

High-Performance Spatial Join Processing on GPGPUs with
Applications to Large-Scale Taxi Trip Data

Jianting Zhang

Dept. of Computer Science
City College of New York
New York City, NY, 10031

jzhang@cs.ccny.cuny.edu

Simin You
Dept. of Computer Science

CUNY Graduate Center
New York, NY, 10016

syou@gc.cuny.edu

Le Gruenwald
School of Computer Science

University of Oklahoma
Norman, OK 73071

ggruenwald@ou.edu

ABSTRACT
Spatially joining GPS recorded locations with infrastructure
data, such as points of interests, road network, land cover and
different types of zones, and assigning a point with its nearest
polyline or polygon is a prerequisite for trip related analysis,
which is becoming increasingly important in ubiquitous
computing. However, existing spatial databases and GIS are
incapable of handling large-scale data. The poor performance of
these systems that takes tens of hours to dozens of days to
complete such a commonly used spatial join query is
undesirable. By leveraging several high-performance
techniques, including massive data parallel General Purpose
computing on Graphics Processing Units (GPGPU) technologies
and cache friendly main-memory data structures, we are able to
design an efficient spatial join query processing system. The
experiments using a commodity workstation equipped with a
Nvidia GPU device and real NYC taxi trip location data show
that our system can join 170 million points with nearly a million
polygons based on the nearest neighbor principle in about 33
seconds The performance represents a 3-4 orders of speedup
when compared with an optimized serial CPU implementation
using two leading open source packages for spatial indexing and
spatial data management, respectively. We report our designs
and implementations of GPU based filtering and refinement in
spatial join processing and discuss the implications of modern
hardware architectures for spatial databases and GIS.

1. INTRODUCTION
Spatial joins are fundamental in Spatial Databases

(SDB) and Geographical Information System (GIS). Given two
geospatial datasets (which can be points, polylines and
polygons), a spatial join finds all pairs of objects satisfying a
given spatial relationship between the objects, such as within,
intersect and nearest neighbor. Spatial joins on CPUs have been
extensively studied over the past few decades [1] given their
practical importance. However, while research in parallel spatial
joins can be dated back to 1990s [2-4], it was not until General
Purpose computing on Graphics Processing Units (GPGPU)
technologies on commodity hardware become available in
recent years that using parallel spatial join processing to speed
up SDB and GIS performance starts to be practical, both
technologically and economically. This is because in the past
accesses to parallel computing resources, such as
supercomputers and grid computing facilities, were very limited
to general users in the geospatial computing community [5]. The
current commodity GPU architectures closely resemble
supercomputers as both implement the primary Parallel Random

Access Machine (PRAM1) characteristic of utilizing a very large
number of threads with uniform memory latency [6]. The
powerful parallel hardware architectures and the availability of
low cost commodity GPU devices that are capable of general
computing make it attractive to use GPUs for geospatial
computing [7], including exploring the new designs and
implementations of spatial joins on the new hardware for
practical applications which is the purpose of this study.

The work reported in this paper is motivated by a
practical large-scale spatial data management problem in
associating hundreds of millions of points (taxi pickup locations
at a yearly scale) with hundreds of thousands of polygons (tax
lots whose land use types serve as a proxy for trip purposes)
based on the nearest neighbor principle in the New York City
(NYC). As the research in identifying trip purposes from large-
scale taxi trip data is exploratory in nature, a fast
implementation that can provide near real-time responses is
essential. While nearest neighbor based spatial joins is
supported in several spatial databases (e.g., Oracle Spatial) and
GIS (e.g., ESRI ArcGIS), the response times on a single
processor are too long to be practically useful when processing
data at such a scale. Our experiments have shown that DBMS
overheads and inefficient disk I/Os could prolong the processing
times to tens of days. Furthermore, mainstream spatial databases
and GIS do not natively support parallel hardware architectures
yet. An alternative solution is to explore parallel processing
power in Cloud Computing by adopting a MapReduce2 parallel
computing framework and incorporating open source GIS
packages. Although a few successful stories have been reported
[8, 9], we have several concerns in adopting the approach for
our application that require near-interactive responses.

First, similar to using disk-resident spatial databases
and GIS, disk I/Os can be a severe bottleneck in achieving the
desired response time as the Hadoop Distributed File System
(HDFS3) and its alike require signficant reading and writing
accesses to slow disks and network channels to realize the
parallelization. It is not clear whether it is possible to achieve
the level of scalability for interactive applications due to the
disk I/O and network bottlenecks. Second, even though it might
be economically viable to execute MapReduce jobs in a Cloud
Computing environment, developing and debugging
MapReduce systems in a distributed environment can be
difficult, time consuming and economically expensive. Third,
previous works have shown that MapReduce systems are
inefficient in utilizing computing resources [10]. Given that our
reference serial implementation using open source geospatial
data management packages (more specifically libspatialindex4

for R-Tree based polygon indexing and GDAL/OGR5 for
distance computation between points and polygons) required
more than 30 hours (see Section 4 for details), to achieve a
response time at the 10-100 seconds level, a speedup of 3-4
orders (1,000X-10,000X) is needed. Even assuming that Cloud
Computing can achieve a linear speedup, without fundamental
changes on data structures, algorithms and system
implementations, this would be a huge waste of energy even if it
is economically affordable.

As such, we have decided to explore GPGPU
computing technologies to gain the desired level of
performance. By integrating system provided parallel primitives
(more specifically the Thrust6 library) and our in-house
developed modules, we are able to develop a working system
that allows spatial join of 170 million taxi pickup locations with
nearly a million polygons in NYC area in 2009 in about 33
seconds. This represents a more than three orders (3,325X)
speedup compared with the reference optimized serial
implementation, both run on a single commodity workstation.
Three multiplicative factors, including collective query strategy,
in-memory data structure and parallel hardware, have
contributed to the significant speedup. First, while traditionally
spatial indexing is considered expensive and some spatial join
algorithms have been designed for non-indexed data to achieve
better performance [1], we have developed a fast quasi-indexing
approach on GPGPUs to quickly assign points to quadrants and
use the point quadrants as the basic units for the spatial join.
Since many points are spatially close to each other in our point
dataset and very often nearby points will be joined with a same
polygon, it is beneficial to use the quadrants instead of the
individual points to query against indexed polygons. We term
this strategy as Collective Query. The saving can be signficant
when the numbers of points in the quadrants are large. Second,
instead of using sophisticated data structures that requires
dynamic memory allocations, which become increasingly
expensive on modern hardware [11], simple linear data
structures (including arrays and vectors) are used to stream data
efficiently from disks to CPU main memories and to GPU
global memories. The design is cache friendly and reduces TLB
(Translation Lookaside Buffer7) misses [12, 13]. Using
Structures of Arrays (SoA) instead of Arrays of Structures
(AoS) further increases cache hits as more relevant data can be
loaded into a cache line for small (short-length) data items.
Third, after point quadrants are paired with polygons,
computing the distances among all points in a quadrant and the
polygon segments become embarrassingly parallelizable and is
more suitable for GPUs due to its floating point computing
power and high bandwidth between off-chip global memory and
on-chip registers. A similar framework has been adopted in our
previous work on spatially joining points and polygons through
point-in-polygon test [14]. In this study, we focus on
investigating the relative contributions of each of the three
performance boosting technologies. As detailed in Section 4,
these three factors contribute about 3.7X, 37X and 24X,
respectively, which brings the combined speedup to 3,325X.

