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Abstract—The rapid growing volumes of spatial data have 

brought significant challenges on developing high-

performance spatial data processing techniques in parallel 

and distributed computing environments. Spatial joins are 

important data management techniques in gaining insights 

from large-scale geospatial data. While several distributed 

spatial join techniques based on symmetric spatial partitions 

have been implemented on top of existing Big Data systems, 

they are not capable of natively exploiting massively data 

parallel computing power provided by modern commodity 

Graphics Processing Units (GPUs). In this study, we have 

extended our distributed spatial join framework that was 

originally designed for broadcast-based spatial joins to 

partition-based spatial joins. Different from broadcast-based 

spatial joins that require one input side of a spatial join to be a 

point dataset and the other side to be sufficiently small for 

broadcast, the new extension supports non-point spatial data 

on both sides of a spatial join and allows them to be both large 

in volumes while still benefit from native parallel hardware 

acceleration for high performance. We empirically evaluate 

the performance of the proposed partition-based spatial join 

prototype system on both a workstation and Amazon EC2 

GPU-accelerated clusters and demonstrate its high 

performance when comparing with the state-of-the-art. Our 

experiment results also empirically quantify the tradeoffs 

between partition-based and broadcast-based spatial joins by 

using real data. 

Keywords—Spatial Join, Partition-based, Broadcast-based, 

GPU, Distributed Computing 

I. INTRODUCTION  

Advances of sensing, modeling and navigation 

technologies and newly emerging applications, such as 

satellite imagery for Earth observation, environmental 

modeling for climate change studies and GPS data for 

location dependent services, have generated large volumes 

of geospatial data. Very often multiple spatial datasets need 

to be joined to derive new information to support decision 

making. For example, for each pickup location of a taxi trip 

record, a spatial join can find the census block that it falls 

within. Time-varying statistics on the taxi trips originate 

and designate at the census blocks can potentially reveal 

travel and traffic patterns that are useful for city and traffic 

planning. As another example, for each polygon boundary 

of a US Census Bureau TIGER record, a polyline 

intersection based spatial join can find the river network (or 

linearwater) segments that it intersects. While traditional 

Spatial Databases and Geographical Information System 

(GIS) have provided decent supports for small datasets, the 

performance is not acceptable when the data volumes are 

large. It is thus desirable to use Cloud computing to speed 

up spatial join query processing in computer clusters. As 

spatial joins are typically both data intensive and 

computing intensive and Cloud computing facilities are 

increasingly equipped with modern multi-core CPUs, 

many-core Graphics Processing Units (GPUs) and large 

memory capacityi, new Cloud computing techniques that 

are capable of effectively utilizing modern parallel and 

distributed platforms are both technically preferable and 

practically useful.  

Several pioneering Cloud-based spatial data 

management systems, such as HadoopGIS [1] and 

SpatialHadoop [2], have been developed on top of the 

Hadoop platform and have achieved impressive scalability. 

More recent developments, such as SpatialSpark [3], ISP-

MC+ and ISP-GPU [4], are built on top of in-memory 

systems, such as Apache Spark [5] and Cloudera Impala 

[6], respectively, with demonstrable efficiency and 

scalability. We refer to Section II for more discussion on 

the distributed spatial join techniques and the respective 

research prototype systems. Different from HadoopGIS and 

SpatialHadoop that perform spatial partitioning before 

globally and locally joining spatial data items, i.e., 

partition-based spatial join, ISP-MC+ and ISP-GPU are 

largely designed for broadcast-based spatial join, where one 

side (assuming the right side) dataset in a spatial join is 

broadcast to the partitions of another side (assuming the left 

side) which is a point dataset (not necessarily spatially 

partitioned) for local joins. While SpatialSpark supports 

both broadcast-based and partition-based spatial join (in-

memory), when both sides of a spatial join are large in 

volumes, broadcast-based spatial joins require significantly 

more memory capacity and is more prone to failures (e.g., 

due to the out of memory issue). This makes partition-

based spatial join on SpatialSpark a more robust choice. 

We note that partition-based spatial joins typically require 

reorganizing data according to partitions on either external 

storage (HDFS for HadoopGIS and SpatialHadoop) or in-

memory (SpatialSpark) through additional steps. 

Our previous work has demonstrated that 

SpatialSpark is significantly faster than HadoopGIS and 

SpatialHadoop for partition-based spatial joins [7]. ISP-

MC+ and ISP-GPU, which have exploited native multi-core 

CPU and GPU parallel computing power, are additionally 



much faster than SpatialSpark for broadcast-based spatial 

join [8]. They both use point-in-polygon test as the spatial 

joining criteria. The results bring an interesting question on 

the achievable speedups of distributed partition-based 

spatial joins over the established Hadoop-based spatial join 

techniques represented by SpatialHadoop when parallel 

hardware is natively exploited. Unfortunately, the 

underlying platform of ISP-MC+ and ISP-GPU, i.e., 

Impala, cannot be easily extended to support partition-

based spatial joins.  

