

Speeding up Large-Scale Point-in-Polygon Test Based
Spatial Join on GPUs

Jianting Zhang
Department of Computer Science

 The City College of the City University of New York
New York, NY, 10031

jzhang@cs.ccny.cuny.edu

Simin You
Dept. of Computer Science

CUNY Graduate Center
New York, NY, 10016

syou@gc.cuny.edu

ABSTRACT
Point-in-Polygon (PIP) test is fundamental to spatial databases
and GIS. Motivated by the slow response times in joining large-
scale point locations with polygons using traditional spatial
databases and GIS and the massively data parallel computing
power of commodity GPU devices, we have designed and
developed an end-to-end system completely on GPUs to associate
points with the polygons that they fall within. The system
includes an efficient module to generate point quadrants that have
at most K points from large-scale unordered points, a simple grid-
file based spatial filtering approach to associate point quadrants
and polygons, and, a PIP test module to assign polygons to points
in a GPU computing block using both the block and thread level
parallelisms. Experiments on joining 170 million points with
more than 40 thousand polygons have resulted in a runtime of
11.165 seconds on an Nvidia Quadro 6000 GPU device.
Compared with a baseline serial CPU implementation using state-
of-the-art open source GIS packages which requires 15.223 hours
to complete, a speedup of 4,910X has been achieved. We further
discuss several factors and parameters that may affect the system
performance.

1. INTRODUCTION
Point-in-Polygon (PIP) test is an important

computational geometry operation and has been widely used in
Computer Graphics (CG), Spatial Databases (SDB) and
Geographical Information Systems (GIS). As locating and
navigation sensors (such as GPS, cellular, Wifi and their
combinations) have been increasingly embedded in personal
handheld devices, huge amounts of point locations have been
generated. Very often these point locations need to be associated
with different types of infrastructure data (such as administrative
regions and census blocks) for various analysis purposes. This is
typically done in a SDB or a GIS environment by joining the
point dataset with the polygon dataset. The functionality has been
well supported by major commercial and open source packages.
However, traditional SDB and GIS are mostly designed to be
disk-resident and run on a single processor. Despite sophisticated

indexing approaches have been developed over the past decades
to speed up the spatial join process (see [1] for a comprehensive
review), joining hundreds of millions of points with tens of
thousands of polygons can take dozens of hours which is far from
desirable for interactive queries.

In this study, we aim at utilizing massively data parallel
computing power provided by Graphics Processing Units (GPUs)
using General Purpose computing on GPUs (GPGPU1)
technologies to speed up large-scale PIP test based spatial joins.
Following the general spatial join strategy in spatial databases [1],
we have developed a simple grid-file [2, 3] based indexing
approach on GPUs for both point data and polygon data in the
filtering phase and implemented an efficient PIP test on GPUs in
the refinement phase. Our experiments have shown that the end-
to-end runtime in joining 170 million points with more than 40
thousand polygons is reduced from 54,819 seconds (more than 15
hours) using an open source implementation to 11.165 seconds
and a signficant speedup of 4,910X has been achieved. The
signficant speedup not only saves computing resources but also
makes real time user interactions possible.

Our technical contributions are the following. First, we
have developed an end-to-end, high-performance system to join
large scale point locations with polygons on GPUs which can be
applied to a variety of real-world data-intensive applications.
Second, we have designed and implemented a set of algorithms
that can efficiently index large-scale point data and pairing points
and polygons in the filtering phase of the spatial join. Third, we
have investigated the design choices and the impacts of key
parameters for the PIP tests on GPUs in the refinement phase of
the spatial join. Finally, we have demonstrated that the
performance of traditional disk-resident spatial databases and GIS
can be significantly improved by incorporating modern hardware
features and GPU accelerations. The rest of the paper is arranged
as follows. Section 2 introduces background and related work.
Section 3 presents the GPU based spatial join framework and
implementation details. Section 4 provides experiment results and
discussions. Finally, Section 5 is the conclusions and future work.

2. BACKGROUND AND RELATED WORK
Geospatial data is pervasive in our everyday lives.

While traditionally geo-referenced data are often collected,
processed and distributed by government agencies (e.g., Census
Bureau and Department of City Planning), as more and more
personal handheld devices are equipped with locating and

1 http://en.wikipedia.org/wiki/GPGPU

navigation capabilities by using Global Positioning System
(GPS), cellular and Wifi technologies and their combinations,
geo-referenced point location data becomes an important
ubiquitous sensing data and the data volumes are increasing very
fast. It is necessary to align these point data with infrastructure
data to make sense out of the point locations. While spatial
databases and GIS are the commonly used tools to process geo-
reference data, they are not optimized to align large-scale point
data with infrastructure data.

From a geospatial modeling perspective, aligning points
to different types of geo-referenced infrastructure data can be
abstracted as a spatial join problem. According to the Open
Geospatial Consortium (OGC) Simple Feature Specification
(SFS) 2, the SQL expression can be something like the following:

SELECT Point.ID, Polygon.ID WHERE ST_WITHIN
(Point.geometry, Polygon.geometry)

When the polygons are spatially mutually exclusive
(non-overlapping), a point can only be associated with a single
polygon. The functionality is well supported by most spatial
databases and GIS. Spatial indexing approaches can be applied to
both point and polygon data to speed up query processing. While
spatial join query processing usually works well for small data on
a single CPU processor, we are not aware of existing systems that
can take advantages of the multicore and many-core parallel
hardware resources that are already available in commodity
computers to speed up spatial queries (we refer to [4] for a review
on geospatial computing on GPUs). Although relational data
management on multicore parallel hardware architectures have
been a hot research topic over the past few years (for reviews see
[5, 6]), unfortunately, there are no straightforward ways to extend
relational queries for spatial queries, including PIP test based
spatial joins.

In the research community, there are increasing
interests in using GPGPU technologies for data management
although we are not aware of the existence of such commercial or
open source products from the market yet. Two pioneering works,
i.e., GDB [7] from HKUST and Sphyraena [8] from University of
Virginia, have investigated the potentials of using GPUs for
managing relational data. Sphyraena has provided a SQL interface
based on SQLLite3, however, its functionality is limited to mostly
selection types of queries. GDB has more support for join-related
queries and several indexing modules have been provided to
speed up relational join processing. More recently, a more
complete set of relational algebra algorithms have been
implemented by a group of researchers at the Georgia Tech
University [9] and reportedly they have achieved better
performance on new generations of Nvidia GPUs. Similar to
relational data management on multi-core CPUs, it is unclear how
the parallel relational data management and query processing
techniques can be extended to geo-referenced spatial data that has
quite unique operations, for example PIP test.

Due to the close relationship between SDB/GIS and
Computer Graphics and Design Automation that also handle
spatial data, it is natural to adapt exiting indexing approaches for
vector geospatial data, including both point and polygon data.
Although the GPU-based R-Tree construction and query

2 http://www.opengeospatial.org/standards/sfs
3 http://www.sqlite.org/

processing [10] is general enough to be applied in our applications
(but with some limitations as detailed next), many of the spatial
indexing approaches [11-14] designed for computer graphics
applications are not suitable for database applications. While
these indexing structures are useful for ray-tracing and iso-surface
constructions, they are not suitable for spatially joining multiple
datasets that is commonly required in SDB/GIS.

