
Parallel Selectivity Estimation for Optimizing

Multidimensional Spatial Join Processing on GPUs

Jianting Zhang

Dept. of Computer Science

The City College of New York

 New York, NY, USA

jzhang@cs.ccny.cuny.edu

Simin You

Dept. of Computer Science

CUNY Graduate Center

New York, NY, USA

syou@gradcenter.cuny.edu

Le Gruenwald

Dept. of Computer Science

The University of Oklahoma

Norman, OK, USA

ggruenwald@ou.edu

Abstract—Processing large-scale data is typically memory

intensive. The current generation of Graphics Processing Units

(GPUs) has much lower memory capacity than CPUs which is

often a limiting factor in processing large-scale data on GPUs. It

is desirable to reduce memory footprint in spatially joining large-

scale datasets through query optimization. In this study, we

present a parallel selectivity estimation technique for optimizing

spatial join processing on GPUs. By integrating the multi-

dimensional cumulative histogram structure and the summed-

area-table algorithm, our data parallel selectivity estimation

technique can be efficiently realized on GPUs. Experiments on

spatially joining two sets of Minimum Bounding Boxes (MBBs)

derived from real point and polygon data, each with about one

million MBBs, have shown that selectivity estimation at four grid

levels took less than 1/3 of a second on a Nvidia GTX Titan GPU

device. By using the best grid resolution, our technique saves

38.4% memory footprint for the spatial join.

Keywords— Selectivity Estimation, Spatial Join, GPU, Parallel

Design, Cumulative Histogram

I. INTRODUCTION

Spatial data volumes are fast increasing due to advances of
locating, sensing and simulation techniques. For example,
although navigation devices (e.g. GPS, cellular and WIFI
network-based ones) embedded in smartphones (nearly 1.5
billion sold in 2015 [1]) have already generated large volumes
of location and trajectory data, the next generation of consumer
electronics, such as Google Glasses and Microsoft HoloLens,
are likely to generate even larger volumes of location-
dependent multimedia data. Objects identified from high-
resolution satellite imagery and medical imagery, when
represented as vectors of geometric coordinates, can also be
considered as spatial data. In addition, large-scale climate,
astronomical and molecular simulations are likely to produce
even larger spatial datasets. Very often different spatial
datasets need to be joined to derive new information and
knowledge to support decision making. For example, GPS
traces can be better interpreted when aligned with urban
infrastructures, such as road networks and Point of Interests
(POIs), through spatial joins. As spatial datasets are getting
increasingly larger, techniques for high-performance spatial
join processing on commodity and inexpensive parallel
hardware become crucial in addressing the “BigData”
challenge.

Spatial joins can be considered as extensions of

relational theta joins [2] where spatial relationships, such as

distance and topology, are involved in the joining criteria [3].

While considerable research on join query processing for both

relational [2] and spatial [3] data has been reported, including

that targeted for parallel and distributed computing platforms

[3], there is little research on parallel spatial joins on GPUs

that are capable for general computing. Compared with multi-

core CPUs, the current generations of GPUs typically have

limited memory capacity (generally in the order of a few

GBs), which frequently becomes a constraining factor for

parallel spatial joins on large-scale spatial datasets. In

addition, different from multi-core CPUs that are designed to

support coarse-grained task-level parallelisms, fine-grained

data parallelisms are crucial in achieving hardware potentials

on GPUs. As such, many existing spatial join techniques that

are either sequential in nature or rely on coarse-grained

parallelisms can be inefficient when applied to GPUs. The

combined technical challenges in minimizing memory

footprints and maximizing data parallelisms have motivated us

to develop novel spatial join techniques on GPUs.

In our previous studies, we have explored several

GPU-based techniques for parallel spatial join processing,

such as distance based point-to-polyline join [4], trajectory

similarity join [5], and topology based point-in-polygon test

based spatial join [6]. These GPU-based techniques adopt the

classical two-phase spatial join framework, i.e., a filtering

phase followed by a refinement phase [3]. While the

refinement phase typically involves more floating point

computation and is desirable to utilize GPUs for speeding up,

it is more technically challenging in improving the efficiency

of the filtering phase on GPUs under stricter resource

constraints, e.g., GPU memory capacity. Compared with the

refinement phase that can utilize batch processing to reduce

resource requirements in a single batch, it is more difficult to

explore a similar strategy for filtering, as global information is

typically required in this phase. Spatial filtering techniques

that minimize memory consumption are thus preferred from

an implementation perspective.

While spatial indexing techniques, such as pre-built

quad-trees and R-Trees [7], have been frequently used to

speed up spatial joins in classic computing models that are

designed for serial algorithms, uniprocessors and disk-resident

systems, their suitability on GPUs for spatial joins needs to be

reevaluated. First of all, very often their hierarchical tree

structures and irregular memory access patterns incur

significant performance penalty on parallel hardware,

especially GPUs. Second, the complex data structures are

expensive to construct and maintain and difficult to

manipulate. Utilizing multi-dimensional histograms as light-

weighted data structures that are parallelization friendly to

facilitate spatial join processing on GPUs is thus desirable in

many cases. Different from heavy-weighted spatial index

structures that are associated with data items for direct query

processing, these histograms contain only essential statistical

information to guide the process of choosing optimal/suitable

parameters for spatial joins under resource constraints, with or

without using additional spatial indices. Indeed, as discussed

in Section II, selectivity estimation is an important component

in efficiently processing spatial joins, especially when spatial

indexes are not available.