In this study, we aim at developing a partition-

based spatial join technique on top of the LDE engine that 

we have developed previously [8] for distributed large-

scale spatial data processing and evaluating its performance 

using real world datasets. We have developed efficient 

designs and implementations on both multi-core CPUs and 

GPUs for polyline intersection based spatial joins. To the 

best of our knowledge, the reported work is the first to 

design an efficient parallel polyline intersection algorithm 

on GPUs and GPU-accelerated clusters for partition-based 

spatial joins. As demonstrated in the experiment section, 

the new technique significantly outperforms 

implementations on CPUs using open source geometry 

libraries, including GEOS ii  used by HadoopGIS [1] and 

JTSiii used by SpatialHadoop [2] and SpatialSpark [3]. By 

comparing with existing systems such as SpatialHadoop 

using publically available large-scale geospatial datasets 

(CENSUS TIGER and USGS linearwater), we demonstrate 

that our techniques that are capable of natively exploit 

parallel computing power of GPU-accelerated clusters can 

achieve significant higher performance, due to the 

improvements of both parallel geometry library for polyline 

intersection tests and distributed computing infrastructure 

for in-memory processing. Furthermore, for the first time, 

we directly compare the end-to-end performance of 

partition-based spatial join techniques with that of 

broadcast-based spatial join techniques in a typical parallel 

and distributed computing environment in Cloud also using 

publically available datasets. Experiments on joining NYC 

2013 taxi point dataset and Census block polygon dataset 

have revealed that broadcast-based spatial join can be 

several times more performant than partition-based spatial 

join. GPS point locations are among the fastest growing 

spatial data and joining points with administrative zones 

and urban infrastructure data represented as polyline and 

polygonal datasets are getting increasingly popular. As 

such, developing specialized broadcast spatial join 

techniques to maximize end-to-end performance can be 

more preferred than generic partition-based spatial join 

techniques that have been provided by existing Spatial Big 

Data systems.  

The rest of the paper is organized as follows. 

Section II provides background, motivation and related 

work. Section III introduces broadcast-based and partition-

based spatial joins and their implications in distributed 

spatial join query processing. Section IV is the system 

architecture and design and implementation details for 

partition-based spatial joins. Section V reports experiments 

and their results. Finally Section VI is the conclusion and 

future work directions.  

II. BACKGROUND AND MOTIVATION  

Spatial join is a well-studied topic in Spatial Databases and 

we refer to [9] for an excellent survey in traditional serial, 

parallel and distributed computing settings. A spatial join 

typically has two phases, i.e., the filtering phase and the 

refinement phase. The filtering phase pairs up spatial data 

items based on their Minimum Bounding Rectangle (MBR) 

approximation by using either pre-built or on-the-fly 

constructed spatial index. The refinement phase applies 

computational geometry algorithms to filter out pairs that 

do not satisfy the required spatial criteria in the spatial join, 

typically in the form of a spatial predicate, such as point-in-

polygon test or polyline intersection test. While most of the 

existing spatial join techniques and software 

implementations are based on serial computing on a single 

computing node, techniques for parallel and distributed 

spatial joins have been proposed in the past few decades for 

different architectures [9]. Although these techniques differ 

significantly, a parallel spatial join typically has additional 

steps to partition input spatial datasets (spatially and non-

spatially) and join the partitions globally (i.e., global join) 

before data items in partition pairs are joined locally (i.e., 

local join).   

As Hadoop-based Cloud computing platforms 

become mainstream, several research prototypes have been 

developed to support spatial data management, including 

spatial joins, on Hadoop. HadoopGIS [1] and 

SpatialHadoop [2] are among the leading works on 

supporting spatial data management by extending Hadoop. 

We have also extended Apache Spark for spatial joins and 

developed SpatialSpark [3], which has achieved 

significantly higher performance than both HadoopGIS and 

SpatialHadoop [7]. HadoopGIS adopts the Hadoop 

Streaming iv  framework and uses additional MapReduce 

jobs to shuffle data items that are spatially close to each 

other into the same partitions before a final MapReduce job 

is launched to process re-organized data items in the 

partitions. SpatialHadoop extends Hadoop at a lower level 

and has random accesses to both raw and derived data 

stored in the Hadoop Distributed File System (HDFSv). By 

extending FileInputFormat defined by the Hadoop runtime 

library, SpatialHadoop is able to spatially index input 

datasets, explicitly access the resulting index structures 

stored in HDFS and query the indexes to pair up partitions 

based on the index structures, before a Map-only job is 

launched to process the pairs of partitions in distributed 

computing nodes. SpatialSpark is based on Apache Spark. 

Spark provides an excellent development platform by 

automatically distributing tasks to computing nodes, as 

long as developers can express their applications as data 

parallel operations on collection/vector data structures, i.e., 

Resilient Distributed Datasets (RDDs) [5]. The automatic 

distribution is based on the key-value pairs of RDDs which 



largely separate domain logic from parallelization and/or 

distribution. A more detailed review of the three research 

prototype systems and their performance comparisons 

using public datasets are reported in [7].  

Different from SpatialHadoop, HadoopGIS and 

SpatialSpark are forced to access data sequentially within 

data partitions due to the restrictions of the underlying 

platform (Hadoop Streaming for HadoopGIS and Spark 

RDD for SpatialSpark). The restrictions, due to the 

streaming data model (for HadoopGIS) and Scala 

functional programming language (for SpatialSpark), have 

significantly lower the capabilities of the two systems in 

efficiently supporting spatial indexing and indexed query 

processing. Indeed, spatial indexing in the two systems is 

limited to intra-partitions and requires on-the-fly 

reconstructions from raw data. The implementations of 

spatial joins on two datasets are conceptually cumbersome 

as partition boundary is invisible and cross-partition data 

reference is supported by neither Hadoop Streaming nor 

Spark RDD. To solve the problem, both HadoopGIS and 

SpatialSpark require additional steps to globally pair up 

partitions based on spatial intersections before 

parallel/distributed local joins on individual partitions. 