There are several independent works that are related to
our efforts in building a GPU-based, high-performance system to
perform geospatial queries although they might initially targeted
at different application areas. While there are several attempts to
implement the classic R-Tree spatial indexing structure [2, 3] on
GPUs, the work reported in [10] seems to be the most
comprehensive one. The authors have tested parallel spatial range
queries on built R-trees on GPUs which can be potentially
modified for spatial join by treating the independent geometric
objects used for queries as the non-indexed source dataset to be
joined. However, while R-Trees have been extensively used on
CPUs for spatial join [1, 14-17], we are skeptical on whether R-
Trees are good choices for spatial joins on GPUs as data accesses
are highly irregular when pairing the bounding boxes of
geometrical objects indexed by R-Trees in the source and target
datasets to be joined. The problem has also been observed in a
research on all-pair nearest neighbor queries on CPUs [18].

The in-memory grid files data structure on GPUs
proposed by [19] is closely related to the simple grid file structure
we have used for the filtering phase of the spatial join as both of
them are derived from classic grid file structures. However, there
are several key differences between the two. First of all, their grid
file is designed to process individual queries while our grid file is
designed to process spatial join. Second, the grid file in [19] is
used to index points directly while our grid file is used to index
bounding boxes of both point quadrant and polygons (detailed in
Section 3). It would be impossible to index hundreds of millions
point directly on GPUs due to the memory capacity constraints.
Third, while their range queries locate points within query
windows directly without needing further processing, our spatial
join finds unique pairs of point quadrants and polygons which
requires complex post-processing including sorting, searching and
removing duplicates.

Finally, there are a few parallel spatial join algorithms
proposed in the past few decades that mostly targeted at shared-
nothing parallel hardware architectures [20-25]. Many of these
techniques rely on data declustering techniques to reduce slow
disk I/Os and network communication costs. More recently, some
of the spatial join algorithms have been adapted to the
MapReduce parallel computing environment [26, 27]. However,
parallel data processing with MapReduce has been criticized for
its inherent limitations on performance and efficiency [28]. In
contrast, in this study, we aim at designing and implementing
spatial joins on modern commodity GPUs which closely resemble
supercomputers as both implement the primary Parallel Random
Access Machine (PRAM4) characteristic of utilizing a very large
number of threads with uniform memory latency (such as Cray
XMT5) [29]. We are not aware of previous research on parallel
spatial join on GPUs other than similarity join on point data [30].

4 http://en.wikipedia.org/wiki/Parallel_Random_Access_Machine
5 http://www.cray.com/products/XMT.aspx

3. SYSTEM IMPLMENTATION
3.1 Overview

The workflow of the proposed approach is illustrated in
Fig. 1. We first divide points into quadrants so that each quadrant
contains at most K points. The bounding boxes of the points
within quadrants are then computed. In order for a point to be
inside a polygon, the bounding box of the quadrant that the point
falls within and the bounding box of the polygon must intersect.
We thus can filter out point quadrant and polygon pairs whose
bounding boxes do not intersect and only perform PIP tests for
points in quadrants whose bounding boxes intersect with the
bounding boxes of one or more polygons. The output of the

filtering phase is a list of quadrant identifiers and each quadrant
identifier is associated with a list of polygon identifiers
representing the intersected polygon bounding boxes. For an
element in the output list, i.e., a (qid, {pid}) pair, we assign the
pair to a GPU computing block. Within the computing block, each
thread is responsible for processing a single point and test whether
the point is within any of the polygons represented by the set of
polygon identifiers. As the polygons representing the real world
zones are usually mutually excusive (i.e., spatially non-
overlapping), when a point is determined to be within a polygon
(to be detailed in Section 3.5), the PIP test for the point is
terminated.

Fig. 1 Framework of Spatial Join on Points and Polygons using PIP Test on GPU

Location Data

Level-wise Space Partitioning

Polygon data

4
9

7
9

2
11

9
7

10
9

11
8

12
5

13
8

14
7

0

1 2 3

4
5

6
7

8

9 10
11 12

13 14

 … 50 60 …

… … 70 73 78 … 100 …

Feature Index

Ring Index

0 … 12

885 913 959 989Vertex Index

X/Y Coordinates

X/Y

Quadrant ID

#of points

 Bounding Box

Q1

Q2

P1

P2

Q1

P1

Q2

P1

Q2

P2

Quadrant-Polygon pairs
after the filtering phase

…

…

…

…

0

1 2

3

4

Loop
Thread
assignment

SM1 SM2 SMn

GPU Global Memory

GPU Accelerator Block
assignment

Bounding Box

As illustrated in Fig. 1, the point coordinates and the

bounding boxes of quadrants are laid out as one-dimensional
arrays so that they can be easily streamed among hard drives,
CPU memories and GPU memories. The polygon data is laid
out by following the same design principle although the data
layout is a little more complex. While the design details of the
data layouts is deferred to Section 3.2, we would like to note
that these simple in-memory data structures are quite effective
in reducing I/Os (which are getting increasingly expensive on
modern hardware) and play an important rule in achieving the
desired speedup. The implementation details on generating point
quadrants, computing the (qid, {pid}) list and performing PIP
tests on GPUs are provided after introducing the in-memory
data structures in the next few subsections. We note that while
we strive to optimize our implementation to achieve good
performance, our existing implementation is largely built on top
of the Thrust parallel primitives6 which may not have the best
achievable performance due to the limitations on using parallel
primitives. It is well known that there is a tradeoff between
coding complexity and code efficiency in using such parallel
libraries and we believe there are still quite some rooms for
future improvements with respect to performance. Nevertheless,
the implementation can serve as a baseline to understand the
potentials of GPU accelerations in spatial databases and GIS.

3.2 In-Memory Data Structures
The use of in-memory data structures to store the

point coordinates and polygon vertices was actually forced by
the CUDA computing model that favors one-dimensional arrays,
especially in the previous versions of compute capability. As
such, these one-dimensional arrays are used extensively to store
point and polygon data in both CPU memory and hard drives as
well for easy data streaming among them. Although traditional
SDB and GIS implementations favor dynamic memory
allocations and use pointers extensively, we have found that
using the simple array-based in-memory data structures
improves system performance considerably due to its cache
friendly property. This has motivated us to seek a systematic
way to layout large-scale point data and polygon data to balance
between performance and memory footprint. Fortunately, many
real world point data have meaningful spatial and temporal
granularities which can be used to segment the point data into
chunks that are small enough to fit into CPU/GPU memory and
big enough to maximize disk I/O performance. The point
locations that we use in this study actually are the pickup and
drop-off locations of taxi trip records in NYC. On average there
are about half a million taxi trips per day. Assuming each point
takes 8 bytes for lat/lon coordinates, the chunk for a month
would be around 120 MB per month which seems to be a good
choice given that the machine we use for the experiments has 32
MB hard drive cache and the CPU and GPU memory capacities
are 16 GB and 6 GB, respectively.

