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ABSTRACT 
Spatially joining GPS recorded locations with infrastructure 
data, such as points of interests, road network, land cover and 
different types of zones, and assigning a point with its nearest 
polyline or polygon is a prerequisite for trip related analysis, 
which is becoming increasingly important in ubiquitous 
computing. However, existing spatial databases and GIS are 
incapable of handling large-scale data. The poor performance of 
these systems that takes tens of hours to dozens of days to 
complete such a commonly used spatial join query is 
undesirable. By leveraging several high-performance 
techniques, including massive data parallel General Purpose 
computing on Graphics Processing Units (GPGPU) technologies 
and cache friendly main-memory data structures, we are able to 
design an efficient spatial join query processing system. The 
experiments using a commodity workstation equipped with a 
Nvidia GPU device and real NYC taxi trip location data show 
that our system can join 170 million points with nearly a million 
polygons based on the nearest neighbor principle in about 33 
seconds The performance represents a 3-4 orders of speedup 
when compared with an optimized serial CPU implementation 
using two leading open source packages for spatial indexing and 
spatial data management, respectively. We report our designs 
and implementations of GPU based filtering and refinement in 
spatial join processing and discuss the implications of modern 
hardware architectures for spatial databases and GIS. 
 

1. INTRODUCTION 
Spatial joins are fundamental in Spatial Databases 

(SDB) and Geographical Information System (GIS). Given two 
geospatial datasets (which can be points, polylines and 
polygons), a spatial join finds all pairs of objects satisfying a 
given spatial relationship between the objects, such as within, 
intersect and nearest neighbor. Spatial joins on CPUs have been 
extensively studied over the past few decades [1] given their 
practical importance. However, while research in parallel spatial 
joins can be dated back to 1990s [2-4], it was not until General 
Purpose computing on Graphics Processing Units (GPGPU) 
technologies on commodity hardware become available in 
recent years that using parallel spatial join processing to speed 
up SDB and GIS performance starts to be practical, both 
technologically and economically. This is because in the past 
accesses to parallel computing resources, such as 
supercomputers and grid computing facilities, were very limited 
to general users in the geospatial computing community [5]. The 
current commodity GPU architectures closely resemble 
supercomputers as both implement the primary Parallel Random 

Access Machine (PRAM1) characteristic of utilizing a very large 
number of threads with uniform memory latency [6]. The 
powerful parallel hardware architectures and the availability of 
low cost commodity GPU devices that are capable of general 
computing make it attractive to use GPUs for geospatial 
computing [7], including exploring the new designs and 
implementations of spatial joins on the new hardware for 
practical applications which is the purpose of this study.  

The work reported in this paper is motivated by a 
practical large-scale spatial data management problem in 
associating hundreds of millions of points (taxi pickup locations 
at a yearly scale) with hundreds of thousands of polygons (tax 
lots whose land use types serve as a proxy for trip purposes) 
based on the nearest neighbor principle in the New York City 
(NYC). As the research in identifying trip purposes from large-
scale taxi trip data is exploratory in nature, a fast 
implementation that can provide near real-time responses is 
essential. While nearest neighbor based spatial joins is 
supported in several spatial databases (e.g., Oracle Spatial) and 
GIS (e.g., ESRI ArcGIS), the response times on a single 
processor are too long to be practically useful when processing 
data at such a scale. Our experiments have shown that DBMS 
overheads and inefficient disk I/Os could prolong the processing 
times to tens of days. Furthermore, mainstream spatial databases 
and GIS do not natively support parallel hardware architectures 
yet. An alternative solution is to explore parallel processing 
power in Cloud Computing by adopting a MapReduce2 parallel 
computing framework and incorporating open source GIS 
packages. Although a few successful stories have been reported 
[8, 9], we have several concerns in adopting the approach for 
our application that require near-interactive responses.  

First, similar to using disk-resident spatial databases 
and GIS, disk I/Os can be a severe bottleneck in achieving the 
desired response time as the Hadoop Distributed File System 
(HDFS3) and its alike require signficant reading and writing 
accesses to slow disks and network channels to realize the 
parallelization. It is not clear whether it is possible to achieve 
the level of scalability for interactive applications due to the 
disk I/O and network bottlenecks. Second, even though it might 
be economically viable to execute MapReduce jobs in a Cloud 
Computing environment, developing and debugging 
MapReduce systems in a distributed environment can be 
difficult, time consuming and economically expensive. Third, 
previous works have shown that MapReduce systems are 
inefficient in utilizing computing resources [10]. Given that our 
reference serial implementation using open source geospatial 
data management packages (more specifically libspatialindex4 



 

 

for R-Tree based polygon indexing and GDAL/OGR5 for 
distance computation between points and polygons) required 
more than 30 hours (see Section 4 for details), to achieve a 
response time at the 10-100 seconds level, a speedup of 3-4 
orders (1,000X-10,000X) is needed. Even assuming that Cloud 
Computing can achieve a linear speedup, without fundamental 
changes on data structures, algorithms and system 
implementations, this would be a huge waste of energy even if it 
is economically affordable.  

As such, we have decided to explore GPGPU 
computing technologies to gain the desired level of 
performance. By integrating system provided parallel primitives 
(more specifically the Thrust6 library) and our in-house 
developed modules, we are able to develop a working system 
that allows spatial join of 170 million taxi pickup locations with 
nearly a million polygons in NYC area in 2009 in about 33 
seconds. This represents a more than three orders (3,325X) 
speedup compared with the reference optimized serial 
implementation, both run on a single commodity workstation. 
Three multiplicative factors, including collective query strategy, 
in-memory data structure and parallel hardware, have 
contributed to the significant speedup. First, while traditionally 
spatial indexing is considered expensive and some spatial join 
algorithms have been designed for non-indexed data to achieve 
better performance [1], we have developed a fast quasi-indexing 
approach on GPGPUs to quickly assign points to quadrants and 
use the point quadrants as the basic units for the spatial join. 
Since many points are spatially close to each other in our point 
dataset and very often nearby points will be joined with a same 
polygon, it is beneficial to use the quadrants instead of the 
individual points to query against indexed polygons. We term 
this strategy as Collective Query. The saving can be signficant 
when the numbers of points in the quadrants are large. Second, 
instead of using sophisticated data structures that requires 
dynamic memory allocations, which become increasingly 
expensive on modern hardware [11], simple linear data 
structures (including arrays and vectors) are used to stream data 
efficiently from disks to CPU main memories and to GPU 
global memories. The design is cache friendly and reduces TLB 
(Translation Lookaside Buffer7) misses [12, 13]. Using 
Structures of Arrays (SoA) instead of Arrays of Structures 
(AoS) further increases cache hits as more relevant data can be 
loaded into a cache line for small (short-length) data items. 
Third, after point quadrants are paired with polygons, 
computing the distances among all points in a quadrant and the 
polygon segments become embarrassingly parallelizable and is 
more suitable for GPUs due to its floating point computing 
power and high bandwidth between off-chip global memory and 
on-chip registers. A similar framework has been adopted in our 
previous work on spatially joining points and polygons through 
point-in-polygon test [14]. In this study, we focus on 
investigating the relative contributions of each of the three 
performance boosting technologies. As detailed in Section 4, 
these three factors contribute about 3.7X, 37X and 24X, 
respectively, which brings the combined speedup to 3,325X.   