While the additional steps in SpatialSpark are implemented 

as two GroupBy primitives in Spark which are efficient for 

in-memory processing, they have to be implemented as 

multiple MapReduce jobs in HadoopGIS and significant 

data movements across distributed computing nodes 

(including Map, Reduce and Shuffle phases) are 

unavoidable. The excessive disk I/Os are very expensive 

and largely contribute to HadoopGIS’s lowest performance 

among the three systems. On the other hand, while 

SpatialHadoop has support on storing, accessing and 

indexing geometric data in binary formats with random 

access capabilities by significantly extending Hadoop 

runtime library, its performance is significantly limited by 

Hadoop and is inferior to SpatialSpark for data-intensive 

applications, largely due to the performance gap between 

disk and memory. Note that we have deferred the 

discussions on spatial partitioning in the three systems to 

Section III.   

As both HadoopGIS and SpatialHadoop are based 

on Hadoop and SpatialSpark is based on Spark, which are 

either based on Java or Scala programming language and 

they all rely on Java Virtual Machine (JVM), native parallel 

programming tools which are likely to help achieve higher 

performance cannot be easily incorporated. Furthermore, 

currently JVM supports Single Instruction Multiple Data 

(SIMD) computing power on neither multi-core CPUs nor 

GPUs. Although HadoopGIS has attempted to integrate 

GPUs into its MapReduce/Hadoop framework, the 

performance gain was not significant [10]. To effectively 

utilize the increasingly important SIMD computing power, 

we have extended the leading open source in-memory Big 

Data system Impala [6] that has a C++ backend to support 

spatial joins using native parallel processing tools, 

including OpenMP vi , Intel Threading Building Blocks 

(TBB vii ) and Compute Unified Device Architecture 

(CUDAviii). By extending block-based join in Impala, our 

In-memory Spatial Processing (ISP) framework [4] is able 

to accept a spatial join in a SQL statement, parse the data in 

the two sides of a spatial join in chunks (row-batches), 

build spatial index on-the-fly to speed up local joins in 

chunks. While ISP employs the SQL query interface 

inherited from Impala, its current architecture also limits 

our extension to broadcast-based spatial join, i.e., 

broadcasting the whole dataset on the right side of a join to 

chunks of the left side of the join for local join (termed as 

left-partition-right-broadcast). As Impala is designed for 

relational data, in order to support spatial data under the 

architecture, ISP was forced to represent geometry as 

strings in the Well-Know-Text (WKTix) format. In a way 

similar to HadoopGIS, this increases not only data volumes 

(and hence disk I/Os) significantly, but also infrastructure 

overheads. The simple reason is that text needs to be parsed 

before geometry can be used and intermediate binary 

geometry needs to be converted to strings for outputting.  

Our recent work on developing the Lightweight 

Distributed Execution (LDE) engine for spatial joins aims 

at overcoming these disadvantages by allowing accessing 

HDFS files (including both data and index) randomly in a 

principled way [8]. Experiments have demonstrated the 

efficiency of LDE-MC+ and LDE-GPU when compared 

with ISP-MC+ and ISP-GPU, respectively. Note that ISP-

MC adopts the GEOS geometry library and uses OpenMP 

for intra-node parallelization. On the other hand, ISP-MC+, 

ISP-GPU, LDE-MC+ and LDE-GPU all use our columnar 

layout and custom geometry routines for point-in-polygon 

test, point-to-polyline distance computation and polyline-

to-polyline intersection test. Both techniques have 

contributed significantly to the higher performance of the 

prototype systems with respect to end-to-end runtime, in 

addition to utilizing parallel and distributed computing 

units, as reported previously. We note that HadoopGIS also 

uses GEOS library within the wrapped reducer for local 

join as ISP-MC does. However, we found that the C++ 

based GEOS library is typically several times slower than 

its Java counterpart (JTS library) which makes ISP-MC 

unattractive when comparing ISP-MC with SpatialSpark 

[3]. We suspect that this is also one of the important factors 

that contributes to SpatialHaoop’s superior performance 

when comparing the end-to-end performance of 

HadoopGIS and SpatialHadoop reported in [7].  

The developments of ISP and LDE are driven by 

the practical needs of spatially joining GPS point locations 

with urban infrastructure data or global ecological zone 

data based on several spatial join criteria, including point-

in-polygon test and point-to-polyline distance. This makes 

broadcast-based spatial join a natural choice in ISP based 

on Impala as broadcast is natively supported by Impala. 

However, different from HadoopGIS and SpatialHadoop 

that naturally support partition-based spatial join based on 

MapReduce and Hadoop, supporting partition-based spatial 

join based on Impala is nontrivial, despite several efforts 



were attempted. Fortunately, our in-house developed LDE 

engine, which is conceptually equivalent to Hadoop 

runtime, allows an easier extension to support partition-

based spatial joins, although it is initially developed as a 

succession of ISP to support broadcast-based spatial join. 

We next introduce both partition-based and broadcast-

based spatial joins in Section 3 as they were originally 

developed in their respective systems before we present the 

new design of partition-based spatial join in LDE in 

Section 4.  

III. DISTRIBUTED SPATIAL JOIN USING BROADCAST- AND 

PARTITION- BASED METHODS 

To successfully join large-scale geospatial datasets, 

especially when the volumes of input datasets or 

intermediate data exceed the capacity of a single machine, 

efficient distributed spatial join techniques that are capable 

of effectively utilized aggregated resources across multiple 

computing nodes are essential. When both datasets in a 

spatial join are large in volumes (or “big” for short), as 

introduced previously, a common practice is to spatially 

partition both input datasets, which can be any spatial data 

types, for parallel and/or distributed spatial joins on the 

partitions. We term the scenario as partition-based spatial 

join on symmetric spatial datasets, or symmetric spatial 

join for short. While the scenario is generic and seems 

universally applicable, in the context of parallel and 

distributed computing, it requires data reorganization on 

both sides so that data items that belong to the same 

partition can be stored in the same computing node to avoid 

random data accesses across multiple nodes in distributed 

memory or distribute file systems, which are very 

expensive. An additional disadvantage is that, the 

reorganized data items lose their original orderings and it 

might be equally or even more costly to rearrange the 

joined results based on the original ordering of either side. 

