidia Quadro FX3700 GPU card over an Intel 
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CPU E5405 processor (only one core was used), it took us more than four months to complete 
the development. The resulting CUDA program has more than 1000 LOC (Lines of Code) and 
was not well structured. Another drawback of the CUDA-Naive implementation was that we 
were not able to use shared memory to speed up computation and data accesses from/to global 
memory. Despite we were aware that accesses to shared memory were about two orders faster 
than accesses to GPU global memory (Kirk and Hwu 2010), we were not able to identify data-
reuse patterns and were not able to make use of GPU shared memory. As we shall see in the next 
section, by using the scan primitive where shared memory is utilized extensively and 
automatically, the tree construction performance can be improved significantly.   
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4 Kernel Launching Schema of the CUDA-Naive Implementation 
 

4 Constructing BMMQ Tree using Parallel Primitives 
Similar to the CPU construction of a BMMQ-tree, the construction process begins with a 

binning process as illustrated at the top part of Fig. 5. This can be easily implemented by using a 
transform primitive. For all the elements in the input vector (row-major ordered raster cells), a 
binning functor (C++ function object) is applied and the result is copied to the output vector. The 
binning process can be efficiently performed on GPUs. For example, our experiments have 
shown that binning a 16-bit 4096*4096 raster into a 8-bin raster takes about 1.32 milliseconds on 
an Nvidia Quadro 6000 card, i.e., 12.7 billion data elements (or 101 billion bins) per second . 
However, as parallel primitives that are currently available in most libraries (including Thrust) 
are mostly designed for 1D data, there is a semantic mismatch between using parallel primitives 
and processing multidimensional geospatial data. Fortunately, there are many well-established 
techniques to transform multidimensional data into space filling curves with known 
mathematical properties23. Among various space filing curve based orderings, Z-Order (Morton 
1966) might be the simplest and easiest one. Our task here is thus to transform 2D raster cells 
into 1D vector elements based on the Z-Order. As shown in Fig. 5, this can be done by using the 
scatter primitive in conjunction a transform iterator and a functor. As introduced in Section 2.2, a 
scatter primitive copies elements from a source range into an output vector according to a map.  

 
 

                                                 
23 http://en.wikipedia.org/wiki/Space-filling_curve  

Level K (raster R) 

Level L+U (thread) 

Level 0 (root) 

Level L (block) 

Processed by a single kernel 
by looping through the levels

Processed by CPU 

Using separate kernels 
with variable 
block/thread sizes   

Level S (Parallel/Serial boundary) 
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Fig. 5 Code Segment to Illustrate Z-order Based Transformation Using the Scatter Primitive 
 
While it is easy to observe that the source vector is b_data (the first and the second 

parameters) and the destination range is d_data (the fourth parameter) in calling the scatter 
primitive at middle part of Fig. 5, we would like to provide more details on how the map vector 
(the third parameter) is built. In fact, the map vector is provided as a transform iterator that 
transforms row-major order (represented by a counting_iterator variable indices) to Z-order on-
the-fly by calling operator() of the user-defined zorder_index functor. We have used the lookup 
approach introduced in (Raman and Wise 2008) to implement the zorder_index functor for 
efficiency purpose. When the scatter primitive is executed, for each element in b_data, in 
parallel, a Z-order value is computed based on its index position in b_data and its value is copied 
to the index position of the Z-order value in the d_data vector. Obviously there is a one-to-one 
correspondence between the elements in b_data and d_data but elements in b_data follow a row-
major order and elements in d_data follow a Z-order. Subsequently d_data is used as the new 
input data for further processing. We note that it is generally non-trivial to transform orders of 
data elements on GPGPUs efficiently as efficiency can be significantly decreased if GPU 
memories are not accessed in a coalesced manner, i.e., consecutive threads need to access 
consecutive memory addresses. Fortunately, this is taken care of by the Thrust library that 
implements the scatter primitive. A variety of sophisticated optimization techniques, such as 
kernel configuration and using shared memory for intermediate results, are applied in the Thrust 
library but the optimizations are transparent to application developers. These types of “automatic 