Unlike the point data that can be stored as one-
dimensional arrays in a straightforward manner, auxiliary
information is needed to store polygons as arrays. This is
because polygons have variable numbers of vertices and a

6 http://thrust.github.com/

polygon may have multiple rings, e.g., polygons with holes.
Since OGC SFS has been widely adopted by the SDB and GIS
communities, our in-memory data structures for polygons are
designed to support the standard. According to the specification,
a polygonal feature may have multiple rings and each ring
consists of multiple vertices. As such, we can form a four level
hierarchy from a data collection to vertices, i.e., dataset
feature ring vertex. Five arrays are used for a large
polygon collection. Besides the x and y coordinate arrays, three
auxiliary arrays are used to maintain the position boundaries of
the aforementioned hierarchy. As shown in the top-right part of
Fig. 1, given a dataset ID (0..N-1), the starting position and the
ending position of features in the dataset can be looked up in the
feature index array. For a feature within a dataset, the starting
position and the ending position of rings in the feature can be
looked up in the ring index array. Similarly, for a ring within a
feature, the starting position and the ending position of vertices
belong to the ring can be looked up in the vertex index array.
Finally, the coordinates of the ring can be retrieved by accessing
the x and y coordinate arrays. It is easy to see that retrieving
coordinates of single or a range of datasets, features and rings
can all be done by scanning the five arrays in a cache friendly
manner. It is also clear that the number of features in a dataset,
the number of rings in a feature and the number of vertices in a
ring can be easily calculated by subtracting two neighboring
positions in the respective index array. As such, the array
representation is also space efficient.

To convert existing disk-resident polygon data in
various formats into the array based representation, we use an
open source software called GDAL7 to access polygon datasets,
polygons, rings and vertices sequentially and output polygon
vertices and indexing positions to the respective arrays in a way
similar to ETL (Extract, Transform and Load) in relational
databases and data warehouses 8. While this step is usually I/O
intensive due to frequent disk accesses and extensive dynamic
memory allocation and de-allocation to accommodate variable-
sized polygons, this is a one-time process and the resulting
arrays can be written to hard drives and streamed to CPU
memories afterwards. Although a polygon may have a large
number of vertices in practice, the number of polygons is
relatively small and the volume of the polygon data (including
the auxiliary indices) is far less than point location data. For the
NYC census block dataset which we use in the experiments, the
number of polygons is in the order of 40 thousand and the
number of vertices is in the order of 5 million which can be fit
in both CPU and GPU memories easily. In contrast, there are
nearly 170 million pickup and drop-off locations and the
memory footprint may already be out of the capacity of some
GPU devices. Note that many GPU operations require
intermediate storage which will further reduce the number of
points that can be processed in a single run. The algorithms to
be presented in the subsequent three subsections have taken the
device memory constraints into consideration and allow
processing hundreds of millions of point locations.

7 http://www.gdal.org/
8 http://en.wikipedia.org/wiki/Extract,_transform,_load

3.3 Generating Point Quadrants
Many real world point locations are clustered and

neighboring points often behave similarly. For example, tourist
attractions often receive a large number of taxi pickups and
drop-offs. The locations are usually close to each other and are
associated with a same zone. To group the large number of
points into chunks for parallel spatial join, we have developed
an approach to hierarchically divide the point data space into
quadrants and identify quadrants that have fewer than K points.
Quadrants that have more than K points are further divided
using the same principle until either all points are grouped or the
maximum level (M) is reached. The process is similar to
quadtree constructions [2, 3] but our approach adopts a top-
down subdivision strategy and can be efficiently implemented
using GPU-based parallel primitives provided by the Thrust
library which is now part of the CUDA SDK. Compared to
native CUDA programming which usually have a deep learning
curve in order to achieve high efficiency, parallel primitives
provide a nice tradeoff between coding complexity and code
efficiency. While it is beyond our scope to present the details of
primitives based parallel programming, the appendix provides a
brief introduction to several parallel primitives that are needed
in generating point quadrants from large-scale point locations in
parallel on GPGPUs.

The procedure of generating point quadrants is
presented in Fig. 2 where the names of parallel primitives are
bolded and underlined and the variables (either a vector or a
scalar) names are bolded and italicized for easy interpretation.
An illustrative example is also provided in Fig. 3. Steps 1-3 in
Fig. 2 are used to sort points (stored in P) based on their level k
Morton codes (used as keys, stored in PK) and count the
numbers of points (stored in UN) associated with the unique
keys (stored in UK). The points are also sorted based on the
keys so that they can be reordered later (Steps 7 and 8) and get
ready for the next level. Steps 4 and 5 are used to identify
quadrants and the points associated with the quadrants. Note
that the SIGN vector indicates whether a quadrant is identified
and the INDICATOR vector indicates whether a point belongs
to an identified quadrant. For each number in UN (assuming n),
which records the number of points with the same level-k key,
the boolean value in the SIGN vector at the same position will
be replicated n times in INDICATOR. This is done by using the
Expand parallel primitive that has been implemented by
combining a Scatter and a Gather primitive (to be detailed
next).

Fig. 2 Algorithm of Parallel Primitives Based Level-Wise Point Quadrant Generation
To better illustrate how the parallel primitives work

together to identify tree leaf nodes, let us consider the following
SQL statement “SELECT * FROM T WHERE #key IN
(SELECT #key FROM T GROUP BY #key HAVING COUNT
(#key)) > #K”. The statement selects individual tuples that
satisfy a count-based group condition and does what we want in
Step 5. While it is straightforward to output individual tuples
whose #key values are in the resulting single-attribute relation

of the sub-query with the group by/having clauses on CPUs, it is
neither convenient nor efficient to perform set membership tests
on GPUs. Actually we do not have to due to the relationships
among UK, UN and PK. Obviously UK and UN are group-
related (when referencing to the SQL statement). The evaluation
results of the having condition should be a boolean vector (i.e.,
SIGN) that has the same length as UK and UN. Since UK and
PK has the same key order, when mapping UK back to PK, each

Inputs: vector of point dataset P
Outputs: re-arranged point dataset P, quadrant key vector LK, vector of numbers of points falling within quadrants LN, vector of numbers of
starting positions of points in quadrants PN, number of quadrants n_l and number of points falling within the quadrants n_s (at all levels)

Initialization: Set n_p (representing number of identified points in resulting quadrants) to 0 and set n_q (representing number of identified
quadrants) to 0.
For k from 1..M levels (with starting quadrant at n_q and starting points at n_p):

1. Transform point dataset P to key set PK using Z-ordering at level k.
2 Sort_by_key using PK as the key and P as the value
3 Reduce_by_key using PK as the key and copy the unique keys to UK and numbers of the same key in each key group into UN
4 Classify each quadrant (corresponds to a key in UK) based on whether the numbers in UN is above (set to 0) or below (se to 1) the
threshold K and copy the result to a boolean vector SIGN by using Transform.
5 Identify points that are within or not within the quadrants to be pruned based on UN and SIGN by using Expand and output the result
to a boolean vector INDICATOR.
6 Copy the identified quadrant keys to LK and number of points in the quadrant to LN by using Copy_if based on UK, UN and K; also
set n_l to the number of identified quadrants at the level and n_s to the number of points fall within the quadrant
7 Copy all points in P that are in the identified quadrant to PL and those that are not in the identified quadrant to PQ using Copy_if
based on INDICATOR
8 Combine PL and PQ to Pusing Copy by placing PL ahead of PQ
9 Keep elements in PK correspond to points that fall within the identified quadrants and remove the rest using Remove_if
10 Increase n_p by n_s and increase n_q by n_l.

