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Abstract—Processing large-scale data is typically memory 

intensive. The current generation of Graphics Processing Units 

(GPUs) has much lower memory capacity than CPUs which is 

often a limiting factor in processing large-scale data on GPUs. It 

is desirable to reduce memory footprint in spatially joining large-

scale datasets through query optimization. In this study, we 

present a parallel selectivity estimation technique for optimizing 

spatial join processing on GPUs. By integrating the multi-

dimensional cumulative histogram structure and the summed-

area-table algorithm, our data parallel selectivity estimation 

technique can be efficiently realized on GPUs. Experiments on 

spatially joining two sets of Minimum Bounding Boxes (MBBs) 

derived from real point and polygon data, each with about one 

million MBBs, have shown that selectivity estimation at four grid 

levels took less than 1/3 of a second on a Nvidia GTX Titan GPU 

device. By using the best grid resolution, our technique saves 

38.4% memory footprint for the spatial join.  

Keywords— Selectivity Estimation, Spatial Join, GPU, Parallel 

Design, Cumulative Histogram 

I. INTRODUCTION  

Spatial data volumes are fast increasing due to advances of 
locating, sensing and simulation techniques. For example, 
although navigation devices (e.g. GPS, cellular and WIFI 
network-based ones) embedded in smartphones (nearly 1.5 
billion sold in 2015 [1]) have already generated large volumes 
of location and trajectory data, the next generation of consumer 
electronics, such as Google Glasses and Microsoft HoloLens, 
are likely to generate even larger volumes of location-
dependent multimedia data. Objects identified from high-
resolution satellite imagery and medical imagery, when 
represented as vectors of geometric coordinates, can also be 
considered as spatial data. In addition, large-scale climate, 
astronomical and molecular simulations are likely to produce 
even larger spatial datasets. Very often different spatial 
datasets need to be joined to derive new information and 
knowledge to support decision making. For example, GPS 
traces can be better interpreted when aligned with urban 
infrastructures, such as road networks and Point of Interests 
(POIs), through spatial joins. As spatial datasets are getting 
increasingly larger, techniques for high-performance spatial 
join processing on commodity and inexpensive parallel 
hardware become crucial in addressing the “BigData” 
challenge.    

Spatial joins can be considered as extensions of 

relational theta joins [2] where spatial relationships, such as 

distance and topology, are involved in the joining criteria [3]. 

While considerable research on join query processing for both 

relational [2] and spatial [3] data has been reported, including 

that targeted for parallel and distributed computing platforms 

[3], there is little research on parallel spatial joins on GPUs 

that are capable for general computing. Compared with multi-

core CPUs, the current generations of GPUs typically have 

limited memory capacity (generally in the order of a few 

GBs), which frequently becomes a constraining factor for 

parallel spatial joins on large-scale spatial datasets. In 

addition, different from multi-core CPUs that are designed to 

support coarse-grained task-level parallelisms, fine-grained 

data parallelisms are crucial in achieving hardware potentials 

on GPUs. As such, many existing spatial join techniques that 

are either sequential in nature or rely on coarse-grained 

parallelisms can be inefficient when applied to GPUs. The 

combined technical challenges in minimizing memory 

footprints and maximizing data parallelisms have motivated us 

to develop novel spatial join techniques on GPUs.  

In our previous studies, we have explored several 

GPU-based techniques for parallel spatial join processing, 

such as distance based point-to-polyline join [4], trajectory 

similarity join [5], and topology based point-in-polygon test 

based spatial join [6]. These GPU-based techniques adopt the 

classical two-phase spatial join framework, i.e., a filtering 

phase followed by a refinement phase [3]. While the 

refinement phase typically involves more floating point 

computation and is desirable to utilize GPUs for speeding up, 

it is more technically challenging in improving the efficiency 

of the filtering phase on GPUs under stricter resource 

constraints, e.g., GPU memory capacity. Compared with the 

refinement phase that can utilize batch processing to reduce 

resource requirements in a single batch, it is more difficult to 

explore a similar strategy for filtering, as global information is 

typically required in this phase. Spatial filtering techniques 

that minimize memory consumption are thus preferred from 

an implementation perspective.  

