
High-Performance Partition-based and Broadcast-

based Spatial Join on GPU-Accelerated Clusters
Simin You

Dept. of Computer Science

CUNY Graduate Center

New York, NY, USA

syou@gc.cuny.edu

Jianting Zhang

Dept. of Computer Science

The City College of New York

New York, NY, USA

jzhang@cs.ccny.cuny.edu

Le Gruenwald

Dept. of Computer Science

The University of Oklahoma

Norman, OK, USA

ggruenwald@ou.edu

Abstract—The rapid growing volumes of spatial data have

brought significant challenges on developing high-

performance spatial data processing techniques in parallel

and distributed computing environments. Spatial joins are

important data management techniques in gaining insights

from large-scale geospatial data. While several distributed

spatial join techniques based on symmetric spatial partitions

have been implemented on top of existing Big Data systems,

they are not capable of natively exploiting massively data

parallel computing power provided by modern commodity

Graphics Processing Units (GPUs). In this study, we have

extended our distributed spatial join framework that was

originally designed for broadcast-based spatial joins to

partition-based spatial joins. Different from broadcast-based

spatial joins that require one input side of a spatial join to be a

point dataset and the other side to be sufficiently small for

broadcast, the new extension supports non-point spatial data

on both sides of a spatial join and allows them to be both large

in volumes while still benefit from native parallel hardware

acceleration for high performance. We empirically evaluate

the performance of the proposed partition-based spatial join

prototype system on both a workstation and Amazon EC2

GPU-accelerated clusters and demonstrate its high

performance when comparing with the state-of-the-art. Our

experiment results also empirically quantify the tradeoffs

between partition-based and broadcast-based spatial joins by

using real data.

Keywords—Spatial Join, Partition-based, Broadcast-based,

GPU, Distributed Computing

I. INTRODUCTION

Advances of sensing, modeling and navigation

technologies and newly emerging applications, such as

satellite imagery for Earth observation, environmental

modeling for climate change studies and GPS data for

location dependent services, have generated large volumes

of geospatial data. Very often multiple spatial datasets need

to be joined to derive new information to support decision

making. For example, for each pickup location of a taxi trip

record, a spatial join can find the census block that it falls

within. Time-varying statistics on the taxi trips originate

and designate at the census blocks can potentially reveal

travel and traffic patterns that are useful for city and traffic

planning. As another example, for each polygon boundary

of a US Census Bureau TIGER record, a polyline

intersection based spatial join can find the river network (or

linearwater) segments that it intersects. While traditional

Spatial Databases and Geographical Information System

(GIS) have provided decent supports for small datasets, the

performance is not acceptable when the data volumes are

large. It is thus desirable to use Cloud computing to speed

up spatial join query processing in computer clusters. As

spatial joins are typically both data intensive and

computing intensive and Cloud computing facilities are

increasingly equipped with modern multi-core CPUs,

many-core Graphics Processing Units (GPUs) and large

memory capacityi, new Cloud computing techniques that

are capable of effectively utilizing modern parallel and

distributed platforms are both technically preferable and

practically useful.

Several pioneering Cloud-based spatial data

management systems, such as HadoopGIS [1] and

SpatialHadoop [2], have been developed on top of the

Hadoop platform and have achieved impressive scalability.

More recent developments, such as SpatialSpark [3], ISP-

MC+ and ISP-GPU [4], are built on top of in-memory

systems, such as Apache Spark [5] and Cloudera Impala

[6], respectively, with demonstrable efficiency and

scalability. We refer to Section II for more discussion on

the distributed spatial join techniques and the respective

research prototype systems. Different from HadoopGIS and

SpatialHadoop that perform spatial partitioning before

globally and locally joining spatial data items, i.e.,

partition-based spatial join, ISP-MC+ and ISP-GPU are

largely designed for broadcast-based spatial join, where one

side (assuming the right side) dataset in a spatial join is

broadcast to the partitions of another side (assuming the left

side) which is a point dataset (not necessarily spatially

partitioned) for local joins. While SpatialSpark supports

both broadcast-based and partition-based spatial join (in-

memory), when both sides of a spatial join are large in

volumes, broadcast-based spatial joins require significantly

more memory capacity and is more prone to failures (e.g.,

due to the out of memory issue). This makes partition-

based spatial join on SpatialSpark a more robust choice.

We note that partition-based spatial joins typically require

reorganizing data according to partitions on either external

storage (HDFS for HadoopGIS and SpatialHadoop) or in-

memory (SpatialSpark) through additional steps.

Our previous work has demonstrated that

SpatialSpark is significantly faster than HadoopGIS and

SpatialHadoop for partition-based spatial joins [7]. ISP-

MC+ and ISP-GPU, which have exploited native multi-core

CPU and GPU parallel computing power, are additionally

much faster than SpatialSpark for broadcast-based spatial

join [8]. They both use point-in-polygon test as the spatial

joining criteria. The results bring an interesting question on

the achievable speedups of distributed partition-based

spatial joins over the established Hadoop-based spatial join

techniques represented by SpatialHadoop when parallel

hardware is natively exploited. Unfortunately, the

underlying platform of ISP-MC+ and ISP-GPU, i.e.,

Impala, cannot be easily extended to support partition-

based spatial joins.