Our parallel selectivity estimation technique is based

on Cumulative Histogram (CD) to count the numbers of

Minimum Bounding Boxes (MBBs) that intersect with cells in

uniformly tessellated grids, compute the possible numbers of

pairs in the grid cells, and, choose an optimal grid resolution

that satisfy GPU memory footprint budget. While cumulative

histograms have been utilized for spatial query processing in a

previous study [8], we believe we are the first to take

advantage of data parallelisms in constructing and utilizing

CDs for parallel selectivity estimation to guide spatial joins on

GPUs. Furthermore, our design seamlessly integrates the well-

received Summed-Area-Table (SAT) algorithm in computer

vision and image processing domain [9]. Based on the idea,

we are able to provide a simple design and implementation

that can be presented as a chain of several parallel primitives

[18], i.e., sort/scan/reduce/scatter/transform, which are well

understood in the parallel computing community and well-

supported across multiple parallel hardware platforms,

including Nvidia and AMD GPUs. We have further optimized

some of the parallel primitives in the specific application

context to improve overall performance.

Our technical contributions can be summarized as follows:

1) We present a novel parallel design and implementation of

parallel selectivity estimation on GPUs by integrating a

cumulative histogram and the Summed-Area-Table algorithm.

2) We perform preliminary experiments on real spatial

datasets to demonstrate the effectiveness and efficiency of the

proposed technique.

The rest of the paper is arranged as follows. Section

II introduces the background, motivation and related work.

Section III provides the parallel spatial join framework.

Section IV presents the details of the parallel design and

implementation. Section V is the experiments, and finally,

Section VI is the conclusion and future work.

II. BACKGROUND AND RELATED WORK

Given two spatial datasets each with a geometrical attribute

the_geom, i.e., T1(id, the_geom) and T2(id, the_geom), the

basic form of spatial join processing can be expressed as the

following SQL statement:

SELECT * from T1, T2

WHERE ST_OP (T1.the_geom, T2.the_geom)

Here the geometric attributes in T1 and T2 can be

any of the geometric types (e.g., point, polygon and polyline)

and ST_OP can be any of the spatial relationships (e.g.,

intersects, within) defined by the Open Geospatial Consortium

(OGC) Simple Feature Specification (SFS) [10] which has

been the cornerstone of virtually all commercial (e.g., Oracle

Spatial and Microsoft SQL Server Spatial) and open source

(Postgresql/PostGIS) spatial databases. More complex queries

may also involve additional attributes in T1 and T2, additional

operators (e.g., count, sum) and additional clauses (e.g., group

by, having and order by). Similar to theta joins in relational

queries, spatial joins can be conceptually formulated as

Cartesian products followed by evaluating spatial relationships

between two geometrical objects based on some well-

established principles (e.g., nearest neighbor) and/or

computational geometry algorithms (e.g., point-in-polygon

test). Assuming the cardinality of T1 and T2 to be n1 and n2,

respectively, similar to processing relational joins, indices can

be constructed to reduce the complexity from O(n1*n2) to

O(n1) or O(n2) provided that a good spatial filtering strategy

is available so that a spatial object in T1 will only be paired

with a limited number of spatial objects in T2. As argued in

[3], spatial joins are distinguished from relational joins due to

the fact that spatial data are inherently multi-dimensional data

that exhibit several unique features, e.g., lacking total ordering

that preserves proximity (which makes sort-merge join largely

inapplicable and/or inefficient), unsuitable for grouping due to

having spatial extents (which makes equijoin inapplicable),

and, requiring complex geometric computation (which is

typically much more expensive than arithmetic operations for

relational joins).

Hundreds of indexing structures have been developed

in the past few decades to index and query spatial data [7]. In

addition, we refer to the excellent survey paper [3] for a

comprehensive review on spatial join techniques, including

several parallel and distributed spatial join techniques on

traditional cluster computing environments. We also refer to

several recent works on spatial join processing on

MapReduce/Hadoop clusters [11,12] with demonstrated

scalability at the expense of singe node efficiency. Despite

that shared-memory systems are getting increasingly popular

and affordable in both personal and cluster computing settings

and typically are easier to program, almost all existing parallel

spatial join techniques are designed for shared-nothing

architectures (see [13] for a recent brief survey). While

shared-nothing architectures are generally considered to have

better scalability, recent studies show that parallel data

processing on MapReduce/Hadoop clusters typically is only

able to utilize a fraction of hardware resources, mostly due to

disk I/O and network bandwidth constraints [14]. As GPUs

that are capable of general computing typically have large

numbers of processors (in the order of 103), much higher

bandwidth (300-500 GB/s) and more floating point computing

power (by design) [15][16], an alternative to cluster

computing in solving moderate sized spatial join problems on

single GPU devices becomes promising [4,5,6]. We note that

as GPUs are typically used as accelerators in computing

nodes, it is quite possible to integrate the two sets of

techniques to solve larger scale spatial join problems when

needed.