Although the signficant speedup is certainly
practically useful, we believe it is more important to understand
the limiting factors in the existing spatial databases and GIS
software in achieving their potentials on modern parallel
hardware architectures and we expect this work can serve as a

case study for this purpose. Given the increasingly powerful
(but not much about being faster on individual processors)
parallel hardware and the increasingly large scale data, we
believe it is timely to re-examine the cost models in designing
spatial data structures and query processing algorithms in spatial
databases and GIS. In particular, while existing spatial databases
are mostly designed to be disk-resident and transaction oriented,
there are increasingly large-scale OLAP8 type applications on
read-only spatial data where GPU accelerations can be
instrumental. Existing indexing structures are heavily tailored
for serial implementations on CPUs which seems to favor
sophisticated designs in minimizing computation. However,
different from the hardware invented 20-30 years ago,
computation now is almost free while memory access can be
hundreds of times slower in terms of clock cycles on modern
hardware [15]. Despite many Software Development Kits
(SDKs) are designed to purposely hide hardware details to
improve programming productivity, a hardware-software co-
design approach is essential to achieve the desired high
performance. A key issue in this initiative is to identify the
inherent data parallelisms in geospatial data processing and map
it to parallel hardware in an appropriate way. Our
implementation has adopted a parallel-primitive-oriented
approach by using system-provided generic parallel primitives
as much as possible and developing new parallel primitives for
multidimensional data. We hope this design and development
effort can eventually lead to a parallel primitive library designed
for geospatial data to help make traditional spatial databases and
GIS adaptive to parallel computing environments.

Our technical contributions are the following. First,
we have designed and implemented a system to spatially join
large-scale point locations with polygons completely on GPUs
based on the nearest neighbor principle within an r-expanded
window (or Windowed NN join), including both the filtering
phase (by adopting a grid file based indexing approach) and the
refinement phase (by assigning point quadrant and polygon
pairs to GPU computing blocks for pair wise distance
computation). Second, by integrating several high-performance
computing technologies, we have reduced the computing time
from 30.5 hours to 33.1 seconds and achieved more than 3,200X
speedup when joining the pickup locations of 170 million taxi
trip records with nearly a million tax-lot polygons. The system
has made interactive spatial queries possible for the data at this
scale. Third, by hybridizing GPU and CPU implementations, we
have investigated the relative contributions of the speedup of the
three performance boosting techniques and discussed their
implications in designing high-performance SDB and GIS.

The rest of the paper is arranged as follows. Section 2
introduces the background, motivation and related work. Section
3 describes system design and implementation details. Section 4
presents the experiments and evaluations. Finally Section 5
provides conclusion and future work.

2. BACKGROUND, MOTIVATION AND
RELATED WORK

Computing has evolved into a parallel era. In fact,
from high-end servers to smart phones, it becomes increasingly
difficult to find uni-processor based devices. Unfortunately, the
software industry in general and the data management system

vendors in particular are slow in adapting to the parallel era and
making full use of parallel hardware for BigData9 applications.
Geospatial computing (including both data management and
analytics) are inherently data intensive. Although geospatial
data are mostly collected and distributed by government
agencies in the past (such as satellite imagery and urban
infrastructure data), ubiquitous location and sensing data
generated by individuals using handheld devices, such as GPS
traces [16], cell phone call logs [17], location dependent social
networks data [18, 19] and location enhanced photos and videos
[20], are becoming increasingly popular. The data volumes have
been growing exponentially. These new types of geospatial data
are essential in understanding natural and social dynamics at
community, city, national and global scales, especially when
they are associated with infrastructure data and domain
knowledge. There are several unique features in such data. First,
they are mostly point data (e.g., GPS readings) or can be
represented as point data after proper transformations (e.g.,
geocoding). Second, these data are highly concentrated in urban
areas where human activities are high. Third, infrastructure data,
such as road networks, Points of Interests (POIs) and land use
types are crucial to understand the underlying meaning of the
data, such as trip purposes and social interactions.

Although GIS and SDB are the commonly used tools
to handle geo-referenced spatial data, we argue that existing GIS
and SDB technologies and available tools are inefficient and/or
insufficient in managing large-scale ubiquitous urban sensing
data. The object-relational data models that are utilized in most
of existing GIS and SDBs, while generic to handle many types
of geospatial data, are not efficient to process point data at
levels of hundreds of millions. The complex software structures
also make it difficult to adapt to modern hardware, including
parallel processing units, large-memory capacities and evolving
cache hierarchies. The tuple-oriented physical data layout also
makes it inefficient in processing read-only data when compared
with column-oriented data layout for fast in-memory processing
[21]. Towards this end, we have designed a prototype system
called U2SOD-DB [22] that is targeted at managing large-scale
ubiquitous urban sensing origin-destination data. We next
briefly introduce the layered functional modules in U2SOD-DB
to put the work reported in this paper into the context.

At the bottom layer, U2SOD-DB adopts a time-
segmented, column-oriented physical data layout to support in-
memory, array-based data structures and allow fast streaming
among disks, CPU memories and GPU global memory. The
middle layer provides essential functionality on data
compression, indexing and spatial/temporal aggregations. The
top layer of U2SOD-DB is designed to support more
application-oriented operations such as joining point locations
with points (e.g., POIs), polylines (e.g., road segments) and
polygons (e.g., land use lots and census blocks) and shortest
path computation. U2SOD-DB targets at supporting the three
types of spatial joins between point locations and urban
infrastructure data, namely P2N-D join to snap a point to its
nearest street segment, P2P-T join to associate a point with a
polygon that the points falls into and P2P-D join to associate a
point with a polygon that the point is closest to the polygon.
Obviously, operations in this layer are much more
computationally intensive and will benefit from performance
boosting techniques including cache friendly in-memory data

structures and parallelization on GPGPU accelerators. The work
reported in this study is a new implementation of the P2P-D
module of U2SOD-DB where spatial join on points and
polygons is based on the nearest neighbor principle.