Although the signficant speedup is certainly 
practically useful, we believe it is more important to understand 
the limiting factors in the existing spatial databases and GIS 
software in achieving their potentials on modern parallel 
hardware architectures and we expect this work can serve as a 

case study for this purpose. Given the increasingly powerful 
(but not much about being faster on individual processors) 
parallel hardware and the increasingly large scale data, we 
believe it is timely to re-examine the cost models in designing 
spatial data structures and query processing algorithms in spatial 
databases and GIS. In particular, while existing spatial databases 
are mostly designed to be disk-resident and transaction oriented, 
there are increasingly large-scale OLAP8 type applications on 
read-only spatial data where GPU accelerations can be 
instrumental. Existing indexing structures are heavily tailored 
for serial implementations on CPUs which seems to favor 
sophisticated designs in minimizing computation. However, 
different from the hardware invented 20-30 years ago, 
computation now is almost free while memory access can be 
hundreds of times slower in terms of clock cycles on modern 
hardware [15]. Despite many Software Development Kits 
(SDKs) are designed to purposely hide hardware details to 
improve programming productivity, a hardware-software co-
design approach is essential to achieve the desired high 
performance. A key issue in this initiative is to identify the 
inherent data parallelisms in geospatial data processing and map 
it to parallel hardware in an appropriate way. Our 
implementation has adopted a parallel-primitive-oriented 
approach by using system-provided generic parallel primitives 
as much as possible and developing new parallel primitives for 
multidimensional data. We hope this design and development 
effort can eventually lead to a parallel primitive library designed 
for geospatial data to help make traditional spatial databases and 
GIS adaptive to parallel computing environments.  

Our technical contributions are the following. First, 
we have designed and implemented a system to spatially join 
large-scale point locations with polygons completely on GPUs 
based on the nearest neighbor principle within an r-expanded 
window (or Windowed NN join), including both the filtering 
phase (by adopting a grid file based indexing approach) and the 
refinement phase (by assigning point quadrant and polygon 
pairs to GPU computing blocks for pair wise distance 
computation). Second, by integrating several high-performance 
computing technologies, we have reduced the computing time 
from 30.5 hours to 33.1 seconds and achieved more than 3,200X 
speedup when joining the pickup locations of 170 million taxi 
trip records with nearly a million tax-lot polygons. The system 
has made interactive spatial queries possible for the data at this 
scale. Third, by hybridizing GPU and CPU implementations, we 
have investigated the relative contributions of the speedup of the 
three performance boosting techniques and discussed their 
implications in designing high-performance SDB and GIS.  

The rest of the paper is arranged as follows. Section 2 
introduces the background, motivation and related work. Section 
3 describes system design and implementation details. Section 4 
presents the experiments and evaluations. Finally Section 5 
provides conclusion and future work.  

2. BACKGROUND, MOTIVATION AND 
RELATED WORK 

Computing has evolved into a parallel era. In fact, 
from high-end servers to smart phones, it becomes increasingly 
difficult to find uni-processor based devices. Unfortunately, the 
software industry in general and the data management system 



 

 

vendors in particular are slow in adapting to the parallel era and 
making full use of parallel hardware for BigData9 applications. 
Geospatial computing (including both data management and 
analytics) are inherently data intensive. Although geospatial 
data are mostly collected and distributed by government 
agencies in the past (such as satellite imagery and urban 
infrastructure data), ubiquitous location and sensing data 
generated by individuals using handheld devices, such as GPS 
traces [16], cell phone call logs [17], location dependent social 
networks data [18, 19] and location enhanced photos and videos 
[20], are becoming increasingly popular. The data volumes have 
been growing exponentially. These new types of geospatial data 
are essential in understanding natural and social dynamics at 
community, city, national and global scales, especially when 
they are associated with infrastructure data and domain 
knowledge. There are several unique features in such data. First, 
they are mostly point data (e.g., GPS readings) or can be 
represented as point data after proper transformations (e.g., 
geocoding). Second, these data are highly concentrated in urban 
areas where human activities are high. Third, infrastructure data, 
such as road networks, Points of Interests (POIs) and land use 
types are crucial to understand the underlying meaning of the 
data, such as trip purposes and social interactions.  

Although GIS and SDB are the commonly used tools 
to handle geo-referenced spatial data, we argue that existing GIS 
and SDB technologies and available tools are inefficient and/or 
insufficient in managing large-scale ubiquitous urban sensing 
data. The object-relational data models that are utilized in most 
of existing GIS and SDBs, while generic to handle many types 
of geospatial data, are not efficient to process point data at 
levels of hundreds of millions. The complex software structures 
also make it difficult to adapt to modern hardware, including 
parallel processing units, large-memory capacities and evolving 
cache hierarchies. The tuple-oriented physical data layout also 
makes it inefficient in processing read-only data when compared 
with column-oriented data layout for fast in-memory processing 
[21]. Towards this end, we have designed a prototype system 
called U2SOD-DB [22] that is targeted at managing large-scale 
ubiquitous urban sensing origin-destination data. We next 
briefly introduce the layered functional modules in U2SOD-DB 
to put the work reported in this paper into the context.  

At the bottom layer, U2SOD-DB adopts a time-
segmented, column-oriented physical data layout to support in-
memory, array-based data structures and allow fast streaming 
among disks, CPU memories and GPU global memory. The 
middle layer provides essential functionality on data 
compression, indexing and spatial/temporal aggregations. The 
top layer of U2SOD-DB is designed to support more 
application-oriented operations such as joining point locations 
with points (e.g., POIs), polylines (e.g., road segments) and 
polygons (e.g., land use lots and census blocks) and shortest 
path computation. U2SOD-DB targets at supporting the three 
types of spatial joins between point locations and urban 
infrastructure data, namely P2N-D join to snap a point to its 
nearest street segment, P2P-T join to associate a point with a 
polygon that the points falls into and P2P-D join to associate a 
point with a polygon that the point is closest to the polygon. 
Obviously, operations in this layer are much more 
computationally intensive and will benefit from performance 
boosting techniques including cache friendly in-memory data 

structures and parallelization on GPGPU accelerators. The work 
reported in this study is a new implementation of the P2P-D 
module of U2SOD-DB where spatial join on points and 
polygons is based on the nearest neighbor principle. 

