
ISP: Large-Scale In-memory Spatial Data Processing
System (Demo Paper)

Simin You

Dept. of Computer Science

CUNY Graduate Center

New York, NY 10016

syou@gc.cuny.edu

Jianting Zhang

Dept. of Computer Science

The City College of New York

New York, New York 10031

jzhang@cs.ccny.cuny.edu

Le Gruenwald

School of Computer Science

University of Oklahoma

Norman, OK, USA

ggruenwald@ou.edu

ABSTRACT

Huge amount of spatial data such as GPS locations is being

generated everyday, which brings big challenges of efficient

spatial data processing. Many existing big spatial data processing

techniques are mostly based on disk-resident systems. They have

not fully taken advantages of modern hardware, such as large

main memory capacities and multi-core processors. In this paper,

we demonstrate our ISP system for in-memory processing of

large-scale spatial data in distributed multi-core computing nodes.

ISP is built on top of the open source Impala system, a leading

Massively Parallel Processing (MPP) SQL engine, with two

signficant extensions. First, while Impala is designed to process

relational data and does not support spatial queries, ISP supports

spatial SQL query syntax at the front end and is able to process

the spatial queries at the back end. Second, while Impala currently

supports neither indexed joins nor parallel joins on multi-core

machines for non-equality joins, ISP provides on-the-fly parallel

spatial indexing and query processing modules. We have

performed experiments for a case study of point-in-polygon test

based spatial joins. Using real data for a point-in-polygon based

spatial join, experiments have shown that ISP on a two-node mini-

cluster is 6.4X time faster than PostgreSQL/PostGIS. ISP is also

10X faster than Hadoop-GIS, a big spatial data processing

solution built on top of Hadoop/Hive, on a 10-node Amazon EC2

cloud cluster. With proper setting of parameters of distributed

systems, ISP also scales well. We will demonstrate ISP using both

an EC2 cloud cluster and an in-house small cluster to conference

participants.

Categories and Subject Descriptors

H.2.8 [Database Management]: Database Applications – Spatial

Databases and GIS

General Terms

Performance, Design, Experimentation.

Keywords

Big Spatial Data, Spatial Join

1. INTRODUCTION
The Increasingly popular mobile devices have generated

tremendous amount of location data, such as GPS and wifi

locations. Efficiently managing big spatial data in a scalable way

is technically challenging. Emerging big data technologies such as

MapReduce/Hadoop have become de facto standard for data

storage and processing. In order to process big spatial data

efficiently, several extensions have been developed to support

spatial data processing. Hadoop-GIS [1] enables spatial

functionalities on existing Hadoop systems by extending Hive [2].

SpatialHadoop [3] implements a set of spatial operations that can

be used in Map/Reduce jobs. ESRI GIS Tools for Hadoop [4] is

another open source project that enables spatial data processing on

Hadoop and implements spatial functions in Hive [2].

As memory is getting significantly cheaper and computers are

increasingly equipped with large memory capacities, there are

considerable research and application interests in processing

large-scale data in memory to reduce disk I/O bottlenecks and

achieve better performance. Newer generations of big data

systems such as Apache Spark [5] and Cloudera Impala [6],

although still support HDFS (Hadoop Distributed File System) for

persistent storage, are able to take advantage of the large memory

capacities and achieve higher performance. However, we are not

aware of existing systems that use or extend in-memory big data

systems for large-scale spatial data processing. In-memory spatial

processing techniques, such as in-memory R-Tree indexing for

speeding up topological relationship test [7] and the in-memory

data structure in TOUCH for efficient spatial join [8] have been

recently proposed. Our previous work on grid-file and R-Tree

based spatial indexing and query processing on Graphics

Processing Units (GPUs) can also be considered as in-memory

techniques [9][10], where GPU-specific characteristics, such as

data parallelisms, control divergence and coalesced memory

accesses, are carefully considered. However, these techniques are

designed for single-node computation and cannot easily scale out

to distributed machines to process larger-scale data.