//assuming that the original data are stored in r_data in row-major order 
thrust::device_vector<uchar> b_data(XTOT*YTOT); 
thrust::transform(r_data.begin(),r_data.end(),b_data.begin(),binning<char>()); 
 
thrust::counting_iterator<size_t> indices(0); 
thrust::device_vector<uchar> d_data(XTOT*YTOT);  
thrust::scatter( 

b_data.begin(),b_data.end(), 
     thrust::make_transform_iterator(indices, zorder_index()), 

d_data.begin() 
); 

struct zorder_index : public 
thrust::unary_function<size_t,size_t> 
{ 
    __host__ __device__ 
    size_t operator()(size_t  index) 
    { 
        ushort i = index / XTOT; 
        size_t j = index % XTOT; 
        return z_order(i,j); 
    } 

#define XTOT 4096 
#define YTOT 4096 

template <typename T>  
struct binning : public thrust::unary_function<ushort,T> 
{ 
    __host__ __device__  
   T operator()(ushort x) 
    { 
     if(x<4) return 1;   if(x<11) return 2; 
     if(x<18) return 3; if(x<27) return 4; 
     if(x<40) return 5;  if(x<77) return 6; 
     if(x<190) return 7; if(x<1004) return 8; 
     else return 9; 
    } 
}; 
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optimization” can signficant reduce development complexities and improve performance at the 
same time. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6 Code Segment to Illustrate Generating Bottom-Level Min/Max Table from a 
Binned Raster using a Transform Primitive 

 
The next step is to derive the bottom level min/max matrix of the raster pyramid from the 

raw data. We first divide the 1D raster cell vector (now in Z-order) into four vectors with the ith 
vector takes 0*4+i, 1*4+i, 2*4+i …, S*4+i elements in the original vector where S=N*N/4. This 
can be done in Thrust using a class called strided_range. Subsequently for raster cells from the 
four vectors can be used to make a tuple and the constructor of the quad_data functor can be 
applied as shown in Fig. 6. Note that the make_tuple function usually goes together with the 
make_zip_iterator function to construct a virtual vector of structures which has quite some 
performance advantages (Bell and Hoberock 2011). The output of the transform primitive is 
written to the min/max table vector (minmax_table) starting at bstart=1+4+42+…+4K-2=(4K-1-1)/3 
where K is the height of the raster pyramid. Note that the minmax_table vector is used to store 
the min-max pairs for all the (K-1) levels and the length of the vector is blen=1+4+42+…+4K-1 = 
(4K-1)/3. Concatenating all the min-max pair vectors into a big one not only make it easier than 
maintaining K-1 separate vectors but also make it possible to construct all tree nodes using a 

template <typename T> 
struct quad_data 
{ 
     __host__ __device__ minmax_pair<uchar> operator() (thrust::tuple<T,T,T,T> v) 
    { 
  uchar c0 = thrust::get<0>(v);  uchar c1 = thrust::get<1>(v); 
  uchar c2 = thrust::get<2>(v); uchar c3 = thrust::get<3>(v); 
  uchar vmin=255,vmax=0; 
  if(c0<vmin) vmin=c0;  if(c0>vmax) vmax=c0;   
  if(c1<vmin) vmin=c1;  if(c1>vmax) vmax=c1; 
  if(c2<vmin) vmin=c2;  if(c2>vmax) vmax=c2; 
  if(c3<vmin) vmin=c3;  if(c3>vmax) vmax=c3;  
  minmax_pair<uchar> result; 
  result.min_val =vmin; result.max_val =vmax;   

result.num_children=((vmin==vmax)?0:4); 
  return result; 
     } 
}; 

thrust::device_vector<minmax_pair<uchar> > minmax_table(…);     
strided_range<Iterator> v0(d_data.begin(), d_data.end(), 4); 
strided_range<Iterator> v1(d_data.begin() + 1, d_data.end(), 4); 
strided_range<Iterator> v2(d_data.begin() + 2, d_data.end(), 4); 
strided_range<Iterator> v3(d_data.begin() + 3, d_data.end(), 4); 
 
thrust::transform( 
       thrust::make_zip_iterator( thrust::make_tuple(v0.begin(), v1.begin(), v2.begin(),v3.begin())), 
       thrust::make_zip_iterator( thrust::make_tuple(v0.end(), v1.end(), v2.end(),v3.end())), 
       minmax_table.begin()+bstart, 
       quad_data() 
); 