Process points that fall within the last level quadrants but have more than K points
11 Transform point dataset P to key set PK using Z-ordering at level k starting at n_p (similar to Step 1)
12 Reduce_by_key using PK as the key starting at n_q and copy the unique keys to LK and numbers of the same key in each key
group into LN starting at n_q (similar to step 3)

Compute bounding boxes for quadrants
 13 Transform point dataset P into bounding boxes B using Transform
 14 Reduce_by_key on B using PK and store the result in QB

boolean value at SIGN[i] will repeat exactly UN[i] times and
the vector of such boolean values (INDICATOR) exactly
indicates whether a key in vector PK satisfy the group-based
criteria (i.e., the condition specified in the having clause in the
example SQL statement). Now the problem translates into how
to generate the INDICATOR boolean vector from the SIGN
boolean vector and the UN integer vector. This actually can be
done using four parallel primitives that are introduced in the
Appendix. First, an exclusive scan is performed on UN to
compute the group boundaries. Second, a Scatter primitive is
used to scatter the group boundary values to proper positions in
a temporal vector (VT) that has the same size as
PK/INDICATOR. Third, a Scan primitive using the max
associative function is performed to propagate the boundary
values in VT to positions within group boundaries. Finally, a
Gather primitive is applied to update the values in INDICATOR
by the values in SIGN using VT as the map, i.e., the ith element
in INDICATOR is assigned to the value of SIGN[VT[i]].

Step 6 copies the identified quadrant and the
corresponding numbers of points to two new vectors (LK and
LN. This step also computes the number of identified quadrants
and the number of points that fall within the quadrants in order
to set the proper level boundaries in step 10. Steps 7 and 8
actually rearrange the points by moving points in identified
quadrants to the left and the rest of the points to the right so that

the next level only needs to process the non-identified points.
Step 9 removes elements in PK that correspond to points that do
not fall within any of the identified quadrants at the level. It is
possible that some last-level quadrants have more than K points
and they can not be identified in steps 1-10. As such, step 11
(similar to step 1) and step 12 (similar to step 3) are used to
process these points which can be considered as a simplification
of steps 1-10 since no sorting and reordering are needed at the
last level.

After the quadrants are identified, computing the
bounding boxes of the points that fall within the quadrant
becomes embarrassingly parallelizable by using a transform
primitive and a reduce_by_key primitive. The transform
primitive converts a point into a bounding box by setting the
top-left and bottom-right points of the bounding box to the point
itself (Step 13). Since there is a one-to-one correspondence
between PK and P and the unique values of PK and the
identified quadrants, a straightforward reduce_by_key primitive
can be applied to compute the bounding boxes of points in the
identified quadrants by using a user-defined functor that takes
the extremes of the two bounding boxes and form a larger
bounding box. We note that by applying an exclusive scan on
LN we can obtain the starting positions of the first points of the
identified quadrants in P and hence the point coordinates can be
accessed in parallel for subsequent PIP test.

Fig. 3 A Running Example to Illustrate the Process of Generating Point Quadrants using Parallel Primitives

3.4 Associating Quadrants and Polygon
Bounding Boxes with Grid Cells

Pairing all point quadrants with all polygons for PIP
test is computationally prohibitive for even relatively small
number of quadrants and number of polygons. This is not
necessary either as the majority of the point quadrants will only
intersect with a small number of polygons. Quite a few spatial
indexing approaches have been proposed for filtering purposes
but the majority is serial in nature and hence is not suitable for

GPU implementation. We propose to use a simple grid file
spatial indexing structure to index both the bounding boxes of
point quadrants and the bounding boxes of polygons. Our
approach converts the problem of comparing spatial
relationships (e.g., intersection of bounding boxes) in spatial
queries into a searching problem which can be efficiently
implemented by integrating an in-house developed kernel with
the vectorized binary search parallel primitive that is recently
supported by the Thrust library in the CUDA SDK.

49 24
11 2

9 16

 13
9

 15
4 7

0 11 20 29 36 44 49 57 64

Level 1

Level 2

Level 1 3

Prefix Sum Starting Position

Z-Order
/Sorting

2
11

4
9

7
9

9
7

10
9

11
8

12
5

13
8

14
7

4
9

7
9

2
11

4
9

7
9

2
11

9
7

10
9

11
8

12
5

13
8

14
7

Leaf Key
points
point vector

Level 3

As illustrated in Fig. 4, we first rasterize the bounding
boxes of both the point quadrants and polygons using a uniform
grid. Given a fixed grid cell size, the number of rows and the
number of columns of the bounding boxes to be rasterized can
be easily computed. If two bounding boxes overlap then they
will have at least one common grid cell. To find all the polygons
that a point quadrant intersects, for each grid cell of the
bounding box of the point quadrant, we search the grid cell
identifier in the rasterized grid cells of the bounding boxes of
polygons. If there is match, then we pair the point quadrant and
the polygon for further refinement in the next stage. Note that as
a bounding box of a point quadrant usually has multiple grid
cells and each grid cell is searched and matched independently,
there will be (potentially a large number of) duplicates of the
pairs of point quadrants and polygons. These duplicates need to
be removed before the refinement phase. We have implemented
this procedure by using a combination of binary_search and
lower_bound primitives provided by Thrust. We refer to the
appendix and Thrust documentation for details on these two
parallel primitives In the example show in Fig. 4, among the 12
cells of Q1, two cells have successfully the corresponding cells
in the rasterized cells of the polygon bounding boxes (and we
term it as “paired”). Similarly one cell in Q2 is paired with one
cell in P1 and two cells in Q2 are paired with two cells in P2.
After applying the unique primitive (see appendix) we will
obtain three pairs. After applying the sort primitive, we get two
pairs (c.f. Section 3.1), i.e., (Q1,{P1}) and (Q2, {P1,P2}) and
they are ready to be sent to GPU computing blocks for PIP tests.

Fig. 4 Illustration of Grid-File based Spatial Join
Filtering and its GPU implementation using Parallel Primitives

While quite a few parallel primitives that are needed
in this step have been provided by the Thrust library, such as
vectorized binary search, unique and sort, we have found that it
is difficult to rasterize bounding boxes using existing parallel
primitives although it seems to be straightforward to split a
rectangle into a set of squares and assign an identifier to each of
the cells. As such, we have developed a simple CUDA kernel
for this purpose. Before launching the rasterization kernel, we
apply an exclusive scan kernel to compute the starting positions
of where each rasterized bounding box should begin to write out
their grid cell identifiers on the vector of the total number of
cells of the respective bounding boxes. The numbers can be
easily calculated as the multiplications of the numbers of rows
the numbers of columns of the respective bounding boxes. With

all these input information, each thread is assigned to process a
bounding box in parallel and write out the cell identifiers
sequentially.

3.5 Parallel PIP Test
As discussed previously (c.f. Section 3.1 and Fig. 1),

each (qid, {pid}) pair is assigned to a computing block to utilize
the first level parallelism in GPGPU computing. Within a
computing block, there are quite some parameters to be fine-
tuned to make full use of the fine-grained thread level
parallelism on GPUs, such as determining number of threads per
block, decisions on using shared memory and approaches to
mitigate register variable pressure. In this subsection, we report
our design and implementation of the parallel PIP test for all
points in a quadrant and all the candidate polygons that are
derived by the filtering phase.

