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Abstract  
  
Huge amounts of geo-referenced spatial location data and moving object trajectory data are 
being generated at ever increasing rates. Patterns discovered from these data are valuable in 
understanding human mobility and facilitating traffic mitigation. In this study, we propose a new 
approach to mining frequent patterns from large-scale GPS trajectory data after mapping GPS 
traces to road network segments. Different from applying association rule-based frequent 
sequence mining algorithms directly, which generally have high computation overhead and are 
not scalable, our approach utilizes hierarchies of road networks. After contracting nodes and 
creating shortcuts by contraction hierarchies algorithms, the original road segment sequences are 
transformed into sequences of shortcuts with much smaller data volumes. By using computed 
shortest paths as simulated GPS trajectories, our experiments on 17,558 selected taxi trip records 
in NYC in January 2009 have shown that runtimes of frequent sequence mining on shortcut 
sequences are orders of magnitude faster than on original road segment sequences. In addition, 
frequent subsequences in shortcuts are more informative and interpretable based on the 
betweenness centralities of the shortcuts than visualizing betweenness centralities of individual 
road segments.  

 
1 Introduction 

Locating and navigation devices now are ubiquitous. Huge amounts of geo-referenced 
spatial location data and moving object trajectory data are being generated at ever increasing 
rates. Patterns discovered from these data are valuable in understanding human mobility and 
facilitating traffic mitigation. The state-of-the-art techniques in managing such data are based on 
spatial databases and moving object databases to index and query geometrical coordinates 
directly. However, as most of human movements are constrained by built infrastructures and 
road networks, an alternative approach to matching the location and trajectory data with 
infrastructure data for subsequent processing (Richter et al. 2012) can potentially be more 
efficient from a computing perspective. For example, a GPS trajectory can be transformed into a 
sequence of road segments and thus it becomes possible to apply well-studied frequent sequence 
mining algorithms (Agrawal and Srikant 1995) to identify popular routes for different groups of 
people at different scales for different purposes, e.g., rider sharing, hailing taxies for riders, 
making more profits for drivers and understanding functional zones in metropolitan areas to 
facilitate city planning and traffic mitigation.   

While the idea is attractive, besides the technically challenge in accurate map matching, 
our preliminary results have shown that applying frequency counting based association rule 



mining algorithms in a straightforward way may incur significant computing overheads due to 
the inherent combinatorial complexity of the algorithms. For big metropolitan areas such as New 
York City (NYC) with a road network of hundreds of thousands of intersections and segments 
and millions of trips a day, the computing overheads quickly become intractable even though 
parallel and distributed computing resources are becoming more accessible than ever. By taking 
advantage of the fact that many human trips follow shortest path principles in general (Eisner et 
al 2011), we propose to utilize street hierarchies through network contractions (Geisberger et al 
2008) to effectively reduce the lengths of road segment sequences after map-matching of trip 
trajectories. Shortcuts derived from road networks naturally partition sequences of road segments 
into subsequences. These subsequences with high frequencies are likely to be the whole or part 
of frequent sequences. The complexity of counting the frequencies of the shortcuts, on the other 
hand, is linear with the number of original and shortcut road segments in the subsequences which 
is much more efficient than classic sequence mining algorithms. When appropriate, classic 
sequence mining algorithms can be applied on the frequent subsequences to discover longer 
frequent sequences. As numbers of segments in shortcut sequences are typically much smaller 
than the numbers of original sequences, the computing workloads of sequence mining algorithms 
on shortcut sequences are much lighter. We empirically evaluate the proposed approach on a 
subset of taxi trip records in NYC in 2009 (about 168 million records in total) and report our 
preliminary results.  