template <typename T> 
struct minmax_pair 
{ 
    T min_val; 
    T max_val; 
    uchar num_children; 
}; 
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single parallel primitive as we shall detail shortly. For the four raster cells in a quadrant, the 
operator() of the quad_data functor returns a min-max pair of the cell values by using a transform 
primitive. During this process, the number of children at the quadrant is also counted in the 
quad_data functor to form a minmax_piar structure. If all the four cells under a quadrant in the 
original raster have the same value, then the quadrant should have 0 children, otherwise it should 
have 4 children. Since we have already had the minimum and maximum values of the quadrant, 
the criteria to determine the number of children can be simplified as the following simple 
statement: result.num_children=((vmin==vmax)?0:4). Note that the quad_data functor in the 
transform primitive takes an element of the input vector, i.e., the virtual vector constructed by 
the combination of the make_tuple and make_zip_iterator functions, and compute a 
minmax_pair structure to be written to the output vector, i.e., minmax_table. The relationships 
among the input vector, the functor and the output vector are marked with arrows in the middle 
part of Fig. 6. The same illustration has also been provided in Fig. 7 through Fig. 9. 

After the min-max table for the bottom level of the raster pyramid is constructed, we can 
follow pretty much the same procedure to construct the min-max tables of the rest levels of the 
raster pyramid in a bottom-up manner (Fig. 7). Since we concatenate all K-1 levels of the min-
max pairs in a vector (minmax_table), we need to compute the starting positions and sizes of the 
min-max tables at all levels. At each pyramid level (k), we can compute the starting position as 
c_start=1+4+42+…+4k=((4k+1-1)/3 and raster size as c_size= 2k+1*2k+1=4k+1. Four min-max pairs 
at level k are then aggregated and output to the minmax_table vector at level k-1 starting at 
p_start=(4k-1)/3. The logics of computing the min-max pairs at each level of the pyramid are 
very similar to computing the min-max pairs from the raw data vector shown in Fig. 6. The only 
required change is the function to be applied to each cell at each pyramid level. The functor to be 
applied (quad_pyra) is very similar to the quad_data functor in Fig. 6 with respect to computing 
the min/max values from the four minmax_pair structures in a quadrant. We note that the 
strided_range class is again used to split the minmax_pair structures in the original vector 
(minmax_table) into four strided vectors. The four strided vectors are subsequently used to make 
tuples in order to use the zip iterators in the transform primitive (middle part of Fig. 7). 

While it is straightforward to construct the min-max table level-wise and bottom up, a 
subtle issue is how to determine whether the quadtree nodes corresponding to the minmax_pair 
structures in the min-max table at the all pyramid levels should be kept or not. Conceptually only 
a highest level quadtree node is kept to represent a homogenous quadrant while all the nodes 
under it should be pruned. This can be easy done in the CUDA-naïve implementation by setting 
a flag in all the child nodes under a parent node if the parent node is determined to represent a 
homogenous quadrant. Unfortunately, Thrust parallel primitives usually do not allow change 
elements in input vectors for both efficiency and safety considerations. Our solution, as shown in 
Fig. 8, is to extract the number of child nodes of parent nodes into a separate vector (stored in 
tmp_numchild in Fig. 8) and use the vector to determine whether the respective child nodes 
should be kept in the resulting quadtree based on the following fact. If a parent node represents a 
non-homogeneous quadrant (i.e., number of children is 4) but a child node represents a 
homogeneous region (i.e., number of children is 0), then the child node is a leaf node in the 
resulting quadtree and should be kept. On the other hand, if both the child node and its parent 
node represent homogeneous regions then the child node should not be a node in the resulting 
quadtree. Our implementation reuses the child node number field as an indication flag. For the 
minmax_pair structures in the min-max table corresponding to the quadtree leaf nodes, we set 
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their child node numbers to a large value (e.g., 255) in the update_numchild functor in the 
second transform primitive in Fig. 8.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7 Code Segment to Illustrate Generating Min/Max Table at the All Pyramid Levels 