To achieve both efficiency and scalability in large-scale spatial

data processing, we have designed and implemented the ISP

prototype system by significantly extending Impala [6], a leading

open source Massively Parallel Processing (MPP) SQL engine for

relational data. ISP extends Impala’s front end to parse spatial

SQL syntax and generate logic and physical query plans.

Although Impala can efficiently utilize multi-core CPUs for multi-

threaded disk I/Os and scans and aggregations on relational data,

currently it has limited support for joins where only hash joins can

effectively utilize multiple CPU cores. As such, we have

significantly modified Impala’s backend by providing on-the-fly

spatial indexing and supporting spatial joins on multi-core CPUs

in parallel. Compared with Hadoop-GIS and SpatialHadoop, ISP

is built on top of a newer generation big data system and is able to

achieve higher performance by taking advantage of efficient in-

memory processing. Advanced system infrastructure support from

Impala, including Just-In-Time (JIT) compilation of complex

expressions in SQL using the open source LLVM compiler [11],

is also critical in achieving the high-performance. For the rest of

the paper, we will first introduce the system architecture of ISP

and its implementation details (Section 2). Demonstration plans,

including experiment setup, case study data and observed

performance as well as comparisons with a popular spatial

database (PostgreSQL/PostGIS) and a big spatial data processing

system (Hadoop-GIS) are provided in Section 3.

2. SYSTEM ARCHITECTURE

2.1 Impala for Efficient Big Data Processing
Traditional MapReduce jobs usually incur large amounts disk IO

to store intermediate results. Cloudera Impala [6], as a new

generation big data system, is designed to take advantage of large

memory capacities to significantly reduce disk IO overheads. As a

component in MapReduce/Hadoop ecosystem, Impala supports

HDFS and can read data in different formats. Similar to Hive and

Shark[12], Impala has a Java-based front end to parse SQL

statements and generate logical query plans with rule-based

optimizations. By consulting Hive metastore, Impala front end is

able to generate efficient physical query plans by incorporating

cost-based optimizations. A query plan is then sent to an Impala

backend instance that works as the master. The master coordinates

with a set of worker Impala instances to process a query in a

distributed manner. The query results are gathered by the master

and sent back to clients (e.g., a shell program that initiates the

query). Different from traditional MapReduce/Hadoop systems

that write intermediate query results to HDFS, an Impala instance

processes all the computation that is being assigned to it

completely in memory without touching HDFS except for explicit

outputting.

Clearly Impala trades fault tolerance with efficiency which can be

well justified in systems that failure rates are low [13]. As one of

the few open source big data systems with a C/C++ based

execution engine, Impala is ideal to serve as the base for further

extensions when performance is critical. In particular, as currently

Java does not support exploiting SIMD (Single Instruction

Multiple Data) computing power [14] on either CPUs or GPUs,

C/C++ language interfaces might be the most viable option to

effectively utilize hardware accelerations. While the current

version of ISP primarily focuses on in-memory spatial query

processing using multiple processing cores on CPUs, we plan to

exploit SIMD computing power for higher performance on new

commodity parallel hardware, including GPUs and Intel Xeon Phi

accelerators in the future.

To our knowledge, currently Impala is the only open source big

data system that supports Just-In-Time (JIT) compilation using the

leading open source LLVM compiler. LLVM supports not only

x86/64 hardware architectures but also many new ones, such as

ARM and Nvidia PTX, among others [11]. JIT is essential for

high-performance query processing on modern hardware [15] by

supporting various types of dynamic code optimizations, such as

compiling complex expressions and seamlessly integrating User

Defined Functions (UDFs) with native host machine code.

Despite that currently Impala has limited support for joins (more

discussions next), its advanced infrastructure and efficient

implementations of parallel scans and aggregations make it

attractive to serve as the base for extensions.

