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ABSTRACT 

Huge amount of spatial data such as GPS locations is being 

generated everyday, which brings big challenges of efficient 

spatial data processing. Many existing big spatial data processing 

techniques are mostly based on disk-resident systems. They have 

not fully taken advantages of modern hardware, such as large 

main memory capacities and multi-core processors. In this paper, 

we demonstrate our ISP system for in-memory processing of 

large-scale spatial data in distributed multi-core computing nodes. 

ISP is built on top of the open source Impala system, a leading 

Massively Parallel Processing (MPP) SQL engine, with two 

signficant extensions. First, while Impala is designed to process 

relational data and does not support spatial queries, ISP supports 

spatial SQL query syntax at the front end and is able to process 

the spatial queries at the back end. Second, while Impala currently 

supports neither indexed joins nor parallel joins on multi-core 

machines for non-equality joins, ISP provides on-the-fly parallel 

spatial indexing and query processing modules. We have 

performed experiments for a case study of point-in-polygon test 

based spatial joins. Using real data for a point-in-polygon based 

spatial join, experiments have shown that ISP on a two-node mini-

cluster is 6.4X time faster than PostgreSQL/PostGIS. ISP is also 

10X faster than Hadoop-GIS, a big spatial data processing 

solution built on top of Hadoop/Hive, on a 10-node Amazon EC2 

cloud cluster. With proper setting of parameters of distributed 

systems, ISP also scales well. We will demonstrate ISP using both 

an EC2 cloud cluster and an in-house small cluster to conference 

participants. 
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H.2.8 [Database Management]: Database Applications – Spatial 

Databases and GIS 
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Performance, Design, Experimentation. 
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1. INTRODUCTION 
The Increasingly popular mobile devices have generated 

tremendous amount of location data, such as GPS and wifi 

locations. Efficiently managing big spatial data in a scalable way 

is technically challenging. Emerging big data technologies such as 

MapReduce/Hadoop have become de facto standard for data 

storage and processing. In order to process big spatial data 

efficiently, several extensions have been developed to support 

spatial data processing. Hadoop-GIS [1] enables spatial 

functionalities on existing Hadoop systems by extending Hive [2]. 

SpatialHadoop [3] implements a set of spatial operations that can 

be used in Map/Reduce jobs. ESRI GIS Tools for Hadoop [4] is 

another open source project that enables spatial data processing on 

Hadoop and implements spatial functions in Hive [2].  

As memory is getting significantly cheaper and computers are 

increasingly equipped with large memory capacities, there are 

considerable research and application interests in processing 

large-scale data in memory to reduce disk I/O bottlenecks and 

achieve better performance. Newer generations of big data 

systems such as Apache Spark [5] and Cloudera Impala [6], 

although still support HDFS (Hadoop Distributed File System) for 

persistent storage, are able to take advantage of the large memory 

capacities and achieve higher performance. However, we are not 

aware of existing systems that use or extend in-memory big data 

systems for large-scale spatial data processing. In-memory spatial 

processing techniques, such as in-memory R-Tree indexing for 

speeding up topological relationship test [7] and the in-memory 

data structure in TOUCH for efficient spatial join [8] have been 

recently proposed. Our previous work on grid-file and R-Tree 

based spatial indexing and query processing on Graphics 

Processing Units (GPUs) can also be considered as in-memory 

techniques [9][10], where GPU-specific characteristics, such as 

data parallelisms, control divergence and coalesced memory 

accesses, are carefully considered. However, these techniques are 

designed for single-node computation and cannot easily scale out 

to distributed machines to process larger-scale data.    

To achieve both efficiency and scalability in large-scale spatial 

data processing, we have designed and implemented the ISP 

prototype system by significantly extending Impala [6], a leading 

open source Massively Parallel Processing (MPP) SQL engine for 

relational data. ISP extends Impala’s front end to parse spatial 

SQL syntax and generate logic and physical query plans. 

