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ABSTRACT 
Point-in-Polygon (PIP) test is fundamental to spatial databases 
and GIS. Motivated by the slow response times in joining large-
scale point locations with polygons using traditional spatial 
databases and GIS and the massively data parallel computing 
power of commodity GPU devices, we have designed and 
developed an end-to-end system completely on GPUs to associate 
points with the polygons that they fall within. The system 
includes an efficient module to generate point quadrants that have 
at most K points from large-scale unordered points, a simple grid-
file based spatial filtering approach to associate point quadrants 
and polygons, and, a PIP test module to assign polygons to points 
in a GPU computing block using both the block and thread level 
parallelisms. Experiments on joining 170 million points with 
more than 40 thousand polygons have resulted in a runtime of 
11.165 seconds on an Nvidia Quadro 6000 GPU device. 
Compared with a baseline serial CPU implementation using state-
of-the-art open source GIS packages which requires 15.223 hours 
to complete, a speedup of 4,910X has been achieved. We further 
discuss several factors and parameters that may affect the system 
performance.  
 

1. INTRODUCTION 
Point-in-Polygon (PIP) test is an important 

computational geometry operation and has been widely used in 
Computer Graphics (CG), Spatial Databases (SDB) and 
Geographical Information Systems (GIS). As locating and 
navigation sensors (such as GPS, cellular, Wifi and their 
combinations) have been increasingly embedded in personal 
handheld devices, huge amounts of point locations have been 
generated. Very often these point locations need to be associated 
with different types of infrastructure data (such as administrative 
regions and census blocks) for various analysis purposes. This is 
typically done in a SDB or a GIS environment by joining the 
point dataset with the polygon dataset. The functionality has been 
well supported by major commercial and open source packages. 
However, traditional SDB and GIS are mostly designed to be 
disk-resident and run on a single processor. Despite sophisticated 

indexing approaches have been developed over the past decades 
to speed up the spatial join process (see [1] for a comprehensive 
review), joining hundreds of millions of points with tens of 
thousands of polygons can take dozens of hours which is far from 
desirable for interactive queries.  

In this study, we aim at utilizing massively data parallel 
computing power provided by Graphics Processing Units (GPUs) 
using General Purpose computing on GPUs (GPGPU1) 
technologies to speed up large-scale PIP test based spatial joins. 
Following the general spatial join strategy in spatial databases [1], 
we have developed a simple grid-file [2, 3] based indexing 
approach on GPUs for both point data and polygon data in the 
filtering phase and implemented an efficient PIP test on GPUs in 
the refinement phase. Our experiments have shown that the end-
to-end runtime in joining 170 million points with more than 40 
thousand polygons is reduced from 54,819 seconds (more than 15 
hours) using an open source implementation to 11.165  seconds 
and a signficant speedup of 4,910X has been achieved. The 
signficant speedup not only saves computing resources but also 
makes real time user interactions possible.  

Our technical contributions are the following. First, we 
have developed an end-to-end, high-performance system to join 
large scale point locations with polygons on GPUs which can be 
applied to a variety of real-world data-intensive applications. 
Second, we have designed and implemented a set of algorithms 
that can efficiently index large-scale point data and pairing points 
and polygons in the filtering phase of the spatial join. Third, we 
have investigated the design choices and the impacts of key 
parameters for the PIP tests on GPUs in the refinement phase of 
the spatial join. Finally, we have demonstrated that the 
performance of traditional disk-resident spatial databases and GIS 
can be significantly improved by incorporating modern hardware 
features and GPU accelerations. The rest of the paper is arranged 
as follows. Section 2 introduces background and related work. 
Section 3 presents the GPU based spatial join framework and 
implementation details. Section 4 provides experiment results and 
discussions. Finally, Section 5 is the conclusions and future work. 

2. BACKGROUND AND RELATED WORK 
Geospatial data is pervasive in our everyday lives. 

While traditionally geo-referenced data are often collected, 
processed and distributed by government agencies (e.g., Census 
Bureau and Department of City Planning), as more and more 
personal handheld devices are equipped with locating and 
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navigation capabilities by using Global Positioning System 
(GPS), cellular and Wifi technologies and their combinations, 
geo-referenced point location data becomes an important 
ubiquitous sensing data and the data volumes are increasing very 
fast. It is necessary to align these point data with infrastructure 
data to make sense out of the point locations. While spatial 
databases and GIS are the commonly used tools to process geo-
reference data, they are not optimized to align large-scale point 
data with infrastructure data.  

From a geospatial modeling perspective, aligning points 
to different types of geo-referenced infrastructure data can be 
abstracted as a spatial join problem. According to the Open 
Geospatial Consortium (OGC) Simple Feature Specification 
(SFS) 2, the SQL expression can be something like the following:  

SELECT Point.ID, Polygon.ID WHERE ST_WITHIN 
(Point.geometry, Polygon.geometry)  

When the polygons are spatially mutually exclusive 
(non-overlapping), a point can only be associated with a single 
polygon. The functionality is well supported by most spatial 
databases and GIS. Spatial indexing approaches can be applied to 
both point and polygon data to speed up query processing. While 
spatial join query processing usually works well for small data on 
a single CPU processor, we are not aware of existing systems that 
can take advantages of the multicore and many-core parallel 
hardware resources that are already available in commodity 
computers to speed up spatial queries (we refer to [4] for a review 
on geospatial computing on GPUs). Although relational data 
management on multicore parallel hardware architectures have 
been a hot research topic over the past few years (for reviews see 
[5, 6]), unfortunately, there are no straightforward ways to extend 
relational queries for spatial queries, including PIP test based 
spatial joins.  

In the research community, there are increasing 
interests in using GPGPU technologies for data management 
although we are not aware of the existence of such commercial or 
open source products from the market yet. Two pioneering works, 
i.e., GDB [7] from HKUST and Sphyraena [8] from University of 
Virginia, have investigated the potentials of using GPUs for 
managing relational data. Sphyraena has provided a SQL interface 
based on SQLLite3, however, its functionality is limited to mostly 
selection types of queries. GDB has more support for join-related 
queries and several indexing modules have been provided to 
speed up relational join processing. More recently, a more 
complete set of relational algebra algorithms have been 
implemented by a group of researchers at the Georgia Tech 
University [9] and reportedly they have achieved better 
performance on new generations of Nvidia GPUs. Similar to 
relational data management on multi-core CPUs, it is unclear how 
the parallel relational data management and query processing 
techniques can be extended to geo-referenced spatial data that has 
quite unique operations, for example PIP test.  