The order-keeping spatial joins may be desirable in many 

applications, e.g., assigning a polyline/polygon identify to a 

point based on 1-to-1 mapping spatial relationship. For the 

scenario in these applications, while spatial-partition based 

techniques are still applicable due to their generality, the 

excessive and unnecessary data movements might prevent 

them from achieving optimum performance. Given that 

point datasets in such spatial joins are typically much larger 

than polylines/polygons that they are joining in quantities 

and we can apply broadcast-based techniques for the spatial 

joins more efficiently, we term the scenario as broadcast-

based spatial join on asymmetric spatial datasets, or 

asymmetric spatial join for short. We next provides more 

discussions on the implications of the distinctions of these 

two categories of spatial joins in parallel and distributed 

computing settings. 

A. Spatial Partition-based Spatial Join 

In partition-based spatial join, if neither side is indexed, an 

on-demand partition schema can be created and both sides 

are partitioned on-the-fly according to on-demand schema. 

This approach has been used in previous works [1,2,11]. 

On the other hand, when both datasets have already been 

partitioned according to a specific partition schema, 

partitions can be matched as pairs and each pair can be 

processed independently [2]. The quality of partitions has 

significant impact on the efficiency of parallel spatial join 

technique on multiple computing nodes. First of all, a high 

quality spatial partition schema minimizes expensive intra-

node communication cost. Second, such a schema can also 

minimize the effects from stragglers (slow nodes), which 

typically dominate the end-to-end performance. Therefore, 

parallel spatial join techniques typically divide a spatial 

join task into small (nearly) equal-sized and independent 

subtasks and process those small tasks in parallel 

efficiently. The left side of Fig. 1 illustrates on-demand 

partition and the right side of the figure shows the process 

of matching already partitioned datasets. The two input 

datasets (A and B) are matched as partition pairs using 

either on-demand partition schema (left) or matching 

existing partitions (right).  Here A and B are represented as 

partitions where each partition contains a subset of the 

original dataset, e.g., A1 and B1 are in partition 1. Partition 

pairs are subsequently assigned to computing nodes and 

each node performs local spatial join processing. 

 
Several spatial partition schemas have been 

proposed previously, such as fixed-grid partition (FGP), 

Binary Split Partition (BSP) and Sort-Tile Partition (STP). 

Figure 2 shows spatial partition results based on FGP (top-

left), BSP (top-right) and STP (bottom) of Census Block 

data in the New York City (NYC), respectively. Although 

we have empirically chosen STP for spatial partition in this 

study as the resulting partitions typically have better load 

balancing features, we refer to [11] for brief introductions 

to other spatial partition schemas. We note that our system 

can accommodate all spatial partition schemas as long as 

spatial data items in a partitioning dataset are assigned to 

partitions in a mutually exclusive and collectively 

exhaustive manner. In STP (bottom part of Figure 2), data 

is first sorted along one dimension and split into equal-

sized strips. Within each strip, final partitions are generated 

by sorting and splitting data according to the other 

dimension. The parameters for STP are the number of splits 

at each dimension as well as a sampling ratio. Different 

from BSP, STP sorts data at most twice and do not need 

recursive decompositions, which is more efficient for large 

datasets based on our experiences. We also note that our 

Figure 1 Spatial Partition-based Spatial Join 



decision on adopting STP as the primary spatial partition 

schema agrees with the finding in SpatialHadoop [2]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 Spatial Partitions of NYC Census Block Data 

using FGP (top-left), BSP (top-right) and STP (bottom) 
 

B. Broadcast-based Spatial Join 

As discussed previously, broadcast-based spatial 

join (illustrated in Figure 3) can be considered as a 

generality-efficiency tradeoff with partition-based spatial 

join for spatial joins with one side (assuming the left side) 

of the inputs be a point dataset and the other side (assuming 

the right side) of the inputs be small in data volume. The 

left side point data input can be partitioned based on its 

storage order while the right side can be broadcast to all 

partitions of the left side for local spatial joins. Clearly, in 

this scenario, neither side requires data reorganization. This 

is desirable in distributed computing as data movements in 

distributed file systems are known to be expensive. 

Furthermore, as a point on the left side typically is joined 

with at most one data item on the right side in the scenario, 

the join result can be represented as a list of identifies of 

data items on the right side. The list of identifies can be 

stored as a data column in a distributed file system 

separately, which could be much more efficient than 

concatenating multiple columns from both input dataset of 

a spatial join and write the join result to a distributed file 

system. Note that the correspondence between the original 

points and the identifier list is based on the implicit 

ordering of data item positions.  

Figure 3 shows an example of broadcast-based 

spatial join, where the right side is bulk-loaded using R-tree 

and broadcast to all computing nodes, and, the left side is 

divided into chunks where each chunk is processed by a 

processing unit (computing node). Broadcast-based spatial 

join typically works as follows. The first step is to 

broadcast the small dataset to all computing nodes; an 

optional on-demand spatial index may be created during the 

broadcasting. As a result, each node owns a copy of the 

small dataset as well as the spatial index if applicable, and 

they will be persistent in memory for efficient accesses. In 

the second step, the left side is divided into equal-sized 

chunks based on their positions in the sequence, i.e., the ith 

data item is assigned to partition i/B where B is the chunk 

size, and we term it as sequence-based partition. 