Selectivity estimation is considered a vital

component in query optimization in both relational databases

and spatial databases. Given a set of query items in T1,

selectivity estimation techniques estimate the numbers of

items in T2 that are likely to be joined with each of the query

items. Fast and accurate selectivity estimations can help

database query optimizers to choose better query plans under

resource constraints. Some techniques on selectivity

estimation for spatial joins and other types of spatial query

processing [8, 19-41] have been reported.

Several existing techniques derive histograms by

querying data or indices directly, e.g., [35][41]. These

techniques enjoy the flexibility of using arbitrary bin shapes

and can be optimized with certain properties [40]. However,

as the MBBs of non-point geometric objects (including

aggregated points) are variable, these techniques require loops

over bins along both width and height in 2D spaces. It is more

difficult to provide a simple parallel design and an efficient

implementation for these techniques as they are not

parallelization friendly. In addition, many of these techniques

are almost as expensive as spatial indexing and spatial queries

and they may incur significant computing overheads when the

numbers of bins are large. While materialized histograms can

be used to speed up spatial joins effectively, it might be too

expensive to construct in an on-demand manner.

In this study, we are interested in selectivity

estimation techniques that are based on regularly spaced

multi-dimensional histograms (e.g., [19, 26, 27, 31, 33]) for

two reasons. First, when the histogram bins use the same

configuration for both datasets involved in a spatial join, the

total numbers of pairs to be processed in the refinement phase

in each bin can be easily calculated as |B1i|*|B2i| where |B1i|

and |B2i| are the numbers of objects that intersect with spatial

extent of the common bin (i.e., grid cell) in T1 and T2,

respectively. Second, regularly spaced multi-dimensional

histograms are more parallelization friendly and are likely to

be more efficient on modern parallel hardware to a certain

extent (even through hierarchical tree structures might be

more desirable at upper levels for efficiency concerns).

By observing that generating a 1D cumulative

histogram is equivalent to performing a prefix-sum [18] on the

original regular histogram, and generating a 2D cumulative

histogram can be realized using two scans on the original 2D

regular histogram using both row-major order and transposed

row-major order (to be detailed in Section IV), we have

developed a simple yet effective parallel approach to derive

|B1i| and |B2i| counts for all bins from the two sets of MBBs of

the two input datasets in a spatial join and use them to choose

the appropriate grid resolution for the spatial joins under GPU

memory constraints. To the best of our knowledge, this is the

first work on parallel selectivity estimation for spatial joins on

GPUs considering resource constraints. Before we present the

details of the parallel designs and implementations in Section

IV, we next provide a framework for parallel spatial join

processing on GPUs. This will not only put our proposed

technique in context, but more importantly, it will help explain

the role of selectivity estimation in the complete spatial join

process, and subsequently, identify various research

opportunities and associated technical challenges on spatial

data management on GPUs.

III. PARALLEL SPATIAL JOIN FRAMEWORK ON GPUS

Spatial data is rich in data types and different spatial data types
may allow different spatial operations, for example, distance
calculation between points and polylines and point-in-polygon
tests among points and polygons. We refer to the OGC SFS
[10] for more details on spatial data modeling. While most of
the existing spatial databases adopt Object-Relational data
models for spatial data to extend relational database
functionality to spatial data, extensive dynamic memory
allocations to construct spatial objects in memory can cause
significant overheads and is not cache friendly. To boost the
performance of the in-memory data structures for complex and
read-only spatial data, we have designed an array-based
physical data layout scheme [17]. For complex spatial objects
such as polylines and polygons, in addition to their vertex
arrays, auxiliary index arrays are also created. These arrays can
be efficiently streamed among disks, CPU memories and GPU
memories. While we refer to [17] for a summary of our GPU-
based techniques for spatial query processing, including grid-
file, R-Tree and Quadtree based spatial indexing and spatial
join techniques, in this study, we consider the general situation
that spatial index structures are available for none of the input
datasets involved in a spatial join and we thus resort to a simple
grid-file based approach for spatial filtering as shown in the
middle of Fig. 1, which requires a proper grid resolution to be
chosen for performance as shown in the top-right part of Fig. 1.

While points can be easily grouped into grid cells by

chaining sorting and reduction parallel primitives [18] (using

grid cell identifiers as keys), MBBs of polylines and polygons

may intersect with multiple grid cells. After both geometric

objects are aligned to one or more grid cells, generating (P, Q)

pairs can be transformed into a binary search problem. For

each grid cell in the VPC vector, which stores the one-to-

many mappings between the MBB of a geometric object in T1

to the grid cells that the MBB intersects, we search the cell in

the VQC vector, which stores the one-to-many mappings

between the MBB of a geometric object in T2 to the grid cells

that the MBB intersects (center of Fig. 1). The matched

objects in T1 and T2 will be paired for refinement. Clearly, for

MBB pairs that cover multiple grid cells, the (P, Q) pairs will

be duplicated and need to be removed to avoid redundant

spatial refinements. All the steps can be realized using parallel

primitives [18]. During the refinement phase, (P, Q) pairs will

be assigned to GPU computing blocks for parallel processing

as shown at the bottom part of Fig. 1.