Due to the close relationship between SDB/GIS and 
Computer Graphics and Design Automation that also handle 
spatial data, it is natural to adapt exiting indexing approaches for 
vector geospatial data, including both point and polygon data. 
Although the GPU-based R-Tree construction and query 
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processing [10] is general enough to be applied in our applications 
(but with some limitations as detailed next), many of the spatial 
indexing approaches [11-14] designed for computer graphics 
applications are not suitable for database applications. While 
these indexing structures are useful for ray-tracing and iso-surface 
constructions, they are not suitable for spatially joining multiple 
datasets that is commonly required in SDB/GIS.  

There are several independent works that are related to 
our efforts in building a GPU-based, high-performance system to 
perform geospatial queries although they might initially targeted 
at different application areas. While there are several attempts to 
implement the classic R-Tree spatial indexing structure [2, 3] on 
GPUs, the work reported in [10] seems to be the most 
comprehensive one. The authors have tested parallel spatial range 
queries on built R-trees on GPUs which can be potentially 
modified for spatial join by treating the independent geometric 
objects used for queries as the non-indexed source dataset to be 
joined. However, while R-Trees have been extensively used on 
CPUs for spatial join [1, 14-17], we are skeptical on whether R-
Trees are good choices for spatial joins on GPUs as data accesses 
are highly irregular when pairing the bounding boxes of 
geometrical objects indexed by R-Trees in the source and target 
datasets to be joined. The problem has also been observed in a 
research on all-pair nearest neighbor queries on CPUs [18].  

The in-memory grid files data structure on GPUs 
proposed by [19] is closely related to the simple grid file structure 
we have used for the filtering phase of the spatial join as both of 
them are derived from classic grid file structures. However, there 
are several key differences between the two. First of all, their grid 
file is designed to process individual queries while our grid file is 
designed to process spatial join. Second, the grid file in [19] is 
used to index points directly while our grid file is used to index 
bounding boxes of both point quadrant and polygons (detailed in 
Section 3). It would be impossible to index hundreds of millions 
point directly on GPUs due to the memory capacity constraints. 
Third, while their range queries locate points within query 
windows directly without needing further processing, our spatial 
join finds unique pairs of point quadrants and polygons which 
requires complex post-processing including sorting, searching and 
removing duplicates.   

Finally, there are a few parallel spatial join algorithms 
proposed in the past few decades that mostly targeted at shared-
nothing parallel hardware architectures [20-25]. Many of these 
techniques rely on data declustering techniques to reduce slow 
disk I/Os and network communication costs. More recently, some 
of the spatial join algorithms have been adapted to the 
MapReduce parallel computing environment [26, 27]. However, 
parallel data processing with MapReduce has been criticized for 
its inherent limitations on performance and efficiency [28]. In 
contrast, in this study, we aim at designing and implementing 
spatial joins on modern commodity GPUs which closely resemble 
supercomputers  as both implement the primary Parallel Random 
Access Machine (PRAM4) characteristic of utilizing a very large 
number of threads with uniform memory latency (such as Cray 
XMT5) [29]. We are not aware of previous research on parallel 
spatial join on GPUs other than similarity join on point data [30].  
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3. SYSTEM IMPLMENTATION 
3.1 Overview 

The workflow of the proposed approach is illustrated in 
Fig. 1. We first divide points into quadrants so that each quadrant 
contains at most K points. The bounding boxes of the points 
within quadrants are then computed. In order for a point to be 
inside a polygon, the bounding box of the quadrant that the point 
falls within and the bounding box of the polygon must intersect. 
We thus can filter out point quadrant and polygon pairs whose 
bounding boxes do not intersect and only perform PIP tests for 
points in quadrants whose bounding boxes intersect with the 
bounding boxes of one or more polygons. The output of the 

filtering phase is a list of quadrant identifiers and each quadrant 
identifier is associated with a list of polygon identifiers 
representing the intersected polygon bounding boxes. For an 
element in the output list, i.e., a (qid, {pid}) pair, we assign the 
pair to a GPU computing block. Within the computing block, each 
thread is responsible for processing a single point and test whether 
the point is within any of the polygons represented by the set of 
polygon identifiers. As the polygons representing the real world 
zones are usually mutually excusive (i.e., spatially non-
overlapping), when a point is determined to be within a polygon 
(to be detailed in Section 3.5), the PIP test for the point is 
terminated. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 Framework of Spatial Join on Points and Polygons using PIP Test on GPU 
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As illustrated in Fig. 1, the point coordinates and the 

bounding boxes of quadrants are laid out as one-dimensional 
arrays so that they can be easily streamed among hard drives, 
CPU memories and GPU memories. The polygon data is laid 
out by following the same design principle although the data 
layout is a little more complex. While the design details of the 
data layouts is deferred to Section 3.2, we would like to note 
that these simple in-memory data structures are quite effective 
in reducing I/Os (which are getting increasingly expensive on 
modern hardware) and play an important rule in achieving the 
desired speedup. The implementation details on generating point 
quadrants, computing the (qid, {pid}) list and performing PIP 
tests on GPUs are provided after introducing the in-memory 
data structures in the next few subsections. We note that while 
we strive to optimize our implementation to achieve good 
performance, our existing implementation is largely built on top 
of the Thrust parallel primitives6 which may not have the best 
achievable performance due to the limitations on using parallel 
primitives. It is well known that there is a tradeoff between 
coding complexity and code efficiency in using such parallel 
libraries and we believe there are still quite some rooms for 
future improvements with respect to performance. Nevertheless, 
the implementation can serve as a baseline to understand the 
potentials of GPU accelerations in spatial databases and GIS.  

3.2 In-Memory Data Structures  
The use of in-memory data structures to store the 

point coordinates and polygon vertices was actually forced by 
the CUDA computing model that favors one-dimensional arrays, 
especially in the previous versions of compute capability. As 
such, these one-dimensional arrays are used extensively to store 
point and polygon data in both CPU memory and hard drives as 
well for easy data streaming among them. Although traditional 
SDB and GIS implementations favor dynamic memory 
allocations and use pointers extensively, we have found that 
using the simple array-based in-memory data structures 
improves system performance considerably due to its cache 
friendly property. This has motivated us to seek a systematic 
way to layout large-scale point data and polygon data to balance 
between performance and memory footprint. Fortunately, many 
real world point data have meaningful spatial and temporal 
granularities which can be used to segment the point data into 
chunks that are small enough to fit into CPU/GPU memory and 
big enough to maximize disk I/O performance. The point 
locations that we use in this study actually are the pickup and 
drop-off locations of taxi trip records in NYC. On average there 
are about half a million taxi trips per day. Assuming each point 
takes 8 bytes for lat/lon coordinates, the chunk for a month 
would be around 120 MB per month which seems to be a good 
choice given that the machine we use for the experiments has 32 
MB hard drive cache and the CPU and GPU memory capacities 
are 16 GB and 6 GB, respectively.  