Our previous results have shown that, for P2P-D 
spatial join, we were able to reduce the runtime from 30.5 hours 
to 1000-1500 seconds by adopting a hybrid approach where the 
points are quasi-indexed on GPUs and spatial join is performed 
on CPUs. An impressive 100X+ speedup has been achieved 
[22]. In this study, we show that the GPGPU parallel 
accelerations have brought a 26.5X speedup for distance 
computation which is the dominating component in the spatial 
join. This in turn brings the overall speedup to 3,325X when 
joining 170 million points with 735,488 real-world polygons. 
Due to the modular design, we are able to replace GPU parallel 
modules with functionally equivalent serial CPU modules 
wherever necessary to investigate the relative contributions of 
the three performance boosting techniques that are mentioned 
earlier. The experiment results have provided us some solid 
evidence in suggesting viable paths in making SDB and GIS 
software adaptive to the new parallel era. The proposed spatial 
join implementation reuses several components of U2SOD-DB, 
including physical data layout, parallel indexing of point data 
and an ETL10 (Extract, Transform and Load) module to convert 
polygon data to arrays. It is our goal to synergize these inter-
related components which eventually leads to a high-
performance geospatial data management system on commodity 
parallel devices without extra costs. In addition to core 
algorithm design and implementations, there are considerable 
software engineering issues need to be solved before the system 
can be reliably used for practical applications. 

There is a rich body of related works on parallel 
algorithms and their GPGPU implementations, spatial indexing 
and spatial joins, and, urban computing applications of 
geospatial analysis While it is beyond our scope to provide a 
comprehensive review on the related works in the respective 
research areas, here we discuss a few related works that are 
most relevant to our research and development efforts. Research 
on spatial indexing and spatial joins using parallel primitives 
can be dated back to the seminal work by Hoel and Samet [2]. 
They have designed and implemented spatial operations using 
parallel primitives for PMR Quadtree trees and R-Trees and 
used them for operations such as polygonization based on 
topologies and spatial joins based on spatial intersections. 
Vertices and line segments were used as the basic units for 
spatial indexing and operations. In addition to targeting at the 
different hardware architectures (then supercomputer CM-5 v.s. 
current commodity shared-memory GPUs), our parallelization 
focuses on distance computation and nearest neighbor 
assignment which requires a different sets of parallel primitives 
from a conceptual design perspective. Nevertheless, our 
decision on using a simple grid-file structure to index Minimum 
Bounding Boxes (MBRs) of both point quadrants and polygons 
is partially motivated by their results showing that regular 
disjoint decompositions (PMR Quadtree) performed better than 
irregular decompositions (R-Trees) in a parallel setting. As 
detailed in the next section, when both MBRs of point quadrants 
and polygons are mapped to a simple grid, pairing two MBRs 
from the two joining datasets can be transformed into an 
equijoin problem on grid cell identifiers which can be efficiently 



 

 

supported by combining generic parallel primitives such as sort, 
reduce, binary_search and unique. Another difference is that 
while we try to make full use of parallel primitives that are 
available in the underlying software development system 
(CUDA SDK11 in this case), we realize that operations on 
multidimensional data can not always be efficiently (or even 
possibly) implemented on top of generic parallel primitives that 
are designed for 1D vectors. As such, we have implemented a 
set of functions that are required by our application (but are not 
supported by the underlying parallel library) using native 
parallel programming languages (CUDA C in this case).  

Another category of related work is relational joins on 
GPUs. The GDB prototype system [23] has provided 
implementations of different types of relational joins, such as 
nested loop joins (both indexed and non-index), sort-merge joins 
and hash joins. A more complete set of relational algebra 
algorithms have been implemented recently [24] and reportedly 
better performance has been achieved. The work reported in 
[25] is interesting in the sense that, instead of transferring all 
relevant data to GPUs before relational joins, some data are 
designed to reside on CPU main memory and are exchanged 
dynamically between the CPU and GPU memories by the GPU-
based join program through hardware supported DMA12. The 
relational join implementation matches GPU hardware 
architecture very well and the performance is impressive. 
However, spatial joins are significantly different from relational 
joins as pairing spatial objects in the two joining datasets are 
based on multidimensional spatial relationships instead of 
simple equality test (for natural joins) or evaluating a boolean 
expression (for theta joins). Furthermore, unlike relation joins 
that all tuples are flat and pairing two tuples can only be 
evaluated to true or false, pairing two spatial objects in different 
hierarchies may generate an unknown number of pairs which 
makes it rather difficult to parallelize.  

While there are several pioneering works in spatial 
indexing on GPUs in computer graphics research (e.g., [26]), we 
argue that they are mostly designed for computer graphics 
applications such as ray-tracing and iso-surface constructions. 
They may not be suitable for spatially joining multiple datasets 
that is commonly required in SDB/GIS. There are several 
attempts to implement the classic R-Tree spatial indexing 
structure on GPUs and the work reported in [27] seems to be the 
most comprehensive one. The authors have tested parallel 
spatial range queries on constructed R-trees on GPUs which can 
be potentially modified for spatial join by treating the 
independent geometric objects used for queries as the non-
indexed source dataset to be joined. However, while R-Trees 
have been extensively used on CPUs for spatial join, it is not 
clear whether R-Trees are good choices for spatial joins on 
GPUs. This is because data accesses are highly irregular when 
pairing the bounding boxes of geometrical objects that are 
indexed by R-Trees in both the source and target datasets that 
participate a spatial join. The problem has also been observed in 
previous research on all-pair nearest neighbor queries on CPUs 
[28]. 

One of our technical contributions in this paper is to 
tessellate spatial objects into sets of basic units according a 
certain spatial ordering and then use them as the intermediate 
tuples to apply relational joins on GPUs in the filtering phase of 
spatial join, i.e., use the grid cells as the basic units for equal 

joins to emulate spatial joins. The design utilizes a simple grid 
file data structure which might be superficially similar to the in-
memory grid file data structure on GPUs first proposed in [29] 
as both are derived from classic grid file structures. However, 
there are several key differences between the two. First of all, 
the grid files proposed in [29] are designed to process exact 
match or range queries while our grid file is designed to process 
spatial join. Second, the grid file in [29] is used to index points 
directly while our grid file is used to index bounding boxes of 
both point quadrant and polygons (detailed in Section 3). It 
would be impossible to index hundreds of millions point directly 
on GPUs due to the memory capacity constraints. Third, while 
their range queries locate points within query windows directly 
without needing further processing, our spatial join computes 
unique pairs of point quadrants and polygons which requires 
complex post-processing including sorting, searching and 
removing duplicates. 