Fig. 1 A Framework of Parallel Spatial Join Processing on GPUs

As there will be multiple points/vertexes in both P

and Q (here we treat grouped points as a point collection

object), we assign one set of points/vertexes to threads in the

computing block while looping through all the other sets of

points/vertexes to derive results that will be associated with

either points/vertexes or the pairs assigned to the computing

block. This nested-loop style design is very efficient on GPUs

as neighboring threads read neighboring points/vertexes in one

object (assuming P) before a loop begins and write to

neighboring positions for outputting results after the loop

finishes while they access the same point/vertex in another

object (assuming Q) throughout the looping process. The

memory access pattern is perfectly coalesced which is critical

for performance in GPU computing. As an example shown in

the bottom part of Fig. 1, assuming that P contains M points in

a grid cell and Q contains the N vertices of a polygon, we can

Refinement Phase

Selectivity Estimation at

multiple grid resolutions

and choose the best grid

resolution

Group points into

quadrants and derive

MBRs of polylines

and polygons

assign M points to threads in the GPU computing block while

letting all threads loop through the N vertices. Depending on

the sizes of points/vertexes in P and Q and the configurations

of GPU computing blocks, we may need to reshape the

O(M*N) computation to maximize the utilization of GPU

hardware. For example, when M is less than the warp size

(currently 32 on CUDA enabled GPUs [16]), we can loop

through K (>=2) points in the Q polygon simultaneously and

reduce the number of the looping steps to ceiling(N/K).

Similarly, when M is larger than the number of threads in the

computing block (assuming T), we may need to loop over the

M points in ceiling(M/T) rounds. The parallel designs and

implementations of point grouping, spatial filtering and spatial

refinement are documented in more details in our previous

works [4,5,6].

Fig. 2 Illustration of Choosing Optimal Grid Level in

Minimizing Memory Footprint for Spatial Filtering

A major issue that we have encountered in applying

the framework for practical spatial join applications is the

difficulties in choosing grid cell resolutions which have a

significant impact on GPU memory consumption in the

filtering phase. When a large cell size is chosen, more MBBs

from both input datasets will be associated with non-empty

grid cells. As the design requires pairing all the MBBs from

both datasets, very often a large number of pairs, i.e.,

 


N

i ii BBS
1

|2|*|1| (where N is the number of non-empty

cells and |B1i| and |B2i| are the numbers of MBBs associated

with the non-empty cell i), need to be outputted before unique

pairs can be computed and used in the refinement phase.

Although the number of unique pairs might be small, the

number of intermediate pairs can be too large to fit GPU

memory (currently limited to a few GBs). On the other hand,

if a small cell size is chosen, while |B1i| and |B2i| are likely to

be smaller, N usually grows quadratically which may also

incur a large number of intermediate pairs. For the example

shown in Fig. 2, the grid on the right (Fig. 2C) is most

memory efficient where the number of candidate pairs (4) is

significantly smaller than that incurred when using a coarser

grid (Fig. 2A) or finer grid (Fig. 2B). As such, it is desirable to

choose a grid resolution that can minimize memory footprint.

IV. GPU PARALLEL SELECTIVITY ESTIMATION

Our parallel selectivity estimation technique is designed to

compute |B1i| and |B2i| values efficiently on GPUs so that S

can be computed on GPUs by a parallel reduction (prefix sum)

[18]. Subsequently this requires computing the number of

MBBs in each bin of both T1 and T2. An approach that

utilizes cumulative histograms for this purpose has been

proposed in [8] and illustrated in Fig. 3. However, we are not

aware of previous work on parallelization of deriving 2D

cumulative histograms and computing selectivity on GPUs.

By treating the numbers of MBB corners that fall within grid

cells as pixel values, we transform the problem of deriving 2D

cumulative histograms from a set of MBBs to the problem of

computing Summed-Area-Tables from image pixels [9]. We

next present the details of our GPU-based parallel selectivity

estimation technique.