While spatial indexing techniques, such as pre-built 

quad-trees and R-Trees [7], have been frequently used to 

speed up spatial joins in classic computing models that are 

designed for serial algorithms, uniprocessors and disk-resident 



systems, their suitability on GPUs for spatial joins needs to be 

reevaluated. First of all, very often their hierarchical tree 

structures and irregular memory access patterns incur 

significant performance penalty on parallel hardware, 

especially GPUs. Second, the complex data structures are 

expensive to construct and maintain and difficult to 

manipulate. Utilizing multi-dimensional histograms as light-

weighted data structures that are parallelization friendly to 

facilitate spatial join processing on GPUs is thus desirable in 

many cases. Different from heavy-weighted spatial index 

structures that are associated with data items for direct query 

processing, these histograms contain only essential statistical 

information to guide the process of choosing optimal/suitable 

parameters for spatial joins under resource constraints, with or 

without using additional spatial indices. Indeed, as discussed 

in Section II, selectivity estimation is an important component 

in efficiently processing spatial joins, especially when spatial 

indexes are not available.  

Our parallel selectivity estimation technique is based 

on Cumulative Histogram (CD) to count the numbers of 

Minimum Bounding Boxes (MBBs) that intersect with cells in 

uniformly tessellated grids, compute the possible numbers of 

pairs in the grid cells, and, choose an optimal grid resolution 

that satisfy GPU memory footprint budget. While cumulative 

histograms have been utilized for spatial query processing in a 

previous study [8], we believe we are the first to take 

advantage of data parallelisms in constructing and utilizing 

CDs for parallel selectivity estimation to guide spatial joins on 

GPUs. Furthermore, our design seamlessly integrates the well-

received Summed-Area-Table (SAT) algorithm in computer 

vision and image processing domain [9]. Based on the idea, 

we are able to provide a simple design and implementation 

that can be presented as a chain of several parallel primitives 

[18], i.e., sort/scan/reduce/scatter/transform, which are well 

understood in the parallel computing community and well-

supported across multiple parallel hardware platforms, 

including Nvidia and AMD GPUs. We have further optimized 

some of the parallel primitives in the specific application 

context to improve overall performance.    

Our technical contributions can be summarized as follows:  

1) We present a novel parallel design and implementation of 

parallel selectivity estimation on GPUs by integrating a 

cumulative histogram and the Summed-Area-Table algorithm. 

2) We perform preliminary experiments on real spatial 

datasets to demonstrate the effectiveness and efficiency of the 

proposed technique.  

The rest of the paper is arranged as follows. Section 

II introduces the background, motivation and related work. 

Section III provides the parallel spatial join framework. 

Section IV presents the details of the parallel design and 

implementation. Section V is the experiments, and finally, 

Section VI is the conclusion and future work.   

II. BACKGROUND AND RELATED WORK 

Given two spatial datasets each with a geometrical attribute 

the_geom, i.e., T1(id, the_geom) and T2(id, the_geom), the 

basic form of spatial join processing can be expressed as the 

following SQL statement:  

SELECT * from T1, T2  

WHERE ST_OP (T1.the_geom, T2.the_geom) 

Here the geometric attributes in T1 and T2 can be 

any of the geometric types (e.g., point, polygon and polyline) 