In this study, we aim at developing a partition-

based spatial join technique on top of the LDE engine that

we have developed previously [8] for distributed large-

scale spatial data processing and evaluating its performance

using real world datasets. We have developed efficient

designs and implementations on both multi-core CPUs and

GPUs for polyline intersection based spatial joins. To the

best of our knowledge, the reported work is the first to

design an efficient parallel polyline intersection algorithm

on GPUs and GPU-accelerated clusters for partition-based

spatial joins. As demonstrated in the experiment section,

the new technique significantly outperforms

implementations on CPUs using open source geometry

libraries, including GEOS ii used by HadoopGIS [1] and

JTSiii used by SpatialHadoop [2] and SpatialSpark [3]. By

comparing with existing systems such as SpatialHadoop

using publically available large-scale geospatial datasets

(CENSUS TIGER and USGS linearwater), we demonstrate

that our techniques that are capable of natively exploit

parallel computing power of GPU-accelerated clusters can

achieve significant higher performance, due to the

improvements of both parallel geometry library for polyline

intersection tests and distributed computing infrastructure

for in-memory processing. Furthermore, for the first time,

we directly compare the end-to-end performance of

partition-based spatial join techniques with that of

broadcast-based spatial join techniques in a typical parallel

and distributed computing environment in Cloud also using

publically available datasets. Experiments on joining NYC

2013 taxi point dataset and Census block polygon dataset

have revealed that broadcast-based spatial join can be

several times more performant than partition-based spatial

join. GPS point locations are among the fastest growing

spatial data and joining points with administrative zones

and urban infrastructure data represented as polyline and

polygonal datasets are getting increasingly popular. As

such, developing specialized broadcast spatial join

techniques to maximize end-to-end performance can be

more preferred than generic partition-based spatial join

techniques that have been provided by existing Spatial Big

Data systems.

The rest of the paper is organized as follows.

Section II provides background, motivation and related

work. Section III introduces broadcast-based and partition-

based spatial joins and their implications in distributed

spatial join query processing. Section IV is the system

architecture and design and implementation details for

partition-based spatial joins. Section V reports experiments

and their results. Finally Section VI is the conclusion and

future work directions.

II. BACKGROUND AND MOTIVATION

Spatial join is a well-studied topic in Spatial Databases and

we refer to [9] for an excellent survey in traditional serial,

parallel and distributed computing settings. A spatial join

typically has two phases, i.e., the filtering phase and the

refinement phase. The filtering phase pairs up spatial data

items based on their Minimum Bounding Rectangle (MBR)

approximation by using either pre-built or on-the-fly

constructed spatial index. The refinement phase applies

computational geometry algorithms to filter out pairs that

do not satisfy the required spatial criteria in the spatial join,

typically in the form of a spatial predicate, such as point-in-

polygon test or polyline intersection test. While most of the

existing spatial join techniques and software

implementations are based on serial computing on a single

computing node, techniques for parallel and distributed

spatial joins have been proposed in the past few decades for

different architectures [9]. Although these techniques differ

significantly, a parallel spatial join typically has additional

steps to partition input spatial datasets (spatially and non-

spatially) and join the partitions globally (i.e., global join)

before data items in partition pairs are joined locally (i.e.,

local join).

As Hadoop-based Cloud computing platforms

become mainstream, several research prototypes have been

developed to support spatial data management, including

spatial joins, on Hadoop. HadoopGIS [1] and

SpatialHadoop [2] are among the leading works on

supporting spatial data management by extending Hadoop.

We have also extended Apache Spark for spatial joins and

developed SpatialSpark [3], which has achieved

significantly higher performance than both HadoopGIS and

SpatialHadoop [7]. HadoopGIS adopts the Hadoop

Streaming iv framework and uses additional MapReduce

jobs to shuffle data items that are spatially close to each

other into the same partitions before a final MapReduce job

is launched to process re-organized data items in the

partitions. SpatialHadoop extends Hadoop at a lower level

and has random accesses to both raw and derived data

stored in the Hadoop Distributed File System (HDFSv). By

extending FileInputFormat defined by the Hadoop runtime

library, SpatialHadoop is able to spatially index input

datasets, explicitly access the resulting index structures

stored in HDFS and query the indexes to pair up partitions

based on the index structures, before a Map-only job is

launched to process the pairs of partitions in distributed

computing nodes. SpatialSpark is based on Apache Spark.

Spark provides an excellent development platform by

automatically distributing tasks to computing nodes, as

long as developers can express their applications as data

parallel operations on collection/vector data structures, i.e.,

Resilient Distributed Datasets (RDDs) [5]. The automatic

distribution is based on the key-value pairs of RDDs which

largely separate domain logic from parallelization and/or

distribution. A more detailed review of the three research

prototype systems and their performance comparisons

using public datasets are reported in [7].

Different from SpatialHadoop, HadoopGIS and

SpatialSpark are forced to access data sequentially within

data partitions due to the restrictions of the underlying

platform (Hadoop Streaming for HadoopGIS and Spark

RDD for SpatialSpark). The restrictions, due to the

streaming data model (for HadoopGIS) and Scala

functional programming language (for SpatialSpark), have

significantly lower the capabilities of the two systems in

efficiently supporting spatial indexing and indexed query

processing. Indeed, spatial indexing in the two systems is

limited to intra-partitions and requires on-the-fly

reconstructions from raw data. The implementations of

spatial joins on two datasets are conceptually cumbersome

as partition boundary is invisible and cross-partition data

reference is supported by neither Hadoop Streaming nor

Spark RDD. To solve the problem, both HadoopGIS and

SpatialSpark require additional steps to globally pair up

partitions based on spatial intersections before

parallel/distributed local joins on individual partitions.

While the additional steps in SpatialSpark are implemented

as two GroupBy primitives in Spark which are efficient for

in-memory processing, they have to be implemented as

multiple MapReduce jobs in HadoopGIS and significant

data movements across distributed computing nodes

(including Map, Reduce and Shuffle phases) are

unavoidable. The excessive disk I/Os are very expensive

and largely contribute to HadoopGIS’s lowest performance

among the three systems. On the other hand, while

SpatialHadoop has support on storing, accessing and

indexing geometric data in binary formats with random

access capabilities by significantly extending Hadoop

runtime library, its performance is significantly limited by

Hadoop and is inferior to SpatialSpark for data-intensive

applications, largely due to the performance gap between

disk and memory. Note that we have deferred the

discussions on spatial partitioning in the three systems to

Section III.