Our ISP system is built on top of Impala and naturally inherits

many advanced features of Impala, including supporting SQL

interface, efficient multi-threaded disk IO to HDFS, and in-

memory query processing. In order to extend Impala for high-

performance spatial query processing, we have made three major

extensions. First, we modify the Abstract Syntax Tree (AST)

module of Impala front end to support spatial query syntax.

Second, we have developed a set of UDFs for testing spatial

relationships (by wrapping the popular GEOS package [16]) for

the Impala backend. Finally and most significantly, as Impala

currently does not support non-equality joins using multi-core

CPUs natively, we have developed both a spatial indexing module

and a spatial query processing module to support parallel spatial

query processing in Impala natively, which is crucial to fully

utilize multi-core CPUs to achieve the desired high performance.

The architecture of ISP is shown in Fig. 1.

Fig. 1 Overview of ISP Architecture

2.2 Spatial Extensions on Impala
Currently ISP represents geometric object using the simple and

popular Well-Known Text (WKT) format and store the data as

strings, which is natively supported by Impala. Although it seems

to be inefficient when compared to existing spatial databases that

store geometric data in a binary format, our experiments have

shown that parsing WKT incurs relatively low overheads when

compared with expensive geometric operations and is acceptable.

While we plan to extend Impala to support binary spatial data

natively in the future, storing geometric object as strings make it

possible to interoperable with Hadoop based systems. ISP uses

GEOS library to parse strings in WKT format and reconstruct in-

memory geometric objects on the fly.

ISP is designed to support spatial queries through UDFs which is

well-supported by Impala. Different from Java-based big data

systems that require a UDF provide a native Java interface before

it can be invoked, a UDF in Impala can be compiled into

Intermediate Representation (IR) code that can be written in any

langue, in addition to calling APIs in a shared library. Since we

want to extensively explore JIT for high performance, ISP has

adopted the IR approach. We have developed a few spatial UDFs

to test spatial relations between two geometric objects that are

provided to UDFs as strings in WKT format. This is realized by

wrapping around the corresponding functions in GEOS, such as

ST_Intersects and ST_Within. While calling external APIs within

IR code in the current version makes it impossible to completely

seamlessly integrate spatial UDF code with Impala system code

(as LLVM-based JIT compilation cannot be extended to API

internals), the design makes it possible for future expansions.

Currently our spatial UDFs are simply wrapper functions using

GEOS library without SIMD support. However, we plan to

rewrite such functions that can utilize increasingly powerful

Vector Processing Units (VPUs) on multi-core CPU, e.g., the 4-

way SSE, 8-way AVX/AVX2 and 16-way AVX-512 (on Intel

Xeon Phi accelerators and forthcoming Intel Xeon processors).

Our standalone experiments have demonstrated the potentials of

using SIMD computing power for geospatial operations [17].

When native spatial UDFs with SIMD parallel computing are

fully compiled into IR code and seamlessly integrated with Impala

system code in the next version, we expect ISP can achieve even

higher performance.

Once spatial UDFs are registered with Impala, they can be used to

support both “single-sided” ad-hoc spatial queries and “double-

sided” spatial joins, through different mechanisms. For “single-

sided” ad-hoc spatial queries, one or more geometric objects are

provided in WKT format in a SQL expression. The geometric

objects are used to query against a table stored in HDFS. Since the

geometric object stored in the table is also in WKT format and is

typically non-indexed, a full table scan with on-the-fly expression

evaluations of the selection criteria to each and every of the tuples

in the table is appropriate. This is exactly many big data systems

are designed for. No additional extensions are needed for Impala

to support such “single-sided” ad-hoc spatial queries other than

providing spatial UDFs. However, it is much more involved for

ISP to support “double-sided” spatial joins on top of Impala where

indexing is necessary to avoid a full cross join. We note that,

although full cross join on spatial data is naturally supported in

Impala by using spatial UDFs, the complexly is O(m*n) where m

and n are the numbers of tuples in the two tables being joined.