 

 
Compared with space-based partition in partition-

based spatial joins, sequence-based partition is much 

simpler. As broadcast mechanism is typically supported in 

Big Data systems for relational data (such as Cloudera 

Impala as well as Apache Spark), it is relatively easy to 

extend existing Big Data systems to support broadcast-

based spatial joins as demonstrated in our ISP prototypes 

on top of Impala [3, 4]. In the local join phase, a partition 

of the left side input will be joined with a broadcast copy of 

the right side input. To speed up local joins, while the 

partition is loaded from a distributed file system (such as 

HDFS), spatial index can be constructed with negligible 

overhead as disk I/O typically dominates. Spatial index of 

the right side input can be constructed either before 

broadcast or after broadcast. While broadcast the spatial 

index together with the right side input may reduce the 

overhead of computing nodes to build the index 

individually, it will complicate the broadcast process and 

the benefit may not always justify the complexity. The 

spatial index of the right side input can also be pre-built 

and stored in HDFS, which can be read by all computing 

nodes when needed (i.e., disk-based broadcast by HDFS). 

While this approach may eliminate index construction 

overhead for the right side dataset to be broadcast in real 

time, it will incur additional disk I/O time and complicate 

system design as well. The choices need to be carefully 

analyzed and justified. Our ISP prototypes construct spatial 

index for the local copy of the right side in real time as it is 

very difficult to access custom index files from HDFS 

within Impala. On the other hand, our LDE prototype reads 

both the right side input and its index from HDFS as 

accesses to index files in LDE are built-in. We refer to the 

Figure 3 Broadcast-based Spatial Join 



respective publications for more details on the designs and 

implementations of broadcast-based spatial join techniques.  

On the downside, when the right side of a spatial 

join is large in volume, broadcast-based join will incur 

significant memory overheads, which is linear with respect 

to data volume of the right side input. This necessitates 

partition-based spatial joins by spatially partitioning the 

right side that is too big to broadcast. We next move to 

Section IV to present the details of partition-based spatial 

join on GPUs and GPU-accelerated clusters, which is one 

of our main contributions of this study. 

IV. SYSTEM ARCHITECTURE AND 

IMPLEMENTATIONS 

The distributed partition-based spatial join technique is 

developed on top of the LDE engine we have developed 

previously. While designed to be lightweight, the LDE 

engine supports asynchronous data transfer over network, 

asynchronous disk I/O and asynchronous computing and 

we refer to [8] for details. The asynchronous design makes 

the join processing in a non-blocking manner, which can 

deliver high performance by hiding latency from disk 

access and network communication. In this study, the LDE 

architecture is extended in several aspects to accommodate 

partition-based spatial joins. The overall system 

architecture is illustrated in the left side of Figure 4. First, 

the master node reads partition information from HDFS and 

populates the task schedule queue associated with the 

scheduler. This is different from the original LDE design 

for broadcast-based spatial join where the queue task is 

populated by sequence-based partitions that are computed 

on-the-fly. Second, batches are now computed from 

partition pairs, instead of from partitions of the left side 

input (point dataset). Subsequently, an optimization 

technique has been developed to minimize duplicated 

HDFS disk I/O within batches. We note that a batch is the 

basic unit for distributed processing in LDE. The details of 

task scheduling, batch dispatching and processing are 

provided in Section IV.A. Second, different from previous 

studies that rely on open source geometry libraries to 

perform spatial refinement (polyline-intersection in 

particular in this study) which only work on CPUs in a 

serial computing setting, we have developed data parallel 

algorithms for the spatial refinement that are efficient on 

both GPUs and multi-core CPUs. The details of the key 

technical contribution in this study are provided in Section 

IV.B. We note that, similar to SpatialHadoop, currently 

spatial partitioning of input datasets is treated as a 

preprocessing step and therefore it is not shown in Figure 4. 

By following a few simple naming and formatting 

conventions, the partitions can be computed either serially, 

in parallel or imported from third party packages such as 

SpatialHadoop, which make the architecture flexible. 

A. Scheduling, Dispatching and Processing 

Step 1 in Figure 4 pairs partitions of both sides of 

inputs to compute partition pairs. As the numbers of spatial 

partitions of the two input datasets in a spatial join are 

typically small, pairing the partitions based on their MBRs 

is fast using any in-memory algorithms on a single 

computing node. We thus implement the step at the master 

node. Assuming both datasets are partitioned and partition 

boundaries are stored in HDFS, the index loader of the 

master node in LDE loads partition MBRs of both datasets 

from HDFS before performing in-memory parallel pair 

matching to generate a partition pair list in Step 1 as shown 

in the lower-left side of Figure 4. The details of Step 1 are 

further illustrated in the top-right part of Figure 4. The 

matched partition pairs are then pushed into a task queue 

which will be dispatched by the scheduler at the master 

node in Step 2. While it is intuitive to use a pair as a batch 

for distributed execution in a worker node, however, such 

design will generate a large number of batches that require 

substantial communication overheads, which will 
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negatively impact system performance. In addition, such a 

naïve scheduling policy will also result in hardware 

underutilization on worker nodes, especially for GPUs. 

Unless a matched partition pair involves large numbers of 

data items in the input datasets, the workload for processing 

a single pair is unlikely to saturate GPUs that have large 

numbers of processing units.  

In order to reduce network bandwidth pressure and 

minimize overhead of hardware accelerators, we divide the 

list of matched pairs into multiple batches where each batch 

contains multiple partition pairs which are processed at a 

time on a worker node. The number of partition pairs in a 

batch is determined by the processing capability of the 

worker node, e.g., memory capacity and available 

processing units. When a worker node joins the master 

node during the system initialization, the processing 

capability information is sent to the master node. Based on 

such information, the size of a batch can be determined. 