and ST_OP can be any of the spatial relationships (e.g., 

intersects, within) defined by the Open Geospatial Consortium 

(OGC) Simple Feature Specification (SFS) [10] which has 

been the cornerstone of virtually all commercial (e.g., Oracle 

Spatial and Microsoft SQL Server Spatial) and open source 

(Postgresql/PostGIS) spatial databases. More complex queries 

may also involve additional attributes in T1 and T2, additional 

operators (e.g., count, sum) and additional clauses (e.g., group 

by, having and order by). Similar to theta joins in relational 

queries, spatial joins can be conceptually formulated as 

Cartesian products followed by evaluating spatial relationships 

between two geometrical objects based on some well-

established principles (e.g., nearest neighbor) and/or 

computational geometry algorithms (e.g., point-in-polygon 

test). Assuming the cardinality of T1 and T2 to be n1 and n2, 

respectively, similar to processing relational joins, indices can 

be constructed to reduce the complexity from O(n1*n2) to 

O(n1) or O(n2) provided that a good spatial filtering strategy 

is available so that a spatial object in T1 will only be paired 

with a limited number of spatial objects in T2. As argued in 

[3], spatial joins are distinguished from relational joins due to 

the fact that spatial data are inherently multi-dimensional data 

that exhibit several unique features, e.g., lacking total ordering 

that preserves proximity (which makes sort-merge join largely 

inapplicable and/or inefficient), unsuitable for grouping due to 

having spatial extents (which makes equijoin inapplicable), 

and, requiring complex geometric computation (which is 

typically much more expensive than arithmetic operations for 

relational joins).   

Hundreds of indexing structures have been developed 

in the past few decades to index and query spatial data [7]. In 

addition, we refer to the excellent survey paper [3] for a 

comprehensive review on spatial join techniques, including 

several parallel and distributed spatial join techniques on 

traditional cluster computing environments. We also refer to 

several recent works on spatial join processing on 

MapReduce/Hadoop clusters [11,12] with demonstrated 

scalability at the expense of singe node efficiency. Despite 

that shared-memory systems are getting increasingly popular 

and affordable in both personal and cluster computing settings 

and typically are easier to program, almost all existing parallel 

spatial join techniques are designed for shared-nothing 

architectures (see [13] for a recent brief survey). While 

shared-nothing architectures are generally considered to have 

better scalability, recent studies show that parallel data 

processing on MapReduce/Hadoop clusters typically is only 

able to utilize a fraction of hardware resources, mostly due to 

disk I/O and network bandwidth constraints [14]. As GPUs 

that are capable of general computing typically have large 

numbers of processors (in the order of 103), much higher 



bandwidth (300-500 GB/s) and more floating point computing 

power (by design) [15][16], an alternative to cluster 

computing in solving moderate sized spatial join problems on 

single GPU devices becomes promising [4,5,6]. We note that 

as GPUs are typically used as accelerators in computing 

nodes, it is quite possible to integrate the two sets of 

techniques to solve larger scale spatial join problems when 

needed.  

Selectivity estimation is considered a vital 

component in query optimization in both relational databases 

and spatial databases. Given a set of query items in T1, 

selectivity estimation techniques estimate the numbers of 

items in T2 that are likely to be joined with each of the query 

items. Fast and accurate selectivity estimations can help 

database query optimizers to choose better query plans under 

resource constraints. Some techniques on selectivity 

estimation for spatial joins and other types of spatial query 

processing [8, 19-41] have been reported.  

Several existing techniques derive histograms by 

querying data or indices directly, e.g., [35][41]. These 

techniques enjoy the flexibility of using arbitrary bin shapes 

and can be optimized with certain properties [40]. However, 

as the MBBs of non-point geometric objects (including 

aggregated points) are variable, these techniques require loops 

over bins along both width and height in 2D spaces. It is more 

difficult to provide a simple parallel design and an efficient 

implementation for these techniques as they are not 

parallelization friendly. In addition, many of these techniques 

are almost as expensive as spatial indexing and spatial queries 

and they may incur significant computing overheads when the 

numbers of bins are large. While materialized histograms can 

be used to speed up spatial joins effectively, it might be too 

expensive to construct in an on-demand manner.  

In this study, we are interested in selectivity 

estimation techniques that are based on regularly spaced 

multi-dimensional histograms (e.g., [19, 26, 27, 31, 33]) for 

two reasons. First, when the histogram bins use the same 

configuration for both datasets involved in a spatial join, the 

total numbers of pairs to be processed in the refinement phase 

in each bin can be easily calculated as |B1i|*|B2i| where |B1i| 

and |B2i| are the numbers of objects that intersect with spatial 

extent of the common bin (i.e., grid cell) in T1 and T2, 

respectively. Second, regularly spaced multi-dimensional 

histograms are more parallelization friendly and are likely to 

be more efficient on modern parallel hardware to a certain 

extent (even through hierarchical tree structures might be 

more desirable at upper levels for efficiency concerns).  