As both HadoopGIS and SpatialHadoop are based

on Hadoop and SpatialSpark is based on Spark, which are

either based on Java or Scala programming language and

they all rely on Java Virtual Machine (JVM), native parallel

programming tools which are likely to help achieve higher

performance cannot be easily incorporated. Furthermore,

currently JVM supports Single Instruction Multiple Data

(SIMD) computing power on neither multi-core CPUs nor

GPUs. Although HadoopGIS has attempted to integrate

GPUs into its MapReduce/Hadoop framework, the

performance gain was not significant [10]. To effectively

utilize the increasingly important SIMD computing power,

we have extended the leading open source in-memory Big

Data system Impala [6] that has a C++ backend to support

spatial joins using native parallel processing tools,

including OpenMP vi , Intel Threading Building Blocks

(TBB vii) and Compute Unified Device Architecture

(CUDAviii). By extending block-based join in Impala, our

In-memory Spatial Processing (ISP) framework [4] is able

to accept a spatial join in a SQL statement, parse the data in

the two sides of a spatial join in chunks (row-batches),

build spatial index on-the-fly to speed up local joins in

chunks. While ISP employs the SQL query interface

inherited from Impala, its current architecture also limits

our extension to broadcast-based spatial join, i.e.,

broadcasting the whole dataset on the right side of a join to

chunks of the left side of the join for local join (termed as

left-partition-right-broadcast). As Impala is designed for

relational data, in order to support spatial data under the

architecture, ISP was forced to represent geometry as

strings in the Well-Know-Text (WKTix) format. In a way

similar to HadoopGIS, this increases not only data volumes

(and hence disk I/Os) significantly, but also infrastructure

overheads. The simple reason is that text needs to be parsed

before geometry can be used and intermediate binary

geometry needs to be converted to strings for outputting.

Our recent work on developing the Lightweight

Distributed Execution (LDE) engine for spatial joins aims

at overcoming these disadvantages by allowing accessing

HDFS files (including both data and index) randomly in a

principled way [8]. Experiments have demonstrated the

efficiency of LDE-MC+ and LDE-GPU when compared

with ISP-MC+ and ISP-GPU, respectively. Note that ISP-

MC adopts the GEOS geometry library and uses OpenMP

for intra-node parallelization. On the other hand, ISP-MC+,

ISP-GPU, LDE-MC+ and LDE-GPU all use our columnar

layout and custom geometry routines for point-in-polygon

test, point-to-polyline distance computation and polyline-

to-polyline intersection test. Both techniques have

contributed significantly to the higher performance of the

prototype systems with respect to end-to-end runtime, in

addition to utilizing parallel and distributed computing

units, as reported previously. We note that HadoopGIS also

uses GEOS library within the wrapped reducer for local

join as ISP-MC does. However, we found that the C++

based GEOS library is typically several times slower than

its Java counterpart (JTS library) which makes ISP-MC

unattractive when comparing ISP-MC with SpatialSpark

[3]. We suspect that this is also one of the important factors

that contributes to SpatialHaoop’s superior performance

when comparing the end-to-end performance of

HadoopGIS and SpatialHadoop reported in [7].

The developments of ISP and LDE are driven by

the practical needs of spatially joining GPS point locations

with urban infrastructure data or global ecological zone

data based on several spatial join criteria, including point-

in-polygon test and point-to-polyline distance. This makes

broadcast-based spatial join a natural choice in ISP based

on Impala as broadcast is natively supported by Impala.

However, different from HadoopGIS and SpatialHadoop

that naturally support partition-based spatial join based on

MapReduce and Hadoop, supporting partition-based spatial

join based on Impala is nontrivial, despite several efforts

were attempted. Fortunately, our in-house developed LDE

engine, which is conceptually equivalent to Hadoop

runtime, allows an easier extension to support partition-

based spatial joins, although it is initially developed as a

succession of ISP to support broadcast-based spatial join.

We next introduce both partition-based and broadcast-

based spatial joins in Section 3 as they were originally

developed in their respective systems before we present the

new design of partition-based spatial join in LDE in

Section 4.

III. DISTRIBUTED SPATIAL JOIN USING BROADCAST- AND

PARTITION- BASED METHODS

To successfully join large-scale geospatial datasets,

especially when the volumes of input datasets or

intermediate data exceed the capacity of a single machine,

efficient distributed spatial join techniques that are capable

of effectively utilized aggregated resources across multiple

computing nodes are essential. When both datasets in a

spatial join are large in volumes (or “big” for short), as

introduced previously, a common practice is to spatially

partition both input datasets, which can be any spatial data

types, for parallel and/or distributed spatial joins on the

partitions. We term the scenario as partition-based spatial

join on symmetric spatial datasets, or symmetric spatial

join for short. While the scenario is generic and seems

universally applicable, in the context of parallel and

distributed computing, it requires data reorganization on

both sides so that data items that belong to the same

partition can be stored in the same computing node to avoid

random data accesses across multiple nodes in distributed

memory or distribute file systems, which are very

expensive. An additional disadvantage is that, the

reorganized data items lose their original orderings and it

might be equally or even more costly to rearrange the

joined results based on the original ordering of either side.

The order-keeping spatial joins may be desirable in many

applications, e.g., assigning a polyline/polygon identify to a

point based on 1-to-1 mapping spatial relationship. For the

scenario in these applications, while spatial-partition based

techniques are still applicable due to their generality, the

excessive and unnecessary data movements might prevent

them from achieving optimum performance. Given that

point datasets in such spatial joins are typically much larger

than polylines/polygons that they are joining in quantities

and we can apply broadcast-based techniques for the spatial

joins more efficiently, we term the scenario as broadcast-

based spatial join on asymmetric spatial datasets, or

asymmetric spatial join for short. We next provides more

discussions on the implications of the distinctions of these

two categories of spatial joins in parallel and distributed

computing settings.

A. Spatial Partition-based Spatial Join

In partition-based spatial join, if neither side is indexed, an

on-demand partition schema can be created and both sides

are partitioned on-the-fly according to on-demand schema.