The rest of the chapter is arranged as the following. Section 2 introduces background, 
motivation and related work. Section 3 presents the prototype system architecture and 
implementation details of several components. Section 4 provides experiment results. Finally 
Section 5 is the conclusion and future work directions.  
2 Background, Motivation and Related Work 

Processing GPS data for various purposes has attracted significant research interests, such 
as compression, segmentation, indexing, query processing and data mining (Zheng and Zhou 
2011).  Most existing research is focused on the geometrical aspects, such as range, nearest 
neighbor and similarity queries, clustering and data mining of individual and group-based 
patterns (e.g., convey and flock) (Zheng and Zhou 2011). Many approaches are generic for many 
types of moving object trajectory data but can incur heavy computation overheads. Approaches 
in map matching of GPS points to road network segments (Brakatsoulas et al. 2005), although 
mostly developed for navigation purposes, are particularly relevant to our research as our 
approach relies on such techniques to transform point sequences into road segment identifier 
sequences for frequent pattern mining. Several previous research efforts have proposed to 
develop semantic data models to derive individual activities from GPS trajectories (Yan et al. 
2011, Richter et al. 2012). While our approach can be adapted to efficiently mine frequent 
sequences from GPS trajectories of individuals, our focus in this study is to understand 
frequently-used paths from large-scale taxi trip data at the city-level which is much more 
computationally demanding and efficiency is overwhelmingly important.  

Existing work on city-level trajectory data analytics can be grouped into several 
categories. Research in the first category focuses on identifying popular routes from trajectories 
(Chen et al 2011, Wei et al 2012) with applications to ridesharing recommendations (He et al 
2012). In contrast, the second category focuses on identifying anomalous trajectories (Zhang et 
al. 2011, Chen et al. 2013) with applications to taxi driving fraud detection (Ge et al. 2011). The 
third category is related to identifying Region of Interests (ROIs) and their functions (Uddin et al 
2011, Qi et al 2011, Huang and Powell 2012, Yuan et al. 2012). The fourth category of research 



mainly is interested in analyzing Origin-Destination (O-D) flows over space and time (Zheng et 
al. 2011, Jiang et al. 2012, Yuan 2012). Finally, research in the fifth category is interested in 
deriving sophisticated knowledge from taxi GPS traces for taxi drivers (Li et al. 2011, Powell  et 
al 2011, Yuan et al. 2011a) and general drivers (Ziebart  et al. 2008, Yuan et al 2010, Yuan et al 
2011b). Among these studies, except for Chen et al. (2011) that adopted a network expansion 
approach, the majority of existing research adopted a uniform grid-based approach and many of 
the grids are quite coarse. Although using coarse resolution grids significantly reduces 
computing complexity, it may also significantly reduce accuracy. A possible improvement is to 
first use fine resolution grids and then to aggregate grid cells into regions to reduce computing 
overheads and maintain accuracy simultaneously (Yuan et al. 2012). It is somehow surprising 
that, while GPS trajectories are strongly constrained by road networks, very few works 
incorporate road network topology explicitly. Despite significant progress in map matching 
(Zheng and Zhou 2011, Ali et al. 2012), the technical difficulties, computing overheads and 
qualify of the matching results might be some key factors in slowing down their practical 
applications on large-scale GPS trajectory data. Nevertheless, we believe that the synergized 
hardware and software advances will significantly improve map matching accuracy. In this 
study, we assume GPS trajectories are matched to road segments and we will focus on frequent 
trajectory pattern mining from road segment identifier sequences.   

Frequent trajectory pattern mining from road segment identifier sequences is naturally 
abstracted as a frequent pattern mining problem (Han et al. 2007). Since the Apriori-based 
association rule mining approaches for frequent sequence mining were developed nearly two 
decades ago (Agrawal and Srikant 1995), significant progress has been made in the important 
data mining area. New strategies such as Eclat and Fp-Growth, new variations such as closed and 
maximal itemsets and sequences, and new hardware platforms such as clusters, multi-core CPUs 
and many-core Graphics Processing Units (GPUs), have been extensively explored (Hipp et al 
2000, Han et al 2007, Borgelt 2012). While Borgelt (2012) argued that there was little room left 
for speed improvements of existing efficient and optimized implementations of frequent pattern 
mining, we believe exploring domain knowledge to effectively reduce problem size and number 
of frequent patterns can be a new growing point for empowering existing data mining algorithms 
for large-scale datasets. Using road hierarchy derived from network contractions is our first 
attempt based on this idea. As our prototype system uses the Sequoiai  open source frequent 
sequence mining package, we next provide a brief introduction to frequent sequence mining 
based on the implementation in Sequoia.  