Although Impala can efficiently utilize multi-core CPUs for multi-

threaded disk I/Os and scans and aggregations on relational data, 

currently it has limited support for joins where only hash joins can 

effectively utilize multiple CPU cores. As such, we have 

significantly modified Impala’s backend by providing on-the-fly 

spatial indexing and supporting spatial joins on multi-core CPUs 

in parallel. Compared with Hadoop-GIS and SpatialHadoop, ISP 

is built on top of a newer generation big data system and is able to 

achieve higher performance by taking advantage of efficient in-

memory processing. Advanced system infrastructure support from 

Impala, including Just-In-Time (JIT) compilation of complex 

expressions in SQL using the open source LLVM compiler [11], 

is also critical in achieving the high-performance. For the rest of 

the paper, we will first introduce the system architecture of ISP 

and its implementation details (Section 2). Demonstration plans, 

including experiment setup, case study data and observed 

 



performance as well as comparisons with a popular spatial 

database (PostgreSQL/PostGIS) and a big spatial data processing 

system (Hadoop-GIS) are provided in Section 3.   

2. SYSTEM ARCHITECTURE 

2.1 Impala for Efficient Big Data Processing 
Traditional MapReduce jobs usually incur large amounts disk IO 

to store intermediate results. Cloudera Impala [6], as a new 

generation big data system, is designed to take advantage of large 

memory capacities to significantly reduce disk IO overheads. As a 

component in MapReduce/Hadoop ecosystem, Impala supports 

HDFS and can read data in different formats. Similar to Hive and 

Shark[12], Impala has a Java-based front end to parse SQL 

statements and generate logical query plans with rule-based 

optimizations. By consulting Hive metastore, Impala front end is 

able to generate efficient physical query plans by incorporating 

cost-based optimizations. A query plan is then sent to an Impala 

backend instance that works as the master. The master coordinates 

with a set of worker Impala instances to process a query in a 

distributed manner. The query results are gathered by the master 

and sent back to clients (e.g., a shell program that initiates the 

query). Different from traditional MapReduce/Hadoop systems 

that write intermediate query results to HDFS, an Impala instance 

processes all the computation that is being assigned to it 

completely in memory without touching HDFS except for explicit 

outputting.  

Clearly Impala trades fault tolerance with efficiency which can be 

well justified in systems that failure rates are low [13]. As one of 

the few open source big data systems with a C/C++ based 

execution engine, Impala is ideal to serve as the base for further 

extensions when performance is critical. In particular, as currently 

Java does not support exploiting SIMD (Single Instruction 

Multiple Data) computing power [14] on either CPUs or GPUs, 

C/C++ language interfaces might be the most viable option to 

effectively utilize hardware accelerations. While the current 

version of ISP primarily focuses on in-memory spatial query 

processing using multiple processing cores on CPUs, we plan to 

exploit SIMD computing power for higher performance on new 

commodity parallel hardware, including GPUs and Intel Xeon Phi 

accelerators in the future.   

To our knowledge, currently Impala is the only open source big 

data system that supports Just-In-Time (JIT) compilation using the 

leading open source LLVM compiler. LLVM supports not only 

x86/64 hardware architectures but also many new ones, such as 

ARM and Nvidia PTX, among others [11]. JIT is essential for 

high-performance query processing on modern hardware [15] by 

supporting various types of dynamic code optimizations, such as 

compiling complex expressions and seamlessly integrating User 

Defined Functions (UDFs) with native host machine code. 

Despite that currently Impala has limited support for joins (more 

discussions next), its advanced infrastructure and efficient 

implementations of parallel scans and aggregations make it 

attractive to serve as the base for extensions.  

Our ISP system is built on top of Impala and naturally inherits 

many advanced features of Impala, including supporting SQL 

interface, efficient multi-threaded disk IO to HDFS, and in-

memory query processing. In order to extend Impala for high-

performance spatial query processing, we have made three major 

extensions. First, we modify the Abstract Syntax Tree (AST) 

module of Impala front end to support spatial query syntax. 

Second, we have developed a set of UDFs for testing spatial 

relationships (by wrapping the popular GEOS package [16]) for 

the Impala backend. Finally and most significantly, as Impala 

currently does not support non-equality joins using multi-core 

CPUs natively, we have developed both a spatial indexing module 

and a spatial query processing module to support parallel spatial 

query processing in Impala natively, which is crucial to fully 

utilize multi-core CPUs to achieve the desired high performance. 

The architecture of ISP is shown in Fig. 1.  