This approach has been used in previous works [1,2,11].

On the other hand, when both datasets have already been

partitioned according to a specific partition schema,

partitions can be matched as pairs and each pair can be

processed independently [2]. The quality of partitions has

significant impact on the efficiency of parallel spatial join

technique on multiple computing nodes. First of all, a high

quality spatial partition schema minimizes expensive intra-

node communication cost. Second, such a schema can also

minimize the effects from stragglers (slow nodes), which

typically dominate the end-to-end performance. Therefore,

parallel spatial join techniques typically divide a spatial

join task into small (nearly) equal-sized and independent

subtasks and process those small tasks in parallel

efficiently. The left side of Fig. 1 illustrates on-demand

partition and the right side of the figure shows the process

of matching already partitioned datasets. The two input

datasets (A and B) are matched as partition pairs using

either on-demand partition schema (left) or matching

existing partitions (right). Here A and B are represented as

partitions where each partition contains a subset of the

original dataset, e.g., A1 and B1 are in partition 1. Partition

pairs are subsequently assigned to computing nodes and

each node performs local spatial join processing.

Several spatial partition schemas have been

proposed previously, such as fixed-grid partition (FGP),

Binary Split Partition (BSP) and Sort-Tile Partition (STP).

Figure 2 shows spatial partition results based on FGP (top-

left), BSP (top-right) and STP (bottom) of Census Block

data in the New York City (NYC), respectively. Although

we have empirically chosen STP for spatial partition in this

study as the resulting partitions typically have better load

balancing features, we refer to [11] for brief introductions

to other spatial partition schemas. We note that our system

can accommodate all spatial partition schemas as long as

spatial data items in a partitioning dataset are assigned to

partitions in a mutually exclusive and collectively

exhaustive manner. In STP (bottom part of Figure 2), data

is first sorted along one dimension and split into equal-

sized strips. Within each strip, final partitions are generated

by sorting and splitting data according to the other

dimension. The parameters for STP are the number of splits

at each dimension as well as a sampling ratio. Different

from BSP, STP sorts data at most twice and do not need

recursive decompositions, which is more efficient for large

datasets based on our experiences. We also note that our

Figure 1 Spatial Partition-based Spatial Join

decision on adopting STP as the primary spatial partition

schema agrees with the finding in SpatialHadoop [2].

Figure 2 Spatial Partitions of NYC Census Block Data

using FGP (top-left), BSP (top-right) and STP (bottom)

B. Broadcast-based Spatial Join

As discussed previously, broadcast-based spatial

join (illustrated in Figure 3) can be considered as a

generality-efficiency tradeoff with partition-based spatial

join for spatial joins with one side (assuming the left side)

of the inputs be a point dataset and the other side (assuming

the right side) of the inputs be small in data volume. The

left side point data input can be partitioned based on its

storage order while the right side can be broadcast to all

partitions of the left side for local spatial joins. Clearly, in

this scenario, neither side requires data reorganization. This

is desirable in distributed computing as data movements in

distributed file systems are known to be expensive.

Furthermore, as a point on the left side typically is joined

with at most one data item on the right side in the scenario,

the join result can be represented as a list of identifies of

data items on the right side. The list of identifies can be

stored as a data column in a distributed file system

separately, which could be much more efficient than

concatenating multiple columns from both input dataset of

a spatial join and write the join result to a distributed file

system. Note that the correspondence between the original

points and the identifier list is based on the implicit

ordering of data item positions.

Figure 3 shows an example of broadcast-based

spatial join, where the right side is bulk-loaded using R-tree

and broadcast to all computing nodes, and, the left side is

divided into chunks where each chunk is processed by a

processing unit (computing node). Broadcast-based spatial

join typically works as follows. The first step is to

broadcast the small dataset to all computing nodes; an

optional on-demand spatial index may be created during the

broadcasting. As a result, each node owns a copy of the

small dataset as well as the spatial index if applicable, and

they will be persistent in memory for efficient accesses. In

the second step, the left side is divided into equal-sized

chunks based on their positions in the sequence, i.e., the ith

data item is assigned to partition i/B where B is the chunk

size, and we term it as sequence-based partition.

Compared with space-based partition in partition-

based spatial joins, sequence-based partition is much

simpler. As broadcast mechanism is typically supported in

Big Data systems for relational data (such as Cloudera

Impala as well as Apache Spark), it is relatively easy to

extend existing Big Data systems to support broadcast-

based spatial joins as demonstrated in our ISP prototypes

on top of Impala [3, 4]. In the local join phase, a partition

of the left side input will be joined with a broadcast copy of

the right side input. To speed up local joins, while the

partition is loaded from a distributed file system (such as

HDFS), spatial index can be constructed with negligible

overhead as disk I/O typically dominates. Spatial index of

the right side input can be constructed either before

broadcast or after broadcast. While broadcast the spatial

index together with the right side input may reduce the

overhead of computing nodes to build the index

individually, it will complicate the broadcast process and

the benefit may not always justify the complexity. The

spatial index of the right side input can also be pre-built

and stored in HDFS, which can be read by all computing

nodes when needed (i.e., disk-based broadcast by HDFS).

While this approach may eliminate index construction

overhead for the right side dataset to be broadcast in real

time, it will incur additional disk I/O time and complicate

system design as well. The choices need to be carefully

analyzed and justified. Our ISP prototypes construct spatial

index for the local copy of the right side in real time as it is

very difficult to access custom index files from HDFS

within Impala. On the other hand, our LDE prototype reads

both the right side input and its index from HDFS as

accesses to index files in LDE are built-in. We refer to the

Figure 3 Broadcast-based Spatial Join

respective publications for more details on the designs and

implementations of broadcast-based spatial join techniques.

On the downside, when the right side of a spatial

join is large in volume, broadcast-based join will incur

significant memory overheads, which is linear with respect

to data volume of the right side input. This necessitates

partition-based spatial joins by spatially partitioning the

right side that is too big to broadcast. We next move to

Section IV to present the details of partition-based spatial

join on GPUs and GPU-accelerated clusters, which is one

of our main contributions of this study.