There are quite a few computational geometry
algorithms for point in polygon test and we refer to [31] for a
brief review. While PIP test algorithms that require
preprocessing may obtain sub-linear complexity, algorithms that
do not require preprocessing are usually simpler and more
suitable for GPU implementation. In this study, we use the most
popular ray crossing (ray intersection) algorithm with a
complexity of O(n) where n is the number of edges of a
polygon. The basic idea of the ray crossing algorithm is
illustrated in Fig. 5. If a ray emanating from a test point crosses
the boundary of a polygon odd times, it is inside a polygon
otherwise outside a polygon. In this study, we have adopted the
concise code provided by Randolph Franklin (listed in Fig. 5)
and modified it to run on GPUs. We note that the open source
GIS packages Java Topology Suit (JTS)9 and its C/C++
translation Geometry Engine - Open Source (GEOS)10 also have
implemented a similar ray crossing algorithm for PIP test.
GEOS has been integrated into PostGIS11/PostgreSQL12 to
support PIP test in the form of the ST_Intersects function when
the two inputs are point and polygon geometry objects,
respectively. As such, it is fair to compare a parallel GPU
implementation with a serial CPU implementation of the same
algorithm.

We have adopted a simple thread level parallelization
schema within a computing block, i.e., each thread is
responsible for testing whether it is within the paired polygons.
The simple design has two advantages with respect to GPU
device memory access. First, as points are stored consecutively
in their coordinate arrays (c.f. Section 3.2), neighboring threads
will access consecutive memory addresses which is coalesced
perfectly. Second, all threads will access the same polygon
vertices which are also stored consecutively in their coordinate
arrays. The GPU hardware is able to broadcast the requested
vertex coordinates to all the requesting threads which
significantly reduces memory access costs. While originally we
had planned to use GPU shared memory to store both
coordinates of points in a quadrant and polygon vertices, as
GPU device memory accesses are already optimized, using
shared memory actually decreases performance due to

9 http://www.vividsolutions.com/jts/jtshome.htm
10 http://geos.osgeo.org
11 http://postgis.refractions.net/
12 http://www.postgresql.org/

Q1

Q2

P1

P2

Q1 Q2

P1 P2

Binary
Search

Q2
P1

Q1
P1

Q2
P2

Q1
P1

Q2
P2

Q2
P1

Q1
P1

Q2
P2

Unique
Q1
P1

Q2
P1

Q2
P2

Sort

synchronization costs which is necessary after having threads
collaboratively load data from device memory to shared
memory. Not using shared memory will also improve scalability
as the numbers of points and polygons that can be assigned to a
computing block is not limited by shared memory sizes any
more. If the number of points assigned to a computing block
exceeds the number of threads that is allowed by a computing
block, the points can be divided into chunks and simply have
threads loop through the chunks.

Fig. 5 Illustration and Code Segment of Ray Crossing

based Point-in-Polygon Test (see 13for more details)

While shared memory is not a limiting factor in our

design and implementation, we have found that the limited
number of register files available to a thread becomes a
bottleneck. Due to the complexity of the algorithm, we can not
reduce the number of registers used by a thread to below 44,
which is more than the number of registers allowed when a SM
is fully utilized under CUDA compute capability 2.0
(32768/1024=32). As reported in the experiment section, we
have found that using 256 threads per block seems to achieve
the best performance for a quadrant size K=512. However, the
occupancy in this case is only 33% which is far from optimal
due to the register file limit under compute capability 2.0. We
expect the occupancy will be improved under compute
capability 3.0 where each thread is allowed to use
65536/1024=64 register variables when a SM is fully utilized.
Another option to try is to allow register spilling which requires
more careful design to improve the overall performance.

4. EXPERIMENTS

4.1 Data and Experiment Setup
Through a partnership with the New York City (NYC)

Taxi and Limousine Commission (TLC), we have access to
roughly 300 million GPS-based trip records in about two years
(2008-2010). Each taxi trip has a GPS recorded pickup location
and a drop-off location expressed as a pair of latitude and
longitude. In this study, we use the approximately 170 million
pickup locations in 2009 for experiments. The polygon data we
use is the NYC Census 2000 dataset14. There are more than 40

13 http://local.wasp.uwa.edu.au/~pbourke/geometry/insidepoly/
14 http://www.nyc.gov/html/dcp/html/bytes/applbyte.shtml

thousand census block polygons in NYC with more than 5
million vertices. All experiments are performed on a Dell
Precision T5400 workstation equipped with dual quadcore
CPUs running at 2.26 GHZ with16 GB memory, a 500G hard
drive and an Nvidia Quadra 6000 GPU device. The sustainable
disk I/O speed is about 100 megabytes per second while the
theoretical data transfer speed between the CPU and the GPU is
4 gigabytes per second through a PCI-E card. We have set M,
the maximum number of levels in point quadrant generation, to
8 and each parent quadrant has 2l*2l=4*4=16 child quadrants
with l=2. With a cell size of 2 feet at the finest level, the whole
NYC area is rasterized into a 2s*2s grid where s=l*M=16. As
such, all quadrants can be identified by a 32-bit Morton code.

For comparison purposes, we have implemented the
same spatial join using open source GIS packages, i.e.,
libspatialindex15 to index polygon data by building an R-Tree,
and, GDAL, which implicitly uses GEOS, to perform PIP test.
While we could have also built an R-Tree for the point locations
by treating the points as bounding boxes, given the large number
of points, it is very costly to index the point data using R-Tree
indexing. In addition, coordinating the two index structures to
perform the spatial join is non-trivial and is beyond the scope of
this research. As such, the CPU implementation queries each
point against the indexed polygons. If the point falls within any
of the bounding boxes of polygons, the polygon identifiers will
be returned for refinement. It is clear that, while the polygons do
not spatially overlap, their bounding boxes can overlap and a
point query may return multiple polygons for PIP test in the
refinement phase. The CPU implementation performs the PIP
test for each of the polygons in the query result set and breaks if
any of the PIP test returns true.

Our GPU implementation has several parameters to
set. The first parameter is K, the maximum number of points in
a quadrant and the second parameter is the number of threads
per computing block (N). In this section, we will first report the
best results in Section 4.2. We then provide the experiment
results on generating point quadrants in Section 4.3 as it is the
most time consuming component in the whole process. In
Section 4.4, we vary both N and K and report their impacts on
the overall performance.

4.2 Overall Experiment Results
The best performance of our GPU implementation is

achieved with K=512 and N=256 with a total end-to-end
runtime of 11.165 seconds. In contrast, the serial CPU
implementation takes 54,819 seconds (15.223 hours). As such, a
significant speedup of 4,910X has been achieved. Note that we
have not included the disk I/O times to load the points and
polygons as this is one-time cost and is not directly related to
the spatial join. Furthermore, as discussed before, these data are
stored as binary files on disk. With a sustainable disk I/O speed
of 100 MB per second, the point and polygon data can be
streamed into CPU main memory in about 15 seconds. Since the
disk I/O time is comparable to the spatial join time, even if the
disk I/O times are included, the order of speedup will not be
changed.