 

 

 

 

 

 

 

 

Fig.  1 Overview of ISP Architecture 

2.2 Spatial Extensions on Impala 
Currently ISP represents geometric object using the simple and 

popular Well-Known Text (WKT) format and store the data as 

strings, which is natively supported by Impala. Although it seems 

to be inefficient when compared to existing spatial databases that 

store geometric data in a binary format, our experiments have 

shown that parsing WKT incurs relatively low overheads when 

compared with expensive geometric operations and is acceptable. 

While we plan to extend Impala to support binary spatial data 

natively in the future, storing geometric object as strings make it 

possible to interoperable with Hadoop based systems. ISP uses 

GEOS library to parse strings in WKT format and reconstruct in-

memory geometric objects on the fly.  

ISP is designed to support spatial queries through UDFs which is 

well-supported by Impala. Different from Java-based big data 

systems that require a UDF provide a native Java interface before 

it can be invoked, a UDF in Impala can be compiled into 

Intermediate Representation (IR) code that can be written in any 

langue, in addition to calling APIs in a shared library. Since we 

want to extensively explore JIT for high performance, ISP has 

adopted the IR approach. We have developed a few spatial UDFs 

to test spatial relations between two geometric objects that are 

provided to UDFs as strings in WKT format. This is realized by 

wrapping around the corresponding functions in GEOS, such as 

ST_Intersects and ST_Within. While calling external APIs within 

IR code in the current version makes it impossible to completely 

seamlessly integrate spatial UDF code with Impala system code 

(as LLVM-based JIT compilation cannot be extended to API 

internals), the design makes it possible for future expansions.  

Currently our spatial UDFs are simply wrapper functions using 

GEOS library without SIMD support. However, we plan to 

rewrite such functions that can utilize increasingly powerful 

Vector Processing Units (VPUs) on multi-core CPU, e.g., the 4-

way SSE, 8-way AVX/AVX2 and 16-way AVX-512 (on Intel 

Xeon Phi accelerators and forthcoming Intel Xeon processors). 

Our standalone experiments have demonstrated the potentials of 

using SIMD computing power for geospatial operations [17]. 

When native spatial UDFs with SIMD parallel computing are 

fully compiled into IR code and seamlessly integrated with Impala 

system code in the next version, we expect ISP can achieve even 

higher performance.  



Once spatial UDFs are registered with Impala, they can be used to 

support both “single-sided” ad-hoc spatial queries and “double-

sided” spatial joins, through different mechanisms. For “single-

sided” ad-hoc spatial queries, one or more geometric objects are 

provided in WKT format in a SQL expression. The geometric 

objects are used to query against a table stored in HDFS. Since the 

geometric object stored in the table is also in WKT format and is 

typically non-indexed, a full table scan with on-the-fly expression 

evaluations of the selection criteria to each and every of the tuples 

in the table is appropriate. This is exactly many big data systems 

are designed for. No additional extensions are needed for Impala 

to support such “single-sided” ad-hoc spatial queries other than 

providing spatial UDFs. However, it is much more involved for 

ISP to support “double-sided” spatial joins on top of Impala where 

indexing is necessary to avoid a full cross join. We note that, 

although full cross join on spatial data is naturally supported in 

Impala by using spatial UDFs, the complexly is O(m*n) where m 

and n are the numbers of tuples in the two tables being joined. 

While the approach is embarrassingly parallelizable and is 

suitable for massively parallel systems, it scales poorly and is 

impractical for large-scale data. Currently Impala can only 

support equality joins on relational data efficiently by using well-

established hash join techniques. As such, the most signficant 

technical contribution of ISP is to provide indexed spatial joins 

natively within Impala framework. Our solution, although still 

limited in a sense and has room for future improvements, as 

demonstrated in Section 3, has achieved signficant speedups over 

alternatives. The implementation details are provided in the next 

subsection (Section 2.3).    

We would like to compare ISP with the approaches adopted in 

Hadoop-GIS [1] and SpatialHadoop [3] to help understand the 

achieved high performance to be reported in Section 3.2. Different 

from SpatialHadoop that requires users to write MapReduce jobs 

for spatial queries, which is flexible but less user-friendly, both 

ISP and Hadoop-GIS accept spatially extended SQL statements. 