3. SYSTEM DESIGN AND 
IMPLEMENTATION DETAILS 
3.1 Overview 

Following the general procedure of spatial joins [1], 
our data parallel spatial join algorithm also has two phases: the 
filter phase and the refinement phase. In the filter phase, we 
identify the largest quadrants that have less than K points 
(quasi-indexing) and build a grid-file based index structure for 
the bounding boxes or expanded bounding boxes of both the 
point quadrants and the polygons to be joined. The algorithm 
identifies (qid, pid) pairs that potentially satisfy the spatial join 
criteria where qid represent an identified quadrant and pid 
represents a polygon. In the refinement phase, distances among 
all the points in the quadrant and all the edges of the polygon 
are computed to assign all the points with the polygon ids of 
their nearest polygons. Here the distance between a point and a 
polygon is canonically defined as the minimum distance among 
all the distances between the point and edges (or segments) of 
the polygon. The overall framework is similar to what we have 
designed for point-in-polygon test based spatial join [14] with 
one major difference. Instead of using MBRs of polygons 
directly, we expand the polygon MBRs with r units along the 
width dimension and r units along the height dimension (the 
purpose of the modification is detailed in Section 3.3). The 
modified framework for point-to-polygon spatial join based on 
the nearest neighbor principle (or P2P-D for short) is illustrated 
in Fig. 1. In the following subsections we present the details of 
the components, i.e., in-memory data structure, quadrant 
identification, associating bounding Boxes with grid cells, and, 
pair-wise distance computation and polygon assignment.  

3.2 In-Memory Data Structures and 
Quadrant Identification 

The details of the in-memory data structures are 
discussed in [14][22] and the details of generating point 
quadrants are provided in [14]. For the purpose of being self-
contained, we next sketch the key points of these two techniques 
that are the integral components of the system. As shown in the 
top-right part of Fig. 1, instead of using variable-sized data 
structures to store polygon data which requires dynamic 
memory allocation in many existing SDB and GIS, we flatten 
the complex data structures into five one-dimensional arrays; 



 

 

the Feature Index array which stores the positions of the first 
polygon features in polygon datasets, the Ring Index array 
which stores the positions of the first rings of all polygon 
features and the Vertex Index array which stores the positions of 
the first vertices for all rings, and finally,  the X/Y Coordinate 
arrays which store the x/y coordinates for all rings. The design 
closely reflects the OGC SFS specification13 which has been 
adopted by most commercial and open source GIS/SDB 

software. As a main-memory based high-performance system, 
we assume all the arrays are memory-resident and can be 
streamed among hard drives, CPU memories and GPU 
memories as chunks. For the 735,488 polygons used in our 
experiments, three are 4,698,986 vertices which take just a few 
tens of megabytes and can be easily accommodated by 
commodity computers.  

.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 Framework of System Design 
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The algorithm to generate point quadrants with no 
more than K points on GPUs originates from our work on 
building Constrained Spatial Partition Trees for Point Data 
(CSPT-P) [30] for load balancing purposes in processing 
geospatial data, such as GPU-based Geographically Weighted 
Regression (GWR) [7]. In this study, we follow a similar 
approach that has been exploited in our previous work on point-
in-polygon test based spatial join [14], i.e., re-using the first part 
of the CSPT-P construction algorithm for identifying leaf tree 
nodes to generate point quadrants. This is based on the 
observation that only leaf nodes and not the complete space 
partitioning tree is needed for spatial join using a flat grid file 
for filtering and we term it as quasi-indexing. That being said, 
the whole CSPT-P construction algorithm can be modified to 
generate multi-level grid file data structures or used directly for 
the filtering phase of the spatial join which is left for our future 
work.  

Basically a CSPT-P tree spatially divides a point 
dataset into quadrants and marks quadrants with no more than K 
points as leaf nodes. When a CSPT-P tree is constructed 
hierarchically in a top-down manner, there are considerable data 
parallelisms at each level and thus parallel primitives, including 
copy, transform, sort, scan, gather/scatter and reduce, can be 
used efficiently and effectively to implement the tree 
construction algorithm on GPUs. First, points are sorted based 
the Morton codes14 which are derived from their coordinates at a 
level (transform + sort). Second, the numbers of points that fall 
within each quadrant can be computed (reduce by key). Third, 
points that fall within the quadrants that have fewer than K 
points can be shifted to the beginning of the input point vector 
and the boundaries of the identified quadrants can be marked 
(using a combination of copy, scatter, scan and gather). Finally, 
the bounding boxes of the quadrants are computed (transform + 
reduce by key). While it is beyond the scope our study to 
present the details of primitives based parallel programming, we 
refer to the appendix (located at the last page) of [14], which 
provides a brief introduction to the parallel primitives that have 
been used in this study. The examples given in the appendix 
may help understand the functionality of the respective parallel 
primitives.  

3.3 Associating Bounding Boxes with Grid 
Cells 

As shown in Fig.2, there are two possible ways to pair 
a point quadrant whose MBR is (x1,y1,x2,y2) with a polygon 
where points in the quadrant can potentially  be paired with  the 
polygon, i.e., the minimum distance between a point and the 
polygon is less than r. The first approach is to expand the MBR 
of the point quadrant. If the expanded bounding box of the point 
quadrant, i.e., (x1-r,y1-r, x1+r, y1+r), intersects with the MBR 
of the polygon then the point quadrant and the polygon is paired 
for further refinement. The second approach is opposite to the 
first approach by expanding the MBR of the polygon and 
finding the point quadrants that intersect with the expanded 
MBR of the polygon. We have chosen the second approach and 
the reasons will be provided shortly after we introduce the high-
level design in pairing point quadrants and polygons.  