Unlike the point data that can be stored as one-
dimensional arrays in a straightforward manner, auxiliary 
information is needed to store polygons as arrays. This is 
because polygons have variable numbers of vertices and a 
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polygon may have multiple rings, e.g., polygons with holes. 
Since OGC SFS has been widely adopted by the SDB and GIS 
communities, our in-memory data structures for polygons are 
designed to support the standard. According to the specification, 
a polygonal feature may have multiple rings and each ring 
consists of multiple vertices. As such, we can form a four level 
hierarchy from a data collection to vertices, i.e., dataset  
feature  ring  vertex. Five arrays are used for a large 
polygon collection. Besides the x and y coordinate arrays, three 
auxiliary arrays are used to maintain the position boundaries of 
the aforementioned hierarchy. As shown in the top-right part of 
Fig. 1, given a dataset ID (0..N-1), the starting position and the 
ending position of features in the dataset can be looked up in the 
feature index array. For a feature within a dataset, the starting 
position and the ending position of rings in the feature can be 
looked up in the ring index array. Similarly, for a ring within a 
feature, the starting position and the ending position of vertices 
belong to the ring can be looked up in the vertex index array. 
Finally, the coordinates of the ring can be retrieved by accessing 
the x and y coordinate arrays. It is easy to see that retrieving 
coordinates of single or a range of datasets, features and rings 
can all be done by scanning the five arrays in a cache friendly 
manner. It is also clear that the number of features in a dataset, 
the number of rings in a feature and the number of vertices in a 
ring can be easily calculated by subtracting two neighboring 
positions in the respective index array. As such, the array 
representation is also space efficient. 

To convert existing disk-resident polygon data in 
various formats into the array based representation, we use an 
open source software called GDAL7  to access polygon datasets, 
polygons, rings and vertices sequentially and output polygon 
vertices and indexing positions to the respective arrays in a way 
similar to ETL (Extract, Transform and Load) in relational 
databases and data warehouses 8. While this step is usually I/O 
intensive due to frequent disk accesses and extensive dynamic 
memory allocation and de-allocation to accommodate variable-
sized polygons, this is a one-time process and the resulting 
arrays can be written to hard drives and streamed to CPU 
memories afterwards. Although a polygon may have a large 
number of vertices in practice, the number of polygons is 
relatively small and the volume of the polygon data (including 
the auxiliary indices) is far less than point location data. For the 
NYC census block dataset which we use in the experiments, the 
number of polygons is in the order of 40 thousand and the 
number of vertices is in the order of 5 million which can be fit 
in both CPU and GPU memories easily. In contrast, there are 
nearly 170 million pickup and drop-off locations and the 
memory footprint may already be out of the capacity of some 
GPU devices. Note that many GPU operations require 
intermediate storage which will further reduce the number of 
points that can be processed in a single run. The algorithms to 
be presented in the subsequent three subsections have taken the 
device memory constraints into consideration and allow 
processing hundreds of millions of point locations.  
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3.3 Generating Point Quadrants  
Many real world point locations are clustered and 

neighboring points often behave similarly. For example, tourist 
attractions often receive a large number of taxi pickups and 
drop-offs. The locations are usually close to each other and are 
associated with a same zone. To group the large number of 
points into chunks for parallel spatial join, we have developed 
an approach to hierarchically divide the point data space into 
quadrants and identify quadrants that have fewer than K points. 
Quadrants that have more than K points are further divided 
using the same principle until either all points are grouped or the 
maximum level (M) is reached. The process is similar to 
quadtree constructions [2, 3] but our approach adopts a top-
down subdivision strategy and can be efficiently implemented 
using GPU-based parallel primitives provided by the Thrust 
library which is now part of the CUDA SDK. Compared to 
native CUDA programming which usually have a deep learning 
curve in order to achieve high efficiency, parallel primitives 
provide a nice tradeoff between coding complexity and code 
efficiency. While it is beyond our scope to present the details of 
primitives based parallel programming, the appendix provides a 
brief introduction to several parallel primitives that are needed 
in generating point quadrants from large-scale point locations in 
parallel on GPGPUs.  

The procedure of generating point quadrants is 
presented in Fig. 2 where the names of parallel primitives are 
bolded and underlined and the variables (either a vector or a 
scalar) names are bolded and italicized for easy interpretation. 
An illustrative example is also provided in Fig. 3.  Steps 1-3 in 
Fig. 2 are used to sort points (stored in P) based on their level k 
Morton codes (used as keys, stored in PK) and count the 
numbers of points (stored in UN) associated with the unique 
keys (stored in UK). The points are also sorted based on the 
keys so that they can be reordered later (Steps 7 and 8) and get 
ready for the next level. Steps 4 and 5 are used to identify 
quadrants and the points associated with the quadrants. Note 
that the SIGN vector indicates whether a quadrant is identified 
and the INDICATOR vector indicates whether a point belongs 
to an identified quadrant. For each number in UN (assuming n), 
which records the number of points with the same level-k key, 
the boolean value in the SIGN vector at the same position will 
be replicated n times in INDICATOR. This is done by using the 
Expand parallel primitive that has been implemented by 
combining a Scatter and a Gather primitive (to be detailed 
next). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Fig. 2 Algorithm of Parallel Primitives Based Level-Wise Point Quadrant Generation 
To better illustrate how the parallel primitives work 

together to identify tree leaf nodes, let us consider the following 
SQL statement “SELECT * FROM T WHERE #key IN 
(SELECT #key FROM T GROUP BY #key HAVING COUNT 
(#key)) > #K”. The statement selects individual tuples that 
satisfy a count-based group condition and does what we want in 
Step 5. While it is straightforward to output individual tuples 
whose #key values are in the resulting single-attribute relation 

of the sub-query with the group by/having clauses on CPUs, it is 
neither convenient nor efficient to perform set membership tests 
on GPUs. Actually we do not have to due to the relationships 
among UK, UN and PK. Obviously UK and UN are group-
related (when referencing to the SQL statement). The evaluation 
results of the having condition should be a boolean vector (i.e., 
SIGN) that has the same length as UK and UN. Since UK and 
PK has the same key order, when mapping UK back to PK, each 

Inputs: vector of point dataset P 
Outputs: re-arranged point dataset P, quadrant key vector LK, vector of numbers of points falling within quadrants LN, vector of numbers of 
starting positions of points in quadrants PN, number of  quadrants n_l and number of points falling within the quadrants n_s (at all levels) 
 
Initialization: Set n_p (representing number of identified points in resulting quadrants) to 0 and set n_q (representing number of identified 
quadrants) to 0.   
For k from 1..M  levels (with starting quadrant at n_q and starting points at n_p): 