Bottom-Up using a Transform Primitive 
 
 

  for(int k=M-2;k>=0;k--) 
    { 
   int c_start=(int)((std::pow(4.0f,k+1)-1)/3); 
   int p_start=(int)((std::pow(4.0f,k)-1)/3); 
   int c_size=(int)(std::pow(4.0f,k+1)); 
   strided_range<MMIterator> u0(minmax_table.begin()+c_start+0,  
  minmax_table.begin()+c_start+c_size, 4); 
 strided_range<MMIterator> u1(minmax_table.begin()+c_start+1, 

 minmax_table.begin()+c_start+c_size, 4); 
              strided_range<MMIterator> u2(minmax_table.begin()+c_start+2,  

minmax_table.begin()+c_start+c_size, 4); 
              strided_range<MMIterator> u3(minmax_table.begin()+c_start+3,  

minmax_table.begin()+c_start+c_size, 4); 
              thrust::transform( 

thrust::make_zip_iterator(thrust::make_tuple(u0.begin(), u1.begin(), u2.begin(),u3.begin())), 
     thrust::make_zip_iterator(thrust::make_tuple(u0.end(), u1.end(), u2.end(),u3.end())), 

      minmax_table.begin()+p_start, 
     quad_pyra()); 

template <typename T> 
struct quad_pyra 
{ 
        __host__ __device__ 
        minmax_pair<uchar> operator()(thrust::tuple<minmax_pair<T>,minmax_pair<T>, 

minmax_pair<T>,minmax_pair<T> > v) 
       { 
 minmax_pair<uchar> c0 = thrust::get<0>(v); minmax_pair<uchar> c1 = thrust::get<1>(v); 
 minmax_pair<uchar> c2 = thrust::get<2>(v); minmax_pair<uchar> c3 = thrust::get<3>(v); 
   
 T vmin=255,vmax=0; 
 if(c0.min_val<vmin) vmin=c0.min_val;  if(c0.max_val>vmax) vmax=c0.max_val;  
 if(c1.min_val<vmin) vmin=c1.min_val;  if(c1.max_val>vmax) vmax=c1.max_val;  
 if(c2.min_val<vmin) vmin=c2.min_val;  if(c2.max_val>vmax) vmax=c2.max_val;  
 if(c3.min_val<vmin) vmin=c3.min_val; if(c3.max_val>vmax) vmax=c3.max_val;  
 
 minmax_pair<T > result;    

result.min_val =vmin;  result.max_val =vmax;     
result.num_children=((vmin==vmax)?0:4);  
return result; 

      } 
}; 
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Fig. 8 Code Segment to Illustrate Identifying Leaf Nodes  
 
Note that this version of the transform primitive takes two input vectors (minmax_table 

and tmp_numchild, respectively) and the update_numchild functor is binary which produces an 
output vector (minmax_table) based on the two input vector. Since the output vector here is the 
same as the first input vector, the transform is done in place. The alert reader might observe that, 
the tmp_numchild, which stores the numbers of child nodes of parent nodes, has the same length 
as that of minmax_table. As one parent node has four child nodes in quadtrees, the child node 
numbers must have been replicated in order to make it possible to compare the child node 
numbers between all parent-child pairs in parallel using the transform primitive. Indeed, this is 
the trickiest part of the primitives based implementation which is done by integrating two 
transform primitives, one further makes use of a counting_iterator and the other further uses a 
permutation_iterator, as shown at the top of Fig. 8. The first transform primitive takes a vector 

thrust::device_vector<uint> tmp_pos(blen); 
thrust::device_vector<uint> tmp_numchild(blen); 
thrust::transform(indices+1,indices+blen,tmp_pos.begin()+1,calc_pos()); 
thrust::transform( 
        thrust::make_permutation_iterator(minmax_table.begin(), tmp_pos.begin()), 
        thrust::make_permutation_iterator(minmax_table.begin(), tmp_pos.end()), 
        tmp_numchild.begin(), 
        get_tempchildren()); 
thrust::transform( 
        minmax_table.begin()+1,minmax_table.begin()+blen, 
        tmp_numchild.begin()+1,minmax_table.begin()+1, 
        update_numchild()); 