To pair point quadrants with polygons, we rasterize 
the MBRs of point quadrants and the expanded MBRs of 

polygons to a uniformed grid and use equijoin on the cells to 
emulate the spatial join of the MBRs. It is clear that, after the 
rasterization, some of the grid cells will be covered by one point 
quadrant MBRs while some of the grid cells will not be 
associated with any point quadrant MBRs. The relationship 
between quadrant MBRs and grid cells is 1:n. On the other 
hand, since the expanded MBRs of polygons may overlap, the 
relationship between polygon MBRs and grid cells is m:n. 
Assume there are s point quadrant MBRs and t expanded 
polygon MBRs that are mapped to a same grid, then there will 
be s*t (qid, pid) pairs to be refined in the refinement phase. Note 
that neighboring grid cells might have similar (qid, pid) pairs 
and there are duplicated (qid,pid) pairs across grid cells (to be 
detailed next). Since only one unique copy of the pairs is needed 
to be refined in the refinement phase, the duplications should be 
removed before the refinement phase. This can be efficiently 
implemented using the sort+unique parallel primitives that are 
supported in the Thrust parallel library (and perhaps other 
parallel libraries). Our approach essentially transforms a spatial 
intersection test problem into a number of equality test 
problems, which are very basic and are well supported by all 
parallel hardware instruction sets. 

 
 
 
 
 
 
 
 

Fig. 2 Illustration of the Two Approaches in Pairing Points and 
Polygons through MBR Expansion 

While conceptually the two approaches in pairing 
point quadrants with polygons discussed earlier are the same, 
we have found that the second approach has a much better 
performance when spatially joining taxi pickup locations with 
tax lot polygons due to the grid file based filtering approach and 
the distributions of the datasets to be joined. The main reason is 
that the majority of taxi pickup locations are clustered near the 
street intersections and the identified quadrants often have a 
large number of very small quadrants (e.g., from 2*2 feet to 
32*32 feet). If r (e.g., 100 feet) is much larger than the quadrant 
sizes, the MBRs of these quadrants have large expansion ratios. 
When each expanded MBR is used to pair with a polygon MBR, 
neighboring point quadrants are likely to generate a large 
number pairs of quadrant identifiers and polygon identifiers, or 
(qid, pid) pairs, with considerable duplications. This has been 
illustrated in Fig. 3. While there are only a few pairs that should 
be identified, e.g., {(Q2, P2), (Q2, P3), (Q3, P1), (Q3, P2), (Q3, 
P3), (Q4, P1), (Q4, P2), (Q4, P3)}, each of the expanded MBRs 
of the four point quadrants are rasterized into 9*9 cells due to 
the large r value. In contrast, if we expand the MBRs of the 
polygons (not shown in Fig. 3), we will still get the same pairs 
but far fewer cell identifiers would be involved. In addition to 
requiring large temporary GPU memories to hold the 
intermediate cell identifiers for both the rasterized MBRs and 
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for matched (qid, pid) pairs before removing duplicates, 
excessive memory accesses to write and read (qid, pid) pairs can 
also reduce overall system performance in our parallel 
primitives base implementation. As such, we have decided to 
adopt the second approach and expand the MBRs of polygons. 

What needs to be explained next in more details is the 
exact procedure of mapping a box (for both a point quadrant 
MBR and an expanded MBR of a polygon) to a grid. Given a 
vector of quadruples (x1, y1, x2, y2) for the input MBRs and a 
grid cell size cz, we wish to output the cell ids in the range of 
col=floor(x1/cz)..ceiling(x2/cz) along the x dimension and 
row=floor(y1/cz).. ceiling(y2/cz), where col and row can be 
combined using any Space Filling Curve (SFC) ordering15  and 
here we use row-major order for simplicity. While this seems to 
be trivial for a serial implementation, it turns out to be nontrivial 
for a parallel computing model. The biggest issue is to let the 
parallel processing units (i.e., threads) know the exact locations 
to get the input data from and the exact locations to write the 
output data to. A similar effort to compute the locations using 
parallel primitives took more than 20 steps (see page 6 of our 
technical report at [31] for an example) which has limited the 
GPU speedup to only 6.7X for the refinement phase of distance 
based spatial join. As such, in this study, we have decided to 
develop a parallel primitive directly on top of CUDA for this 
purpose. The procedure first uses a prefix-sum over the numbers 
of cells for all MBRs to be mapped so that each thread knows 
where to start outputting the computed cells. Second, within the 
CUDA kernel to compute the cell ids, a thread loops over rows 
and columns of a rasterized box and writes out both the quadrant 
identifier (qid) and the cell identifiers (cids) to which it is 
mapped. While the kernel is not very efficient in the sense that 
memory accesses are not coalesced and the workload is not 
balanced among threads either, we have found that the 
performance is better than that of the implementation using 
generic parallel primitives by avoiding computing and 
outputting a large number of intermediate positions that are 
needed for thread coordination [31]. 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3 Illustration of the Problem in Expanding MBRs 

with a Large Expansion Distance 
We next provide implementation details on GPU 

based association between quadrant identifiers (qids) and 
polygon identifiers (pids) through the grid cells (cids) to form 
(qid, pid) pairs for refinement. The high-level conceptual design 

has been discussed earlier in this subsection. Recall that the cell 
mapping kernel generates vectors for MBRs of both the point 
quadrants and expanded MBRs of polygons with the first vector 
storing qids or pids and the second vector storing the 
corresponding cell identifiers (cids). Let us call the two vectors 
for the point quadrants are VQQ and VQC, respectively. 
Similarly, two vectors are used for polygons, i.e., VPP, and 
VPC, as shown in the top-right part of Fig. 4. Our algorithm 
searches each of VPC elements in VQC and pairs the 
corresponding elements in VPP with the corresponding elements 
in VQQ if a search on the VPC element is successful. This can 
be efficiently implemented using a combination of the 
binary_search and lower_bound parallel primitives provided by 
the Thrust library (the details of the combination is available in 
the appendix page of [14], if needed). We note that searching 
VPC elements can be done in parallel by using the vertorized 
versions of the two primitives.  

 
 
 
 
  
 
 
 
 
 

Fig. 4 Illustration of Grid-File based Spatial Join Filtering and 
its GPU implementation using Parallel Primitives 

3.4 Pair-wise Distance Computation and 
Polygon Assignment 

After the filter phase is completed, a subsequent 
refinement phase is followed. In this phase, pair-wise distance 
computation among all the points in the quadrant (identified by 
the qid) and all the segments in a polygon (identified by the pid) 
are computed to assign points with the proper polygon 
identifiers based on the nearest neighbor principle. From a 
parallel computing perspective, the parallelism in this step is 
very similar to rasterizing MBRs as we have discussed in 
Section 3.3. For the same reason (excessive overheads in 
computing and outputting locations in a parallel primitives 
based implementation), we have developed a CUDA kernel for 
this purpose.  