Fig. 3 Illustration of Spatial Cumulative Histogramming
and Selectivity Estimation

The complete algorithm for our selectivity estimation

technique is shown in Fig. 4. As shown in the top-left part of

Fig. 4, the main algorithm computes the number of MBBs that

intersect with each and every grid cell for the two input

datasets (M1 and M2) separately, and the total number of

possible MBB intersections across all grid cells (i.e.,

 


N

i ii BBS
1

|2|*|1|) can be computed using a Reduce

parallel primitive [18], which is well understood in parallel

computing and efficiently implemented in the CUDA Thrust

library. The algorithm compute_counts, shown in the top-right

part of Fig. 4, first extracts points of the four corners of the

input MBB dataset and calls the algorithm point_aggregation

to compute the numbers of points that fall into the grid cells

with the desired grid resolution r. The algorithm

compute_counts subsequently calls the algorithm gen_sat to

generate the corresponding cumulative histogram array. This

is done for all the four corners of MBBs and the results are

stored in the four cumulative histogram arrays (Hll, Hlr, Hul

and Hur), respectively. Finally, the algorithm computes the

number of MBBs that intersect with a grid cell for all grid

cells based on the four arrays, i.e., Ni= Hll(x2,y2) - Hlr(x1-1,y2) -

Hul(x2,y1-1) + Hur (x1-1,y1-1) by setting x1=x2=c and y1=y2=r

where (r,c) is the row and column of the grid cell being

processed.

|{1,2,3,4,5} ⋈ {A,B,C}|=15

1

2

3

4 5
B

A

C

(A) Spatial Join using Coarser Grid (B) Spatial Join using Finer Grid

(C) Spatial Join using

Optimal Grid

10|2|*|1|
16

1
 i ii BB

1

2

3

4 5
B

A

C

1

2

3

4 5
B

A

C

4 | 2 | * | 1 | 4
1    i i i B B

34 2 3 3

1 2 3 3

1 2 2 2

1 1 1 1

34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 1 34 2 2 3

0 2 2 3

0 2 2 2

0 1 1 1

34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 0

Hll Hlr

34 2 3 3

1 2 2 2

1 1 1 1

1 1 1 1

34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 1 34 2 2 3

0 2 2 2

0 1 1 1

0 1 1 1

34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 0

Hul Hur

34

34 34 34 34 34 34 34 34 34 34 34 34 34 34 34

N=3-0-1+0=2

The algorithm gen_sat requires more explanations on

its parallel design and implementation. In the Summed Area

Table algorithm [9], the corresponding array (cumulative

histogram) can be realized by combining the row-wise and

column-wise prefix sums and two matrix transpose operations.

Prefix Sum can be directly realized using an inclusive_scan

primitive provided by the CUDA Thrust library whose

efficient implementations on GPUs have been extensively

investigated. The Transpose operation can be either

implemented using Thrust API by applying an element-wise

functor to the Transform parallel primitive to copy an element

to its corresponding transposed position in a 2D array, or can

be natively implemented using CUDA to achieve better

performance, which is also well studied. The algorithm

point_aggregation chains three parallel primitives: Transform

(to convert point coordinates to cell identifies), (radix) sort

(based on cell identifiers) and reduce_by_key (to count the

numbers of points that fall within a grid cell). Similar to the

Transpose operation, the last step in the algorithm

point_aggregation can also be implemented by using a scatter

parallel primitive [18] or using CUDA directly.

In this study, we have implemented the selectivity
estimation algorithm using parallel primitives provided by the
Thrust library. The row/column-wise inclusive scans, the
transpose operation and the element-wise operations that
require a transform primitive are subsequently replaced with a
native CUDA implementation for optimization purposes. We

find that the optimized implementation is several times faster
than the parallel primitives based implementation, largely due
to avoiding library overheads and efficiently using thread-
block level shared memory. The performance evaluation to be
reported next is based on the optimized implementation.

V. EXPERIMENTS AND DISCSUSSIONS

To validate our technique, we use two real datasets in our

experiments. The first dataset contains 168 million taxi trip

records each with a pick-up and drop-off location [42]. We

generate quadrants for the pick-up locations from the point

dataset by setting the maximum number of point in each

quadrant to K=256 points (see [4] for details) and use the

MBBs of the points in the quadrants. We call the first MBB

set as Taxi and the number of MBBs in the set

|Taxi|=1,746,795. The second dataset to participate in the

spatial join test is the NYC MapPluto tax lot data with

735,488 polygons and 4,698,986 vertices [43]. We use the

MBBs of the polygons as our second MBB set, i.e., |Pluto|=

735,488. We use four grid resolutions and vary grid sizes from

210*210=1024*1024 to 213*213=8192*8192 for selectivity

estimation. All experiments are performed on a 2013 Nvidia

GTX Titan GPU device with 2,688 cores and 6 GB memory.

Table 1 lists the computed numbers of pairs sk and

selectivity estimation runtimes in milliseconds at the four grid

resolutions. Assuming that the chance of picking all grid

resolutions for spatial filtering is the same, then the expected

Algorithm compute_counts

Inputs: MBB set M and resolution r

Outputs: grid N representing the numbers of MBBs intersect with each grid cell

Step 1 For each H in {Hll, Hlr, Hul and Hur}

Step 1.1: Initialize empty grid G based on resolution r

Step 1.2 V {lower-left, lower-right, upper-right, upper-right}

corner coordinate set of M

Step 1.3 Call point_aggregation(V,G,r)

Step 1.4 Call gen_sat(G,H)

Step 2 (for all grid cells in parallel) Ni= Hll(x2,y2) - Hlr(x1-1,y2) - Hul(x2,y1-1) +

Hur (x1-1,y1-1) using x1=x2=i%w and y1=y2=i/w (w=2k)