Given a set of sequences, frequent sequence mining algorithms aim at finding unique sets 
of ordered itemsets whose frequencies are above a predefined threshold termed as support value, 
which can be either an absolute value or a percentage. The task becomes simpler when only one 
item is allowed in the itemsets that are used as the building blocks for frequent sequences. While 
allowing multiple items in itemsets provides higher flexibility, using a single item per itemset 
may actually be more suitable for trajectory data where road segments are typically unique in 
simple frequent sequences. The Sequoia package by Borgelt is highly engineered from a 
software development perspective. It is designed to find both non-closed and closed frequent 
sequences with unique occurrences of items, which matches our need on mining frequent 
sequences of unique road segments very well. Sequoia adopts the FP-growth style strategy (Han 
et al. 2000) to efficiently prune the search space. Our experiments also show that Sequoia is 
faster than alternatives, likely due to incorporating proven-effective data structures and highly 
efficient memory and disk I/Os, in addition to adopting efficient mining algorithms.  



Using betweenness centralities (Brandes 2008) provides another way to understand the 
utilization and popularity of nodes and edges in a street network (Kazerani and Winter 2009, 
Leung et al. 2011).  More formally, the edge based betweenness centrality CB(e) is defined as the 
following:  

 
 
 
 
where s and t are the source and destination nodes in a path and function 

)(eσ accumulates numbers of paths that pass through edge e.  As stσ is typically a constant for 

road networks, we use ∑ )(vstσ directly in this study. Compared with association rule-based 

frequent sequence mining algorithms, it is much simpler to compute edge centralities as the 
complexity is bounded by the total number of edges in the path set. However, it is easy to see 
that the betweenness centrality measurement is per-segment based and do not identify frequent 
sequences directly. Nevertheless, when betweenness centralities for a set of road segments are 
visualized in a map, as neighboring segments typically have similar betweenness centralities, 
users might be able to identify consecutive road segment sequences with high betweenness 
centralities in a visual manner.  As shall be clear later, our approach provides a natural tradeoff 
between per-segment based betweenness centrality measurement and per-sequence based 
association mining by using shortcuts as the basic units. The shortcuts are subsequences of 
original sequences but require only linear scanning to count their frequencies just like the 
between centrality measurement. As the shortcuts are derived through the contraction hierarchies  
technique, we next provide more details on it.  

Contraction hierarchies is a technique to speed up shortest path computing (Geisberger et 
al 2008). The key idea is to heuristically order the network nodes by some measurements of 
importance and contract them in this order. While network nodes are removed by contraction, 
shortcuts are added to the network being explored so that shortcut nodes do not need to be visited 
during node expansion in computing shortest paths. These shortcuts allow far fewer node visits 
in computing shortest paths than the classic Dijkstra’s shortest path algorithm (Geisberger et al 
2008). Furthermore, the nodes ordered based on their importance are much more cache and 
parallelization friendly during edge expansion. The data layout of network nodes and edges 
based on the order matches modern parallel hardware architectures very well. Experiments have 
shown that shortest path computation using the contraction hierarchies technique on modern 
multi-core CPUs and many-core GPUs can be up to 3 orders of magnitude faster than serial 
Dijkstra’s algorithm (Delling et al. 2011). While the contraction hierarchies technique is 
primarily designed for speeding up shortest path computation, as human movements typically 
follow the shortest path principles (Esiner et al 2011), the constructed node hierarchy not only 
can be used for routing purposes, but also for reducing the lengths of trajectory sequences by 
incorporating shortcuts. As many frequent sequence mining algorithms are combinatorial in 
nature and NP-hard in worst cases, reducing the numbers of data items in sequences can 
significantly reduce runtimes of frequent mining algorithms. Furthermore, mined frequent 
sequences consisting of important nodes naturally provide simplified frequent paths that are 
more informative, easy to visualize and interpret,  and thus are more preferable to end users.  