struct calc_pos:public 
thrust::unary_function<uint,uint> 
{ 
       __host__ __device__ 
       uint operator()(uint pos) 
      { 
            return (pos-1)/4; 
      } 
}; 

struct get_tempchildren:public 
thrust::unary_function<minmax_pair<uchar>,uint> 
{ 
     __host__ __device__ 
     uint operator()(minmax_pair<uchar> t) 
     { 
         return (t.num_children); 
     } 
}; 

struct update_numchild: public 
thrust::binary_function<minmax_pair<uchar>,uint,minmax_pair<uchar> > 
{ 
     __host__ __device__ 
     minmax_pair<uchar> operator()(minmax_pair<uchar> t, uint n) 
     { 
         minmax_pair<uchar> r=t; 
         if(t.num_children==0&&n>0)  r.num_children=255; //a leaf node 
         return r; 
     } 
}; 
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of sequential numbers (to be dynamically generated by the counting_iterator variable indices) 
which represents all child node positions and the output vector is tmp_pos which represents the 
respective parent node positions. The map between the input and output is computed by the 
calc_pos functor which is simply parent_pos=(child_pos-1)/4. After the parent node positions are 
calculated, the second transform primitive actually copies the numbers of children in the parent 
nodes to these of the child nodes based on the positions. The role of the permutation_iterator is 
similar to the Scatter primitive which generates an output vector based on an input vector and a 
map on the fly while the permutation_iterator is advanced (in parallel). In our implementation, 
the value of the number of children field of the minmax_pair structures in the min/max table 
vector has three possible values: 255 indicates a leaf node, 4 indicates a non-leaf nodes and 0 
indicates a non-tree node. Only the numbers of child nodes of non-leaf nodes are used to 
compute child node positions but both the leaf and non-leaf nodes are used to construct a 
quadtree. 

After the min-max pair vector is constructed in parallel for all levels of the raster 
pyramid, we proceed to the stage of assembling a BMMQ tree where we need to fill the minB, 
maxB and the first child node position fields for all tree nodes. Similar to what we have done 
previously (Zhang et al 2010), a prefix-sum (scan) on the numbers of children of all non-leaf tree 
nodes will serve the purpose of computing the positions of the first child nodes. The prefix-sum 
can be easily done in a single call to the exclusive_scan primitive after calling the transform 
primitive to compute the numbers of children for all tree nodes as shown at the top of Fig. 9. We 
also refer to Fig. 1 for the illustration of the implementation of the scan primitive. The last step to 
construct a BMMQ tree is to actually fill the min/max values and the first child node positions in 
the array of the tree nodes by using a transform primitive. The transform_if primitive takes two 
input vectors, i.e., the combination of minmax_table and chidposition through make_zip_iterator 
and make_tuple and the minmax_table alone, and two unary functors, i.e., quad_node and 
is_treenode. The quad_node binary functor takes a tuple of a minmax_pair structure in the 
minmax_table and a value in the chidposition vector and outputs the resulting quad_node 
structure to the output vector (i.e., quadtree) if the is_treenode functor is evaluated to true by 
using the corresponding element in the minmax_table vector (i.e., a min-max pair) as the input. 
Since we only want to keep valid tree nodes in the final quadtree output vector, the tree node 
pruning logic is implemented in the is_treenode functor by examining whether the number of 
children that is associated with the corresponding min-max pair is greater than zero which covers 
both the case of non-leaf nodes (number of children is 4) and the case of leaf node (number of 
children is purposely set to 255). Although the elements in the quadtree output vector are not 
updated if the is_treenode is evaluated to false at the position (which is more efficient), they still 
occupy spaces in the quadtree vector whose values are set when the vector is initialized. The 
quadtree vector can be compacted by using an in-place copy_if primitive on the quadtree vector 
which reuses the is_treenode functor as its unary predicate to evaluate the corresponding element 
in the minmax_table vector.  
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Fig. 9 Code Segment to Illustrate the Process of BMMQ-Tree Construction by Integrating 
Transform, Scan and Copy Primitives 

 