Our previous results have shown that, for P2P-D
spatial join, we were able to reduce the runtime from 30.5 hours
to 1000-1500 seconds by adopting a hybrid approach where the
points are quasi-indexed on GPUs and spatial join is performed
on CPUs. An impressive 100X+ speedup has been achieved
[22]. In this study, we show that the GPGPU parallel
accelerations have brought a 26.5X speedup for distance
computation which is the dominating component in the spatial
join. This in turn brings the overall speedup to 3,325X when
joining 170 million points with 735,488 real-world polygons.
Due to the modular design, we are able to replace GPU parallel
modules with functionally equivalent serial CPU modules
wherever necessary to investigate the relative contributions of
the three performance boosting techniques that are mentioned
earlier. The experiment results have provided us some solid
evidence in suggesting viable paths in making SDB and GIS
software adaptive to the new parallel era. The proposed spatial
join implementation reuses several components of U2SOD-DB,
including physical data layout, parallel indexing of point data
and an ETL10 (Extract, Transform and Load) module to convert
polygon data to arrays. It is our goal to synergize these inter-
related components which eventually leads to a high-
performance geospatial data management system on commodity
parallel devices without extra costs. In addition to core
algorithm design and implementations, there are considerable
software engineering issues need to be solved before the system
can be reliably used for practical applications.

There is a rich body of related works on parallel
algorithms and their GPGPU implementations, spatial indexing
and spatial joins, and, urban computing applications of
geospatial analysis While it is beyond our scope to provide a
comprehensive review on the related works in the respective
research areas, here we discuss a few related works that are
most relevant to our research and development efforts. Research
on spatial indexing and spatial joins using parallel primitives
can be dated back to the seminal work by Hoel and Samet [2].
They have designed and implemented spatial operations using
parallel primitives for PMR Quadtree trees and R-Trees and
used them for operations such as polygonization based on
topologies and spatial joins based on spatial intersections.
Vertices and line segments were used as the basic units for
spatial indexing and operations. In addition to targeting at the
different hardware architectures (then supercomputer CM-5 v.s.
current commodity shared-memory GPUs), our parallelization
focuses on distance computation and nearest neighbor
assignment which requires a different sets of parallel primitives
from a conceptual design perspective. Nevertheless, our
decision on using a simple grid-file structure to index Minimum
Bounding Boxes (MBRs) of both point quadrants and polygons
is partially motivated by their results showing that regular
disjoint decompositions (PMR Quadtree) performed better than
irregular decompositions (R-Trees) in a parallel setting. As
detailed in the next section, when both MBRs of point quadrants
and polygons are mapped to a simple grid, pairing two MBRs
from the two joining datasets can be transformed into an
equijoin problem on grid cell identifiers which can be efficiently

supported by combining generic parallel primitives such as sort,
reduce, binary_search and unique. Another difference is that
while we try to make full use of parallel primitives that are
available in the underlying software development system
(CUDA SDK11 in this case), we realize that operations on
multidimensional data can not always be efficiently (or even
possibly) implemented on top of generic parallel primitives that
are designed for 1D vectors. As such, we have implemented a
set of functions that are required by our application (but are not
supported by the underlying parallel library) using native
parallel programming languages (CUDA C in this case).

Another category of related work is relational joins on
GPUs. The GDB prototype system [23] has provided
implementations of different types of relational joins, such as
nested loop joins (both indexed and non-index), sort-merge joins
and hash joins. A more complete set of relational algebra
algorithms have been implemented recently [24] and reportedly
better performance has been achieved. The work reported in
[25] is interesting in the sense that, instead of transferring all
relevant data to GPUs before relational joins, some data are
designed to reside on CPU main memory and are exchanged
dynamically between the CPU and GPU memories by the GPU-
based join program through hardware supported DMA12. The
relational join implementation matches GPU hardware
architecture very well and the performance is impressive.
However, spatial joins are significantly different from relational
joins as pairing spatial objects in the two joining datasets are
based on multidimensional spatial relationships instead of
simple equality test (for natural joins) or evaluating a boolean
expression (for theta joins). Furthermore, unlike relation joins
that all tuples are flat and pairing two tuples can only be
evaluated to true or false, pairing two spatial objects in different
hierarchies may generate an unknown number of pairs which
makes it rather difficult to parallelize.

While there are several pioneering works in spatial
indexing on GPUs in computer graphics research (e.g., [26]), we
argue that they are mostly designed for computer graphics
applications such as ray-tracing and iso-surface constructions.
They may not be suitable for spatially joining multiple datasets
that is commonly required in SDB/GIS. There are several
attempts to implement the classic R-Tree spatial indexing
structure on GPUs and the work reported in [27] seems to be the
most comprehensive one. The authors have tested parallel
spatial range queries on constructed R-trees on GPUs which can
be potentially modified for spatial join by treating the
independent geometric objects used for queries as the non-
indexed source dataset to be joined. However, while R-Trees
have been extensively used on CPUs for spatial join, it is not
clear whether R-Trees are good choices for spatial joins on
GPUs. This is because data accesses are highly irregular when
pairing the bounding boxes of geometrical objects that are
indexed by R-Trees in both the source and target datasets that
participate a spatial join. The problem has also been observed in
previous research on all-pair nearest neighbor queries on CPUs
[28].

One of our technical contributions in this paper is to
tessellate spatial objects into sets of basic units according a
certain spatial ordering and then use them as the intermediate
tuples to apply relational joins on GPUs in the filtering phase of
spatial join, i.e., use the grid cells as the basic units for equal

joins to emulate spatial joins. The design utilizes a simple grid
file data structure which might be superficially similar to the in-
memory grid file data structure on GPUs first proposed in [29]
as both are derived from classic grid file structures. However,
there are several key differences between the two. First of all,
the grid files proposed in [29] are designed to process exact
match or range queries while our grid file is designed to process
spatial join. Second, the grid file in [29] is used to index points
directly while our grid file is used to index bounding boxes of
both point quadrant and polygons (detailed in Section 3). It
would be impossible to index hundreds of millions point directly
on GPUs due to the memory capacity constraints. Third, while
their range queries locate points within query windows directly
without needing further processing, our spatial join computes
unique pairs of point quadrants and polygons which requires
complex post-processing including sorting, searching and
removing duplicates.