IV. SYSTEM ARCHITECTURE AND

IMPLEMENTATIONS

The distributed partition-based spatial join technique is

developed on top of the LDE engine we have developed

previously. While designed to be lightweight, the LDE

engine supports asynchronous data transfer over network,

asynchronous disk I/O and asynchronous computing and

we refer to [8] for details. The asynchronous design makes

the join processing in a non-blocking manner, which can

deliver high performance by hiding latency from disk

access and network communication. In this study, the LDE

architecture is extended in several aspects to accommodate

partition-based spatial joins. The overall system

architecture is illustrated in the left side of Figure 4. First,

the master node reads partition information from HDFS and

populates the task schedule queue associated with the

scheduler. This is different from the original LDE design

for broadcast-based spatial join where the queue task is

populated by sequence-based partitions that are computed

on-the-fly. Second, batches are now computed from

partition pairs, instead of from partitions of the left side

input (point dataset). Subsequently, an optimization

technique has been developed to minimize duplicated

HDFS disk I/O within batches. We note that a batch is the

basic unit for distributed processing in LDE. The details of

task scheduling, batch dispatching and processing are

provided in Section IV.A. Second, different from previous

studies that rely on open source geometry libraries to

perform spatial refinement (polyline-intersection in

particular in this study) which only work on CPUs in a

serial computing setting, we have developed data parallel

algorithms for the spatial refinement that are efficient on

both GPUs and multi-core CPUs. The details of the key

technical contribution in this study are provided in Section

IV.B. We note that, similar to SpatialHadoop, currently

spatial partitioning of input datasets is treated as a

preprocessing step and therefore it is not shown in Figure 4.

By following a few simple naming and formatting

conventions, the partitions can be computed either serially,

in parallel or imported from third party packages such as

SpatialHadoop, which make the architecture flexible.

A. Scheduling, Dispatching and Processing

Step 1 in Figure 4 pairs partitions of both sides of

inputs to compute partition pairs. As the numbers of spatial

partitions of the two input datasets in a spatial join are

typically small, pairing the partitions based on their MBRs

is fast using any in-memory algorithms on a single

computing node. We thus implement the step at the master

node. Assuming both datasets are partitioned and partition

boundaries are stored in HDFS, the index loader of the

master node in LDE loads partition MBRs of both datasets

from HDFS before performing in-memory parallel pair

matching to generate a partition pair list in Step 1 as shown

in the lower-left side of Figure 4. The details of Step 1 are

further illustrated in the top-right part of Figure 4. The

matched partition pairs are then pushed into a task queue

which will be dispatched by the scheduler at the master

node in Step 2. While it is intuitive to use a pair as a batch

for distributed execution in a worker node, however, such

design will generate a large number of batches that require

substantial communication overheads, which will

Worker 1

Distributed File System (HDFS)

Master

Index loader

Task Queue

Scheduler

Worker 2

Worker 3

Worker N

…

Receiver Worker Task Queue

Data Loader

Worker Data Queue

Receiver

Data

Processor

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

To HDFS

1
1

Load partitions

from HDFS

Match intersected

partitions

intersected

partition list

7
1

Figure 4 System Architecture and Modules

negatively impact system performance. In addition, such a

naïve scheduling policy will also result in hardware

underutilization on worker nodes, especially for GPUs.

Unless a matched partition pair involves large numbers of

data items in the input datasets, the workload for processing

a single pair is unlikely to saturate GPUs that have large

numbers of processing units.

In order to reduce network bandwidth pressure and

minimize overhead of hardware accelerators, we divide the

list of matched pairs into multiple batches where each batch

contains multiple partition pairs which are processed at a

time on a worker node. The number of partition pairs in a

batch is determined by the processing capability of the

worker node, e.g., memory capacity and available

processing units. When a worker node joins the master

node during the system initialization, the processing

capability information is sent to the master node. Based on

such information, the size of a batch can be determined.

Unlike distributed join in SpatialHadoop that each partition

pair is processed by a Mapper in a MapReduce job and

requires Hadoop runtime to do the scheduling which is

ignorant to spatial data, our system spatial conscious.

Workload dispatching is achieved by maintaining

a receiver thread in each worker node (Step 3). The

receiver thread listens to a socket port dedicated for the

LDE framework. Note that in each batch only data

locations and offsets to the partitions are stored and

transferred between the master node and a worker node.

This is because all worker nodes are able to access data

directly through HDFS and the data accesses are likely to

be local due to HDFS file block replications. As such, the

network communication overhead of transferring batches is

likely to be very low in our system. Received batches are

pushed into a task queue of the worker node (Step 4). A

separate thread of the worker node is designated to load

data from HDFS for each batch at worker node (Step 5).

The data loaded for each partition pair is kept in an in-

memory data queue which will be processed next (Step 6).

Since a partition from one dataset may overlap

with multiple partitions from the other dataset, there will be

duplicated IO requests for the same partition. To reduce the

redundant IO requests, we sort the partition pairs in the

master node before they are formed as batches. The

duplicated partitions will then appear consecutively in the

partition pair list. As a result, duplicated partitions for a

batch can be detected and only one copy of the duplicated

partitions is loaded from HDFS at a worker node. This

improvement significantly reduces expensive data accesses

to HDFS. The local spatial join logic is fully implemented

in Step 7 and the join query results are written to HDFS in

Step 8. While we refer to the left side of Figure 4 for the

workflow of Steps 1-8, the details of Step 7 are further

illustrated in the lower-right part of Figure 4 and will be

explained in details next.