5 Evaluations and Discussions  
We evaluate the proposed primitive-based BMMQ-Tree construction approach using two 

measurements: coding complexity and code efficiency by comparing them with the CUDA-naive 

thrust::device_vector<uint> numchildren(blen); 
thrust::transform(minmax_table.begin(),minmax_table.end(),numchildren.begin(),get_numchildren<uchar>()); 
 
thrust::device_vector<uint> chidposition(blen); 
 thrust::exclusive_scan(numchildren.begin(),numchildren.end(),chidposition.begin(),1);       
 
thrust::device_vector<quad_node> quadtree(blen); 
thrust::device_vector<quad_node>::iterator quad_end; 
thrust::transform_if( 

thrust::make_zip_iterator(thrust::make_tuple(minmax_table.begin(), chidposition.begin())), 
thrust::make_zip_iterator(thrust::make_tuple(minmax_table.end(), chidposition.end())), 

     minmax_table.begin(), 
quadtree.begin(), 
trans_quad() 
is_treenode()     

); 
quad_end = thrust::copy_if(quadtree.begin(), quadtree.end(),minmax_table.begin(),quadtree.begin(),  
     is_treenode<uchar>()); 

template <typename T> 
struct is_treenode : public 
thrust::unary_function<minmax_pair<T>,bool > 
{ 
    __host__ __device__ 
    bool operator()(minmax_pair<T> x) 
    { 
     /*including both leaf (num_children 
=255) and non-leaf nodes (num_children=4)*/ 

return (x.num_children>0) ; 
    } 
}; 

struct quad_node 
{ 
    uchar min_val,max_val; 
    uint  first_child_pos; 
}; 

struct trans_quad  
{ 
__host__ __device__  
quad_node   operator()   
(thrust::tuple<minmax_pair<uchar>,uint> v) 

  { 
 quad_node result; 
 minmax_pair<uchar> p=thrust::get<0>(v); 
 result.min_val=p.min_val; 
 result.max_val=p.max_val; 
 result.first_child_pos=thrust::get<1>(v); 
 return result; 
     } 
}; 

template <typename T> 
struct get_numchildren : public 
thrust::unary_function<minmax_pair<T>,uint> 
{ 
    __host__ __device__ 
    uint operator()(minmax_pair<T> x) 
    { 
         //considering non-leaf nodes only 
          return (x.num_children==4)?4:0; 
    } 
}; 
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implementation (Zhang et al 2010). We use the same global 30-arcseconds January Precipitation 
dataset from WolrdClim website24. Since dataset is divided into 4096*4096 tiles in CUDA-naïve 
implementation based experiments, we apply the same tiling schema in this study. We note that 
while the time complexity of the tree construction algorithm varies with the tile sizes and the 
output quadtree sizes depends on the input raster data, for the rasters that have a same dimension, 
the runtimes are largely input independent. The major workloads to construct the min/max table, 
computing first child node positions and filling quadtree nodes remain the same for any input 
raster with a same raster grid dimension. The differences for the last copy_if primitive are 
relatively insignificant. As such, although we have experimented on multiple tiles and multiple 
rasters, we will only report our experiment results on a 4096*4096 tile from the global 30-
arcseconds January Precipitation dataset. Additional experiment results are available in our 
project website25. Since the valid values for raster cells range from 0 to 1004, we have used 8-
bines with bin boundaries at (0, 4, 11, 18, 27, 40, 77, 190, 1004). All experiments are performed 
on an Nvidia Quadro 6000 GPU card26 with 448 cores and 6 gigabytes global memory.  

With respect to coding complexity, while the measurements and observations might be 
subjective, we would conclude that the coding complexity is significantly reduced when the 
primitive based implementation is compared with the previous CUDA-naive implementation. 
The CUDA-naive implementation has about 1000 LOC (lines of code). Many of them are fairly 
long lines especially for those involve array subscript calculations in Z-order transformations. In 
contrast, excluding the data preparation part, the main-body of the primitive based 
implementation is only about 50 lines, including both calls to parallel primitives and control 
flows. An additional 200 lines are needed to implement the functors that work with the 
primitives (as shown in Figs.5-9). However, the functors are fairly simple and the 
implementations are straightforward. While it took us sometime to learn the Thrust library, 
writing functors is much easier than embedding complex logics in CUDA statements. More 
importantly, the code is better structured, logically clearer and subsequently easier to debug and 
maintain. Furthermore, since we do not program GPU directly, understanding GPU hardware 
details is optional rather than mandatory.  In general, we believe that the parallel primitives 
based implementation is clearly the winner with respect to coding complexity. Although the 
learning curve on the parallel primitives still exists, the curve is not as steep as that of CUDA.   