3. SYSTEM DESIGN AND
IMPLEMENTATION DETAILS
3.1 Overview

Following the general procedure of spatial joins [1],
our data parallel spatial join algorithm also has two phases: the
filter phase and the refinement phase. In the filter phase, we
identify the largest quadrants that have less than K points
(quasi-indexing) and build a grid-file based index structure for
the bounding boxes or expanded bounding boxes of both the
point quadrants and the polygons to be joined. The algorithm
identifies (qid, pid) pairs that potentially satisfy the spatial join
criteria where qid represent an identified quadrant and pid
represents a polygon. In the refinement phase, distances among
all the points in the quadrant and all the edges of the polygon
are computed to assign all the points with the polygon ids of
their nearest polygons. Here the distance between a point and a
polygon is canonically defined as the minimum distance among
all the distances between the point and edges (or segments) of
the polygon. The overall framework is similar to what we have
designed for point-in-polygon test based spatial join [14] with
one major difference. Instead of using MBRs of polygons
directly, we expand the polygon MBRs with r units along the
width dimension and r units along the height dimension (the
purpose of the modification is detailed in Section 3.3). The
modified framework for point-to-polygon spatial join based on
the nearest neighbor principle (or P2P-D for short) is illustrated
in Fig. 1. In the following subsections we present the details of
the components, i.e., in-memory data structure, quadrant
identification, associating bounding Boxes with grid cells, and,
pair-wise distance computation and polygon assignment.

3.2 In-Memory Data Structures and
Quadrant Identification

The details of the in-memory data structures are
discussed in [14][22] and the details of generating point
quadrants are provided in [14]. For the purpose of being self-
contained, we next sketch the key points of these two techniques
that are the integral components of the system. As shown in the
top-right part of Fig. 1, instead of using variable-sized data
structures to store polygon data which requires dynamic
memory allocation in many existing SDB and GIS, we flatten
the complex data structures into five one-dimensional arrays;

the Feature Index array which stores the positions of the first
polygon features in polygon datasets, the Ring Index array
which stores the positions of the first rings of all polygon
features and the Vertex Index array which stores the positions of
the first vertices for all rings, and finally, the X/Y Coordinate
arrays which store the x/y coordinates for all rings. The design
closely reflects the OGC SFS specification13 which has been
adopted by most commercial and open source GIS/SDB

software. As a main-memory based high-performance system,
we assume all the arrays are memory-resident and can be
streamed among hard drives, CPU memories and GPU
memories as chunks. For the 735,488 polygons used in our
experiments, three are 4,698,986 vertices which take just a few
tens of megabytes and can be easily accommodated by
commodity computers.

.

Fig. 1 Framework of System Design

Point Location

Level-wise Space Partitioning

Polygon data

4
9

7
9

2
11

9
7

10
9

11
8

12
5

13
8

14
7

0

1 2 3

4
5

6
7

8

9 10
11 12

13 14

 … 50 60 …

… … 70 73 78 … 100 …

Feature Index

Ring Index

0 … 12

885 913 959 989Vertex Index

X/Y Coordinates

X/Y

Quadrant ID

#of points

 MBR

Q1

Q2

P1

P2

Q1

P1

Q2

P1

Q2

P2

Quadrant-Polygon pairs
after the filtering phase

…

…

…

…

0

1
2

3

4

Loop
Thread
assignment

SM1 SM2 SMn

GPU Global Memory
GPU Accelerator Block

assignment

MBR

5

6
7

The algorithm to generate point quadrants with no
more than K points on GPUs originates from our work on
building Constrained Spatial Partition Trees for Point Data
(CSPT-P) [30] for load balancing purposes in processing
geospatial data, such as GPU-based Geographically Weighted
Regression (GWR) [7]. In this study, we follow a similar
approach that has been exploited in our previous work on point-
in-polygon test based spatial join [14], i.e., re-using the first part
of the CSPT-P construction algorithm for identifying leaf tree
nodes to generate point quadrants. This is based on the
observation that only leaf nodes and not the complete space
partitioning tree is needed for spatial join using a flat grid file
for filtering and we term it as quasi-indexing. That being said,
the whole CSPT-P construction algorithm can be modified to
generate multi-level grid file data structures or used directly for
the filtering phase of the spatial join which is left for our future
work.

Basically a CSPT-P tree spatially divides a point
dataset into quadrants and marks quadrants with no more than K
points as leaf nodes. When a CSPT-P tree is constructed
hierarchically in a top-down manner, there are considerable data
parallelisms at each level and thus parallel primitives, including
copy, transform, sort, scan, gather/scatter and reduce, can be
used efficiently and effectively to implement the tree
construction algorithm on GPUs. First, points are sorted based
the Morton codes14 which are derived from their coordinates at a
level (transform + sort). Second, the numbers of points that fall
within each quadrant can be computed (reduce by key). Third,
points that fall within the quadrants that have fewer than K
points can be shifted to the beginning of the input point vector
and the boundaries of the identified quadrants can be marked
(using a combination of copy, scatter, scan and gather). Finally,
the bounding boxes of the quadrants are computed (transform +
reduce by key). While it is beyond the scope our study to
present the details of primitives based parallel programming, we
refer to the appendix (located at the last page) of [14], which
provides a brief introduction to the parallel primitives that have
been used in this study. The examples given in the appendix
may help understand the functionality of the respective parallel
primitives.

3.3 Associating Bounding Boxes with Grid
Cells

As shown in Fig.2, there are two possible ways to pair
a point quadrant whose MBR is (x1,y1,x2,y2) with a polygon
where points in the quadrant can potentially be paired with the
polygon, i.e., the minimum distance between a point and the
polygon is less than r. The first approach is to expand the MBR
of the point quadrant. If the expanded bounding box of the point
quadrant, i.e., (x1-r,y1-r, x1+r, y1+r), intersects with the MBR
of the polygon then the point quadrant and the polygon is paired
for further refinement. The second approach is opposite to the
first approach by expanding the MBR of the polygon and
finding the point quadrants that intersect with the expanded
MBR of the polygon. We have chosen the second approach and
the reasons will be provided shortly after we introduce the high-
level design in pairing point quadrants and polygons.