15 http://libspatialindex.github.com/

int pnpoly(int npol, float *xp, float *yp, float x, float y)
{
 int i, j, c = 0;
 for (i = 0, j = npol-1; i < npol; j = i++) {
 if ((((yp[i] <= y) && (y < yp[j])) ||
 ((yp[j] <= y) && (y < yp[i]))) &&
 (x < (xp[j] - xp[i]) * (y - yp[i]) / (yp[j] - yp[i]) + xp[i]))
 c = !c;
 }
 return c;
}

We attribute the 3-4 orders of improvements to the
following factors. First, all the point, polygon and auxiliary data
are memory resident in our GPU implementation. In contrast,
the open source GIS packages are designed to be disk resident
and data and indices are brought to CPU memory dynamically.
While the sophisticated design is necessary for old generations
of hardware with very limited CPU memory, current commodity
computers typically have tens of gigabytes of CPU memory
which renders the sophisticated design inefficient. We also have
observed that the open source packages use dynamic memory
and pointers extensively which can result in signficant cache
and TLB misses. Second, in our GPU implementation, we have
divided points into quadrants before we query against the
polygons in the filtering phase using a GPU based grid file
indexing structure. In the serial CPU implementation, each point
queries against the polygon dataset individually. While the
polygon dataset is indexed, each point query needs to travel
from the root of R-Tree of the polygon dataset to leaf nodes
which is quite costly. While not tested in this study, we expect
querying the bounding boxes of points in quadrants, instead of
querying the points individually, can potentially improve the
serial CPU implementation. Third, in addition to the improved
floating point computation on GPUs, the massively data parallel
GPU computing power is utilized for all phases of the spatial
join process, including generating point quadrants, filtering
quadrant-polygon pairs and PIP test in computing blocks. While
we have not yet been able to separate the contributions of the

three factors, we plan to do so by hybridizing CPU and GPU
implementations in our future work and measure the
performance of different combinations.

Before we provide more detailed results in the next
two subsection, we would like to report that among the 11.165
seconds end-to-end runtime for the point-to-polygon spatial
join, the majority (8.170 seconds) is spent on generating point
quadrants. The runtimes to rasterize bounding boxes of point
quadrants and polygons are 0.469 and 0.640 second,
respectively. The binary search and duplication removal take
0.265 and 0.405 second, respectively. The PIP test kernel takes
1.206 second which is only 10.8% of the total runtime. We note
that the total runtime includes the data transfer time from CPU
to GPU for both the point and polygon data, which is 1.030
second.

4.3 Results on Generating Point Quadrants
 As discussed in Section 3.3, the modules in

generating point quadrants are implemented on top of the Thrust
parallel library. Each of the steps listed in Fig. 2 (except Step
10) corresponds to a call to the respective parallel primitive.
Since this is the most time consuming step in the whole process,
to better understand the distributions of computing workloads,
the runtimes of the step groups are listed in Table 1. We have
not included the runtimes for processing last level (steps 11/12)
as they are negligibly small.

Table 1 Runtimes of Steps in Generating Point Quadrants of 8 Levels (milliseconds)
Quadrant Level 1 2 3 4 5 6 7 8

1 Point Transformation time (Step 1) 26.14 25.65 34.77 34.72 34.67 33.75 27.19 2.23

2 Point Sorting (Key-Value) time (Step 2) 281.80 336.12 494.54 514.75 513.23 546.00 526.84 47.35

3 Key Reducing Time (Step 3) 71.83 71.87 73.24 72.96 73.62 74.36 63.37 6.44

4 Quadrant Identifying Time (Steps 4, 5, 6) 95.27 95.50 94.53 95.98 94.08 93.30 78.39 8.99

5 Point shuffling Time (Steps 7, 8, 9) 246.48 248.17 259.06 263.09 261.98 269.61 271.70 26.05

6 # of identified points 0 15955 291,342 1,351,989 3,546,982 30,510,995 120,775,838 11,551,455

7 # of identified quadrants 0 73 1,938 12,350 36,653 225081 1,250,597 219,730
8 Bounding box derivation time (Steps 13/14) 651.78

From the results we can see that nearly half of the
point quadrant generation time is spent on sorting the points
with the Morton code as the key and the coordinate as the value.
Given that 168 million points are sorted in 3260.63 milliseconds
in 8 rounds (levels), we have achieved an overall key-value
sorting rates at the 51.52 million pairs per second on the Quadro
6000 GPU device. While the achieved sorting speed seems to be
much lower than the previous results of sorting 222 million pairs
per second for 32 bit key and 64 bit value on an Nvidia C2050
device with ECC enabled [32], we argue that the actual sorting
speed is higher than what they have achieved. Instead of using n
directly, which is the total number of input location points, the
total number of points that participate in sorting at all the levels

is ∑ ∑
+

= =
−−=

1

1 1
1)('

M

i

M

i
innn where ni is the number of points

that fall within the quadrants identified at the level i (assuming
n0=0). When we plugin the nis provided at the 6th row of table 1,
n’ becomes 1,136,417,142 which gives a sorting speed of 348

million pairs per second and is 58% faster than the results
reported in [32]. The reason is that keys that are sorted at the
previous levels will incur no data movement in the sorting of the
next levels due to the nature of radix sort. We speculate that
when a customized sorting algorithm is developed for our
specific application to allow picking up the sorting results from
a previous level without repeating the radix-sort from scratch,
the overall sorting performance can potentially be significantly
sped up. This is left for our future work.

The next most time consuming component is to move
points fall within the identified quadrants ahead of the points
whose quadrants are yet to be identified, i.e., point shuffling.
From the runtimes shown in the 5th row of Table 1 we can see
that the runtimes remain constant until the last level where
almost all points have identified their quadrants. Again, we
believe this step can be combined with the sorting step when a
customized CUDA kernel is developed. As a comment, while
using parallel primitives facilitate fast prototyping,
implementations built on top of parallel primitives often are not

the ones that can achieve the highest efficiency. In this
particular case, the intermediate results in the parallel primitives
are not available to the subsequent steps and some duplicated
computing can not be avoided.

From the 6th and 7th rows of Table 1, we can also see
that the majority of the quadrants/points are identified at level 6
and 7 where the quadrant sizes are 8*8 and 4*4 feet,
respectively. This is understandable as the majority of taxi
pickup locations are clustered at the street intersections,
especially in the midtown and downtown Manhattan area. For
the quadrants identified at the higher levels, they will have
larger bounding boxes and are likely to intersect with more
polygons based on our filtering algorithm. Using a smaller K
will reduce the number of such big quadrants to improve the
pruning power and improve the PIP test performance in the
refinement phase. On the other hand, using a small K will
increase the number of quadrants. This in turn will increase the
time to generate the quadrants due to the fact that more sorting
work is needed to put points in smaller quadrants.

4.4 Impacts of Quadrant Point sizes and
Threads Numbers

To further discuss the impacts of the quadrant point
sizes (K) and threads numbers (N) on the performance, we have
varied K from 256 to 1280 while fixing N to 256. We have
varied N from 64 to 704 while fixing K to 512. The results are
plotted in Fig. 6 and Fig.7, respectively. Note that “query” time
in Fig. 6 refers to pairing quadrants and polygons including
binary search and duplication removal times as discussed in
Section 3.4. The “total” refers to the sum of the “query” time
and the PIP test time in the refinement phase. We have not
included the quadrant generation time in Fig. 6 as here we are
concerned with the tradeoff between the filtering phase and the
refinement phase in a spatial join (conceptually the quadrant
generation is considered as part of indexing). From Fig. 6 we
can see that, as the maximum number of points in quadrants (K)
increases, the query times decrease slightly while the PIP test
time reaches the minimum at K=512. The query time decreases
as K increase can be explained that both the number of point
quadrants and the number of the resulting filtered pairs decrease
as K increases and thus less computing is needed in the filtering
phase (“query”). As discussed previously, a smaller K will result
in smaller bounding boxes which may improve the filtering
power (fewer false positives) and can potentially reduce the
number of PIP test in the refinement phase. On the other hand, a
small K will also increase the number of quadrants. As each
quadrant is assigned to a computing block, the overhead of
launching computing blocks may increase and can potentially
overshadow the benefits of the increased filtering power. The
results in Fig. 6 show that K=512 provides a good tradeoff.