In terms of code efficiency, while it is well-known that calling primitive libraries 
inevitably incur signficant overheads and is generally considered to be less efficient than native 
implementations, our experiments have shown differently. It takes about 130 milliseconds to 
construct a BMMQ-Tree for a 4096*4096 raster tile using the CUDA-naive implementation. The 
runtime dropped to about 13.5 milliseconds using the parallel primitives based implementation, 
i.e., approximately a 10X speedup is observed. Looking into the breakdowns of the runtimes, we 
find that the CUDA-naïve implementation actually is a little faster in the last step, i.e., 
assembling min/max values and first child node positions into quadtree nodes that corresponds to 
the last two primitives (transform and copy_if) in Fig. 9. The result is not surprising. However, 
the primitives based implementation is much faster than the CUDA-naive implementation with 
respect to deriving min/max tables and computing first child node positions. Although it 
additionally took about 3.25 milliseconds to perform the Z-order transformation, it only took 
1.62 milliseconds to compute the bottom level of the min/max table from the corresponding raw 

                                                 
24 http://biogeo.ucdavis.edu/data/climate/worldclim/1_4/grid/cur/prec_30s_bil.zip  
25http://134.74.112.65/primquad/primquad.htm  
26 http://www.nvidia.com/object/product-quadro-6000-us.html  
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raster cells. In contrast, it took 51 milliseconds for the CUDA-naive implementation in this step. 
Similarly, computing all the other levels of the min/max table took only 0.523 milliseconds in 
the primitives based implementation while it was 27 milliseconds in the CUDA-naive 
implementation. With respect to computing the first child node positions, the runtimes are 2.05 
milliseconds for the primitives based implementation and 42 milliseconds for the CUDA based 
implementation, respectively.  

Where does this 10X speedup come from? A careful examination of both 
implementations reveals that two factors play a key role. First, as discussed before, the CUDA-
naive implementation accesses GPU global memory in a row-major order when calculating the 
min/max table in a way similar to what we normally program on CPUs. This is quite typical for 
CUDA beginners and non-experts. However, the Single Instruction Multiple Thread (SIMD) 
parallel model adopted in CUDA has a quite different optimal memory access requirement. 
Different from CPUs where multi-levels of caches are utilized to automatically capture spatial 
and temporal access patterns and optimize data movements for a single processor, when GPU 
global memories are not accessed in a coalesced manner that are friendly to warps of threads, the 
signficant speed gap between GPU global memory and registers can be two orders or more and 
the performance loose can be significant (Kirk and Hwu 2010). Since consecutive threads only 
access two consecutive raster cells in the CUDA-naive implementation, the memory accesses are 
not coalesced and the access pattern is far from optimal. In contrast, in the parallel primitive 
based implementation, after transforming a 2D raster into a 1D vector, the majority of the 
operations performed by the respective primitives, such as transform and copy, are naturally 
memory access friendly. Additional optimizations have been provided by the Thrust library to 
further improve memory access efficiency on 1D vectors. The second factor is automatically 
using shared memory in Thrust primitives. Take the exclusive scan for example, Thrust first 
determines a good kernel configuration schema, such as number for computing blocks and the 
number of threads per block. Within each computing block, after data are collaboratively copied 
from global memory to per-block shared memory (as shown in Fig. 1), the data are summed up 
using shared memory as the scratch space before the results are written back collaboratively to 
global memory. The way Thrust does the scan is much more efficient than the embedded scans 
in the CUDA-naive implementation where all computations are performed on global memory 
without using the fast shared memory. Since the access latency to shared memory is comparable 
to that of registers and is about two orders faster than accesses to global memory (Kirk and Hwu 
2010), the primitives based calculation of first child node positions has achieved a 20X speedup 
(42 milliseconds versus 2.05 milliseconds).  