B. Data Parallel Local Spatial Join on GPUs

As introduced previously, each worker node has a local

parallel spatial join module to process partition pairs in a

batch. In addition to the designs and implementations for

point-in-polygon test based spatial joins and point-to-

polyline distance based spatial joins that we have reported

previously, in this study, we aim at designing and

implementing a new spatial predicate for polyline

intersection test that can be integrated into the classic filter-

and-refinement spatial join framework [9] on GPUs. We

reuse our GPU-based R-tree technique [12] for spatial

filtering and we next focus on the polyline intersection test

spatial predicate.

Assuming R-Tree based spatial filtering generates

a list of polyline pairs where the MBRs of the polylines in

each pair intersect. Given two polylines, P(p1, p2,…, pm)

and Q(q1, q2,…, qn), where p and q are line segments, we

can perform intersection test on P and Q by checking

whether any of two line segments in P and Q intersect. As

we have a list of candidate pairs, it is intuitive to assign

each pair to a processing unit for parallel processing.

However, the numbers of line segments of polylines can be

very different among pairs which may results in poor

performance when the naïve parallelization approach is

applied to GPUs due to unbalanced workloads across GPU

threads. Perhaps more importantly, as each GPU thread

needs to loop through all line segments of another polyline

in a matched pair separately in the naïve parallelization,

neighboring GPU threads are not likely to access the same

or neighboring memory locations. The non-coalesced

memory accesses may lower the GPU performance

significantly as accesses to GPU memory can be more than

an order of magnitude slower than accesses to CPU

Input: polyline representations, candidate pairs

Output: intersection status

Polyline_Intersection:
1: (pid, qid) = get_polyline_pair(block_id)

2: (p_start, p_end) = linestring_offset(pid)

3: (q_start, q_end) = linestring_offset(qid)

4: __shared__ intersected = False

5: for p_linestring from p_start to p_end

6: for q_linestring from q_start to q_end

7: __syncthreads()

8: workload = len(p_linestring) * len(q_linestring)

9: processed = 0

10: while (!intersected && processed < workload)

11: if (thread_id + processed >= workload) continue

12: p_seg = get_segment(p_linestring, thread_id)

13: q_seg = get_segment(q_linestring, thread_id)

14: is_intersect = segment_intersect(p_seg, q_seg)

15: if (is_intersect) intersected = True

16: processed += num_threads_per_block

17: __syncthreads()

18: end while

19: if (intersected)

20: results[block_id] = True

21: return

22: end for //p_linestring

23: end for //q_linestring

Figure 5 Polyline Intersection Kernel

memory, given the quite different cache configurations on

typical GPUs and CPUs.

As balanced workload and coalesced global

memory access are crucial in exploiting the parallel

computing power on GPUs, we have developed an efficient

data-parallel design on GPUs to achieve high performance.

First, we minimize unbalanced workload by applying

parallelization at line segment level rather than at polyline

level. Second, we maximize coalesced global memory

accesses by laying out line segments from the same

polyline consecutively on GPU memory and letting each

GPU thread process a line segment. Figure 5 lists the

kernel of the data parallel design of polyline intersection

test on GPUs and more details are explained below.

In our deign, each pair of polyline intersection test

is assigned to a GPU computing block to utilize GPU

hardware scheduling capability to avoid unbalanced

workload created by variable polyline sizes. Within a

computing block, all threads are used to check line

segments intersection in parallel. Since each thread

performs intersection test on two line segments where each

segment has exactly two endpoints, the workload within a

computing block is perfectly balanced. The actual

implementation for real polyline data is a little more

complex as a polyline may contain multiple linestrings

which may not be continuous in polyline vertex array. The

problem can be solved by recording the offsets of the

linestrings in the vertex array of a polyline and using the

offsets to locate vertices of line segments of the linestrings

to be tested.

Line 1-3 of the kernel in Figure 5 retrieve the

positions of non-continuous linestrings, followed by two

iterations in Line 5 and 6. For each pair of linestrings, all

threads of a block retrieve line segments in pairs and test

for intersection (Line 10-17). We designate a shared

variable, intersected, to indicate whether there is any pair

of line segments intersected for the polyline pair. Once a

segment pair intersects, the intersected variable is set to

true and becomes visible to all threads within the thread

block. The whole thread block then immediately terminates

(Line 18-20). When the thread block returns, GPU

hardware scheduler can schedule another polyline pair on a

new thread block. Since there is no synchronization among

thread blocks, there will be no penalty even though

unbalanced workloads are assigned to blocks.

Figure 6 illustrates the design of polyline

intersection for both multi-core CPUs and GPUs. After the

filter phase, candidate pairs are generated based on MBRs

of polylines. As we mentioned previously, a pair of

polylines can be assigned either to a CPU thread (multi-

core CPU implementation) for iterative processing by

looping though line segments or to a GPU thread block

(GPU implementation) for parallel processing. While GPUs

typically have hardware schedulers to automatically

schedule multiple thread blocks on a GPU, explicit

parallelization on polylines across multiple CPU cores is

needed. While we use OpenMP with dynamic scheduling

for the purpose in this study, other parallel libraries on

multi-core CPUs, such as Intel TBB, may achieve better

performance by utilizing more complex load balancing

algorithms. In both multi-core CPU and GPU

implementations, we have exploited native parallel

programming tools to achieve higher performance based a

shared-memory parallel computing model. This is different

from executing Mapper functions in Hadoop where each

Mapper function is assigned to a CPU core and no resource

sharing is allowed among CPU cores.

V. EXPERIMENTS AND RESULTS

A. Experiment Setup

In order to conduct performance study, we have prepared

real world datasets for two experiments which are also

publically accessible to facilitate independent evaluations

on different parallel and/or distributed platforms. The first

experiment is designed to evaluate point-in-polygon test

based spatial join, which uses pickup locations from New

York City taxi trip data in 2013x (referred as taxi) and New

York City census blocksxi (referred as nycb). The second

experiment is designed to evaluate polyline intersection

based spatial join using two datasets provided by

SpatialHadoop xii , namely TIGER edge and USGS

linearwater. For all four datasets, only geometries are used

from original datasets for the experiment purpose and the

specifications are listed in Table 1. We also apply

appropriate preprocessing on the datasets for running on

different systems. For SpatialHadoop, we use its R-tree

indexing module and leave other parameters by default. For

our system, all the datasets are partitioned using Sort-Tile

partition (256 tiles for taxi, 16 tiles for nycb, 256 tiles for

both edge and linearwater) for partitioned-based spatial

joins. Note that datasets do not need pre-partition for

broadcast-based spatial joins.