Unlike distributed join in SpatialHadoop that each partition 

pair is processed by a Mapper in a MapReduce job and 

requires Hadoop runtime to do the scheduling which is 

ignorant to spatial data, our system spatial conscious.  

Workload dispatching is achieved by maintaining 

a receiver thread in each worker node (Step 3). The 

receiver thread listens to a socket port dedicated for the 

LDE framework. Note that in each batch only data 

locations and offsets to the partitions are stored and 

transferred between the master node and a worker node. 

This is because all worker nodes are able to access data 

directly through HDFS and the data accesses are likely to 

be local due to HDFS file block replications. As such, the 

network communication overhead of transferring batches is 

likely to be very low in our system. Received batches are 

pushed into a task queue of the worker node (Step 4). A 

separate thread of the worker node is designated to load 

data from HDFS for each batch at worker node (Step 5). 

The data loaded for each partition pair is kept in an in-

memory data queue which will be processed next (Step 6).  

Since a partition from one dataset may overlap 

with multiple partitions from the other dataset, there will be 

duplicated IO requests for the same partition. To reduce the 

redundant IO requests, we sort the partition pairs in the 

master node before they are formed as batches. The 

duplicated partitions will then appear consecutively in the 

partition pair list. As a result, duplicated partitions for a 

batch can be detected and only one copy of the duplicated 

partitions is loaded from HDFS at a worker node. This 

improvement significantly reduces expensive data accesses 

to HDFS. The local spatial join logic is fully implemented 

in Step 7 and the join query results are written to HDFS in 

Step 8. While we refer to the left side of Figure 4 for the 

workflow of Steps 1-8, the details of Step 7 are further 

illustrated in the lower-right part of Figure 4 and will be 

explained in details next. 

B. Data Parallel Local Spatial Join on GPUs  

As introduced previously, each worker node has a local 

parallel spatial join module to process partition pairs in a 

batch. In addition to the designs and implementations for 

point-in-polygon test based spatial joins and point-to-

polyline distance based spatial joins that we have reported 

previously, in this study, we aim at designing and 

implementing a new spatial predicate for polyline 

intersection test that can be integrated into the classic filter-

and-refinement spatial join framework [9] on GPUs. We 

reuse our GPU-based R-tree technique [12] for spatial 

filtering and we next focus on the polyline intersection test 

spatial predicate.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Assuming R-Tree based spatial filtering generates 

a list of polyline pairs where the MBRs of the polylines in 

each pair intersect. Given two polylines, P(p1, p2,…, pm) 

and Q(q1, q2,…, qn), where p and q are line segments, we 

can perform intersection test on P and Q by checking 

whether any of two line segments in P and Q intersect. As 

we have a list of candidate pairs, it is intuitive to assign 

each pair to a processing unit for parallel processing. 

However, the numbers of line segments of polylines can be 

very different among pairs which may results in poor 

performance when the naïve parallelization approach is 

applied to GPUs due to unbalanced workloads across GPU 

threads. Perhaps more importantly, as each GPU thread 

needs to loop through all line segments of another polyline 

in a matched pair separately in the naïve parallelization, 

neighboring GPU threads are not likely to access the same 

or neighboring memory locations. The non-coalesced 

memory accesses may lower the GPU performance 

significantly as accesses to GPU memory can be more than 

an order of magnitude slower than accesses to CPU 

Input: polyline representations, candidate pairs 

Output: intersection status  

Polyline_Intersection: 
1: (pid, qid) = get_polyline_pair(block_id) 

2: (p_start, p_end) = linestring_offset(pid) 

3: (q_start, q_end) = linestring_offset(qid) 

4: __shared__ intersected = False 

5: for p_linestring from p_start to p_end 

6:     for q_linestring from q_start to q_end 

7:         __syncthreads() 

8:         workload = len(p_linestring) * len(q_linestring) 

9:         processed  = 0 

10:       while (!intersected && processed < workload) 

11:          if (thread_id + processed >= workload) continue 

12:           p_seg = get_segment(p_linestring, thread_id) 

13:           q_seg = get_segment(q_linestring, thread_id) 

14:           is_intersect = segment_intersect(p_seg, q_seg) 

15:           if (is_intersect) intersected = True 

16:           processed += num_threads_per_block 

17:           __syncthreads() 

18:       end while 

19:       if (intersected)  

20:           results[block_id] = True 

21:           return 

22:    end for //p_linestring 

23: end for //q_linestring 

 

Figure 5 Polyline Intersection Kernel 



memory, given the quite different cache configurations on 

typical GPUs and CPUs.     

As balanced workload and coalesced global 

memory access are crucial in exploiting the parallel 

computing power on GPUs, we have developed an efficient 

data-parallel design on GPUs to achieve high performance. 

First, we minimize unbalanced workload by applying 

parallelization at line segment level rather than at polyline 

level. Second, we maximize coalesced global memory 

accesses by laying out line segments from the same 

polyline consecutively on GPU memory and letting each 

GPU thread process a line segment.  Figure 5 lists the 

kernel of the data parallel design of polyline intersection 

test on GPUs and more details are explained below.  

In our deign, each pair of polyline intersection test 

is assigned to a GPU computing block to utilize GPU 

hardware scheduling capability to avoid unbalanced 

workload created by variable polyline sizes. Within a 

computing block, all threads are used to check line 

segments intersection in parallel. Since each thread 

performs intersection test on two line segments where each 

segment has exactly two endpoints, the workload within a 

computing block is perfectly balanced. The actual 

implementation for real polyline data is a little more 

complex as a polyline may contain multiple linestrings 

which may not be continuous in polyline vertex array. The 

problem can be solved by recording the offsets of the 

linestrings in the vertex array of a polyline and using the 

offsets to locate vertices of line segments of the linestrings 

to be tested.  