By observing that generating a 1D cumulative 

histogram is equivalent to performing a prefix-sum [18] on the 

original regular histogram, and generating a 2D cumulative 

histogram can be realized using two scans on the original 2D 

regular histogram using both row-major order and transposed 

row-major order (to be detailed in Section IV), we have 

developed a simple yet effective parallel approach to derive 

|B1i| and |B2i| counts for all bins from the two sets of MBBs of 

the two input datasets in a spatial join and use them to choose 

the appropriate grid resolution for the spatial joins under GPU 

memory constraints. To the best of our knowledge, this is the 

first work on parallel selectivity estimation for spatial joins on 

GPUs considering resource constraints.  Before we present the 

details of the parallel designs and implementations in Section 

IV, we next provide a framework for parallel spatial join 

processing on GPUs. This will not only put our proposed 

technique in context, but more importantly, it will help explain 

the role of selectivity estimation in the complete spatial join 

process, and subsequently, identify various research 

opportunities and associated technical challenges on spatial 

data management on GPUs. 

III. PARALLEL SPATIAL JOIN FRAMEWORK ON GPUS  

Spatial data is rich in data types and different spatial data types 
may allow different spatial operations, for example, distance 
calculation between points and polylines and point-in-polygon 
tests among points and polygons. We refer to the OGC SFS 
[10] for more details on spatial data modeling. While most of 
the existing spatial databases adopt Object-Relational data 
models for spatial data to extend relational database 
functionality to spatial data, extensive dynamic memory 
allocations to construct spatial objects in memory can cause 
significant overheads and is not cache friendly. To boost the 
performance of the in-memory data structures for complex and 
read-only spatial data, we have designed an array-based 
physical data layout scheme [17]. For complex spatial objects 
such as polylines and polygons, in addition to their vertex 
arrays, auxiliary index arrays are also created. These arrays can 
be efficiently streamed among disks, CPU memories and GPU 
memories. While we refer to [17] for a summary of our GPU-
based techniques for spatial query processing, including grid-
file, R-Tree and Quadtree based spatial indexing and spatial 
join techniques, in this study, we consider the general situation 
that spatial index structures are available for none of the input 
datasets involved in a spatial join and we thus resort to a simple 
grid-file based approach for spatial filtering as shown in the 
middle of Fig. 1, which requires a proper grid resolution to be 
chosen for performance as shown in the top-right part of Fig. 1.   

While points can be easily grouped into grid cells by 

chaining sorting and reduction parallel primitives [18] (using 

grid cell identifiers as keys), MBBs of polylines and polygons 

may intersect with multiple grid cells. After both geometric 

objects are aligned to one or more grid cells, generating (P, Q) 

pairs can be transformed into a binary search problem.  For 

each grid cell in the VPC vector, which stores the one-to-

many mappings between the MBB of a geometric object in T1 

to the grid cells that the MBB intersects, we search the cell in 

the VQC vector, which stores the one-to-many mappings 

between the MBB of a geometric object in T2 to the grid cells 

that the MBB intersects (center of Fig. 1). The matched 

objects in T1 and T2 will be paired for refinement. Clearly, for 

MBB pairs that cover multiple grid cells, the (P, Q) pairs will 

be duplicated and need to be removed to avoid redundant 

spatial refinements. All the steps can be realized using parallel 

primitives [18]. During the refinement phase, (P, Q) pairs will 

be assigned to GPU computing blocks for parallel processing 

as shown at the bottom part of Fig. 1.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 A Framework of Parallel Spatial Join Processing on GPUs 

 