1. Transform point dataset P to key set PK using Z-ordering at level k.   
2 Sort_by_key using PK as the key and P as the value  
3 Reduce_by_key using PK as the key and copy the unique keys to UK and numbers of the same key in each key group into UN   
4 Classify each quadrant (corresponds to a key in UK) based on whether the numbers in UN is above (set to 0) or below (se to 1) the 
threshold K and copy the result to a boolean vector SIGN by using Transform.  
5 Identify points that are within or not within the quadrants to be pruned based on UN and SIGN by using Expand and output the result 
to a boolean vector INDICATOR.  
6 Copy the identified quadrant keys to LK and number of points in the quadrant to LN  by using Copy_if based on UK, UN and K; also 
set n_l to the number of identified quadrants at the level and n_s to the number of points fall within the quadrant 
7 Copy all points in P that are in the identified quadrant to PL and those that are not in the identified quadrant to PQ using Copy_if 
based on INDICATOR 
8 Combine PL and PQ to Pusing Copy by placing PL ahead of PQ  
9 Keep elements in PK correspond to points that fall within the identified quadrants and remove the rest using  Remove_if 
10 Increase n_p by n_s and increase n_q by n_l.  

Process points that fall within the last level quadrants but have more than K points 
11 Transform point dataset P to key set PK using Z-ordering at level k starting at n_p (similar to Step 1) 
12 Reduce_by_key using PK as the key starting at n_q and copy the unique keys to LK and numbers of the same key in each key 
group into LN starting at n_q (similar to step 3) 

Compute bounding boxes for quadrants 
 13 Transform point dataset P into bounding boxes B using Transform 
 14 Reduce_by_key on B using PK and store the result in QB 



 

 

boolean value at SIGN[i] will repeat exactly UN[i] times and 
the vector of such boolean values (INDICATOR) exactly 
indicates whether a key in vector PK satisfy the group-based 
criteria (i.e., the condition specified in the having clause in the 
example SQL statement).  Now the problem translates into how 
to generate the INDICATOR boolean vector from the SIGN 
boolean vector and the UN integer vector. This actually can be 
done using four parallel primitives that are introduced in the 
Appendix. First, an exclusive scan is performed on UN to 
compute the group boundaries. Second, a Scatter primitive is 
used to scatter the group boundary values to proper positions in 
a temporal vector (VT) that has the same size as 
PK/INDICATOR. Third, a Scan primitive using the max 
associative function is performed to propagate the boundary 
values in VT to positions within group boundaries. Finally, a 
Gather primitive is applied to update the values in INDICATOR 
by the values in SIGN using VT as the map, i.e., the ith element 
in INDICATOR is assigned to the value of SIGN[VT[i]]. 

Step 6 copies the identified quadrant and the 
corresponding numbers of points to two new vectors (LK and 
LN. This step also computes the number of identified quadrants 
and the number of points that fall within the quadrants in order 
to set the proper level boundaries in step 10.  Steps 7 and 8 
actually rearrange the points by moving points in identified 
quadrants to the left and the rest of the points to the right so that 

the next level only needs to process the non-identified points. 
Step 9 removes elements in PK that correspond to points that do 
not fall within any of the identified quadrants at the level. It is 
possible that some last-level quadrants have more than K points 
and they can not be identified in steps 1-10. As such, step 11 
(similar to step 1) and step 12 (similar to step 3) are used to 
process these points which can be considered as a simplification 
of steps 1-10 since no sorting and reordering are needed at the 
last level.  

After the quadrants are identified, computing the 
bounding boxes of the points that fall within the quadrant 
becomes embarrassingly parallelizable by using a transform 
primitive and a reduce_by_key primitive. The transform 
primitive converts a point into a bounding box by setting the 
top-left and bottom-right points of the bounding box to the point 
itself (Step 13). Since there is a one-to-one correspondence 
between PK and P and the unique values of PK and the 
identified quadrants, a straightforward reduce_by_key primitive 
can be applied to compute the bounding boxes of points in the 
identified quadrants by using a user-defined functor that takes 
the extremes of the two bounding boxes and form a larger 
bounding box. We note that by applying an exclusive scan on 
LN we can obtain the starting positions of the first points of the 
identified quadrants in P and hence the point coordinates can be 
accessed in parallel for subsequent PIP test.  

 
 

 
 
 
 
 
 
 
 

Fig. 3    A Running Example to Illustrate the Process of Generating Point Quadrants using Parallel Primitives 
 

3.4 Associating Quadrants and Polygon 
Bounding Boxes with Grid Cells 

Pairing all point quadrants with all polygons for PIP 
test is computationally prohibitive for even relatively small 
number of quadrants and number of polygons. This is not 
necessary either as the majority of the point quadrants will only 
intersect with a small number of polygons. Quite a few spatial 
indexing approaches have been proposed for filtering purposes 
but the majority is serial in nature and hence is not suitable for 

GPU implementation. We propose to use a simple grid file 
spatial indexing structure to index both the bounding boxes of 
point quadrants and the bounding boxes of polygons. Our 
approach converts the problem of comparing spatial 
relationships (e.g., intersection of bounding boxes) in spatial 
queries into a searching problem which can be efficiently 
implemented by integrating an in-house developed kernel with 
the vectorized binary search parallel primitive that is recently 
supported by the Thrust library in the CUDA SDK.  
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As illustrated in Fig. 4, we first rasterize the bounding 
boxes of both the point quadrants and polygons using a uniform 
grid. Given a fixed grid cell size, the number of rows and the 
number of columns of the bounding boxes to be rasterized can 
be easily computed. If two bounding boxes overlap then they 
will have at least one common grid cell. To find all the polygons 
that a point quadrant intersects, for each grid cell of the 
bounding box of the point quadrant, we search the grid cell 
identifier in the rasterized grid cells of the bounding boxes of 
polygons. If there is match, then we pair the point quadrant and 
the polygon for further refinement in the next stage. Note that as 
a bounding box of a point quadrant usually has multiple grid 
cells and each grid cell is searched and matched independently, 
there will be (potentially a large number of) duplicates of the 
pairs of point quadrants and polygons. These duplicates need to 
be removed before the refinement phase. We have implemented 
this procedure by using a combination of binary_search and 
lower_bound primitives provided by Thrust. We refer to the 
appendix and Thrust documentation for details on these two 
parallel primitives In the example show in Fig. 4, among the 12 
cells of Q1, two cells have successfully the corresponding cells 
in the rasterized cells of the polygon bounding boxes (and we 
term it as “paired”). Similarly one cell in Q2 is paired with one 
cell in P1 and two cells in Q2 are paired with two cells in P2. 
After applying the unique primitive (see appendix) we will 
obtain three pairs. After applying the sort primitive, we get two 
pairs (c.f. Section 3.1), i.e., (Q1,{P1}) and (Q2, {P1,P2}) and 
they are ready to be sent to GPU computing blocks for PIP tests. 