We have prepared several hardware configurations

for experiment purposes. The first configuration is a single

… …
loop through segments

each iteration one segment

segment

linestring

test intersection

Check at each iteration;

terminate if any segment pair

intersects

GPU Block

Set the result for the pair and
schedule the next pair

CPU Thread

candidate pairs

generated by spatial

filtering based on MBR

Figure 6 Data Parallel Polyline Intersection Design

node cluster with a workstation that has dual 8 core CPUs

at 2.6 GHz (16 physical cores in total) and 128 GB

memory. The large memory capacity makes it possible to

experiment spatial joins that require significant amount of

memory. The workstation is also equipped with an Nvidia

GTX Titan GPU with 2,688 cores and 6GB memory.

Another configuration is a 10-node Amazon EC2 cluster, in

which each node is a g2.2xlarge instance consists of 8

vCPUs and 15 GB memory, is used to for scalability test.

Each EC2 instance has an Nvidia GPU with 1,568 cores

and 4GB memory. We vary the number of nodes for

scalability test and term the configurations as EC2-X where

X denotes the number of nodes in the cluster. Both clusters

are installed with Cloudera CDH-5.2.0 to run

SpatialHadoop (version 2.3) and SpatialSpark (with Spark

version 1.1).

Table 1 Experiment Dataset Sizes and Volumes

Dataset # of
Records

Size

Taxi 169720892 6.9GB

Nycb 38839 19MB

Linearwater 5857442 8.4GB

Edge 72729686 23.8GB

B. Results of Polyline Intersection Performance on

Standalone Machines

We first evaluate our polyline intersection designs using

edge and linearwater datasets on both multi-core CPUs and

GPUs on our workstation and a g2.2xlarge instance without

involving distributed computing infrastructure. As the

polyline intersection time dominates the end-to-end time in

this experiment, the performance can be used to evaluate

the efficiency of the proposed polygon intersection

technique on both multi-core CPUs and GPUs. The results

are plotted in Figure 7, where CPU-Thread and GPU-Block

refer the implementations of the proposed design, i.e.,

assigning a matched polyline pair to a CPU thread and a

GPU computing block, respectively. Note the data transfer

time between CPUs and GPUs are included when reporting

GPU performance.

For GPU-Block, the approximately 50% higher

performance on the workstation than on the single EC2

instance shown in Figure 7 represents a combined effect of

about 75% more GPU cores and comparable memory

bandwidth when comparing the GPU on the workstation

and the EC2 instance. For CPU-Thread, the 2.4X better

performance on the workstation than that on the EC2

instance reflect the facts that the workstation has 16 CPU

cores while the EC2 instance has 8 virtualized CPUs, in

addition to Cloud virtualization overheads. While the GPU

is only able to achieve 20% higher performance than CPUs

on our high-end workstation, the results show 2.6X

speedup on the EC2 instance where both the CPU the GPU

are less powerful. Note that the reported low GPU speedup

on the workstation represents the high efficiency of our

polygon intersection test technique on both CPUs and

GPUs. While it is not our intension to compare our data

parallel polygon intersection test implementations with

those that have been implemented in GEOS and JTS, we

have observed orders of magnitude of speedups. As

reported in the next subsection, the high efficiency of the

geometry API actually is the key source for our system to

significantly outperform SpatialHadoop for partition-based

spatial joins where SpatialHadoop uses JTS for geometry

APIs.

Figure 7 Polyline Intersection Performance (in seconds)

in edge-linearwater experiment

C. Results of Distributed Partition-Based Spatial

Joins

The end-to-end runtimes (in seconds) for the two

experiments (taxi-nycb and edge-linearwater) under the

four configurations (WS, EC2-10, EC2-8 and EC2-6) on

the three systems (SpatialHadoop, LDE-MC+ and LDE-

GPU) are listed in Table 2. The workstation (denoted as

WS) here is configured as a single-node cluster and is

subjected to distributed infrastructure overheads. LDE-

MC+ and LDE-GPU denote the proposed distributed

computing system using multi-core CPUs and GPUs,

respectively. The runtimes of the three systems include

spatial join times only and the indexing time for the two

input datasets are excluded. The taxi-nycb experiment uses

point-in-polygon test based spatial join and the edge-

linearwater uses polyline intersection base spatial join.

From Table 2 we can see that, comparing with

SpatialHadoop, the LDE implementations on both multi-

core CPUs and GPUs are at least an order of magnitude

faster for all configurations. The efficiency is due to several

factors. First, the specialized LDE framework is a C++

based implementation which can be more efficient than

general purpose JVM based frameworks such as Hadoop

(on which SpatialHadoop is based). The in-memory

processing of LDE is also an import factor where Hadoop

is mainly a disk-based system. With in-memory processing,

intermediate results do not need to write to external disks

which is very expensive. Second, as mentioned earlier, the

dedicated local parallel spatial join module can fully exploit

parallel and SIMD computing power within a single

computing node. Our data-parallel designs in the module,

including both spatial filter and refinement steps, can

effective utilize current generation of hardware, including

multi-core CPUs and GPUs. From a scalability perspective,

the LDE engine has achieved reasonable scalability. When

the number of EC2 instances is increased from 6 to 10

(1.67X), the speedups vary from 1.39X to 1.64X. The GPU

implementations can further achieve 2-3X speedups over

the multi-core CPU implementations which is desirable for

clusters equipped with low profile CPUs.