As there will be multiple points/vertexes in both P 

and Q (here we treat grouped points as a point collection 

object), we assign one set of points/vertexes to threads in the 

computing block while looping through all the other sets of 

points/vertexes to derive results that will be associated with 

either points/vertexes or the pairs assigned to the computing 

block. This nested-loop style design is very efficient on GPUs 

as neighboring threads read neighboring points/vertexes in one 

object (assuming P) before a loop begins and write to 

neighboring positions for outputting results after the loop 

finishes while they access the same point/vertex in another 

object (assuming Q) throughout the looping process. The 

memory access pattern is perfectly coalesced which is critical 

for performance in GPU computing. As an example shown in 

the bottom part of Fig. 1, assuming that P contains M points in 

a grid cell and Q contains the N vertices of a polygon, we can 
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assign M points to threads in the GPU computing block while 

letting all threads loop through the N vertices. Depending on 

the sizes of points/vertexes in P and Q and the configurations 

of GPU computing blocks, we may need to reshape the 

O(M*N) computation to maximize the utilization of GPU 

hardware. For example, when M is less than the warp size 

(currently 32 on CUDA enabled GPUs [16]), we can loop 

through K (>=2) points in the Q polygon simultaneously and 

reduce the number of the looping steps to ceiling(N/K). 

Similarly, when M is larger than the number of threads in the 

computing block (assuming T), we may need to loop over the 

M points in ceiling(M/T) rounds. The parallel designs and 

implementations of point grouping, spatial filtering and spatial 

refinement are documented in more details in our previous 

works [4,5,6].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Illustration of Choosing Optimal Grid Level in 

Minimizing Memory Footprint for Spatial Filtering 

A major issue that we have encountered in applying 

the framework for practical spatial join applications is the 

difficulties in choosing grid cell resolutions which have a 

significant impact on GPU memory consumption in the 

filtering phase. When a large cell size is chosen, more MBBs 

from both input datasets will be associated with non-empty 

grid cells. As the design requires pairing all the MBBs from 

both datasets, very often a large number of pairs, i.e., 

 


N

i ii BBS
1

|2|*|1| (where N is the number of non-empty 

cells and |B1i| and |B2i| are the numbers of MBBs associated 

with the non-empty cell i), need to be outputted before unique 

pairs can be computed and used in the refinement phase. 

Although the number of unique pairs might be small, the 

number of intermediate pairs can be too large to fit GPU 

memory (currently limited to a few GBs). On the other hand, 

if a small cell size is chosen, while |B1i| and |B2i| are likely to 

be smaller, N usually grows quadratically which may also 

incur a large number of intermediate pairs. For the example 

shown in Fig. 2, the grid on the right (Fig. 2C) is most 

memory efficient where the number of candidate pairs (4) is 

significantly smaller than that incurred when using a coarser 

grid (Fig. 2A) or finer grid (Fig. 2B). As such, it is desirable to 

choose a grid resolution that can minimize memory footprint.  

IV. GPU PARALLEL SELECTIVITY ESTIMATION 

Our parallel selectivity estimation technique is designed to 

compute |B1i| and |B2i| values efficiently on GPUs so that S 

can be computed on GPUs by a parallel reduction (prefix sum) 

[18]. Subsequently this requires computing the number of 

MBBs in each bin of both T1 and T2. An approach that 

utilizes cumulative histograms for this purpose has been 

proposed in [8] and illustrated in Fig. 3. However, we are not 

aware of previous work on parallelization of deriving 2D 

cumulative histograms and computing selectivity on GPUs. 

By treating the numbers of MBB corners that fall within grid 

cells as pixel values, we transform the problem of deriving 2D 

cumulative histograms from a set of MBBs to the problem of 

computing Summed-Area-Tables from image pixels [9]. We 

next present the details of our GPU-based parallel selectivity 

estimation technique. 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Illustration of Spatial Cumulative Histogramming 
and Selectivity Estimation 

The complete algorithm for our selectivity estimation 

technique is shown in Fig. 4. As shown in the top-left part of 

Fig. 4, the main algorithm computes the number of MBBs that 

intersect with each and every grid cell for the two input 

datasets (M1 and M2) separately, and the total number of 

possible MBB intersections across all grid cells (i.e.,  

 