We note that it is certainly possible to incorporate both the techniques (coalesced 
memory accesses and using shared memories) that are utilized by the Thrust primitives into the 
CUDA-naive implementation. It is quite likely that an optimized CUDA based implementation 
can achieve a signficant speedup over the primitives based implementation after performance 
profiling and applying optimizations. However, we argue that such optimization and 
performance tuning can be time consuming even for CUDA experts. Given that there are no 
existing guidelines on optimizing memory accesses and computation for multidimensional 
geospatial data, such optimization techniques can be ad-hoc, tricky and highly dependent on 
developers’ understanding of GPU hardware and CUDA programming model. As such, we argue 
that using highly optimized parallel primitives can be more beneficial to application developers 
in terms of coding complexity and code efficiency. A disadvantage of the primitives based 
approach is that application developers are responsible to map between geospatial problems onto 
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the available parallel primitives. As discussed at the beginning of Section 4, there is a semantic 
gap between the multidimensional nature of geospatial data and the 1D vectors that are supported 
by most parallel libraries. While some parallel libraries do support multidimensional image data, 
such as Nvidia Performance Primitives (NPP)27 , they are mostly designed to speed up local or 
focal operations on RGB values of image pixels while largely leaving zonal and global 
operations untouched. It is unclear how such existing libraries can help indexing and query 
processing of geospatial data. As such, we believe that it is important to learn from both the 
generic parallel primitives on 1D data and the newly emerged parallel primitives on 
multidimensional image data and develop geospatial specific parallel primitives to facilitate 
zonal and global operations based geospatial computing, including indexing and query 
processing of large-scale rasters. Such geospatial specific parallel primitives are likely to capture 
commonly used geospatial computing patterns better and achieve better performance at the same 
time. A community effort is required to build such high-performance geospatial computing 
primitives which will in turn benefit the geospatial computing community once such primitives 
are developed. A cyberinfrastructure approach is further required to understand community 
needs, seek consensuses and prioritize development efforts as well as disseminating research and 
development results to the community. These are left for our future work.  

Conclusion and Future Works 
Despite the emerging wide interests in applying GPGPU technologies to solve large 

geospatial problems as GPU hardware resources become increasingly available, the complexities 
of the unique GPGPU hardware architectures and the steep learning curve of GPGPU 
technologies have imposed signficant challenges on the geospatial computing community. One 
of such challenges is how to balance between coding complexity and code efficiency to use such 
parallel hardware resources effectively. Based on previous research on constructing a quadtree 
indexing structure for visually exploring large-scale raster data on both CPUs and GPUs, in this 
study, we have advocated for a primitives based approach. Our experiment results have shown 
that the parallel primitives based approach can significantly reduce coding complexity and 
improve code efficiency at the same time.  

The parallel primitives based approach requires mapping between multidimensional 
geospatial data and 1D vectors that can be efficiently supported by existing parallel libraries. 
While the mapping is nontrivial, it provides a good opportunity to force geospatial computing 
researchers and developers to start to think about and understand the inherent parallelisms in 
geospatial data and geospatial computing. Such understanding is crucial in developing more 
efficient and geospatial-specific parallel primitives to bridge between conceptual deigns of 
geospatial computing models, software developments and hardware parallel executions.  

The paper has taken a case study approach to introduce a software development 
framework that can effectively lower the barrier of harnessing GPGPU parallel computing power 
for geospatial computing. There are plenty of rooms left for future works. First of all, we would 
like to extend the quadtree based indexing for query processing on GPGPUs, including both 
individual and batched queries (e.g., location/window queries and spatial joins). Second, while 
we focus on raster data in this study, it is natural to extend the idea to point and polygonal data, 
including both indexing and query processing. Third, although we have been using a single GPU 
device for our data structure and algorithm development in a personal computing environment, 

                                                 
27 http://developer.nvidia.com/npp  
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we plan to extend the approach to a cluster computing environment using grid/cloud computing 
resources to further test the scalability of the proposed approach. Finally, as discussed earlier, we 
have strong interests in developing geospatial specific parallel primitives to support large-scale 
geospatial computing in a cyberinfrastructure framework with respect to open source software 
development and providing services to the user community over the Web.   
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