It is expected that this step is very computationally 
expensive and can be the bottleneck of the overall performance. 
It is thus desirable to make full use of the parallel processing 
power of GPGPUs. We map the following two levels of data 
parallelisms to the CUDA computing model for this purpose. 
We assign a (qid, pid) pair to a computing block and assign a 
point (within a quadrant) to a thread (within a computing block) 
due to the following considerations. First, while each quadrant 
has fewer than K points to guarantee load balance to a certain 
degree, our empirical results have shown that the actual 
numbers of points in quadrants can vary significantly which 
may still incur load unbalance with a factor anywhere between 1 
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and K. Second, while the majority of the polygons in our 
applications have fewer than 20 vertices, a small portion can 
have large numbers of vertices. The skewness of real datasets 
makes it difficult for perfect load balancing. Fortunately, CUDA 
adopts a task-based scheduling approach at the computing block 
level. When there are sufficient computing blocks to be 
executed, the GPU hardware can be fully utilized even if the 
workloads among computing blocks are not well balanced.  As 
such, it is appropriate to expose the bounded skewness at the 
computing block level. On the other hand, CUDA requires 
perfect load balancing among the threads within a computing 
block due to its SIMD (Same Instruction, Multiple Data) design. 
Since CUDA compute capacity 2.0 and above has a warp size of 
32 which is larger than the numbers of segments of most 
polygons in our dataset, the hardware can not be fully utilized if 
we assign polygon segments to threads and let each thread loop 
through all the points. As such, it is natural to assign threads to 
points and let each thread loop through all the polygon 
segments. In fact, we can purposely set K to be divisible by the 
number of threads in a computing block (N) and use N in the 
distance computing kernel to make a good match. Since 
memory access patterns play a predominantly important role in 
achieving good performance in data-intensive GPU computing, 
we next discuss how data are accessed and how memory 
coalescing is achieved.  

When a thread loops through rings and vertices of a 
polygon (c.f. Section 3.1), it first retrieves the starting and 
ending ring indices from the Ring Index array. For each of the 
ring index, it retrieves the starting and ending vertex indices 
from the Vertex Index array. As two consecutive vertices define 
a polygon segment, the distance between the point assigned to 
the thread and the segment can be computed. Note that when the 
point is perpendicularly projected to the extension (instead of 
falling onto) of the segment, the smaller distance to the two 
vertices of the segment is used instead. As points within a 
quadrant are paired with a same polygon, threads within a 
computing block will access the same set of vertices in all steps 
of the distance computation and thus memory accesses are 
perfectly coalesced.  

While conceptually it is possible to collaboratively 
load the vertices to GPU shared memory by all the threads in a 
computing block to avoid multiple accesses to the vertices in 
GPU global memory, our experiments have shown that the 
performance gain is not signficant. There are three possible 
reasons. First, the memory accesses are already coalesced as we 
just discussed. Second, the unified L2 cache introduced in the 
Fermi architecture16 may have cached the polygon vertices. 
Third, the distance computation kernel is computing intensive 
and the memory accesses overheads are overshadowed. By 
avoiding using shared memory, the implementation becomes 
more flexible in adjusting numbers of threads in a computing 
block (e.g., based on K values).  In addition, the saved fast on-
chip shared memory can potentially be used to store per-thread 
information which is currently represented by registers. Due to 
the complexity of the distance computation kernel, our current 
implementation requires more registers than the GPU hardware 
can provide when GPU Stream Multiprocessors (SMs) are fully 
utilized (32768/1024=32 registers per thread) and the hardware 
occupancy is not full. By balancing the utilization of registers 
and shared memory, we expect to improve hardware occupancy 

and further improve the performance of the implementation. 
This is left for our future work.  

4. EXPERIMENTS AND RESULTS 

4.1 Data and Experiment Setup 
Through a partnership with the New York City (NYC) 

Taxi and Limousine Commission (TLC), we have access to 
roughly 300 million GPS-based trip records for a duration of 
about two years (2008-2010). Each taxi trip has a GPS recorded 
pickup location and a drop-off location expressed as a pair of 
latitude and longitude. In this study, we use the approximately 
170 million pickup locations in 2009 for experiments. The 
polygon data we use is the NYC MapPluto tax lot data17. There 
are 735,488 tax lot polygons in NYC with 4,698,986 vertices. 
All experiments are performed on a Dell Precision T5400 
workstation equipped with dual quadcore CPUs running at 2.26 
GHZ. The workstation has 16 GB memory and a 500G hard 
drive and is equipped with a Nvidia Quadra 6000 GPU device 
with 448 CUDA cores and 6 GB GDDR5 memory. The 
sustainable disk I/O speed is about 100 megabytes per second 
while the theoretical data transfer speed between the CPU and 
the GPU is 4 gigabytes per second through a PCI-E card.  

For comparison purposes, we have implemented the 
same spatial join using open source GIS packages, i.e., 
libspatialindex to index polygon data by building an R-Tree, 
and, GDAL, which implicitly uses GEOS, to perform the point-
to-polygon distance computation. While we could have also 
built an R-Tree for the point locations by treating the points as 
bounding boxes, given the large number of points, it is very 
costly to index the point data using R-Tree indexing. In 
addition, coordinating the two index structures to perform the 
spatial join is non-trivial on CPUs and is beyond the scope of 
this research. As such, the CPU implementation computes the 
distance from each point to the polygons whose MBRs intersect 
with the point based on the R-Tree indexing and chooses the one 
that has the smallest distance. We compiled both the CPU and 
GPU source code with –O2 optimization flag for fair 
comparison.  

Our GPU implementation has two major parameters to 
set. The first parameter is K, the maximum number of points in 
a quadrant and the second parameter is the number of threads 
per computing block (N) in the pair-wise distance computing 
kernel. We have tested three K values (256, 512 and 1024) and 
three N values (128, 256 and 512) under the condition that 
K>=N. We first report the best GPU result and compare it with 
the CPU implementation. We then provide details on the GPU 
implementation.  

4.2 Overall Results 
The overall results are summarized in Table 1 where 

the four implementations, i.e., All CPU–baseline, Hybrid-1, 
Hybrid-2 and All-GPU, adopt the three performance boosting 
techniques as marked. The parameters have been set to K=256, 
N=256 based on the experiments and r is empirically fixed to 
100 feet (~30 meters) for the GPU implementation where the 
best results are achieved. The CPU implementation also uses 
K=512 and r=100 feet (N is irrelevant) for comparison purposes. 
From Table 1 we can see that the three performance boosting 
techniques have contributed 3.66X, 37.37X and 24.28X 



 

 

speedups, respectively. This brings a total speedup of 3,325.1X. 
Among the three techniques, using the in-memory data 
structures seems to be the most signficant (37.37X). Since 
indexing points can also be done in external memory using 
traditional techniques and using in-memory data structures is the 
prerequisite for GPU accelerations, we also compute the 
combined speedup of the latter two techniques which are more 
related to modern hardware. The combined speedup is 907.5X 
and is close to 3 orders which may indicate that there are 
considerable potential in improving the performance of existing 
spatial databases and GIS software by using GPU accelerations 
and data structures that are friendly to modern hardware 
architectures.  