Step 4: reduce on N3 to compute S

Algorithm selectivity_estimation

Inputs: MBB sets M1 and M2

Outputs: optimal grid resolution ro

For each candidate resolution rk

Step 1 call compute_counts(M1, rk, B1)

Step 2 call compute_counts(M2, rk, B2)

Step 3: (for all grid cells in parallel) Bi=B1i*B2i

Step 4: sk=reduce(B)

Step 5: if sk exceeds memory budget then break

Return ro that corresponds to the smallest sk

Algorithm point_aggregation

Inputs: Point set V in the form of (x,y) pairs and grid resolution r;

Coordinate system origin x0 and y0 (global variables)

Outputs: Grid G representing the numbers of corner points

Step 1 (for all points in parallel) generate cell identifiers by setting Ci=(y-

y0)/r*COL+(x-x0)/r

Step 2 sort C

Step 3 count numbers of unique keys (C) (K,D)reduce_by_key(C)

Step 4: (for all grid cells in parallel): (row i,col i)Ki and G[r*row i+ col i]=Di

Algorithm gen_sat

Inputs: Grid G

Outputs: summed area table H

Step 1 (for all rows in parallel)

Hinclusive_scan(G)

Step 2: (for all grid cells in parallel)

Htranspose(H)

Step 3: (for all rows in parallel)

Hinclusive_scan(G)

Step 4: : (for all grid cells in parallel)

Htranspose(H)

Fig. 4 Algorithms for Parallel Selectivity Estimation

number of estimated pair is AvgN=ƩNi/4. After applying the

selectivity estimation algorithm, we are able to pick up the

grid resolution that has the minimum number of pairs

minN=min(Ni) and thus the benefit is (AvgN-

minN)/AvgN=34.8%. The total cost of the optimization is

simply the total runtimes ƩTsi=321 ms. The result indicates

that it is possible to reduce the memory footprint of the spatial

join by 34.8% in less than 1/3 of a second on a low-cost

commodity GPU device, which is desirable.

Table 1 Estimated Pairs and Runtimes of the Four Grids

Grid Level k Grid Size # of

Estimated

Pairs (N)

Runtime

(Ts) (ms)

13 8192*8192 78328554 205

12 4096*4096 40414590 63

11 2048*2048 43121125 31

10 1024*1024 86103593 22

From Fig. 4 we can see that the total runtime of the

selectivity estimation has three parts: aggregating corner

points to grids, generating SAT, and computing join pairs. For

point aggregation, the algorithm point_aggregation is called 8

times in total for the four corners in the two input datasets and

the cost is proportional to the number of MBBs in general

(Step 4 is proportional to grid size). Similarly, for generating

SAT, the algorithm gen_sat is called 8 times and the cost is

linear with respect to grid size (width*height). The cost to sum

up join pairs is a one-time cost and is generally negligible

compared to others.

Fig. 5 Comparison between SAT and the Total Runtimes

In our experiment, point aggregation times are in the

order of 10-15ms and 7-12ms for the two input datasets under

the four grid sizes. To better understand how the runtime of

generating SAT is affected by grid size, we have plotted the

runtimes of both SAT generation and the total in Fig. 5. For

small grid sizes (e.g., 1024*1024 and 2048*2048), the SAT

generation time is only a small fraction of the total (3.85/22.19

and 11.71/30.67, respectively). However, for large grid sizes,

the SAT generation time dominates (42.59/62.86 for

4096*4096 and 172.17/205.22 for 8192*8192, respectively).

The results suggest that, although using coarse grids may miss

the chance of finding an optimal grid resolution for spatial

join, the low cost makes it desirable in many cases. In fact, for

the particular spatial join in the experiment, using the grid

level 11 (2048*2048) is only slightly worse (~6%) than using

the optimal grid level 12 (4096*4096). When only the grid

levels 10 and 11 are examined in the selectivity estimation, the

runtime can be reduced from 321ms to 53ms.

We also note that, our current implementation

handles the multiple grid levels independently, which can be

further optimized. For the algorithm point_aggregation, it is

possible to apply the multi-level grid-file based indexing

technique that we have developed [6] to avoid redundant

computation across multiple levels. For example, Step 1 of the

algorithm computes cell identifiers for a given grid level

(resolution) r. Instead of computing the cell identifiers from

point coordinates, once the finest level cell identifiers are

computed, the coarser level identifiers can be successively

refined. This will also reduce the sorting cost in Step 2, which

is the most expensive part in the algorithm. This is because

refined cell identifiers are likely to be close to each other and

expensive data movements in radix sort can be avoided. The

optimization is left for our future work.