Line 1-3 of the kernel in Figure 5 retrieve the 

positions of non-continuous linestrings, followed by two 

iterations in Line 5 and 6. For each pair of linestrings, all 

threads of a block retrieve line segments in pairs and test 

for intersection (Line 10-17). We designate a shared 

variable, intersected, to indicate whether there is any pair 

of line segments intersected for the polyline pair. Once a 

segment pair intersects, the intersected variable is set to 

true and becomes visible to all threads within the thread 

block. The whole thread block then immediately terminates 

(Line 18-20). When the thread block returns, GPU 

hardware scheduler can schedule another polyline pair on a 

new thread block. Since there is no synchronization among 

thread blocks, there will be no penalty even though 

unbalanced workloads are assigned to blocks.  

Figure 6 illustrates the design of polyline 

intersection for both multi-core CPUs and GPUs. After the 

filter phase, candidate pairs are generated based on MBRs 

of polylines. As we mentioned previously, a pair of 

polylines can be assigned either to a CPU thread (multi-

core CPU implementation) for iterative processing by 

looping though line segments or to a GPU thread block 

(GPU implementation) for parallel processing. While GPUs 

typically have hardware schedulers to automatically 

schedule multiple thread blocks on a GPU, explicit 

parallelization on polylines across multiple CPU cores is 

needed. While we use OpenMP with dynamic scheduling 

for the purpose in this study, other parallel libraries on 

multi-core CPUs, such as Intel TBB, may achieve better 

performance by utilizing more complex load balancing 

algorithms. In both multi-core CPU and GPU 

implementations, we have exploited native parallel 

programming tools to achieve higher performance based a 

shared-memory parallel computing model. This is different 

from executing Mapper functions in Hadoop where each 

Mapper function is assigned to a CPU core and no resource 

sharing is allowed among CPU cores.  

V. EXPERIMENTS AND RESULTS 

A. Experiment Setup  

In order to conduct performance study, we have prepared 

real world datasets for two experiments which are also 

publically accessible to facilitate independent evaluations 

on different parallel and/or distributed platforms. The first 

experiment is designed to evaluate point-in-polygon test 

based spatial join, which uses pickup locations from New 

York City taxi trip data in 2013x (referred as taxi) and New 

York City census blocksxi (referred as nycb). The second 

experiment is designed to evaluate polyline intersection 

based spatial join using two datasets provided by 

SpatialHadoop xii , namely TIGER edge and USGS 

linearwater. For all four datasets, only geometries are used 

from original datasets for the experiment purpose and the 

specifications are listed in Table 1. We also apply 

appropriate preprocessing on the datasets for running on 

different systems. For SpatialHadoop, we use its R-tree 

indexing module and leave other parameters by default. For 

our system, all the datasets are partitioned using Sort-Tile 

partition (256 tiles for taxi, 16 tiles for nycb, 256 tiles for 

both edge and linearwater) for partitioned-based spatial 

joins. Note that datasets do not need pre-partition for 

broadcast-based spatial joins.  

We have prepared several hardware configurations 

for experiment purposes. The first configuration is a single 

… … 
loop through segments 

each iteration one segment 
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GPU Block 
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node cluster with a workstation that has dual 8 core CPUs 

at 2.6 GHz (16 physical cores in total) and 128 GB 

memory. The large memory capacity makes it possible to 

experiment spatial joins that require significant amount of 

memory. The workstation is also equipped with an Nvidia 

GTX Titan GPU with 2,688 cores and 6GB memory. 

Another configuration is a 10-node Amazon EC2 cluster, in 

which each node is a g2.2xlarge instance consists of 8 

vCPUs and 15 GB memory, is used to for scalability test. 

Each EC2 instance has an Nvidia GPU with 1,568 cores 

and 4GB memory. We vary the number of nodes for 

scalability test and term the configurations as EC2-X where 

X denotes the number of nodes in the cluster. Both clusters 

are installed with Cloudera CDH-5.2.0 to run 

SpatialHadoop (version 2.3) and SpatialSpark (with Spark 

version 1.1). 

Table 1 Experiment Dataset Sizes and Volumes 

Dataset # of 
Records 

Size 

Taxi 169720892 6.9GB 

Nycb 38839 19MB 

Linearwater 5857442 8.4GB 

Edge 72729686 23.8GB 

 

B. Results of Polyline Intersection Performance on 

Standalone Machines 

We first evaluate our polyline intersection designs using 

edge and linearwater datasets on both multi-core CPUs and 

GPUs on our workstation and a g2.2xlarge instance without 

involving distributed computing infrastructure. As the 

polyline intersection time dominates the end-to-end time in 

this experiment, the performance can be used to evaluate 

the efficiency of the proposed polygon intersection 

technique on both multi-core CPUs and GPUs.  The results 

are plotted in Figure 7, where CPU-Thread and GPU-Block 

refer the implementations of the proposed design, i.e., 

assigning a matched polyline pair to a CPU thread and a 

GPU computing block, respectively. Note the data transfer 

time between CPUs and GPUs are included when reporting 

GPU performance.  