To pair point quadrants with polygons, we rasterize
the MBRs of point quadrants and the expanded MBRs of

polygons to a uniformed grid and use equijoin on the cells to
emulate the spatial join of the MBRs. It is clear that, after the
rasterization, some of the grid cells will be covered by one point
quadrant MBRs while some of the grid cells will not be
associated with any point quadrant MBRs. The relationship
between quadrant MBRs and grid cells is 1:n. On the other
hand, since the expanded MBRs of polygons may overlap, the
relationship between polygon MBRs and grid cells is m:n.
Assume there are s point quadrant MBRs and t expanded
polygon MBRs that are mapped to a same grid, then there will
be s*t (qid, pid) pairs to be refined in the refinement phase. Note
that neighboring grid cells might have similar (qid, pid) pairs
and there are duplicated (qid,pid) pairs across grid cells (to be
detailed next). Since only one unique copy of the pairs is needed
to be refined in the refinement phase, the duplications should be
removed before the refinement phase. This can be efficiently
implemented using the sort+unique parallel primitives that are
supported in the Thrust parallel library (and perhaps other
parallel libraries). Our approach essentially transforms a spatial
intersection test problem into a number of equality test
problems, which are very basic and are well supported by all
parallel hardware instruction sets.

Fig. 2 Illustration of the Two Approaches in Pairing Points and
Polygons through MBR Expansion

While conceptually the two approaches in pairing
point quadrants with polygons discussed earlier are the same,
we have found that the second approach has a much better
performance when spatially joining taxi pickup locations with
tax lot polygons due to the grid file based filtering approach and
the distributions of the datasets to be joined. The main reason is
that the majority of taxi pickup locations are clustered near the
street intersections and the identified quadrants often have a
large number of very small quadrants (e.g., from 2*2 feet to
32*32 feet). If r (e.g., 100 feet) is much larger than the quadrant
sizes, the MBRs of these quadrants have large expansion ratios.
When each expanded MBR is used to pair with a polygon MBR,
neighboring point quadrants are likely to generate a large
number pairs of quadrant identifiers and polygon identifiers, or
(qid, pid) pairs, with considerable duplications. This has been
illustrated in Fig. 3. While there are only a few pairs that should
be identified, e.g., {(Q2, P2), (Q2, P3), (Q3, P1), (Q3, P2), (Q3,
P3), (Q4, P1), (Q4, P2), (Q4, P3)}, each of the expanded MBRs
of the four point quadrants are rasterized into 9*9 cells due to
the large r value. In contrast, if we expand the MBRs of the
polygons (not shown in Fig. 3), we will still get the same pairs
but far fewer cell identifiers would be involved. In addition to
requiring large temporary GPU memories to hold the
intermediate cell identifiers for both the rasterized MBRs and

r

r

r

r

for matched (qid, pid) pairs before removing duplicates,
excessive memory accesses to write and read (qid, pid) pairs can
also reduce overall system performance in our parallel
primitives base implementation. As such, we have decided to
adopt the second approach and expand the MBRs of polygons.

What needs to be explained next in more details is the
exact procedure of mapping a box (for both a point quadrant
MBR and an expanded MBR of a polygon) to a grid. Given a
vector of quadruples (x1, y1, x2, y2) for the input MBRs and a
grid cell size cz, we wish to output the cell ids in the range of
col=floor(x1/cz)..ceiling(x2/cz) along the x dimension and
row=floor(y1/cz).. ceiling(y2/cz), where col and row can be
combined using any Space Filling Curve (SFC) ordering15 and
here we use row-major order for simplicity. While this seems to
be trivial for a serial implementation, it turns out to be nontrivial
for a parallel computing model. The biggest issue is to let the
parallel processing units (i.e., threads) know the exact locations
to get the input data from and the exact locations to write the
output data to. A similar effort to compute the locations using
parallel primitives took more than 20 steps (see page 6 of our
technical report at [31] for an example) which has limited the
GPU speedup to only 6.7X for the refinement phase of distance
based spatial join. As such, in this study, we have decided to
develop a parallel primitive directly on top of CUDA for this
purpose. The procedure first uses a prefix-sum over the numbers
of cells for all MBRs to be mapped so that each thread knows
where to start outputting the computed cells. Second, within the
CUDA kernel to compute the cell ids, a thread loops over rows
and columns of a rasterized box and writes out both the quadrant
identifier (qid) and the cell identifiers (cids) to which it is
mapped. While the kernel is not very efficient in the sense that
memory accesses are not coalesced and the workload is not
balanced among threads either, we have found that the
performance is better than that of the implementation using
generic parallel primitives by avoiding computing and
outputting a large number of intermediate positions that are
needed for thread coordination [31].

Fig. 3 Illustration of the Problem in Expanding MBRs

with a Large Expansion Distance
We next provide implementation details on GPU

based association between quadrant identifiers (qids) and
polygon identifiers (pids) through the grid cells (cids) to form
(qid, pid) pairs for refinement. The high-level conceptual design

has been discussed earlier in this subsection. Recall that the cell
mapping kernel generates vectors for MBRs of both the point
quadrants and expanded MBRs of polygons with the first vector
storing qids or pids and the second vector storing the
corresponding cell identifiers (cids). Let us call the two vectors
for the point quadrants are VQQ and VQC, respectively.
Similarly, two vectors are used for polygons, i.e., VPP, and
VPC, as shown in the top-right part of Fig. 4. Our algorithm
searches each of VPC elements in VQC and pairs the
corresponding elements in VPP with the corresponding elements
in VQQ if a search on the VPC element is successful. This can
be efficiently implemented using a combination of the
binary_search and lower_bound parallel primitives provided by
the Thrust library (the details of the combination is available in
the appendix page of [14], if needed). We note that searching
VPC elements can be done in parallel by using the vertorized
versions of the two primitives.

Fig. 4 Illustration of Grid-File based Spatial Join Filtering and
its GPU implementation using Parallel Primitives

3.4 Pair-wise Distance Computation and
Polygon Assignment

After the filter phase is completed, a subsequent
refinement phase is followed. In this phase, pair-wise distance
computation among all the points in the quadrant (identified by
the qid) and all the segments in a polygon (identified by the pid)
are computed to assign points with the proper polygon
identifiers based on the nearest neighbor principle. From a
parallel computing perspective, the parallelism in this step is
very similar to rasterizing MBRs as we have discussed in
Section 3.3. For the same reason (excessive overheads in
computing and outputting locations in a parallel primitives
based implementation), we have developed a CUDA kernel for
this purpose.