Fig. 6 Variations of Spatial Join Runtimes for
Different K Sizes

From Fig. 7 we can see that as the number of threads
(N) increase, the runtime for the PIP test in the refinement phase
decreases until N=256 before the runtime increases again. Fig 7
also shows a spike of bad performance when N=384. As
discussed in Section 3.5, the implementation is limited by the
number of register files that can be used by a computing block.
When N is small, while a SM can accommodate more blocks
(but less than 8 in compute capability 2.0), the threads in a SM
is underutilized and the performance is not maximized. As N
increases, the occupancy rate gets higher and the performance
gets better until N=256 where two computing blocks are
accommodated in a SM (three block would require more than
32K registers) and the occupancy rate is 33%. Although
increasing N to 352 will increase the occupancy rate to 46%,
since 352 does not divide K=512, 160 out of the 352 threads
will be idle in the second round of processing the points (c.f.
Section 3.5), the performance gets worse. When N is increased
to 384, only one computing block can be accommodated in a
SM and, similar to N=352, a considerable portion of threads are
idle in the second round, the worst performance is observed (the
spike in Fig. 7). When N reaches 512 and above, although still
only one computing block can be accommodated in a SM, only
one loop is needed for the N threads to process the K=512
points and the performance remain the same for N=512 and
above. We note that according to CUDA compute capacity 3.0,
there will be 64K registers per SM (with the number of
maximum thread per computing block remains to be 1024), our
implementation can potentially doubles the performance by
increasing the occupancy to 66% using N=512.

Fig. 7 Variations of PIP Test Runtimes for Different
Numbers of Threads in a Computing Block

5. CONCLUSION AND FUTURE WORK
In this study, we have reported our design and

implementation on large-scale point-in-polygon test which is a
fundamental operation in spatial databases and GIS. The high-
performance system can help understand the interactions
between people and place more effectively when applied to
processing large-scale ubiquitous urban sensing data such as
GPS recorded pickup and drop off locations taxi trip records.
Experiments have shown that, with a combination of in-memory
data structures, algorithm improvement and GPU hardware
parallel accelerations, we have achieved 3-4 orders of speedup
when compared to a baseline serial CPU implementation on top
of the state-of-the-art open source GIS packages.

For future work, first of all, we would like to analyze
the potential of further performance improvements. The
majority of the current implementation is built on top of the
Thrust parallel library which incurs some unavoidable
duplicated computing. The kernels we have developed can also

be optimized in terms of load balancing and algorithmic
engineering (especially for the PIP test code). We are optimistic
in further reducing the end-to-end runtime. Second, while we
have identified factors that have contributed to the significant
speedup, the relative contributions remain unclear. We plan to
quantify their relative contributions and provide insights on
evolving traditional SDB and GIS to modern hardware
architectures, including large memory, deep cache hierarchy and
parallel processors. Finally, we would like to expand the spatial
join framework to other types of spatial joins, such as distance
based nearest neighbor.

6. REFERENCES
[1] Jacox, E. H. and Samet, H. (2007). Spatial join techniques.

ACM Transaction on Database System 32(1).
[2] Gaede V. and Gunther O. (1998). Multidimensional access

methods. ACM Computing Surveys 30(2), 170-231.
[3] Samet, H. (2005). Foundations of Multidimensional and

Metric Data Structures Morgan Kaufmann.
[4] Zhang, J. (2010). Towards personal high-performance

geospatial computing (HPC-G): perspectives and a case
study. Proceedings of the ACM SIGSPATIAL HPDGIS
workshop.

[5] A.Pavlo, E. Paulson et al. (2009). A comparison of
approaches to large-scale data analysis. Proceedings of
ACM SIGMOD Conference, 165–178.

[6] Cieslewicz, J. and Ross, K. A. (2008). Database
Optimizations for Modern Hardware. Proceedings of the
IEEE 96(5).

[7] He, B. S., Lu, M., Yang, K., Fang, R., Govindaraju, N. K.,
Luo, Q. and Sander, P. V. (2009). Relational Query
Coprocessing on Graphics Processors. ACM Transactions
on Database Systems 34(4).

[8] Bakkum, P. and Skadron, K. (2010). Accelerating SQL
database operations on a GPU with CUDA. Proceedings of
GPGPU workshop, 94-103.

[9] Gregory Frederick Diamos, Wu, H., Lele, A. and Wang, J.
(2012). Efficient Relational Algebra Algorithms and Data
Structures for GPU. Georgia Tech University technical
report. http://www.cercs.gatech.edu/tech-reports/tr2012/git-
cercs-12-01.pdf

[10] Luo, L., Wong, M. D. F., et al. (2011). Parallel
implementation of R-trees on the GPU. Proceedings of the
17th Asia and South Pacific Design Automation
Conference (ASP-DAC).

[11] Zhou, K., Hou, Q., et al. (2008). Real-Time KD-Tree
Construction on Graphics Hardware. ACM Trans. on
Graphics 27(5).

[12] Hou, Q., Sun, X., et al. (2011). Memory-Scalable GPU
Spatial Hierarchy Construction. IEEE Transactions on
Visualization and Computer Graphics 17(4), 466-474.

[13] Zhou, K., Gong, M., et al. (2011). Data-Parallel Octrees for
Surface Reconstruction. IEEE Transactions on
Visualization and Computer Graphics 17(5), 669-681.

[14] Andrysco, N. and Tricoche, X. (2011). Implicit and
dynamic trees for high performance rendering. Proceedings
of Graphics Interface 2011.

[15] Thomas, B., Hans-Peter, K. and Bernhard, S. (1993).
Efficient processing of spatial joins using R-trees.
Proceedings of ACM SIGMOD Conference.

[16] Huang, Y.-W., Jing, N. and Rundensteiner, E. A. (1997).
Spatial Joins Using R-trees: Breadth-First Traversal with
Global Optimizations. Proceedings of VLDB Conference.

[17] Papadias, D., Mamoulis, N. and Theodoridis, Y. (1999).
Processing and optimization of multiway spatial joins using
R-trees. Proceedings of ACM SIGMOD PODS conference.

[18] Chen, Y. and Patel, J. (2007). Efficient evaluation of all-
nearest-neigbor queries. Proceedings of IEEE ICDE.

[19] Yang, K., He, B., Fang, R., Lu, M., Govindaraju, N., Luo,
Q., Sander, P. and Shi, J. (2007). In-memory grid files on
graphics processors. Proceedings of ACM DaMoN
Workshop.

[20] Hoel, E. G. and Samet, H., 1994. Performance of Data-
Parallel Spatial Operations. Proceedings of VLDB
Conference.

[21] Brinkhoff, T., Kriegel, H.-P. and Seeger, B. (1996).
Parallel Processing of Spatial Joins Using R-trees.
Proceedings of IEEE ICDE Conference.

[22] Zhou, X., Abel, D. J. and Truffet, D. (1998). Data
Partitioning for Parallel Spatial Join Processing.
GeoInformatica 2(2): 175-204.

[23] Patel, J. M. and DeWitt, D. J. (2000). Clone join and
shadow join: two parallel spatial join algorithms.
Proceedings of ACM GIS Conference.

