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While quadtree and R-Tree indexing can be used to speed up spatial joins, we are 

more interested in non-indexed spatial joins on GPUs. This is primarily because pre-built 
quadtrees may use different grid cells (which requires implicit and explicit conversions) 
and synchronizing traversals on pre-built R-Trees can be inefficient even on CPUs. 
Previously we have developed a spatial join technique based on a simple Single-Level 
Grid-File (SLGF) structure for spatial filtering and applied to a few spatial join 
applications (Fig. 1). The approach is closely related to the classic Partition Based 
Spatial-Merge-Join (PBSM) technique [1] in the sense that both input datasets are 
decomposed into regular tiles (or grid cells) for filtering. PBSM relies on a tile-to-
partition mapping scheme to group tiles into partitions to reduce skewness and increase 
filtering power, which can be used for load balancing in a parallel setting on CPUs. Our 
approach essentially implemented the tile-to-partition mapping scheme on GPUs (using 
1D parallel primitives) which is much easier than implementing plane-sweeping based 
filtering that have been extensively used for parallel spatial joins on CPUs [2] which is 
hard to parallelize. However, our previous results on using single-level grid-file for 
spatial joins have experienced difficulties in choosing grid cell sizes in reducing memory 
footprint in the filtering phase which has limited its applicability to a certain extent for 
large-scale data on GPUs with limited memory.  

 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1 Illustration of Single-Level Grid-File (SLGF) for Spatial Filtering 

 
The issue can be explained as following. If a large cell size is chosen, then more 

MBRs from both input datasets will be associated with non-empty grid cell. As the 
design requires pairing all the MBRs from both datasets, very often a large number of 
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pairs, i.e., ∑=
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1
||*|| (where N is the number of non-empty cell and |Ai| and |Bi| are 

the numbers of MBRs associated non-empty cell i), need to be output before unique pairs 
can be computed and used in the refinement phase (Fig. 1). Although the number of 
unique pairs might be small, the number of intermediate pairs can be too large to be fit in 
the GPU memory. On the other hand, if a small cell size is chosen, while |Ai| and |Bi| are 
likely to be smaller, N usually grow quadratically which may also incur large numbers of 
intermediate pairs. Intuitively, for small cell sizes, large MBRs will be associated with 
multiple grid cells (proportional to their area sizes) and the resulting pairs will grow 
quadratically. As using smaller grid cells will improve filtering power, there is a tendency 
to use small grid cells in practices, however, large member footprint remains to be an 
issue.  

While the large memory footprint issue has not been yet addressed extensively in 
CPU based serial and parallel spatial joins (possibly due to the reason that the majority of 
spatial join algorithms are designed for external storage), as our goal is to develop high-
performance spatial join techniques on GPUs which are essentially memory resident, it is 
imperative to reduce memory footprint in spatial joins to allow processing larger datasets 
without resorting to external storage techniques at the cost of signficant  performance 
degradation. The design of Incremental Refining Grid-File (IRGF) structure for spatial 
filtering is illustrated in Fig. 2. Our idea is to build multiple grid files using different cell 
sizes, from coarse resolution at the top (level 1) to fine resolution at the bottom (level K). 
As the example shown in Fig. 2, the number of the candidate pairs to be sent for the next 
step (Step 4 in Fig.1) for duplication removal (the last step of the filtering phase) is 
reduced from 15 to 4. Note that MBR 2 has been replicated in the both quadrants that it 
intersects at the finer level grid.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2 Illustration of Incremental-Refining Grid-File (IRGF) for Spatial Filtering 

and its Implementation Using Parallel-Primitives 
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While the idea is quite intuitive and its serial implementation on CPUs is also 

straightforward, the design and implementation on GPUs is not as simple as it appears 
due to the complexities in fine-grained thread coordination. We further note that while 
pairing cells that have same spatial extent takes just two lookups using sparse matrix 
representation (2D) of a grid file, it is much more complex if a compact vector 
representation (1D) is needed, which is necessary to reduce memory footprint. We first 
compute the Morton codes of all the coordinates of MBRs and the grid levels that they 
should be associated with, in a way similar to what we have proposed for quadtree 
indexing in Section 5.1, for both input MBR sets (assuming PS and QS, respectively). To 
subdivide level k cells into level k+1 cells in parallel for PS, a sequence of (sum-)scan-
reduce-scatter-(max-)scan-gather-recue(by key) primitives can be applied as shown in the 
lower part of Fig 2. Similarly the subdivision can be applied to QS. Subsequently the 
MBRs associated with the cells of the two input datasets can be paired with the same 
Morton codes. The resulting PA and PM vectors shown in the lower part of Fig. 2 are 
essentially the same as VPP and VPC in Fig. However, PA and PM can be dynamically 
expanded level by level as necessary rather than being fixed based on a predefined grid 
cell resolution.  

The design also allow setting flexible policies in deciding whether to user finer 
resolutions, such as available memory, numbers of MBRs associated with grid cells or 
their combinations. Our approaches share quite some similarities with the design of 
splitting of a PMR-quadtree node using a different set of parallel primitives [3]. The 
clone primitive used in [3] essentially is the combinations of T3, Scan1, Scatter and 
Scan2. The unshuffle primitive in [3] is also functionally equivalent to the combination of 
T4, Gather, T5 and Sort. Despite the similarities, our approach originates from a single-
level grid-file structure and the multi-level grid-file is intended to be used as a light-
weighted structure for spatial joins on non-index datasets rather than building a full-
fledged indexing tree which usually requires much more sophisticated design and 
parameter tuning. We consider our approach a hybrid of grid-files and quadtrees: it is 
similar to quadtrees as space is dynamically partitioned into regular quadrants but the 
hierarchy is not maintained; it is similar to grid-files as only a flat structure is used but 
the cell resolutions can be incrementally refined. 

We note that the proposed approach may introduce false positives during the cell 
subdivisions as illustrated in the right part of Fig. 2 where vector elements correspond to 
the false positives are highlight in gray. We could have eliminated the false positive by 
subdividing a MBR along the two dimensions separately. We consider it a design option 
and plan to model the behavior in the project. Another design option is to dynamically 
expand 1D vectors to 2D matrixes for simpler cell pairing and compress the results back 
to 1D vectors for storage efficiency. This is possible due to the data parallelism in the 
design where the grid cells can be batch processed without incurring signficant 
overheads. The option is especially beneficial for dense cells at the finer grid levels 
where memory requirement for processing a few grid cells is small. Similar to spatial 
indexing, we plan to build cost models for the basic design and its options to quantify the 
performance and evaluate them empirically. 
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