  
 
 
 
 
 
 
 
 
 
 
 

Fig. 4 Illustration of Grid-File based Spatial Join 
Filtering and its GPU implementation using Parallel Primitives 

While quite a few parallel primitives that are needed 
in this step have been provided by the Thrust library, such as 
vectorized binary search, unique and sort, we have found that it 
is difficult to rasterize bounding boxes using existing parallel 
primitives although it seems to be straightforward to split a 
rectangle into a set of squares and assign an identifier to each of 
the cells. As such, we have developed a simple CUDA kernel 
for this purpose. Before launching the rasterization kernel, we 
apply an exclusive scan kernel to compute the starting positions 
of where each rasterized bounding box should begin to write out 
their grid cell identifiers on the vector of the total number of 
cells of the respective bounding boxes. The numbers can be 
easily calculated as the multiplications of the numbers of rows 
the numbers of columns of the respective bounding boxes. With 

all these input information, each thread is assigned to process a 
bounding box in parallel and write out the cell identifiers 
sequentially.   

3.5 Parallel PIP Test  
As discussed previously (c.f. Section 3.1 and Fig. 1), 

each (qid, {pid}) pair is assigned to a computing block to utilize 
the first level parallelism in GPGPU computing. Within a 
computing block, there are quite some parameters to be fine-
tuned to make full use of the fine-grained thread level 
parallelism on GPUs, such as determining number of threads per 
block, decisions on using shared memory and approaches to 
mitigate register variable pressure. In this subsection, we report 
our design and implementation of the parallel PIP test for all 
points in a quadrant and all the candidate polygons that are 
derived by the filtering phase.  

There are quite a few computational geometry 
algorithms for point in polygon test and we refer to [31] for a 
brief review. While PIP test algorithms that require 
preprocessing may obtain sub-linear complexity, algorithms that 
do not require preprocessing are usually simpler and more 
suitable for GPU implementation. In this study, we use the most 
popular ray crossing (ray intersection) algorithm with a 
complexity of O(n) where n is the number of edges of a 
polygon. The basic idea of the ray crossing algorithm is 
illustrated in Fig. 5. If a ray emanating from a test point crosses 
the boundary of a polygon odd times, it is inside a polygon 
otherwise outside a polygon. In this study, we have adopted the 
concise code provided by Randolph Franklin (listed in Fig. 5) 
and modified it to run on GPUs. We note that the open source 
GIS packages Java Topology Suit (JTS)9 and its C/C++ 
translation Geometry Engine - Open Source (GEOS)10 also have 
implemented a similar ray crossing algorithm for PIP test. 
GEOS has been integrated into PostGIS11/PostgreSQL12 to 
support PIP test in the form of the ST_Intersects function when 
the two inputs are point and polygon geometry objects, 
respectively. As such, it is fair to compare a parallel GPU 
implementation with a serial CPU implementation of the same 
algorithm.  

We have adopted a simple thread level parallelization 
schema within a computing block, i.e., each thread is 
responsible for testing whether it is within the paired polygons. 
The simple design has two advantages with respect to GPU 
device memory access. First, as points are stored consecutively 
in their coordinate arrays (c.f. Section 3.2), neighboring threads 
will access consecutive memory addresses which is coalesced 
perfectly. Second, all threads will access the same polygon 
vertices which are also stored consecutively in their coordinate 
arrays. The GPU hardware is able to broadcast the requested 
vertex coordinates to all the requesting threads which 
significantly reduces memory access costs. While originally we 
had planned to use GPU shared memory to store both 
coordinates of points in a quadrant and polygon vertices, as 
GPU device memory accesses are already optimized, using 
shared memory actually decreases performance due to 
                                                                 
9 http://www.vividsolutions.com/jts/jtshome.htm 
10 http://geos.osgeo.org 
11 http://postgis.refractions.net/ 
12 http://www.postgresql.org/ 
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synchronization costs which is necessary after having threads 
collaboratively load data from device memory to shared 
memory. Not using shared memory will also improve scalability 
as the numbers of points and polygons that can be assigned to a 
computing block is not limited by shared memory sizes any 
more. If the number of points assigned to a computing block 
exceeds the number of threads that is allowed by a computing 
block, the points can be divided into chunks and simply have 
threads loop through the chunks.  

 
 
 
 
 
 
 
 
 
 
 
Fig. 5 Illustration and Code Segment of Ray Crossing 

based Point-in-Polygon Test (see 13for more details) 
 
While shared memory is not a limiting factor in our 

design and implementation, we have found that the limited 
number of register files available to a thread becomes a 
bottleneck. Due to the complexity of the algorithm, we can not 
reduce the number of registers used by a thread to below 44, 
which is more than the number of registers allowed when a SM 
is fully utilized under CUDA compute capability 2.0 
(32768/1024=32). As reported in the experiment section, we 
have found that using 256 threads per block seems to achieve 
the best performance for a quadrant size K=512. However, the 
occupancy in this case is only 33% which is far from optimal 
due to the register file limit under compute capability 2.0. We 
expect the occupancy will be improved under compute 
capability 3.0 where each thread is allowed to use 
65536/1024=64 register variables when a SM is fully utilized. 
Another option to try is to allow register spilling which requires 
more careful design to improve the overall performance.  

4. EXPERIMENTS 

4.1 Data and Experiment Setup 
Through a partnership with the New York City (NYC) 

Taxi and Limousine Commission (TLC), we have access to 
roughly 300 million GPS-based trip records in about two years 
(2008-2010). Each taxi trip has a GPS recorded pickup location 
and a drop-off location expressed as a pair of latitude and 
longitude. In this study, we use the approximately 170 million 
pickup locations in 2009 for experiments. The polygon data we 
use is the NYC Census 2000 dataset14. There are more than 40 
                                                                 
13 http://local.wasp.uwa.edu.au/~pbourke/geometry/insidepoly/ 
14 http://www.nyc.gov/html/dcp/html/bytes/applbyte.shtml 

thousand census block polygons in NYC with more than 5 
million vertices. All experiments are performed on a Dell 
Precision T5400 workstation equipped with dual quadcore 
CPUs running at 2.26 GHZ with16 GB memory, a 500G hard 
drive and an Nvidia Quadra 6000 GPU device. The sustainable 
disk I/O speed is about 100 megabytes per second while the 
theoretical data transfer speed between the CPU and the GPU is 
4 gigabytes per second through a PCI-E card. We have set M, 
the maximum number of levels in point quadrant generation, to 
8 and each parent quadrant has 2l*2l=4*4=16 child quadrants 
with l=2. With a cell size of 2 feet at the finest level, the whole 
NYC area is rasterized into a 2s*2s grid where s=l*M=16. As 
such, all quadrants can be identified by a 32-bit Morton code.  