N

i ii BBS
1

|2|*|1| ) can be computed using a Reduce 

parallel primitive [18], which is well understood in parallel 

computing and efficiently implemented in the CUDA Thrust 

library. The algorithm compute_counts, shown in the top-right 

part of Fig. 4, first extracts points of the four corners of the 

input MBB dataset and calls the algorithm point_aggregation 

to compute the numbers of points that fall into the grid cells 

with the desired grid resolution r. The algorithm 

compute_counts subsequently calls the algorithm gen_sat to 

generate the corresponding cumulative histogram array. This 

is done for all the four corners of MBBs and the results are 

stored in the four cumulative histogram arrays (Hll, Hlr, Hul 

and Hur), respectively. Finally, the algorithm computes the 

number of MBBs that intersect with a grid cell for all grid 

cells based on the four arrays, i.e., Ni= Hll(x2,y2) - Hlr(x1-1,y2) - 

Hul(x2,y1-1) + Hur (x1-1,y1-1) by setting x1=x2=c and y1=y2=r 

where (r,c) is the row and column of the grid cell being 

processed.   
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The algorithm gen_sat requires more explanations on 

its parallel design and implementation. In the Summed Area 

Table algorithm [9], the corresponding array (cumulative 

histogram) can be realized by combining the row-wise and 

column-wise prefix sums and two matrix transpose operations. 

Prefix Sum can be directly realized using an inclusive_scan 

primitive provided by the CUDA Thrust library whose 

efficient implementations on GPUs have been extensively 

investigated. The Transpose operation can be either 

implemented using Thrust API by applying an element-wise 

functor to the Transform parallel primitive to copy an element 

to its corresponding transposed position in a 2D array, or can 

be natively implemented using CUDA to achieve better 

performance, which is also well studied. The algorithm   

point_aggregation chains three parallel primitives: Transform 

(to convert point coordinates to cell identifies), (radix) sort 

(based on cell identifiers) and reduce_by_key (to count the 

numbers of points that fall within a grid cell). Similar to the 

Transpose operation, the last step in the algorithm 

point_aggregation can also be implemented by using a scatter 

parallel primitive [18] or using CUDA directly. 

In this study, we have implemented the selectivity 
estimation algorithm using parallel primitives provided by the 
Thrust library. The row/column-wise inclusive scans, the 
transpose operation and the element-wise operations that 
require a transform primitive are subsequently replaced with a 
native CUDA implementation for optimization purposes. We 

find that the optimized implementation is several times faster 
than the parallel primitives based implementation, largely due 
to avoiding library overheads and efficiently using thread-
block level shared memory. The performance evaluation to be 
reported next is based on the optimized implementation.    

V. EXPERIMENTS AND DISCSUSSIONS 

To validate our technique, we use two real datasets in our 

experiments. The first dataset contains 168 million taxi trip 

records each with a pick-up and drop-off location [42]. We 

generate quadrants for the pick-up locations from the point 

dataset by setting the maximum number of point in each 

quadrant to K=256 points (see [4] for details) and use the 

MBBs of the points in the quadrants. We call the first MBB 

set as Taxi and the number of MBBs in the set 

|Taxi|=1,746,795. The second dataset to participate in the 

spatial join test is the NYC MapPluto tax lot data with 

735,488 polygons and 4,698,986 vertices [43]. We use the 

MBBs of the polygons as our second MBB set, i.e., |Pluto|= 

735,488. We use four grid resolutions and vary grid sizes from 

210*210=1024*1024 to 213*213=8192*8192 for selectivity 

estimation. All experiments are performed on a 2013 Nvidia 

GTX Titan GPU device with 2,688 cores and 6 GB memory. 

Table 1 lists the computed numbers of pairs sk and 

selectivity estimation runtimes in milliseconds at the four grid 

resolutions. Assuming that the chance of picking all grid 

resolutions for spatial filtering is the same, then the expected 

Algorithm compute_counts 

Inputs: MBB set M and resolution r 

Outputs: grid N representing the numbers of MBBs intersect with each grid cell 

 

Step 1 For each H in {Hll, Hlr, Hul and Hur} 

Step 1.1: Initialize empty grid G based on resolution r  

Step 1.2 V {lower-left, lower-right, upper-right, upper-right} 

corner coordinate set of M 

Step 1.3 Call point_aggregation(V,G,r)  