It is expected that this step is very computationally
expensive and can be the bottleneck of the overall performance.
It is thus desirable to make full use of the parallel processing
power of GPGPUs. We map the following two levels of data
parallelisms to the CUDA computing model for this purpose.
We assign a (qid, pid) pair to a computing block and assign a
point (within a quadrant) to a thread (within a computing block)
due to the following considerations. First, while each quadrant
has fewer than K points to guarantee load balance to a certain
degree, our empirical results have shown that the actual
numbers of points in quadrants can vary significantly which
may still incur load unbalance with a factor anywhere between 1

Q1

Q2

Q3

Q4

P1

P2

P3

Q1

Q2

P1

P2

Binary

1 1 1 2 2 2 2 2 1

2 3 … … 4 6 8 ……

2 4 … 6 8 …3

1 1 2 2 2 2 1

...

VQQ

VQC

VPP

VPC

Q2
P1

Q1
P1

Q2
P2

Q1
P1

Q2
P2

Q1
P1

Q2
P1

Q2
P2

Unique

1

Q1
P1

Q1
P1

Q2
P1

Q2
P2

Q2
P2

Sort

and K. Second, while the majority of the polygons in our
applications have fewer than 20 vertices, a small portion can
have large numbers of vertices. The skewness of real datasets
makes it difficult for perfect load balancing. Fortunately, CUDA
adopts a task-based scheduling approach at the computing block
level. When there are sufficient computing blocks to be
executed, the GPU hardware can be fully utilized even if the
workloads among computing blocks are not well balanced. As
such, it is appropriate to expose the bounded skewness at the
computing block level. On the other hand, CUDA requires
perfect load balancing among the threads within a computing
block due to its SIMD (Same Instruction, Multiple Data) design.
Since CUDA compute capacity 2.0 and above has a warp size of
32 which is larger than the numbers of segments of most
polygons in our dataset, the hardware can not be fully utilized if
we assign polygon segments to threads and let each thread loop
through all the points. As such, it is natural to assign threads to
points and let each thread loop through all the polygon
segments. In fact, we can purposely set K to be divisible by the
number of threads in a computing block (N) and use N in the
distance computing kernel to make a good match. Since
memory access patterns play a predominantly important role in
achieving good performance in data-intensive GPU computing,
we next discuss how data are accessed and how memory
coalescing is achieved.

When a thread loops through rings and vertices of a
polygon (c.f. Section 3.1), it first retrieves the starting and
ending ring indices from the Ring Index array. For each of the
ring index, it retrieves the starting and ending vertex indices
from the Vertex Index array. As two consecutive vertices define
a polygon segment, the distance between the point assigned to
the thread and the segment can be computed. Note that when the
point is perpendicularly projected to the extension (instead of
falling onto) of the segment, the smaller distance to the two
vertices of the segment is used instead. As points within a
quadrant are paired with a same polygon, threads within a
computing block will access the same set of vertices in all steps
of the distance computation and thus memory accesses are
perfectly coalesced.

While conceptually it is possible to collaboratively
load the vertices to GPU shared memory by all the threads in a
computing block to avoid multiple accesses to the vertices in
GPU global memory, our experiments have shown that the
performance gain is not signficant. There are three possible
reasons. First, the memory accesses are already coalesced as we
just discussed. Second, the unified L2 cache introduced in the
Fermi architecture16 may have cached the polygon vertices.
Third, the distance computation kernel is computing intensive
and the memory accesses overheads are overshadowed. By
avoiding using shared memory, the implementation becomes
more flexible in adjusting numbers of threads in a computing
block (e.g., based on K values). In addition, the saved fast on-
chip shared memory can potentially be used to store per-thread
information which is currently represented by registers. Due to
the complexity of the distance computation kernel, our current
implementation requires more registers than the GPU hardware
can provide when GPU Stream Multiprocessors (SMs) are fully
utilized (32768/1024=32 registers per thread) and the hardware
occupancy is not full. By balancing the utilization of registers
and shared memory, we expect to improve hardware occupancy

and further improve the performance of the implementation.
This is left for our future work.

4. EXPERIMENTS AND RESULTS

4.1 Data and Experiment Setup
Through a partnership with the New York City (NYC)

Taxi and Limousine Commission (TLC), we have access to
roughly 300 million GPS-based trip records for a duration of
about two years (2008-2010). Each taxi trip has a GPS recorded
pickup location and a drop-off location expressed as a pair of
latitude and longitude. In this study, we use the approximately
170 million pickup locations in 2009 for experiments. The
polygon data we use is the NYC MapPluto tax lot data17. There
are 735,488 tax lot polygons in NYC with 4,698,986 vertices.
All experiments are performed on a Dell Precision T5400
workstation equipped with dual quadcore CPUs running at 2.26
GHZ. The workstation has 16 GB memory and a 500G hard
drive and is equipped with a Nvidia Quadra 6000 GPU device
with 448 CUDA cores and 6 GB GDDR5 memory. The
sustainable disk I/O speed is about 100 megabytes per second
while the theoretical data transfer speed between the CPU and
the GPU is 4 gigabytes per second through a PCI-E card.

For comparison purposes, we have implemented the
same spatial join using open source GIS packages, i.e.,
libspatialindex to index polygon data by building an R-Tree,
and, GDAL, which implicitly uses GEOS, to perform the point-
to-polygon distance computation. While we could have also
built an R-Tree for the point locations by treating the points as
bounding boxes, given the large number of points, it is very
costly to index the point data using R-Tree indexing. In
addition, coordinating the two index structures to perform the
spatial join is non-trivial on CPUs and is beyond the scope of
this research. As such, the CPU implementation computes the
distance from each point to the polygons whose MBRs intersect
with the point based on the R-Tree indexing and chooses the one
that has the smallest distance. We compiled both the CPU and
GPU source code with –O2 optimization flag for fair
comparison.

Our GPU implementation has two major parameters to
set. The first parameter is K, the maximum number of points in
a quadrant and the second parameter is the number of threads
per computing block (N) in the pair-wise distance computing
kernel. We have tested three K values (256, 512 and 1024) and
three N values (128, 256 and 512) under the condition that
K>=N. We first report the best GPU result and compare it with
the CPU implementation. We then provide details on the GPU
implementation.