While the approach is embarrassingly parallelizable and is

suitable for massively parallel systems, it scales poorly and is

impractical for large-scale data. Currently Impala can only

support equality joins on relational data efficiently by using well-

established hash join techniques. As such, the most signficant

technical contribution of ISP is to provide indexed spatial joins

natively within Impala framework. Our solution, although still

limited in a sense and has room for future improvements, as

demonstrated in Section 3, has achieved signficant speedups over

alternatives. The implementation details are provided in the next

subsection (Section 2.3).

We would like to compare ISP with the approaches adopted in

Hadoop-GIS [1] and SpatialHadoop [3] to help understand the

achieved high performance to be reported in Section 3.2. Different

from SpatialHadoop that requires users to write MapReduce jobs

for spatial queries, which is flexible but less user-friendly, both

ISP and Hadoop-GIS accept spatially extended SQL statements.

However, unlike ISP that evaluates queries in-memory, the

Hadoop-GIS front end (i.e., Hive-SP) compiles a SQL query into

multiple sequential MapReduce jobs. The results of spatial UDF

evaluations are written to HDFS before they are combined with

other inputs to perform the rest of the query, which now becomes

a regular SQL query in Hive. While caching the intermediate

spatial and non-spatial query results in RAM disks can certainly

improve system performance to a certain extent, excessive

redundant disk IO will hurt the overall performance significantly

in this case. Furthermore, as both Hadoop-GIS and SpatialHadoop

are built on top of traditional MapReduce/Hadoop systems, they

use multi-core machines as multiple virtualized machines with

single processors to process Map/Reduce jobs without being

aware of data and computing locality at multiple levels. In

contrast, ISP is able to exploit the raw computing power of multi-

core machines and optimize system performance using native

parallel programming tools (e.g., OpenMP and Intel TBB) for

better performance.

2.3 Implementation Details of Spatial Joins
While spatial joins involve two tables stored in HDFS in ISP, we

observe that very often these two tables are asymmetric with

respect to the numbers of tuples. For example, in our taxi trip data

management applications [9], while the numbers of pickup and

drop-off locations increase quickly (half a million a day in New

York City – NYC), the underlying urban infrastructure data such

as road network and census tract data are “small” in volume. As

such, it is possible to broadcast the “small” table to all computing

node and index them on the fly so that tuples in the “big” table

can probe the index structure in parallel. The strategy is different

from traditional spatial databases that typically choose to index

the “big” table and use all the tuples in the “small” table to query

the index in a spatial join. This is because offline indexing time is

not counted in such as a scenario. However, when both indexing

and querying time are considered and a query is distributed among

K computing nodes, our preliminary complexity analysis has

shown that, on-the-fly indexing the broadcast “small” table on

each node and querying 1/K tuples of “big” table on the node

incurs lower process time than the other way around.

When executing a SQL query on a computing node, starting from

the root of an AST, expressions that are associated with AST

nodes are evaluated top-down using the appropriate data partitions

that are assigned to the Impala instance on a computing node.

When joining two tables based on an UDF, the AST node

corresponding to the join has two child nodes with necessary

information of the two tables. Starting from here, Impala requests

blocks of tuples from the two tables in an iterative manner to

process the join in batches. The implementation of our spatial join

extension works as follows. First, we iteratively retrieve the

geometry columns of tuples of the “small” table and build an

appropriate spatial index for all the tuples in the “small table”.

Retrieving the “small” table from HDFS can be efficiently done

using multi-threaded I/O supported by Impala. Second, we iterate

through all the blocks that are assigned to an Impala instance

sequentially to perform the spatial join. For each block, we use

OpenMP to parallelize tuple evaluations within a block. Non-

spatial sub-expressions are evaluated first before the spatial UDF

is evaluated. Tuple pairs satisfy the criteria defined in the

WHERE clause (including one or more spatial UDFs and other

non-spatial sub-expressions) are written to a tuple buffer before

they are sent to upper level AST node for subsequent processing

in blocks, e.g., projection and aggregations and upper level SQL

statements if a sub-query is being processed. At any time during

the process of executing a SQL query, no more than three blocks

of tuples (the two input blocks and the output buffer block) are

stored in main memory for an AST node, unless additional

dynamic structures are purposely maintained (e.g., hash tables for

relational indexing).