Step 1.4 Call gen_sat(G,H) 

Step 2 (for all grid cells in parallel) Ni= Hll(x2,y2) - Hlr(x1-1,y2) - Hul(x2,y1-1) + 

Hur (x1-1,y1-1) using x1=x2=i%w and y1=y2=i/w (w=2k) 

 

 

Step 4: reduce on N3 to compute S  

Algorithm selectivity_estimation 

Inputs: MBB sets M1 and M2 

Outputs: optimal grid resolution ro  

 

For each candidate resolution rk 

Step 1 call compute_counts(M1, rk, B1) 

Step 2 call compute_counts(M2, rk, B2)  

Step 3: (for all grid cells in parallel) Bi=B1i*B2i 

Step 4: sk=reduce(B)  

Step 5: if sk exceeds memory budget then break 

Return ro that corresponds to the smallest sk 

 

 

 

 

Algorithm point_aggregation 

Inputs: Point set V in the form of (x,y) pairs and grid resolution r; 

Coordinate system origin x0 and y0 (global variables) 

Outputs: Grid G representing the numbers of corner points  

 

Step 1 (for all points in parallel) generate cell identifiers by setting Ci=(y-

y0)/r*COL+(x-x0)/r 

Step 2 sort C 

Step 3 count numbers of unique keys (C) (K,D)reduce_by_key(C) 

Step 4: (for all grid cells in parallel): (row i,col i)Ki and G[r*row i+ col i]=Di 

Algorithm gen_sat 

Inputs: Grid G   

Outputs: summed area table H  

 

Step 1 (for all rows in parallel) 

Hinclusive_scan(G) 

Step 2: (for all grid cells in parallel) 

Htranspose(H) 

Step 3: (for all rows in parallel) 

Hinclusive_scan(G)  

Step 4: : (for all grid cells in parallel) 

Htranspose(H) 

 

Fig. 4 Algorithms for Parallel Selectivity Estimation 

 



number of estimated pair is AvgN=ƩNi/4. After applying the 

selectivity estimation algorithm, we are able to pick up the 

grid resolution that has the minimum number of pairs 

minN=min(Ni) and thus the benefit is (AvgN-

minN)/AvgN=34.8%. The total cost of the optimization is 

simply the total runtimes ƩTsi=321 ms. The result indicates 

that it is possible to reduce the memory footprint of the spatial 

join by 34.8% in less than 1/3 of a second on a low-cost 

commodity GPU device, which is desirable.  

Table 1 Estimated Pairs and Runtimes of the Four Grids 

Grid Level k Grid Size # of 

Estimated 

Pairs (N) 

Runtime 

(Ts) (ms) 

13 8192*8192 78328554 205 

12 4096*4096 40414590 63 

11 2048*2048 43121125 31 

10 1024*1024 86103593 22 

From Fig. 4 we can see that the total runtime of the 

selectivity estimation has three parts: aggregating corner 

points to grids, generating SAT, and computing join pairs. For 

point aggregation, the algorithm point_aggregation is called 8 

times in total for the four corners in the two input datasets and 

the cost is proportional to the number of MBBs in general 

(Step 4 is proportional to grid size). Similarly, for generating 

SAT, the algorithm gen_sat is called 8 times and the cost is 

linear with respect to grid size (width*height). The cost to sum 

up join pairs is a one-time cost and is generally negligible 

compared to others.  

 

Fig. 5 Comparison between SAT and the Total Runtimes 

In our experiment, point aggregation times are in the 

order of 10-15ms and 7-12ms for the two input datasets under 

the four grid sizes. To better understand how the runtime of 

generating SAT is affected by grid size, we have plotted the 

runtimes of both SAT generation and the total in Fig. 5. For 

small grid sizes (e.g., 1024*1024 and 2048*2048), the SAT 

generation time is only a small fraction of the total (3.85/22.19 

and 11.71/30.67, respectively). However, for large grid sizes, 

the SAT generation time dominates (42.59/62.86 for 

4096*4096 and 172.17/205.22 for 8192*8192, respectively). 