[24] Kim, J.-D. and Hong, B.-H. (2000). Parallel Spatial Joins
Using Grid Files. Proceedings of IEEE International
Conference on Parallel and Distributed Systems.

[25] Luo, G., Naughton, J. F. and Ellmann:, C. J. (2002). A
Non-Blocking Parallel Spatial Join Algorithm. IEEE ICDE
Conference.

[26] Zhang, S., Han, J., Liu, Z., Wang, K. and Xu, Z. (2009).
SJMR: Parallelizing spatial join with MapReduce on
clusters. Proceedings of IEEE International Conference on
Cluster Computing.

[27] Zhang, C., Li, F. and Jestes, J. (2012). Efficient parallel
kNN joins for large data in MapReduce. Proceedings of
EDBT Conference

[28] Lee, K.-H., Lee, Y.-J., Choi, H., Chung, Y. D. and Moon,
B. (2012). Parallel data processing with MapReduce: a
survey. SIGMOD Record, 40 (4), 11-20.

[29] Hong, S., Kim, S. K., et al., 2011. Accelerating CUDA
graph algorithms at maximum warp. Proceedings of ACM
symposium on PPoPP.

[30] Lieberman, M. D., Sankaranarayanan, J. and Samet, H.
(2008). A Fast Similarity Join Algorithm Using Graphics
Processing Units. Proceedings of IEEE ICDE Conference.

[31] Zalik, B. and Kolingerova, I. (2001). A cell-based point-in-
polygon algorithm suitable for large sets of points.
Computers & Geosciences 27(10): 1135-1145.

[32] Merrill, D. and Grimshaw, A. (2011). High Performance
and Scalable Radix Sorting: A case study of implementing
dynamic parallelism for GPU computing. Parallel
Processing Letters 21(2): 245-272. Also online at
http://code.google.com/p/back40computing/wiki/RadixSort
ing

Appendix: Parallel Primitives
Although naming conventions might differ slightly

under different contexts and software implementations, since
our implementation is based on the Thrust library, we next
introduce the primitives that we have used in our design using
the Thrust terminology.
(1) Reduce and Reduce by key. Reduce is used to simplify a
vector/array to a scalar value. For example, reduce([3,2,4]) 11.
While the summation is frequently used in reductions, Thrust
allows using a user defined associative binary function for
tailored summation, such as determining the maximum entry or
computing bounding boxes of points. Reduce by key is a
generalization of Reduce to key-value pairs based on groups
where consecutive keys in the groups are the same. For
example, reduce[1,3,3,2],[2,1,3,4]) ([1,3,2],[2,4,6]). In this
research, Reduce by key has been extensively used to compute
numbers of points and quadrant that have the same keys based
on Morton codes.
(2) Scan and Scan by Key. The Scan primitive computes the
cumulative sum of a vector/array. The Scan primitive can also
take a user defined associative binary function. Both the
inclusive and exclusive scans are available. For example,
exclusive_scan([3,2,4]) ([0,3,5]) while inclusive_scan
([3,2,4]) ([3,5,9]). Similarly, Scan by Key works on
consecutive key groups instead of a whole vector/array. In this
research, Scan by Key is extensively used to compute the
positions of entries in a vector after applying Reduce by key
which outputs numbers of entries with same keys.
(3) Copy and Copy_if. The functionality of the two primitives is
self-evident. In this research, we use Copy to move groups of
entries from one location to another, mostly within a same
vector. The Copy_if primitive is mostly used for identifying
points and keys (point quadrants) that satisfy certain criteria and
output the identified entries to a new vector for further
processing.
(3) Transform. The basic form of Transform applies a unary
function to each entry of an input sequence and stores the result
in the corresponding position in an output sequence. Transform
is more general than Copy as it allows a user defined operation
to be applied to entries rather than simply copying. Similar to
Copy_if, there is also a Transform_if primitive which is
essentially the combination of Transform and Copy_if. The
combination usually results better performance. In this research,
Transform has been extensively used to convert points into
Morton codes.
(4) Gather and Scatter. Gather copies elements from a source
array into a destination range according to a map and Scatter
copies elements from a source range into an output array
according to a map. For example,
Gather([3,0,2],[4,7,8,12,15]) ([12,4,8]) and
Scatter([3,0,2],[12,4,8],[*,*,*,*,*,*]) ([4,*,8,*12,*]). Note *
values are those unchanged in the third input vector. In this
research, we have used the combination of Gather and Scatter to
locate individual points fall within quadrants that have fewer
than K points so that they can be moved to proper locations.
(5) Sort and Sort by Key. Sort is probably among the most
popular primitives in parallel libraries. In fact, our design aims
at utilizing the power of parallel sorting on GPGPUs to speed up

generating point quadrants. The current implementations of the
sorting algorithms in Thrust are based on a combined radix sort
and merge sort which has been proven to be memory bandwidth
friendly and practically efficient. Our design facilitates reducing
memory traffic and further improves sorting efficiency in the
following sense. First, rather than sorting coordinates directly,
we sort Z-order transformed Morton codes. The transformation
preserves spatial adjacency and requires less data movement.
Second, we sort the increasingly longer Morton codes level-by-
level and the data movement overheads are amortized among
multiple steps since keys and points with the same values do not
need to be moved during sorting. Third, keys and points that are
identified as those that should be associated with identified
quadrants do not need to be sorted any more in the subsequent
levels. The last two points have been quantified in Section 4.3.
We are also in the process of combining our application
semantics and Thrust sorting code to develop a tailored sort
primitive implementation to further improve the overall
efficacy. This is important as the sort costs are more than half of
the end-to-end computing costs in generating point quadrants
(see details in Section 4.3).
(6) Remove_if. Remove_if marks elements in a vector that
satisfy a predicate and compact the unmarked elements to the
beginning of the vector so that the marked elements are
removed. For example, Remove_if ([1, 4, 2, 8, 5,
7,is_even]) [1,5,7]. Remove_if is functionally equivalent to
Copy_if but it allows in-place operation in the Thrust library. In
contrast, using Copy_if would require a temporary vector and
Remove_if is more convenient in this case.
(7) Unique. Unique moves unique elements to the front of a
range for each group of consecutive elements. For example,
unique([1, 3, 3, 3, 2, 2, 1]) [1,3,2,1]. Unique needs to work
with sort to obtain globally unique elements.
(8) Binary Search and lower_bound. Binary Search searches for
values in sorted ranges and needs to work with sort for correct
searching. When Binary Search tells whether the searching
elements are in the vector being searched, lower_bound tells the
position of the searched element. Thrust has provided a
vertorized form of both Binary Search and lower_bound. There
is a shuttle implementation issue that requires using Binary
Search and lower_bound together. For example, assuming
A=[0,2,5,7,8] and B=[0,1,2,3,8,9], when searching all elements
of B in A, conceptually the results should be [0,-1,1,-1,4,-1]
where -1 indicates not found. However, lower_bound
(A,B) [0,1,1,2,4,5] where the numbers indicate the index of
first position where the search value could be inserted without
violating the ordering. The numbers are the same as the
matching positions of elements if there are matches but
meaningless if the searching elements are not in the vector being
searched. Fortunately, binary_search(A,B) [T,F,T,F,T,F]
which serves the exact purpose. As such, Binary Search and
lower_bound need to be used together.