Fig. 2 Point-in-polygon based Spatial Join Processing in ISP

ISP takes advantage of Impala’s carefully designed framework for

SQL execution. Instead of pairing tuples from two joining tables

in a cross product manner (which is the default), as discussed

above, ISP builds a grid indexing structure for the “small” table.

By using the “parallel for” OpenMP directive, tuples in a block of

the “big” table are assigned to multiple threads for parallel

evaluating the operation represented in the AST node that is being

traversed. As discussed before, UDFs and sub-expressions in the

operations can be JIT compiled to host machine code if the

corresponding IR codes are available. Fig. 2 shows an example

on point-in-polygon test based spatial join to illustrate the design

of spatial join extensions to Impala which is a unique contribution

from ISP.

3. DEMOSTRATION
In the section, we will demonstrate a use case of point-in-polygon

test based spatial join in ISP. Consider we want to find the zone

(polygon) that each GPS location (point) falls within, the query

can be expressed as an SQL statement as following:

SELECT point.id, polygon.id
FROM point SPATIAL JOIN polygon

WHERE ST_WITHIN(point.geom, polygon.geom)

3.1 Setup
For the point dataset, we used subsets of NYC Taxi GPS trip data

[9]. We have prepared two datasets from the original dataset for

the demonstration, including a small dataset (~2 million points,

named point_small) and a large dataset (~28 million points,

named point_large). The polygon dataset we used is from NYC

PLUTO tax lot dataset [18]. We extracted a large dataset with

824,811 polygons (in all boroughs excluding Staten Island) and a

small dataset (which covers only Manhattan) with 43,252

polygons from PLUTO as the testing polygon datasets. They are

called polygon_large and polygon_small, respectively.

In this demonstration, we prepared three experimental

configurations. The first one is a SGI Octane III mini-cluster that

has two nodes, in which each node has dual quad-core CPUs and

48GB memory. Each node in the mini-cluster runs as a Hadoop

datanode as well as an Impala instance. Participant can try ISP on

the in-house mini-cluster in an unrestricted manner. We also

installed PostgreSQL 9.2.3 on one of the two mini-cluster nodes

for comparison purposes. The third configuration is an Amazon

EC2 cluster with up to 10 c1.xlarge instances. Each instance has 8

vCPUs and 7 GB memory. We have installed and configured ISP

on the cloud cluster and will use it to compare with HadoopGIS.

3.2 Performance and Scalability
We imported point_large and polygon_small datasets into

PostgreSQL with built-in spatial indices created after data import.

A point-in-polygon spatial join query took about 1.7 hours to

finish on one node of the two-node mini-cluster. The poor

performance is mainly due to sequential execution in

PostgreSQL/PostGIS on a single CPU core, which significantly

underutilizes available hardware resources. The same query

performed on our ISP using both nodes of the mini-cluster took 16

minutes where all CPU cores were utilized. In addition to the

6.4X speedup, another advantage of ISP over PostgreSQL is that

ISP requires no additional performance tuning. Furthermore, ISP

can process data stored in HDFS directly without involving

expensive import/export steps as in PostgreSQL/PostGIS.

We also compared with HadoopGIS [3], a big spatial data query

processing system. Two datasets, point_small and polygon_large,

are used as the testing datasets. We allocated 10 c1.xlarge nodes

for both HadoopGIS and our ISP. We measured end-to-end query

times for both systems. The experiment showed that HadoopGIS

took 6 minutes and our ISP took only 37 seconds where a nearly

10X speedup has been observed.