Although the experiments in this section only involve

two datasets in a single spatial join, it is worthwhile to discuss

the scenarios that a dataset involves in multiple (and possibly

ad-hoc) spatial joins. From Fig. 4, it can be seen that the

selectivity estimation algorithm actually allows processing the

two input datasets independently except in Step 4 of the

algorithm (the top-left part). While this may suggest that we

can store B1 and B2 for reuse purposes and make the

algorithm superfast as Step 4 typically only requires a runtime

from a fraction to a few milliseconds, the cost to load the pre-

computed SAT grids from disks may be overwhelming. For a

1024*1024 grid which requires 4MB storage, the disk loading

time is already 40ms, assuming a typical 100MB/s disk I/O

speed. The cost will increase to 64*40=2560ms for a

8192*8192 grid, which is dozens of times slower than on-

demand computation based on our experiments. Although it is

intuitive to use compression to reduce disk I/O time, SAT

grids are dense arrays (see the examples in Fig. 3) and are

likely to leave very little room for deep compression using

conventional compression algorithms. We note, however, the

grids right after aggregating MBB corner points are typically

quite sparse for clustered real world data and can be easily

compressed. We are in the process of applying our Bitplane

Bitmap Quadtree (BQ-Tree) compression technique that is

efficient on both GPUs and multi-core CPUs [44,45] for this

purpose. The results will be reported in our future work.

VI. CONCLUSION AND FUTURE WORK

In this study, we have provided a parallel selectivity

estimation technique to reduce memory footprint in spatial

join processing on GPUs where memory capacity is typically

a limiting factor in processing large-scale data. Experiments

on joining the two MBB sets with MBBs at the orders of

millions have shown that our technique is able to reduce

memory footprint by 38.4% in about 1/3 of a second when

histograms are computed on-demand at multiple grid

resolutions from 1024*1024 to 8192*8192. Preliminary

results demonstrate that our technique is effective with a

simple design and implementation.

0

500

8192*8192 4096*4096 2048*2048 1024*1024

Comparison of runtimes (ms)

SAT Total

For future work, first, we would like to incorporate the two

optimization modules discussed above, i.e., successively

generating multi-level grids for point aggregation and

compression on grids after point aggregations to support reuse

when a dataset is likely to be used in multiple spatial joins.

Second, from a low-level code optimization perspective, there

are opportunities to eliminate writing-out and reading-in

intermediate results to/from GPU global memory which are

expensive, i.e., kernel fusion using compilation terminology,

and we would like to pursue this direction. Finally, for

selectivity estimation on very large datasets and requiring high

resolution grids, it is likely that GPU memory capacity will

again be a limiting factor for the proposed selectivity

estimation technique itself. We plan to adopt a multi-level

approach to extend the technique by using CPU memory as a

buffer and dynamically bringing blocks in CPU memory to

GPU memory for block-wise selectivity estimation before the

blocks are combined.

ACKNOWLEDGEMENT
This work is supported through NSF Grants IIS-1302423 and
IIS-1302439.

REFERENCES

[1] https://www.statista.com/statistics/263437/global-smartphone-sales-to-
end-users-since-2007/

[2] Mishra, P, and Margaret, E. H (1992). Join processing in relational
databases. ACM Computing Surveys. 24(1) 63-113.

[3] Jacox, E. H. and Samet, H. (2007). Spatial join techniques. ACM
Transaction on Database System 32(1).

[4] Zhang,J., You,S., Gruenwald,L. : Parallel online spatial and temporal
aggregations on multicore CPUs and many-core GPUs Inf. Syst. 44:

134-154, 2014

[5] Zhang, J., You, S. and Gruenwald, L (2012). U2STRA: High-

Performance Data Management of Ubiquitous Urban Sensing

Trajectories on GPGPUs. Proceedings of ACM City Data Management

Workshop (CDMW).

[6] Zhang, J. and You, S. (2012). Speeding up Large-Scale Point-in-

Polygon Test Based Spatial Join on GPUs. Proceedings of ACM
BigSpatial Workshop.

[7] Samet, H. (2005). Foundations of Multidimensional and Metric Data

Structures Morgan Kaufmann.

[8] Jin, J., An, N. and Sivasubramaniam, A (2000). Analyzing range queries

on spatial data. In Proc. IEEE ICDE’00.

[9] https://en.wikipedia.org/wiki/Summed_area_table

[10] http://www.opengeospatial.org/standards/sfs

[11] Aji, A., Wang,F., et al.(2013) HadoopGIS: A High Performance Spatial

Data Warehousing System over Mapreduce Proc. VLDB Endow., vol. 6,
no. 11, pp. 1009-1020.

[12] Eldawy,A., Mokbel, M F., Jonathan, C. (2016) HadoopViz: A
MapReduce framework for extensible visualization of big spatial data

Proc. ICDE’16, 601-612.

[13] Eldawy, A. and Mokbel M. F. (2016). The era of Big Spatial Data. In
proc. IEEE ICDE, 1424-1427

[14] Appuswamy, R., Gkantsidis, C. et al (2013). Scale-up vs Scale-out for
Hadoop: Time to Rethink? In Proc. ACM SOCC’13.

[15] Hennessy, J. L., Patterson,D. A. Computer Architecture: A Quantitative
Approach (5th Ed.)Morgan Kaufmann, 2011

[16] Kirk, D. B., Hwu,W.-m. W.: Programming Massively Parallel
Processors: A Hands-on Approach,2nd ed., Morgan Kaufmann, 2012.