However, unlike ISP that evaluates queries in-memory, the 

Hadoop-GIS front end (i.e., Hive-SP) compiles a SQL query into 

multiple sequential MapReduce jobs. The results of spatial UDF 

evaluations are written to HDFS before they are combined with 

other inputs to perform the rest of the query, which now becomes 

a regular SQL query in Hive. While caching the intermediate 

spatial and non-spatial query results in RAM disks can certainly 

improve system performance to a certain extent, excessive 

redundant disk IO will hurt the overall performance significantly 

in this case. Furthermore, as both Hadoop-GIS and SpatialHadoop 

are built on top of traditional MapReduce/Hadoop systems, they 

use multi-core machines as multiple virtualized machines with 

single processors to process Map/Reduce jobs without being 

aware of data and computing locality at multiple levels. In 

contrast, ISP is able to exploit the raw computing power of multi-

core machines and optimize system performance using native 

parallel programming tools (e.g., OpenMP and Intel TBB) for 

better performance.  

2.3 Implementation Details of Spatial Joins 
While spatial joins involve two tables stored in HDFS in ISP, we 

observe that very often these two tables are asymmetric with 

respect to the numbers of tuples. For example, in our taxi trip data 

management applications [9], while the numbers of pickup and 

drop-off locations increase quickly (half a million a day in New 

York City – NYC), the underlying urban infrastructure data such 

as road network and census tract data are “small” in volume. As 

such, it is possible to broadcast the “small” table to all computing 

node and index them on the fly so that tuples in the “big” table 

can probe the index structure in parallel. The strategy is different 

from traditional spatial databases that typically choose to index 

the “big” table and use all the tuples in the “small” table to query 

the index in a spatial join. This is because offline indexing time is 

not counted in such as a scenario. However, when both indexing 

and querying time are considered and a query is distributed among 

K computing nodes, our preliminary complexity analysis has 

shown that, on-the-fly indexing the broadcast “small” table on 

each node and querying 1/K tuples of “big” table on the node 

incurs lower process time than the other way around.  

When executing a SQL query on a computing node, starting from 

the root of an AST, expressions that are associated with AST 

nodes are evaluated top-down using the appropriate data partitions 

that are assigned to the Impala instance on a computing node. 

When joining two tables based on an UDF, the AST node 

corresponding to the join has two child nodes with necessary 

information of the two tables. Starting from here, Impala requests 

blocks of tuples from the two tables in an iterative manner to 

process the join in batches. The implementation of our spatial join 

extension works as follows. First, we iteratively retrieve the 

geometry columns of tuples of the “small” table and build an 

appropriate spatial index for all the tuples in the “small table”. 

Retrieving the “small” table from HDFS can be efficiently done 

using multi-threaded I/O supported by Impala. Second, we iterate 

through all the blocks that are assigned to an Impala instance 

sequentially to perform the spatial join. For each block, we use 

OpenMP to parallelize tuple evaluations within a block. Non-

spatial sub-expressions are evaluated first before the spatial UDF 

is evaluated. Tuple pairs satisfy the criteria defined in the 

WHERE clause (including one or more spatial UDFs and other 

non-spatial sub-expressions) are written to a tuple buffer before 

they are sent to upper level AST node for subsequent processing 

in blocks, e.g., projection and aggregations and upper level SQL 

statements if a sub-query is being processed. At any time during 

the process of executing a SQL query, no more than three blocks 

of tuples (the two input blocks and the output buffer block) are 

stored in main memory for an AST node, unless additional 

dynamic structures are purposely maintained (e.g., hash tables for 

relational indexing).  

 

 

 

 

 

 

 

 

Fig.  2 Point-in-polygon based Spatial Join Processing in ISP 

ISP takes advantage of Impala’s carefully designed framework for 

SQL execution. Instead of pairing tuples from two joining tables 

in a cross product manner (which is the default), as discussed 

above, ISP builds a grid indexing structure for the “small” table. 

By using the “parallel for” OpenMP directive, tuples in a block of 

the “big” table are assigned to multiple threads for parallel 

evaluating the operation represented in the AST node that is being 

traversed. As discussed before, UDFs and sub-expressions in the 

operations can be JIT compiled to host machine code if the 

corresponding IR codes are available.  Fig. 2 shows an example 

on point-in-polygon test based spatial join to illustrate the design 



of spatial join extensions to Impala which is a unique contribution 

from ISP.  