For comparison purposes, we have implemented the 
same spatial join using open source GIS packages, i.e., 
libspatialindex15 to index polygon data by building an R-Tree, 
and, GDAL, which implicitly uses GEOS, to perform PIP test. 
While we could have also built an R-Tree for the point locations 
by treating the points as bounding boxes, given the large number 
of points, it is very costly to index the point data using R-Tree 
indexing. In addition, coordinating the two index structures to 
perform the spatial join is non-trivial and is beyond the scope of 
this research. As such, the CPU implementation queries each 
point against the indexed polygons. If the point falls within any 
of the bounding boxes of polygons, the polygon identifiers will 
be returned for refinement. It is clear that, while the polygons do 
not spatially overlap, their bounding boxes can overlap and a 
point query may return multiple polygons for PIP test in the 
refinement phase. The CPU implementation performs the PIP 
test for each of the polygons in the query result set and breaks if 
any of the PIP test returns true.  

Our GPU implementation has several parameters to 
set. The first parameter is K, the maximum number of points in 
a quadrant and the second parameter is the number of threads 
per computing block (N). In this section, we will first report the 
best results in Section 4.2. We then provide the experiment 
results on generating point quadrants in Section 4.3 as it is the 
most time consuming component in the whole process. In 
Section 4.4, we vary both N and K and report their impacts on 
the overall performance.  

4.2 Overall Experiment Results 
The best performance of our GPU implementation is 

achieved with K=512 and N=256 with a total end-to-end 
runtime of 11.165 seconds. In contrast, the serial CPU 
implementation takes 54,819 seconds (15.223 hours). As such, a 
significant speedup of 4,910X has been achieved. Note that we 
have not included the disk I/O times to load the points and 
polygons as this is one-time cost and is not directly related to 
the spatial join. Furthermore, as discussed before, these data are 
stored as binary files on disk. With a sustainable disk I/O speed 
of 100 MB per second, the point and polygon data can be 
streamed into CPU main memory in about 15 seconds. Since the 
disk I/O time is comparable to the spatial join time, even if the 
disk I/O times are included, the order of speedup will not be 
changed.   

                                                                 
15 http://libspatialindex.github.com/ 

int pnpoly(int npol, float *xp, float *yp, float x, float y) 
{ 
      int i, j, c = 0; 
      for (i = 0, j = npol-1; i < npol; j = i++) { 
        if ((((yp[i] <= y) && (y < yp[j])) || 
             ((yp[j] <= y) && (y < yp[i]))) && 
            (x < (xp[j] - xp[i]) * (y - yp[i]) / (yp[j] - yp[i]) + xp[i])) 
          c = !c; 
      } 
      return c; 
} 



 

 

We attribute the 3-4 orders of improvements to the 
following factors. First, all the point, polygon and auxiliary data 
are memory resident in our GPU implementation. In contrast, 
the open source GIS packages are designed to be disk resident 
and data and indices are brought to CPU memory dynamically. 
While the sophisticated design is necessary for old generations 
of hardware with very limited CPU memory, current commodity 
computers typically have tens of gigabytes of CPU memory 
which renders the sophisticated design inefficient. We also have 
observed that the open source packages use dynamic memory 
and pointers extensively which can result in signficant cache 
and TLB misses. Second, in our GPU implementation, we have 
divided points into quadrants before we query against the 
polygons in the filtering phase using a GPU based grid file 
indexing structure. In the serial CPU implementation, each point 
queries against the polygon dataset individually. While the 
polygon dataset is indexed, each point query needs to travel 
from the root of R-Tree of the polygon dataset to leaf nodes 
which is quite costly. While not tested in this study, we expect 
querying the bounding boxes of points in quadrants, instead of 
querying the points individually, can potentially improve the 
serial CPU implementation. Third, in addition to the improved 
floating point computation on GPUs, the massively data parallel 
GPU computing power is utilized for all phases of the spatial 
join process, including generating point quadrants, filtering 
quadrant-polygon pairs and PIP test in computing blocks. While 
we have not yet been able to separate the contributions of the 

three factors, we plan to do so by hybridizing CPU and GPU 
implementations in our future work and measure the 
performance of different combinations.  

Before we provide more detailed results in the next 
two subsection, we would like to report that among the 11.165  
seconds end-to-end runtime for the point-to-polygon spatial 
join, the majority (8.170 seconds) is spent on generating point 
quadrants. The runtimes to rasterize bounding boxes of point 
quadrants and polygons are 0.469 and 0.640 second, 
respectively. The binary search and duplication removal take 
0.265 and 0.405 second, respectively. The PIP test kernel takes 
1.206 second which is only 10.8% of the total runtime. We note 
that the total runtime includes the data transfer time from CPU 
to GPU for both the point and polygon data, which is 1.030 
second.  

4.3 Results on Generating Point Quadrants 
 As discussed in Section 3.3, the modules in 

generating point quadrants are implemented on top of the Thrust 
parallel library. Each of the steps listed in Fig. 2 (except Step 
10) corresponds to a call to the respective parallel primitive. 
Since this is the most time consuming step in the whole process, 
to better understand the distributions of computing workloads, 
the runtimes of the step groups are listed in Table 1. We have 
not included the runtimes for processing last level (steps 11/12) 
as they are negligibly small.  

Table 1 Runtimes of Steps in Generating Point Quadrants of 8 Levels (milliseconds) 
Quadrant Level 1 2 3 4 5 6 7 8 

1 Point Transformation time (Step 1) 26.14 25.65 34.77 34.72 34.67 33.75 27.19 2.23 

2 Point Sorting (Key-Value) time (Step 2) 281.80 336.12 494.54 514.75 513.23 546.00 526.84 47.35 

3 Key Reducing Time (Step 3)  71.83 71.87 73.24 72.96 73.62 74.36 63.37 6.44 

4 Quadrant Identifying Time (Steps 4, 5, 6) 95.27 95.50 94.53 95.98 94.08 93.30 78.39 8.99 

5 Point shuffling Time (Steps 7, 8, 9) 246.48 248.17 259.06 263.09 261.98 269.61 271.70 26.05 

6 # of identified points 0 15955 291,342 1,351,989 3,546,982 30,510,995 120,775,838 11,551,455 