4.3 Results of GPU Implementation 
The runtimes of the GPU implementation include the 

following components: generating point quadrants (12.238 
seconds), pairing point quadrants and polygons in the filtering 
phase (1.957 seconds) and pair-wise distance computation and 
comparison in the refinement phase (18.915 seconds). Clearly 
the refinement phase dominates the overall process. While there 
are quite some performance improvement opportunities for the 
filtering phase, we are more interested in optimizing the 
refinement phase. Our experiments have shown that using 
different combinations of K and N can nearly double the 
runtime of the refinement phase (with K=1024 and N=128) 
which warrants further investigation. Although using a large K 
will decrease the runtime of generating point quadrants, it will 
allow more points in a quadrant and thus the MBRs of such 
quadrants will be larger. Due to the reduced filtering power, 
there will be more distance computations needed to be done in 
the refinement phase. As such, the current implementation 
favors small K values with respect to runtime. However, when 
K is small (and hence large number of quadrants), there will be 
a large number of (qid, pid) pairs which may impose signficant 

memory pressure on GPUs. Furthermore, K can not be less than 
the GPU warp size set by CUDA compute capabilities (currently 
32) in order to fully utilize GPU. As discussed in Section 3.4, 
since our GPU implementation uses more than 32 register files 
per thread, using large N will incur low occupancy rate which 
typically will bring down the kernel performance. On the other 
hand, using small N will need to perform multiple loops over K 
(note that we have set K to be divisible by N) and can incur 
synchronization overhead. As reported earlier, we have found 
that K=256 and N=256 achieved the best performance among all 
the combinations we have tested.  

Despite the significant speedup over the serial CPU 
implementation using the state-of-the-art open source software 
packages, there are still considerable rooms for performance 
improvements and the limited GPU memory capacity issue 
(when compared with CPU) also needs to be addressed from a 
system development perspective. For example, using a multi-
level grid file or tree indexing structures may reduce the 
memory requirement in the filtering phase by generating fewer 
(qid, pid) pairs which have been observed and addressed in our 
previous work [32, 33] from a spatial range query perspective in 
a CPU setting. Another improvement that can potentially 
significantly improve the performance of the refinement phase 
(which in turn will boost the overall performance due to 
Amdahl’s law) is on-the-fly indexing of points and polygon 
segments within a computing block using GPU fast shared 
memory (and/or global memory). The work by Hoel and Samet 
[2] can be adapted for the GPU hardware architecture for this 
purpose as well although their technique was targeted for a very 
different parallel hardware architecture (the CM-5 machine). 
This is especially useful for large point quadrants and polygons 
where indexing is effective in pruning search space for spatial 
join. Subsequently a meta-module is needed to decide when to 
and when not to perform such on-the-fly indexing. These are left 
for our future work.  

Table 1 Overall Results on Applying the Three Performance Boosting Techniques 

Implementation/Performanc
e boosting techniques 
applied 

Collective query 
(for points) 

in-memory 
data structures 

GPU 
acceleration 

Runtime 
(seconds) 

Step-wise 
speedup (X) 

Accumulative 
speedup (X) 

All CPU (baseline)    11,0093.680 / / 

Hybrid-1 X   30,048.223 3.66 3.66 

Bybird-2 X X  804.016 37.37 136.93 

All GPU X X X 33.110 24.28 3,325.1 

 

5. CONCLUSION AND FUTURE WORK 
In this study, we have reported our GPGPU-based 

designs and implementations on spatially joining large-scale 
point location data with polygon data which is an important 
operation in spatial databases and GIS. The high-performance 
system can help identify trip purposes when applied to 
processing large-scale ubiquitous urban sensing data such as 
GPS recorded pickup and drop-off locations of taxi trip records. 
Experiments have shown that, with a combination of in-memory 
data structures, collective query strategy and GPU hardware 
parallel accelerations, we have  achieved 3,325 times of speedup 

when compared to a baseline serial CPU implementation on top 
of the state-of-the-art open source GIS packages.  

For future work, first of all, we would like to analyze 
the potential of further performance improvements. The 
majority of the current implementation is built on top of the 
Thrust parallel library which incurs some unavoidable 
duplicated computing. The kernels we have developed can also 
be optimized in terms of load balancing and algorithmic 
engineering (especially for the pair-wise distance computing 
kernel code) in addition to using more efficient indexing 
structures for filtering on GPUs and on-the-fly indexing of both 
points and polygon segments in a computing block. Second, we 



 

 

plan to systematically address the limited GPU memory 
capacity issue by segmenting the inputs in the primitives-based 
modules into chunks and combining the chunked results into the 
final ones. This is in addition to developing new data structures 
that has smaller memory footprint. Finally, after cleaning up the 
source code and preparing some data generation code (the taxi 
trip data and some of the urban infrastructure data are not 
shareable at present), we plan to make our code open source. 
We believe a community effort is needed to make traditional 
GIS/SDB adaptive to a parallel era.  

6. REFERENCES 
[1] Jacox, E. H. and Samet, H. (2007). Spatial join techniques. ACM 

Transaction on Database System 32(1). 
[2] Hoel, E. G. and Samet, H., 1994. Performance of Data-Parallel 

Spatial Operations. Proceedings of VLDB Conference.  
[3] Brinkhoff, T., Kriegel, H.-P. and Seeger, B. (1996). Parallel 

Processing of Spatial Joins Using R-trees. Proceedings of IEEE 
ICDE Conference. 

[4] Zhou, X., Abel, D. J. and Truffet, D. (1998). Data Partitioning for 
Parallel Spatial Join Processing. GeoInformatica 2(2): 175-204. 

[5] Clematis, A., Mineter, M. et al., 2003. High performance 
computing with geographical data. Parallel Computing 29(10): 
1275-1279. 

[6] Hong, S., Kim, S. K., et al., 2011. Accelerating CUDA graph 
algorithms at maximum warp. Proceedings of the 16th ACM 
symposium on Principles and practice of parallel programming. 

[7] Zhang, J. 2010. Towards Personal High-Performance Geospatial 
Computing (HPC-G): Perspectives and a Case Study. Proceedings 
of ACM HPDGIS workshop. 