4.2 Overall Results
The overall results are summarized in Table 1 where

the four implementations, i.e., All CPU–baseline, Hybrid-1,
Hybrid-2 and All-GPU, adopt the three performance boosting
techniques as marked. The parameters have been set to K=256,
N=256 based on the experiments and r is empirically fixed to
100 feet (~30 meters) for the GPU implementation where the
best results are achieved. The CPU implementation also uses
K=512 and r=100 feet (N is irrelevant) for comparison purposes.
From Table 1 we can see that the three performance boosting
techniques have contributed 3.66X, 37.37X and 24.28X

speedups, respectively. This brings a total speedup of 3,325.1X.
Among the three techniques, using the in-memory data
structures seems to be the most signficant (37.37X). Since
indexing points can also be done in external memory using
traditional techniques and using in-memory data structures is the
prerequisite for GPU accelerations, we also compute the
combined speedup of the latter two techniques which are more
related to modern hardware. The combined speedup is 907.5X
and is close to 3 orders which may indicate that there are
considerable potential in improving the performance of existing
spatial databases and GIS software by using GPU accelerations
and data structures that are friendly to modern hardware
architectures.

4.3 Results of GPU Implementation
The runtimes of the GPU implementation include the

following components: generating point quadrants (12.238
seconds), pairing point quadrants and polygons in the filtering
phase (1.957 seconds) and pair-wise distance computation and
comparison in the refinement phase (18.915 seconds). Clearly
the refinement phase dominates the overall process. While there
are quite some performance improvement opportunities for the
filtering phase, we are more interested in optimizing the
refinement phase. Our experiments have shown that using
different combinations of K and N can nearly double the
runtime of the refinement phase (with K=1024 and N=128)
which warrants further investigation. Although using a large K
will decrease the runtime of generating point quadrants, it will
allow more points in a quadrant and thus the MBRs of such
quadrants will be larger. Due to the reduced filtering power,
there will be more distance computations needed to be done in
the refinement phase. As such, the current implementation
favors small K values with respect to runtime. However, when
K is small (and hence large number of quadrants), there will be
a large number of (qid, pid) pairs which may impose signficant

memory pressure on GPUs. Furthermore, K can not be less than
the GPU warp size set by CUDA compute capabilities (currently
32) in order to fully utilize GPU. As discussed in Section 3.4,
since our GPU implementation uses more than 32 register files
per thread, using large N will incur low occupancy rate which
typically will bring down the kernel performance. On the other
hand, using small N will need to perform multiple loops over K
(note that we have set K to be divisible by N) and can incur
synchronization overhead. As reported earlier, we have found
that K=256 and N=256 achieved the best performance among all
the combinations we have tested.

Despite the significant speedup over the serial CPU
implementation using the state-of-the-art open source software
packages, there are still considerable rooms for performance
improvements and the limited GPU memory capacity issue
(when compared with CPU) also needs to be addressed from a
system development perspective. For example, using a multi-
level grid file or tree indexing structures may reduce the
memory requirement in the filtering phase by generating fewer
(qid, pid) pairs which have been observed and addressed in our
previous work [32, 33] from a spatial range query perspective in
a CPU setting. Another improvement that can potentially
significantly improve the performance of the refinement phase
(which in turn will boost the overall performance due to
Amdahl’s law) is on-the-fly indexing of points and polygon
segments within a computing block using GPU fast shared
memory (and/or global memory). The work by Hoel and Samet
[2] can be adapted for the GPU hardware architecture for this
purpose as well although their technique was targeted for a very
different parallel hardware architecture (the CM-5 machine).
This is especially useful for large point quadrants and polygons
where indexing is effective in pruning search space for spatial
join. Subsequently a meta-module is needed to decide when to
and when not to perform such on-the-fly indexing. These are left
for our future work.

Table 1 Overall Results on Applying the Three Performance Boosting Techniques

Implementation/Performanc
e boosting techniques
applied

Collective query
(for points)

in-memory
data structures

GPU
acceleration

Runtime
(seconds)

Step-wise
speedup (X)

Accumulative
speedup (X)

All CPU (baseline) 11,0093.680 / /

Hybrid-1 X 30,048.223 3.66 3.66

Bybird-2 X X 804.016 37.37 136.93

All GPU X X X 33.110 24.28 3,325.1

5. CONCLUSION AND FUTURE WORK
In this study, we have reported our GPGPU-based

designs and implementations on spatially joining large-scale
point location data with polygon data which is an important
operation in spatial databases and GIS. The high-performance
system can help identify trip purposes when applied to
processing large-scale ubiquitous urban sensing data such as
GPS recorded pickup and drop-off locations of taxi trip records.
Experiments have shown that, with a combination of in-memory
data structures, collective query strategy and GPU hardware
parallel accelerations, we have achieved 3,325 times of speedup

when compared to a baseline serial CPU implementation on top
of the state-of-the-art open source GIS packages.

For future work, first of all, we would like to analyze
the potential of further performance improvements. The
majority of the current implementation is built on top of the
Thrust parallel library which incurs some unavoidable
duplicated computing. The kernels we have developed can also
be optimized in terms of load balancing and algorithmic
engineering (especially for the pair-wise distance computing
kernel code) in addition to using more efficient indexing
structures for filtering on GPUs and on-the-fly indexing of both
points and polygon segments in a computing block. Second, we

plan to systematically address the limited GPU memory
capacity issue by segmenting the inputs in the primitives-based
modules into chunks and combining the chunked results into the
final ones. This is in addition to developing new data structures
that has smaller memory footprint. Finally, after cleaning up the
source code and preparing some data generation code (the taxi
trip data and some of the urban infrastructure data are not
shareable at present), we plan to make our code open source.
We believe a community effort is needed to make traditional
GIS/SDB adaptive to a parallel era.

6. REFERENCES
[1] Jacox, E. H. and Samet, H. (2007). Spatial join techniques. ACM

Transaction on Database System 32(1).
[2] Hoel, E. G. and Samet, H., 1994. Performance of Data-Parallel

Spatial Operations. Proceedings of VLDB Conference.
[3] Brinkhoff, T., Kriegel, H.-P. and Seeger, B. (1996). Parallel

Processing of Spatial Joins Using R-trees. Proceedings of IEEE
ICDE Conference.

[4] Zhou, X., Abel, D. J. and Truffet, D. (1998). Data Partitioning for
Parallel Spatial Join Processing. GeoInformatica 2(2): 175-204.

[5] Clematis, A., Mineter, M. et al., 2003. High performance
computing with geographical data. Parallel Computing 29(10):
1275-1279.

[6] Hong, S., Kim, S. K., et al., 2011. Accelerating CUDA graph
algorithms at maximum warp. Proceedings of the 16th ACM
symposium on Principles and practice of parallel programming.