7 # of identified quadrants 0 73 1,938 12,350 36,653 225081 1,250,597 219,730 
8 Bounding box derivation time (Steps 13/14) 651.78 

From the results we can see that nearly half of the 
point quadrant generation time is spent on sorting the points 
with the Morton code as the key and the coordinate as the value. 
Given that 168 million points are sorted in 3260.63 milliseconds 
in 8 rounds (levels), we have achieved an overall key-value 
sorting rates at the 51.52 million pairs per second on the Quadro 
6000 GPU device. While the achieved sorting speed seems to be 
much lower than the previous results of sorting 222 million pairs 
per second for 32 bit key and 64 bit value on an Nvidia C2050 
device with ECC enabled [32], we argue that the actual sorting 
speed is higher than what they have achieved. Instead of using n 
directly, which is the total number of input location points, the 
total number of points that participate in sorting at all the levels 
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that fall within the quadrants identified at the level i (assuming 
n0=0). When we plugin the nis provided at the 6th row of table 1, 
n’ becomes 1,136,417,142 which gives a sorting speed of 348 

million pairs per second and is 58% faster than the results 
reported in [32]. The reason is that keys that are sorted at the 
previous levels will incur no data movement in the sorting of the 
next levels due to the nature of radix sort. We speculate that 
when a customized sorting algorithm is developed for our 
specific application to allow picking up the sorting results from 
a previous level without repeating the radix-sort from scratch, 
the overall sorting performance can potentially be significantly 
sped up. This is left for our future work.  

The next most time consuming component is to move 
points fall within the identified quadrants ahead of the points 
whose quadrants are yet to be identified, i.e., point shuffling. 
From the runtimes shown in the 5th row of Table 1 we can see 
that the runtimes remain constant until the last level where 
almost all points have identified their quadrants. Again, we 
believe this step can be combined with the sorting step when a 
customized CUDA kernel is developed. As a comment, while 
using parallel primitives facilitate fast prototyping, 
implementations built on top of parallel primitives often are not 



 

 

the ones that can achieve the highest efficiency. In this 
particular case, the intermediate results in the parallel primitives 
are not available to the subsequent steps and some duplicated 
computing can not be avoided.   

From the 6th and 7th rows of Table 1, we can also see 
that the majority of the quadrants/points are identified at level 6 
and 7 where the quadrant sizes are 8*8 and 4*4 feet, 
respectively. This is understandable as the majority of taxi 
pickup locations are clustered at the street intersections, 
especially in the midtown and downtown Manhattan area. For 
the quadrants identified at the higher levels, they will have 
larger bounding boxes and are likely to intersect with more 
polygons based on our filtering algorithm. Using a smaller K 
will reduce the number of such big quadrants to improve the 
pruning power and improve the PIP test performance in the 
refinement phase. On the other hand, using a small K will 
increase the number of quadrants. This in turn will increase the 
time to generate the quadrants due to the fact that more sorting 
work is needed to put points in smaller quadrants. 

4.4 Impacts of Quadrant Point sizes and 
Threads Numbers  

To further discuss the impacts of the quadrant point 
sizes (K) and threads numbers (N) on the performance, we have 
varied K from 256 to 1280 while fixing N to 256. We have 
varied N from 64 to 704 while fixing K to 512. The results are 
plotted in Fig. 6 and Fig.7, respectively. Note that “query” time 
in Fig. 6 refers to pairing quadrants and polygons including 
binary search and duplication removal times as discussed in 
Section 3.4. The “total” refers to the sum of the “query” time 
and the PIP test time in the refinement phase. We have not 
included the quadrant generation time in Fig. 6 as here we are 
concerned with the tradeoff between the filtering phase and the 
refinement phase in a spatial join (conceptually the quadrant 
generation is considered as part of indexing). From Fig. 6 we 
can see that, as the maximum number of points in quadrants (K) 
increases, the query times decrease slightly while the PIP test 
time reaches the minimum at K=512. The query time decreases 
as K increase can be explained that both the number of point 
quadrants and the number of the resulting filtered pairs decrease 
as K increases and thus less computing is needed in the filtering 
phase (“query”). As discussed previously, a smaller K will result 
in smaller bounding boxes which may improve the filtering 
power (fewer false positives) and can potentially reduce the 
number of PIP test in the refinement phase. On the other hand, a 
small K will also increase the number of quadrants. As each 
quadrant is assigned to a computing block, the overhead of 
launching computing blocks may increase and can potentially 
overshadow the benefits of the increased filtering power. The 
results in Fig. 6 show that K=512 provides a good tradeoff.  

 
 
 
 
 
 

Fig. 6 Variations of Spatial Join Runtimes for 
Different K Sizes 

From Fig. 7 we can see that as the number of threads 
(N) increase, the runtime for the PIP test in the refinement phase 
decreases until N=256 before the runtime increases again. Fig 7 
also shows a spike of bad performance when N=384. As 
discussed in Section 3.5, the implementation is limited by the 
number of register files that can be used by a computing block. 
When N is small, while a SM can accommodate more blocks 
(but less than 8 in compute capability 2.0), the threads in a SM 
is underutilized and the performance is not maximized. As N 
increases, the occupancy rate gets higher and the performance 
gets better until N=256 where two computing blocks are 
accommodated in a SM (three block would require more than 
32K registers) and the occupancy rate is 33%. Although 
increasing N to 352 will increase the occupancy rate to 46%, 
since 352 does not divide K=512, 160 out of the 352 threads 
will be idle in the second round of processing the points (c.f. 
Section 3.5), the performance gets worse. When N is increased 
to 384, only one computing block can be accommodated in a 
SM and, similar to N=352, a considerable portion of threads are 
idle in the second round, the worst performance is observed (the 
spike in Fig. 7). When N reaches 512 and above, although still 
only one computing block can be accommodated in a SM, only 
one loop is needed for the N threads to process the K=512 
points and the performance remain the same for N=512 and 
above. We note that according to CUDA compute capacity 3.0, 
there will be 64K registers per SM (with the number of 
maximum thread per computing block remains to be 1024), our 
implementation can potentially doubles the performance by 
increasing the occupancy to 66% using N=512.  

 
 
 
 
 
 
 

Fig. 7 Variations of PIP Test Runtimes for Different 
Numbers of Threads in a Computing Block 

5. CONCLUSION AND FUTURE WORK 
In this study, we have reported our design and 

implementation on large-scale point-in-polygon test which is a 
fundamental operation in spatial databases and GIS. The high-
performance system can help understand the interactions 
between people and place more effectively when applied to 
processing large-scale ubiquitous urban sensing data such as 
GPS recorded pickup and drop off locations taxi trip records. 
Experiments have shown that, with a combination of in-memory 
data structures, algorithm improvement and GPU hardware 
parallel accelerations, we have  achieved 3-4 orders of speedup 
when compared to a baseline serial CPU implementation on top 
of the state-of-the-art open source GIS packages.  