[17] Zhang, J., You, S., Gruenwald, L. :Large-Scale Spatial Data Processing

on GPUs and GPUAccelerated Clusters ACM SIGSPATIAL Special,
vol. 6, no. 3, pp. 27-34, 2014.

[18] McCool, M., Robison, A.D. , Reinders, J.: Structured Parallel
Programming: Patterns for Efficient Computation, Morgan Kaufmann,

2012.

[19] Beigel,R. and Tanin, E. (1998). The Geometry of Browsing.
Proceedings of LATIN'98: Theoretical Informatics, 331-340.

[20] Acharya,S., Poosala,V. and Ramaswamy,S. (1999). Selectivity
estimation in spatial databases. Proceedings of SIGMOD, 13–24.

[21] Aboulnaga, A. and Naughton, J. F. (2000). Accurate estimation of the
cost of spatial selections. Proceedings IEEE ICDE, 123-134.

[22] An, N., Yang, Z.-Y., and Sivasubramaniam, A. (2001). Selectivity

estimation for spatial joins. Proceedings of IEEE ICDE, 368-375.

[23] Mamoulis, N. and Papadias, D. (2001). Selectivity Estimation of

Complex Spatial Queries. Proceedings of SSTD, 155-174.

[24] Wang, M., Vitter, J., et al (2001). Wavelet-Based Cost Estimation for

Spatial Queries. Proceedings of SSTD, 175-196.

[25] Choi, Y-J. and Chung, C-W. (2002). Selectivity estimation for spatio-

temporal queries to moving objects. Proceedings of ACM SIGMOD,
440-451.

[26] Sun, C., Agrawal, D. and El Abbadi, A. (2002). Exploring spatial

datasets with histograms. Proceedings of IEEE ICDE, 93-102

[27] Lin, X,. Liu, Q., et al. (2003). Multiscale histograms: summarizing

topological relations in large spatial datasets. Proceedings of VLDB,
814-825.

[28] Belussi,A., Bertino, E. and Nucita A. (2004). Grid based methods for
estimating spatial join selectivity. Proceedings of ACM-GIS, 92-100.

[29] Das, A., Gehrke, J., and Riedewald, M. (2004). Approximation

techniques for spatial data. Proceedings of SIGMOD, 695-706.

[30] Zhang, D., and Tsotras, V. J. and Gunopulos, D (2004). Efficient

aggregation over objects with extent. Proceedings of PODS, 121-132.

[31] Elmongui, H., Mokbel, M. et al. (2005). Spatio-temporal Histograms.

Proceedings of SSTD, 19-36.

[32] Gunopulos, D., Kollios, G., et al (2005). Selectivity estimators for

multidimensional range queries over real attributes. The VLDB Journal,
137-154.

[33] Sun, C., Bandi, N. et al (2006). Exploring spatial datasets with

histograms. Distributed and Parallel Databases 20(1) 57-88.

[34] Sun, J., Tao, Y. et al (2006). Spatio-temporal join selectivity.

Information Systems 31(8):793-813.

[35] Eavis,T. and Lopez,A. (2007). rK-Hhist: an R-tree based histogram for

multi-dimensional selectivity estimation. In Proc. CIKM’07, 475–484.

[36] Luo, J., Zhou, X, et al (2007). Selectivity estimation by batch-query

based histogram and parametric method. In Proc. ADC’07. 93-102.

[37] Huang, D-S., Heutte, L.and Loog, M (2007). Spatial Selectivity
Estimation Using Cumulative Density Wavelet Histogram. In Proc.

ICIC’07, 493-504.

[38] Roh, Y. J., Kim, J. H. et al. (2010). Hierarchically organized skew-

tolerant histograms for geographic data objects. In Proc. SIGMOD’10,
627-638.

[39] Roh, Y-J., Kim, J-H, et al (2011). Efficient construction of histograms

for multidimensional data using quad-trees. Decision Support Systems
52(1), 82 -94.

[40] Achakeev, D. and Seeger, B. (2012) A class of R-tree histograms for
spatial databases. In Proc. ACM-GIS’12. 450-453.

[41] Mai, H., Kim, J. et al (2013). STHist-C: a highly accurate cluster-based
histogram for two and three dimensional geographic data points.

GeoInformatica 17(2) 325-352.

[42] http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml

[43] http://www1.nyc.gov/site/planning/data-maps/open-data.page

[44] Zhang, J., You, S. and Gruenwald, L. (2011). Parallel quadtree coding of

large-scale raster geospatial data on GPGPUs. In Proc. ACM-GIS’ 11,
457-460

[45] Zhang, J., You, S. and Gruenwald, L. (2015). Quadtree-based

lightweight data compression for large-scale geospatial rasters on multi-
core CPUs. In Proc. IEEE BigData’15, 478-484.

https://www.statista.com/statistics/263437/global-smartphone-sales-to-end-users-since-2007/
https://www.statista.com/statistics/263437/global-smartphone-sales-to-end-users-since-2007/
http://www.opengeospatial.org/standards/sfs
http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml
http://www1.nyc.gov/site/planning/data-maps/open-data.page