[7] Zhang, J. 2010. Towards Personal High-Performance Geospatial
Computing (HPC-G): Perspectives and a Case Study. Proceedings
of ACM HPDGIS workshop.

[8] Zhang, S., Han, J., Liu, Z., Wang, K. and Xu, Z. (2009). SJMR:
Parallelizing spatial join with MapReduce on clusters. Proceedings
of IEEE International Conference on Cluster Computing.

[9] Zhang, C., Li, F. and Jestes, J. (2012). Efficient parallel kNN joins
for large data in MapReduce. Proceedings of EDBT Conference

[10] Lee, K.-H., Lee, Y.-J., Choi, H., Chung, Y. D. and Moon, B.
(2012). Parallel data processing with MapReduce: a survey.
SIGMOD Record, 40 (4), 11-20.

[11] Hennessy, J.L. and Patterson, D. A, 2011. Computer Architecture:
A Quantitative Approach (5th ed.). Morgan Kaufmann

[12] John, C. and Kenneth, A. R. (2008). Data partitioning on chip
multiprocessors. Proceedings of ACM DaMoN workshop.

[13] Cieslewicz, J. and Ross, K. A. (2008). Database Optimizations for
Modern Hardware. Proceedings of the IEEE 96(5).

[14] Zhang, J. and You., S. (2012). Speeding up Large-Scale Point-in-
Polygon Test Based Spatial Join on GPUs. Technical report online
at http://geoteci.engr.ccny.cuny.edu/pub/pipsp_tr.pdf

[15] Krste, A., Rastislav, B., James, D., Tony, K., Kurt, K., John, K.,
Nelson, M., David, P., Koushik, S., John, W., David, W. and
Katherine, Y. (2009). A view of the parallel computing landscape,
CACM. 52, 56-67.

[16] Zheng, Y., Liu, Y., Yuan, J. and Xie, X. (2011). Urban computing
with taxicabs. Proceedings of ACM UbiComp.

[17] Calabrese, F., Colonna, M. et al. 2010. Real-Time Urban
Monitoring Using Cell Phones: A Case Study in Rome. IEEE
Transactions on Intelligent Transportation Systems 12(1): 141-151.

[18] Vasconcelos, M. A., Ricci, S., et al. 2012. Tips, Dones and Todos:
Uncovering User Profiles in Foursquare. Proceedings of ACM
WSDM Conference.

[19] Calabrese, F., Kloeckl, K., et al. 2008. WikiCity: Real-time
Location-sensitive Tools for the City. In Handbook of Research on
Urban Informatics: The Practice and Promise of the Real-Time
City (Foth, M. eds) 390-413. IGI Global.

[20] Friedland, G., Choi, J., et al. 2011. Video2GPS: A Demo of
Multimodal Location Estimation on Flickr Videos. Proceedings of
ACM Multimedia Conference.

[21] Abadi, D. J., Madden, S. R. and Hachem, N. (2008). Column-
stores vs. row-stores: how different are they really? Proceedings of
ACM SIGMOD Conference.

[22] Zhang, J., Gong, H., Kamga, C. and Gruenwald L. (2012).
U2SOD-DB: A Database System to Manage Large-Scale
Ubiquitous Urban Sensing Origin-Destination Data. To appear in
proceedings of ACM SIGKDD UrbComp workshop.

[23] He, B. S., Lu, M., Yang, K., Fang, R., Govindaraju, N. K., Luo, Q.
and Sander, P. V. (2009). Relational Query Coprocessing on
Graphics Processors. ACM Transactions on Database Systems
34(4).

[24] Gregory Frederick Diamos, Wu, H., Lele, A. and Wang, J. (2012).
Efficient Relational Algebra Algorithms and Data Structures for
GPU. Technical report. Online at
http://www.cercs.gatech.edu/tech-reports/tr2012/git-cercs-12-
01.pdf

[25] Kaldewey, T., Lohman, G., Mueller, R. and Volk, P. (2012). GPU
join processing revisited. Proceedings ACM DaMoN Workshop.

[26] Zhou, K., Hou, Q., et al. (2008). Real-Time KD-Tree Construction
on Graphics Hardware. ACM Transaction on Graphics 27(5).

[27] Luo, L., Wong, M. D. F., et al. (2011). Parallel implementation of
R-trees on the GPU. Proceedings of Asia and South Pacific Design
Automation Conference (ASP-DAC).

[28] Chen, Y. and Patel, J. (2007). Efficient evaluation of all-nearest-
neigbor queries. Proceedings of IEEE ICDE.

[29] Yang, K., He, B., Fang, R., Lu, M., Govindaraju, N., Luo, Q.,
Sander, P. and Shi, J. (2007). In-memory grid files on graphics
processors. Proceedings of ACM DaMoN Workshop

[30] Zhang, J. and Gruenwald, L. (2012). CSPT-P Tree Indexing on
Large-Scale Point data using Parallel Primitives on GPGPUs.
Technical report. Online at
http://134.74.112.65/primcsptp/CSPTP_tr.pdf

[31] Zhang, J. (2012). Parallel Primitives based Spatial Join of
Geospatial Data on GPGPUs. Technical report. Online at
http://134.74.112.65/primspjion/PPSJ_tr.pdf

[32] Zhang, J., Gertz, M. and Gruenwald, L. (2009). Efficiently
managing large-scale raster species distribution data in
PostgreSQL. Proceedings of ACM GIS.

[33] Zhang, J. (2012) A high-performance web-based information
system for publishing large-scale species range maps in support of
biodiversity studies. Ecological Informatics 8: 68-77.

1 en.wikipedia.org/wiki/Parallel_Random_Access_Machine
2 http://en.wikipedia.org/wiki/MapReduce
3 http://hadoop.apache.org/hdfs/
4 http://libspatialindex.github.com/
5 http://www.gdal.org/
6 http://thrust.github.com/
7 http://en.wikipedia.org/wiki/Translation_lookaside_buffer
8 http://en.wikipedia.org/wiki/Online_analytical_processing
9 http://en.wikipedia.org/wiki/Big_data
10 http://en.wikipedia.org/wiki/Extract,_transform,_load
11 http://developer.nvidia.com/cuda-downloads
12 http://en.wikipedia.org/wiki/Direct_memory_access
13 http://www.opengeospatial.org/standards/sfs
14 http://en.wikipedia.org/wiki/Z-order_curve
15 http://en.wikipedia.org/wiki/Space-filling_curve
16 http://www.nvidia.com/object/fermi-architecture.html
17 http://www.nyc.gov/html/dcp/html/bytes/applbyte.shtml

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