Table 2 Partition-based Spatial Join Runtimes (s)

 WS EC2-

10

EC2-

8

EC2-

6

taxi-nycb SpatialHadoop 1950 1282 1315 2099

LDE-MC+ 191 39 50 63

LDE-GPU 111 19 23 30

edge-

linearwater

SpatialHadoop 9887 3886 5613 6915

LDE-MC+ 554 219 260 360

LDE-GPU 437 97 114 135

D. Results of Broadcast-Based Distributed Spatial

Joins

In addition to comparing the performance of the partition-

based spatial join among SpatialHadoop, LDE-MC+ and

LDE-GPU in both taxi-nycb and edge-linearwater

experiments, we have also compared the performance of

broadcast-based spatial join with partition-based spatial

join using the taxi-nycb experiment. The edge-linearwater

cannot use broadcast-based join due to memory constraint

as discussed earlier. From the results presented in Table 3,

it can be that the LDE framework outperforms all other

systems including ISP, which is expected due to the

lightweight infrastructure overhead by design.

Table 3 Broadcast-based Spatial Join Runtimes (s)

 WS EC2-10 EC2-8 EC2-6

taxi-nycb SpatialSpark 355 101 108 144

ISP-MC+ 130 36 44 54

ISP-GPU 96 21 27 34

LDE-MC+ 119 22 25 31

LDE-GPU 50 12 15 16

Comparing the runtimes in Table 3 with Table 2

for the same taxi-nycb experiment, we can observe that the

broadcast-based spatial join is much faster (up to 2X) than

partition-based spatial join using the LDE engine, even

without including the overhead of preprocessing in

partition-based spatial join. The results support our

discussions in Section 3. This may suggest that broadcast-

based spatial join should be preferred whereas possible.

When native parallelization tools are not available, the

broadcast-based spatial join implemented in SpatialSpark

can be an attractive alternative, which outperforms

SpatialHadoop by 5.5X under WS configuration and 12-

14.5X under the three EC2 configurations.

VI. CONCLUSIONS AND FUTURE WORK

In this study, we have designed and implemented partition-

based spatial join on top of our lightweight distributed

processing engine. By integrating distributed processing

and parallel spatial join techniques on GPUs within a single

node, our proposed system can perform large-scale spatial

join effectively and achieve much higher performance than

the state-of-the-art. Experiments comparing the

performance of partition-based and broadcast-based spatial

joins suggest that broadcast-based spatial join techniques

can be more efficient when joining a point dataset and a

relatively small spatial dataset that is suitable for broadcast.

As for future work, we plan to further improve

single node local parallel spatial module by adding more

spatial operators with efficient data-parallel designs. We

also plan to develop a scheduling optimizer for the system

that can perform selectivity estimation to help dynamic

scheduling to achieve higher performance.

ACKNOWLEDGEMENT

This work is supported through NSF Grants IIS-1302423

and IIS-1302439.

REFERENCES

1. A. Aji, F. Wang, et al (2013). Hadoop-gis: A high performance

spatial data warehousing system over mapreduce. In VLDB, 6(11),

pages 1009–1020.

2. E. Eldawy and M. F. Mokbel (2015). SpatialHadoop: A MapReduce

Framework for Spatial Data. In Proc. IEEE ICDE'15.

3. S. You, J. Zhang and L. Gruenwald (2015). Large-Scale Spatial Join

Query Processing in Cloud. In Proc. IEEE CloudDM'15.

4. S. You, J. Zhang and L. Gruenwald (2015). Scalable and Efficient
Spatial Data Management on Multi-Core CPU and GPU Clusters: A

Preliminary Implementation based on Impala, in Proc. IEEE

HardBD’15.

5. M. Zaharia, M. Chowdhury et al (2010). Spark: Cluster Computing

with Working Sets. In Proc. HotCloud.

6. M. Kornacker and et al. (2015). Impala: A modern, open-source sql

engine for hadoop. In Proc. CIDR’15.

7. S. You, J. Zhang and L. Gruenwald (2015). You, J. Zhang and L.

Gruenwald (2015). Spatial Join Query Processing in Cloud:

Analyzing Design Choices and Performance Comparisons. To
appear in Proc. IEEE HPC4BD. Online at http://www-

cs.ccny.cuny.edu/~jzhang/papers/sjc_compare_tr.pdf
8. J. Zhang, S. You and L. Gruenwald (2015). A Lightweight

Distributed Execution Engine for Large-Scale Spatial Join Query
Processing. In Proc. IEEE Big Data Congress’15.

9. E. H. Jacox and H. Samet (2007). Spatial Join Techniques. ACM
Trans. Database Syst., vol. 32, no. 1, p. Article #7.

10. A. Aji, G. Teodoro and F. Wang (2014).   Haggis: turbocharge a

MapReduce based spatial data warehousing system with GPU engine.

In Proc. ACM BigSpatial’14.

11. H. Vo, A. Aji and F. Wang (2014). SATO: a spatial data partitioning

framework for scalable query processing. In Proc. ACMGIS’14.

12. J. Zhang and S. You (2012). Speeding up large-scale point-in-
polygon test based spatial join on GPUs. In Proc. ACM BigSpatial,

23-32.

i http://aws.amazon.com/ec2/instance-types/
ii http://trac.osgeo.org/geos/
iii http://www.vividsolutions.com/jts/JTSHome.htm
iv http://hadoop.apache.org/docs/r1.2.1/streaming.html
v http://hadoop.apache.org/docs/r1.2.1/hdfs_design.html

vi http://openmp.org/wp/
vii https://www.threadingbuildingblocks.org/
viii http://www.nvidia.com/object/cuda_home_new.html
ix https://en.wikipedia.org/wiki/Well-known_text
x http://chriswhong.com/open-data/foil_nyc_taxi/
xi http://www.nyc.gov/html/dcp/html/bytes/applbyte.shtml
xii http://spatialhadoop.cs.umn.edu/datasets.html

http://dblp.uni-trier.de/pers/hd/a/Aji:Ablimit