For future work, first of all, we would like to analyze 
the potential of further performance improvements. The 
majority of the current implementation is built on top of the 
Thrust parallel library which incurs some unavoidable 
duplicated computing. The kernels we have developed can also 



 

 

be optimized in terms of load balancing and algorithmic 
engineering (especially for the PIP test code). We are optimistic 
in further reducing the end-to-end runtime. Second, while we 
have identified factors that have contributed to the significant 
speedup, the relative contributions remain unclear. We plan to 
quantify their relative contributions and provide insights on 
evolving traditional SDB and GIS to modern hardware 
architectures, including large memory, deep cache hierarchy and 
parallel processors. Finally, we would like to expand the spatial 
join framework to other types of spatial joins, such as distance 
based nearest neighbor.  
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Appendix: Parallel Primitives 
Although naming conventions might differ slightly 

under different contexts and software implementations, since 
our implementation is based on the Thrust library, we next 
introduce the primitives that we have used in our design using 
the Thrust terminology.   
(1) Reduce and Reduce by key. Reduce is used to simplify a 
vector/array to a scalar value. For example, reduce([3,2,4]) 11. 
While the summation is frequently used in reductions, Thrust 
allows using a user defined associative binary function for 
tailored summation, such as determining the maximum entry or 
computing bounding boxes of points. Reduce by key is a 
generalization of Reduce to key-value pairs based on groups 
where consecutive keys in the groups are the same. For 
example, reduce[1,3,3,2],[2,1,3,4]) ([1,3,2],[2,4,6]). In this 
research, Reduce by key has been extensively used to compute 
numbers of points and quadrant that have the same keys based 
on Morton codes.  
(2) Scan and Scan by Key. The Scan primitive computes the 
cumulative sum of a vector/array. The Scan primitive can also 
take a user defined associative binary function. Both the 
inclusive and exclusive scans are available. For example, 
exclusive_scan([3,2,4]) ([0,3,5]) while inclusive_scan 
([3,2,4]) ([3,5,9]). Similarly, Scan by Key works on 
consecutive key groups instead of a whole vector/array. In this 
research, Scan by Key is extensively used to compute the 
positions of entries in a vector after applying Reduce by key 
which outputs numbers of entries with same keys.  
(3) Copy and Copy_if. The functionality of the two primitives is 
self-evident. In this research, we use Copy to move groups of 
entries from one location to another, mostly within a same 
vector. The Copy_if primitive is mostly used for identifying 
points and keys (point quadrants) that satisfy certain criteria and 
output the identified entries to a new vector for further 
processing.  
(3) Transform. The basic form of Transform applies a unary 
function to each entry of an input sequence and stores the result 
in the corresponding position in an output sequence. Transform 
is more general than Copy as it allows a user defined operation 
to be applied to entries rather than simply copying. Similar to 
Copy_if, there is also a Transform_if primitive which is 
essentially the combination of Transform and Copy_if. The 
combination usually results better performance. In this research, 
Transform has been extensively used to convert points into 
Morton codes.  
(4) Gather and Scatter. Gather copies elements from a source 
array into a destination range according to a map and Scatter 
copies elements from a source range into an output array 
according to a map. For example, 
Gather([3,0,2],[4,7,8,12,15]) ([12,4,8]) and 
Scatter([3,0,2],[12,4,8],[*,*,*,*,*,*]) ([4,*,8,*12,*]). Note * 
values are those unchanged in the third input vector. In this 
research, we have used the combination of Gather and Scatter to 
locate individual points fall within quadrants that have fewer 
than K points so that they can be moved to proper locations.  
(5) Sort and Sort by Key. Sort is probably among the most 
popular primitives in parallel libraries. In fact, our design aims 
at utilizing the power of parallel sorting on GPGPUs to speed up 

generating point quadrants. The current implementations of the 
sorting algorithms in Thrust are based on a combined radix sort 
and merge sort which has been proven to be memory bandwidth 
friendly and practically efficient. Our design facilitates reducing 
memory traffic and further improves sorting efficiency in the 
following sense. First, rather than sorting coordinates directly, 
we sort Z-order transformed Morton codes. The transformation 
preserves spatial adjacency and requires less data movement. 
Second, we sort the increasingly longer Morton codes level-by-
level and the data movement overheads are amortized among 
multiple steps since keys and points with the same values do not 
need to be moved during sorting. Third, keys and points that are 
identified as those that should be associated with identified 
quadrants do not need to be sorted any more in the subsequent 
levels. The last two points have been quantified in Section 4.3. 
We are also in the process of combining our application 
semantics and Thrust sorting code to develop a tailored sort 
primitive implementation to further improve the overall 
efficacy. This is important as the sort costs are more than half of 
the end-to-end computing costs in generating point quadrants 
(see details in Section 4.3). 
(6) Remove_if. Remove_if marks elements in a vector that 
satisfy a predicate and compact the unmarked elements to the 
beginning of the vector so that the marked elements are 
removed. For example, Remove_if ([1, 4, 2, 8, 5, 
7,is_even]) [1,5,7]. Remove_if is functionally equivalent to 
Copy_if but it allows in-place operation in the Thrust library. In 
contrast, using Copy_if would require a temporary vector and 
Remove_if is more convenient in this case.  
(7) Unique. Unique moves unique elements to the front of a 
range for each group of consecutive elements. For example, 
unique( [1, 3, 3, 3, 2, 2, 1]) [1,3,2,1].  Unique needs to work 
with sort to obtain globally unique elements.  
(8) Binary Search and lower_bound. Binary Search searches for 
values in sorted ranges and needs to work with sort for correct 
searching. When Binary Search tells whether the searching 
elements are in the vector being searched, lower_bound tells the 
position of the searched element. Thrust has provided a 
vertorized form of both Binary Search and lower_bound. There 
is a shuttle implementation issue that requires using Binary 
Search and lower_bound together. For example, assuming 
A=[0,2,5,7,8] and B=[0,1,2,3,8,9], when searching all elements 
of B in A, conceptually the results should be [0,-1,1,-1,4,-1] 
where -1 indicates not found. However, lower_bound 
(A,B) [0,1,1,2,4,5] where the numbers indicate the index of 
first position where the search value could be inserted without 
violating the ordering. The numbers are the same as the 
matching positions of elements if there are matches but 
meaningless if the searching elements are not in the vector being 
searched. Fortunately, binary_search(A,B) [T,F,T,F,T,F] 
which serves the exact purpose. As such, Binary Search and 
lower_bound need to be used together.  