3. DEMOSTRATION 
In the section, we will demonstrate a use case of point-in-polygon 

test based spatial join in ISP. Consider we want to find the zone 

(polygon) that each GPS location (point) falls within, the query 

can be expressed as an SQL statement as following:  

SELECT point.id, polygon.id  
FROM point SPATIAL JOIN polygon  

WHERE ST_WITHIN(point.geom, polygon.geom) 

3.1 Setup 
For the point dataset, we used subsets of NYC Taxi GPS trip data 

[9]. We have prepared two datasets from the original dataset for 

the demonstration, including a small dataset (~2 million points, 

named point_small) and a large dataset (~28 million points, 

named point_large). The polygon dataset we used is from NYC 

PLUTO tax lot dataset [18]. We extracted a large dataset with 

824,811 polygons (in all boroughs excluding Staten Island) and a 

small dataset (which covers only Manhattan) with 43,252 

polygons from PLUTO as the testing polygon datasets. They are 

called polygon_large and polygon_small, respectively.  

In this demonstration, we prepared three experimental 

configurations. The first one is a SGI Octane III mini-cluster that 

has two nodes, in which each node has dual quad-core CPUs and 

48GB memory. Each node in the mini-cluster runs as a Hadoop 

datanode as well as an Impala instance. Participant can try ISP on 

the in-house mini-cluster in an unrestricted manner. We also 

installed PostgreSQL 9.2.3 on one of the two mini-cluster nodes 

for comparison purposes. The third configuration is an Amazon 

EC2 cluster with up to 10 c1.xlarge instances. Each instance has 8 

vCPUs and 7 GB memory. We have installed and configured ISP 

on the cloud cluster and will use it to compare with HadoopGIS.  

3.2 Performance and Scalability 
We imported point_large and polygon_small datasets into 

PostgreSQL with built-in spatial indices created after data import. 

A point-in-polygon spatial join query took about 1.7 hours to 

finish on one node of the two-node mini-cluster. The poor 

performance is mainly due to sequential execution in 

PostgreSQL/PostGIS on a single CPU core, which significantly 

underutilizes available hardware resources. The same query 

performed on our ISP using both nodes of the mini-cluster took 16 

minutes where all CPU cores were utilized. In addition to the 

6.4X speedup, another advantage of ISP over PostgreSQL is that 

ISP requires no additional performance tuning. Furthermore, ISP 

can process data stored in HDFS directly without involving 

expensive import/export steps as in PostgreSQL/PostGIS.  

We also compared with HadoopGIS [3], a big spatial data query 

processing system. Two datasets, point_small and polygon_large, 

are used as the testing datasets. We allocated 10 c1.xlarge nodes 

for both HadoopGIS and our ISP. We measured end-to-end query 

times for both systems. The experiment showed that HadoopGIS 

took 6 minutes and our ISP took only 37 seconds where a nearly 

10X speedup has been observed.   

To test ISP’s scalability, we vary the number of c1.xlarge nodes 

(instances) on the Amazon EC2 cluster from 4 to 10 for the same 

point-in-poly test based spatial join. The runtimes are plotted 

against the numbers of instances in Fig. 4. We can see that ISP 

scales linearly up to 8 nodes but does not scale further beyond 

that. Careful investigation suggests that this is due to the 

scheduling policy imposed by Impala where an Impala instance 

participate a join only if it has a local partition of the “big” table. 

Using a HDFS data block size of 16MB, there are only 7 data 

blocks of the point dataset in HDFS and thus using more nodes 

beyond 7 will not help. Larger “big” table volume will naturally 

have larger number of data blocks which will scale out further on 

ISP. The finding can also be used to guide setting proper HDFS 

parameter and/or deciding cloud computing resource demands. 

 

 

 

 

 

 

 

Fig.  3 Plot of Runtimes Against Number of Instances 

4. SUMMARY AND CONCLUSTION  
We have developed ISP, a large-scale in-memory system based on 

Impala with spatial extensions that directly operates on HDFS. 

Using a case study of point-in-polygon test based spatial join, we 

demonstrate that ISP significantly outperforms both a traditional 

spatial database (6.4X over PostgreSQL/PostGIS) and a 

MapReduce/Hadoop based spatial big data system (10X over 

Hadoop-GIS). We have provided plans to demonstrate the 

efficiency and scalability of ISP to the conference participants. 
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