The results suggest that, although using coarse grids may miss 

the chance of finding an optimal grid resolution for spatial 

join, the low cost makes it desirable in many cases. In fact, for 

the particular spatial join in the experiment, using the grid 

level 11 (2048*2048) is only slightly worse (~6%) than using 

the optimal grid level 12 (4096*4096). When only the grid 

levels 10 and 11 are examined in the selectivity estimation, the 

runtime can be reduced from 321ms to 53ms.  

We also note that, our current implementation 

handles the multiple grid levels independently, which can be 

further optimized. For the algorithm point_aggregation, it is 

possible to apply the multi-level grid-file based indexing 

technique that we have developed [6] to avoid redundant 

computation across multiple levels. For example, Step 1 of the 

algorithm computes cell identifiers for a given grid level 

(resolution) r. Instead of computing the cell identifiers from 

point coordinates, once the finest level cell identifiers are 

computed, the coarser level identifiers can be successively 

refined. This will also reduce the sorting cost in Step 2, which 

is the most expensive part in the algorithm. This is because 

refined cell identifiers are likely to be close to each other and 

expensive data movements in radix sort can be avoided. The 

optimization is left for our future work.   

Although the experiments in this section only involve 

two datasets in a single spatial join, it is worthwhile to discuss 

the scenarios that a dataset involves in multiple (and possibly 

ad-hoc) spatial joins. From Fig. 4, it can be seen that the 

selectivity estimation algorithm actually allows processing the 

two input datasets independently except in Step 4 of the 

algorithm (the top-left part). While this may suggest that we 

can store B1 and B2 for reuse purposes and make the 

algorithm superfast as Step 4 typically only requires a runtime 

from a fraction to a few milliseconds, the cost to load the pre-

computed SAT grids from disks may be overwhelming. For a 

1024*1024 grid which requires 4MB storage, the disk loading 

time is already 40ms, assuming a typical 100MB/s disk I/O 

speed. The cost will increase to 64*40=2560ms for a 

8192*8192 grid, which is dozens of times slower than on-

demand computation based on our experiments. Although it is 

intuitive to use compression to reduce disk I/O time, SAT 

grids are dense arrays (see the examples in Fig. 3) and are 

likely to leave very little room for deep compression using 

conventional compression algorithms. We note, however, the 

grids right after aggregating MBB corner points are typically 

quite sparse for clustered real world data and can be easily 

compressed. We are in the process of applying our Bitplane 

Bitmap Quadtree (BQ-Tree) compression technique that is 

efficient on both GPUs and multi-core CPUs [44,45] for this 

purpose. The results will be reported in our future work.    

VI. CONCLUSION AND FUTURE WORK 

In this study, we have provided a parallel selectivity 

estimation technique to reduce memory footprint in spatial 

join processing on GPUs where memory capacity is typically 

a limiting factor in processing large-scale data. Experiments 

on joining the two MBB sets with MBBs at the orders of 

millions have shown that our technique is able to reduce 

memory footprint by 38.4% in about 1/3 of a second when 

histograms are computed on-demand at multiple grid 

resolutions from 1024*1024 to 8192*8192. Preliminary 

results demonstrate that our technique is effective with a 

simple design and implementation. 

0
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For future work, first, we would like to incorporate the two 

optimization modules discussed above, i.e., successively 

generating multi-level grids for point aggregation and 

compression on grids after point aggregations to support reuse 

when a dataset is likely to be used in multiple spatial joins. 

Second, from a low-level code optimization perspective, there 

are opportunities to eliminate writing-out and reading-in 

intermediate results to/from GPU global memory which are 

expensive, i.e., kernel fusion using compilation terminology, 

and we would like to pursue this direction. Finally, for 

selectivity estimation on very large datasets and requiring high 

resolution grids, it is likely that GPU memory capacity will 

again be a limiting factor for the proposed selectivity 

estimation technique itself. We plan to adopt a multi-level 

approach to extend the technique by using CPU memory as a 

buffer and dynamically bringing blocks in CPU memory to 

GPU memory for block-wise selectivity estimation before the 

blocks are combined.       
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