[8] Zhang, S., Han, J., Liu, Z., Wang, K. and Xu, Z. (2009). SJMR: 
Parallelizing spatial join with MapReduce on clusters. Proceedings 
of IEEE International Conference on Cluster Computing. 

[9] Zhang, C., Li, F. and Jestes, J. (2012). Efficient parallel kNN joins 
for large data in MapReduce. Proceedings of EDBT Conference 

[10] Lee, K.-H., Lee, Y.-J., Choi, H., Chung, Y. D. and Moon, B. 
(2012). Parallel data processing with MapReduce: a survey. 
SIGMOD Record, 40 (4), 11-20. 

[11] Hennessy, J.L. and Patterson, D. A, 2011. Computer Architecture: 
A Quantitative Approach (5th ed.). Morgan Kaufmann 

[12] John, C. and Kenneth, A. R. (2008). Data partitioning on chip 
multiprocessors. Proceedings of ACM DaMoN workshop. 

[13] Cieslewicz, J. and Ross, K. A. (2008). Database Optimizations for 
Modern Hardware. Proceedings of the IEEE 96(5). 

[14] Zhang, J. and You., S.  (2012). Speeding up Large-Scale Point-in-
Polygon Test Based Spatial Join on GPUs. Technical report online 
at http://geoteci.engr.ccny.cuny.edu/pub/pipsp_tr.pdf 

[15] Krste, A., Rastislav, B., James, D., Tony, K., Kurt, K., John, K., 
Nelson, M., David, P., Koushik, S., John, W., David, W. and 
Katherine, Y. (2009). A view of the parallel computing landscape, 
CACM. 52, 56-67. 

[16] Zheng, Y., Liu, Y., Yuan, J. and Xie, X. (2011). Urban computing 
with taxicabs. Proceedings of ACM UbiComp. 

[17] Calabrese, F., Colonna, M. et al. 2010. Real-Time Urban 
Monitoring Using Cell Phones: A Case Study in Rome. IEEE 
Transactions on Intelligent Transportation Systems 12(1): 141-151. 

[18] Vasconcelos, M. A., Ricci, S., et al. 2012. Tips, Dones and Todos: 
Uncovering User Profiles in Foursquare. Proceedings of ACM 
WSDM Conference.  

[19] Calabrese, F., Kloeckl, K., et al. 2008. WikiCity: Real-time 
Location-sensitive Tools for the City. In Handbook of Research on 
Urban Informatics: The Practice and Promise of the Real-Time 
City (Foth, M. eds) 390-413. IGI Global.  

[20] Friedland, G., Choi, J., et al. 2011. Video2GPS: A Demo of 
Multimodal Location Estimation on Flickr Videos. Proceedings of 
ACM Multimedia Conference.  

[21] Abadi, D. J., Madden, S. R. and Hachem, N. (2008). Column-
stores vs. row-stores: how different are they really? Proceedings of 
ACM SIGMOD Conference. 

[22] Zhang, J., Gong, H., Kamga, C. and Gruenwald L. (2012). 
U2SOD-DB: A Database System to Manage Large-Scale 
Ubiquitous Urban Sensing Origin-Destination Data. To appear in 
proceedings of ACM SIGKDD UrbComp workshop.   

[23] He, B. S., Lu, M., Yang, K., Fang, R., Govindaraju, N. K., Luo, Q. 
and Sander, P. V. (2009). Relational Query Coprocessing on 
Graphics Processors. ACM Transactions on Database Systems 
34(4). 

[24] Gregory Frederick Diamos, Wu, H., Lele, A. and Wang, J. (2012). 
Efficient Relational Algebra Algorithms and Data Structures for 
GPU. Technical report. Online at 
http://www.cercs.gatech.edu/tech-reports/tr2012/git-cercs-12-
01.pdf 

[25] Kaldewey, T., Lohman, G., Mueller, R. and Volk, P. (2012). GPU 
join processing revisited. Proceedings ACM DaMoN Workshop. 

[26] Zhou, K., Hou, Q., et al. (2008). Real-Time KD-Tree Construction 
on Graphics Hardware. ACM Transaction on Graphics 27(5). 

[27] Luo, L., Wong, M. D. F., et al. (2011). Parallel implementation of 
R-trees on the GPU. Proceedings of Asia and South Pacific Design 
Automation Conference (ASP-DAC). 

[28] Chen, Y. and Patel, J. (2007). Efficient evaluation of all-nearest-
neigbor queries. Proceedings of IEEE ICDE. 

[29] Yang, K., He, B., Fang, R., Lu, M., Govindaraju, N., Luo, Q., 
Sander, P. and Shi, J. (2007). In-memory grid files on graphics 
processors. Proceedings of ACM DaMoN Workshop 

[30] Zhang, J. and Gruenwald, L. (2012). CSPT-P Tree Indexing on 
Large-Scale Point data using Parallel Primitives on GPGPUs. 
Technical report. Online at 
http://134.74.112.65/primcsptp/CSPTP_tr.pdf  

[31] Zhang, J. (2012). Parallel Primitives based Spatial Join of 
Geospatial Data on GPGPUs. Technical report. Online at 
http://134.74.112.65/primspjion/PPSJ_tr.pdf  

[32] Zhang, J., Gertz, M. and Gruenwald, L. (2009). Efficiently 
managing large-scale raster species distribution data in 
PostgreSQL. Proceedings of ACM GIS.  

[33] Zhang, J. (2012) A high-performance web-based information 
system for publishing large-scale species range maps in support of 
biodiversity studies. Ecological Informatics 8: 68-77. 

                                                                 
1 en.wikipedia.org/wiki/Parallel_Random_Access_Machine 
2 http://en.wikipedia.org/wiki/MapReduce 
3 http://hadoop.apache.org/hdfs/ 
4 http://libspatialindex.github.com/ 
5 http://www.gdal.org/ 
6 http://thrust.github.com/ 
7 http://en.wikipedia.org/wiki/Translation_lookaside_buffer 
8 http://en.wikipedia.org/wiki/Online_analytical_processing 
9 http://en.wikipedia.org/wiki/Big_data 
10 http://en.wikipedia.org/wiki/Extract,_transform,_load 
11 http://developer.nvidia.com/cuda-downloads 
12 http://en.wikipedia.org/wiki/Direct_memory_access 
13 http://www.opengeospatial.org/standards/sfs 
14 http://en.wikipedia.org/wiki/Z-order_curve 
15 http://en.wikipedia.org/wiki/Space-filling_curve 
16 http://www.nvidia.com/object/fermi-architecture.html 
17 http://www.nyc.gov/html/dcp/html/bytes/applbyte.shtml 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /PTB <>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