For GPU-Block, the approximately 50% higher 

performance on the workstation than on the single EC2 

instance shown in Figure 7 represents a combined effect of 

about 75% more GPU cores and comparable memory 

bandwidth when comparing the GPU on the workstation 

and the EC2 instance. For CPU-Thread, the 2.4X better 

performance on the workstation than that on the EC2 

instance reflect the facts that the workstation has 16 CPU 

cores while the EC2 instance has 8 virtualized CPUs, in 

addition to Cloud virtualization overheads. While the GPU 

is only able to achieve 20% higher performance than CPUs 

on our high-end workstation, the results show 2.6X 

speedup on the EC2 instance where both the CPU the GPU 

are less powerful. Note that the reported low GPU speedup 

on the workstation represents the high efficiency of our 

polygon intersection test technique on both CPUs and 

GPUs. While it is not our intension to compare our data 

parallel polygon intersection test implementations with 

those that have been implemented in GEOS and JTS, we 

have observed orders of magnitude of speedups. As 

reported in the next subsection, the high efficiency of the 

geometry API actually is the key source for our system to 

significantly outperform SpatialHadoop for partition-based 

spatial joins where SpatialHadoop uses JTS for geometry 

APIs. 

 
Figure 7 Polyline Intersection Performance (in seconds) 

in edge-linearwater experiment 

C. Results of Distributed Partition-Based Spatial 

Joins  

The end-to-end runtimes (in seconds) for the two 

experiments (taxi-nycb and edge-linearwater) under the 

four configurations (WS, EC2-10, EC2-8 and EC2-6) on 

the three systems (SpatialHadoop, LDE-MC+ and LDE-

GPU) are listed in Table 2. The workstation (denoted as 

WS) here is configured as a single-node cluster and is 

subjected to distributed infrastructure overheads. LDE-

MC+ and LDE-GPU denote the proposed distributed 

computing system using multi-core CPUs and GPUs, 

respectively. The runtimes of the three systems include 

spatial join times only and the indexing time for the two 

input datasets are excluded.  The taxi-nycb experiment uses 

point-in-polygon test based spatial join and the edge-

linearwater uses polyline intersection base spatial join.  

From Table 2 we can see that, comparing with 

SpatialHadoop, the LDE implementations on both multi-

core CPUs and GPUs are at least an order of magnitude 

faster for all configurations. The efficiency is due to several 

factors. First, the specialized LDE framework is a C++ 

based implementation which can be more efficient than 

general purpose JVM based frameworks such as Hadoop 

(on which SpatialHadoop is based). The in-memory 

processing of LDE is also an import factor where Hadoop 

is mainly a disk-based system. With in-memory processing, 

intermediate results do not need to write to external disks 

which is very expensive. Second, as mentioned earlier, the 

dedicated local parallel spatial join module can fully exploit 

parallel and SIMD computing power within a single 

computing node. Our data-parallel designs in the module, 

including both spatial filter and refinement steps, can 

effective utilize current generation of hardware, including 



multi-core CPUs and GPUs. From a scalability perspective, 

the LDE engine has achieved reasonable scalability. When 

the number of EC2 instances is increased from 6 to 10 

(1.67X), the speedups vary from 1.39X to 1.64X. The GPU 

implementations can further achieve 2-3X speedups over 

the multi-core CPU implementations which is desirable for 

clusters equipped with low profile CPUs.  

Table 2 Partition-based Spatial Join Runtimes (s)  

  WS EC2-

10 

EC2-

8 

EC2-

6 

taxi-nycb SpatialHadoop 1950 1282 1315 2099 

LDE-MC+ 191 39 50 63 

LDE-GPU 111 19 23 30 

edge-

linearwater 

SpatialHadoop 9887 3886 5613 6915 

LDE-MC+ 554 219 260 360 

LDE-GPU 437 97 114 135 

 

D. Results of Broadcast-Based Distributed Spatial 

Joins  

In addition to comparing the performance of the partition-

based spatial join among SpatialHadoop, LDE-MC+ and 

LDE-GPU in both taxi-nycb and edge-linearwater 

experiments, we have also compared the performance of 

broadcast-based spatial join with partition-based spatial 

join using the taxi-nycb experiment. The edge-linearwater 

cannot use broadcast-based join due to memory constraint 

as discussed earlier. From the results presented in Table 3, 

it can be that the LDE framework outperforms all other 

systems including ISP, which is expected due to the 

lightweight infrastructure overhead by design.  

Table 3 Broadcast-based Spatial Join Runtimes (s) 

  WS EC2-10 EC2-8 EC2-6 

taxi-nycb SpatialSpark 355 101 108 144 

ISP-MC+ 130 36 44 54 

ISP-GPU 96 21 27 34 

LDE-MC+ 119 22 25 31 

LDE-GPU 50 12 15 16 

Comparing the runtimes in Table 3 with Table 2 

for the same taxi-nycb experiment, we can observe that the 

broadcast-based spatial join is much faster (up to 2X) than 

partition-based spatial join using the LDE engine, even 

without including the overhead of preprocessing in 

partition-based spatial join. The results support our 

discussions in Section 3. This may suggest that broadcast-

based spatial join should be preferred whereas possible. 

When native parallelization tools are not available, the 

broadcast-based spatial join implemented in SpatialSpark 

can be an attractive alternative, which outperforms 

SpatialHadoop by 5.5X under WS configuration and 12-

14.5X under the three EC2 configurations. 

VI. CONCLUSIONS AND FUTURE WORK 

In this study, we have designed and implemented partition-

based spatial join on top of our lightweight distributed 

processing engine. By integrating distributed processing 

and parallel spatial join techniques on GPUs within a single 

node, our proposed system can perform large-scale spatial 

join effectively and achieve much higher performance than 

the state-of-the-art. Experiments comparing the 

performance of partition-based and broadcast-based spatial 

joins suggest that broadcast-based spatial join techniques 

can be more efficient when joining a point dataset and a 

relatively small spatial dataset that is suitable for broadcast.  

As for future work, we plan to further improve 

single node local parallel spatial module by adding more 

spatial operators with efficient data-parallel designs. We 

also plan to develop a scheduling optimizer for the system 

that can perform selectivity estimation to help dynamic 

scheduling to achieve higher performance.     
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