To test ISP’s scalability, we vary the number of c1.xlarge nodes

(instances) on the Amazon EC2 cluster from 4 to 10 for the same

point-in-poly test based spatial join. The runtimes are plotted

against the numbers of instances in Fig. 4. We can see that ISP

scales linearly up to 8 nodes but does not scale further beyond

that. Careful investigation suggests that this is due to the

scheduling policy imposed by Impala where an Impala instance

participate a join only if it has a local partition of the “big” table.

Using a HDFS data block size of 16MB, there are only 7 data

blocks of the point dataset in HDFS and thus using more nodes

beyond 7 will not help. Larger “big” table volume will naturally

have larger number of data blocks which will scale out further on

ISP. The finding can also be used to guide setting proper HDFS

parameter and/or deciding cloud computing resource demands.

Fig. 3 Plot of Runtimes Against Number of Instances

4. SUMMARY AND CONCLUSTION
We have developed ISP, a large-scale in-memory system based on

Impala with spatial extensions that directly operates on HDFS.

Using a case study of point-in-polygon test based spatial join, we

demonstrate that ISP significantly outperforms both a traditional

spatial database (6.4X over PostgreSQL/PostGIS) and a

MapReduce/Hadoop based spatial big data system (10X over

Hadoop-GIS). We have provided plans to demonstrate the

efficiency and scalability of ISP to the conference participants.

5. REFERENCES
[1] A. Eldawy and M. Mokbel, "A demonstration of Spatialhadoop: an

efficient mapreduce framework for spatial data," in Proc. VLDB,
6(2), 1230-1233, 2013.

[2] Apache, Hive, https://hive.apache.org/

[3] A. Aji et al, "Hadoop-GIS: A High Performance Spatial Data

Warehousing System over MapReduce," in Proc. VLDB, 6(11),

1009-1020, 2013.

[4] ESRI, http://esri.github.io/gis-tools-for-hadoop/.

[5] Apache, Spark, http://spark.apache.org/.

[6] Cloudera, Impala, http://impala.io/.

[7] Y. Hu et al, "Topological relationship query processing for complex
regions in Oracle Spatial," in Proc. ACM-GIS, 2012.

[8] S. Nobari, F. Tauheed, T. Heinis, P. Karras, S. Bressan and A.
Ailamaki, "TOUCH: in-memory spatial join by hierarchical data-

oriented partitioning," in Proc. ACM SIGMOD Conference, 2013.

[9] J. Zhang, S. You and L. Gruenwald, "Parallel Online Spatial and

Temporal Aggregations on Multi-core CPUs and Many-Core GPUs,"
Information Systems, vol. 4, p. 134–154, 2014.

[10] J. Zhang and S. You, "GPU-based Spatial Indexing and Query

Processing Using R-Trees," in Proc. ACM-GIS, 2013.

[11] LLVM, The LLVM Compiler Infrastructure, http://llvm.org/.

[12] Berkeley, Spark. http://shark.cs.berkeley.edu/

[13] K. A. Kumar et al. "Optimization Techniques for "Scaling Down"

Hadoop on Multi-Core,Shared-Memory Systems," in Proc. EDBT,
2014.

[14] J. Parri, et al, "Returning Control to the Programmer: SIMD
Intrinsics for Virtual Machines," ACM Queue, 9(2), 30-37, 2011.

[15] C. Koch, "Abstraction without Regret in Database Systems Building:
a Manifesto," IEEE Data Engineering Bulletin, 37(1), 70-79, 2014.

[16] OSGEO, GEOS - Geometry Engine, Open Source,

http://trac.osgeo.org/geos/.

[17] J. Zhang and S. You, "Large-Scale Geospatial Processing on Multi-

Core and Many-Core Processors: Evaluations on CPUs, GPUs and
MICs," CoRR, vol. abs/1403.0802, 2014.

[18] NYCDCP, BYTES of the BIG APPLE,
http://www.nyc.gov/html/dcp/html/bytes/applbyte.shtml#pluto.

http://esri.github.io/gis-tools-for-hadoop/
http://llvm.org/
http://shark.cs.berkeley.edu/