To provide a better understanding of the contraction hierarchies technique, Fig. 1 
illustrates a road network in Texas with 62 nodes and 120 edges. The nodes are symbolized 
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based on their importance after applying the technique. The more important the nodes are, the 
larger circles are used for symbolization. Clearly, node 46 in the center of the network is the 
most important node while many nodes that are close to the boundary are least important. This is 
understandable, as shortest paths will likely pass through node 46 and is least likely to be 
shortcut. When computing the shortest path between node 34 and node 60, the full path sequence 
would be 34,36,57,61,22,23,53,50,11,60 whose length is 9 hops. Using the derived contraction 
hierarchy, there will be a shortcut between node 57 and 22, and, node 61 is shortcut as it has a 
lower importance than the two nodes. Similarly, a shortcut between node 11 and node 53 is 
added as node 50 has a lower importance. It is also interesting to observe that there is also a 
shortcut between node 57 and node 23 where node 22 is shortcut in this case. The node sequence 
using the shortcuts turns out to be 34,36,57,23,53,11,60 whose length is 6 hops. While only 3 out 
of the 9 edges are reduced due to using shortcuts in this small network with a maximum level of 
10, as the number of levels generally increase logarithmically with the number of nodes in a 
network (Abraham et al. 2010), the reduction can be significant for long path sequences in large 
networks, e.g., the North America road network with tens of millions of nodes and edges.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.1 Illustration of Contraction Hierarchies Using a Texas Road Network 

 

3 Prototype System Architecture 
Although there are some fundamental research opportunities in tightly integrating 

frequent pattern mining and network contraction algorithms, as a first step, we integrate several 
existing packages to realize our approach in a short time in this study. Our prototype system 
architecture is shown in Fig. 2 where the shaded boxes indicate input data. The U2SOD-DB data 
management infrastructure (Zhang et al. 2012) is used in the prototype. We currently use the 
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Contraction Hierarchies module (CH) in the Open Source Routing Machine projectii for 
constructing road network hierarchy and the Sequoia open source frequent sequence mining 
package for mining frequent sequence. The Trajectory to Sequence (T2S) converter module is 
responsible for mapping GPS trajectories to sequences of road segments. The Sequence 
Contraction (SC) module is designed to contract the original sequences. These two modules are 
currently placeholders (indicated by the dashed frames) as our experiment data has only Origin 
and Destination (O-D) locations while the intermediate GPS reading are not available. We have 
developed the third module, i.e., Shortest Path Computation (SPC), to compute shortest paths 
between O-D location pairs. The computed shortest paths are subsequently used as the input data 
for frequent sequence mining. Both the original shortest path sequences and shortcut shortest 
path sequences are output and they can be fed into the FSM (Frequent Sequence Mining) module 
(using Sequoia) to mine frequent sequences. We have also implemented the edge-based 
Betweenness Centrality computing module (BC). By taking into account the original shortest 
path sequences, the BC module computes the betweenness centrality measurement for each 
original road segments. Similarly, by taking into account the shortcut shortest path sequences, 
the BC module computes the betweenness centrality measurement for each shortcut. The FSM 
and the BC modules in Fig. 2 are highlighted in bold to indicate that they take both original 
sequences and shortcut sequences.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 Prototype System Architecture and Components 

Several auxiliary modules for pre-processing and post-processing are also developed. In 
particular, the Network Data Ingesting (NDI) module is developed to ingest network data that 
may be provided in different formats. The module currently ingests the LION road network 
dataset from the NYC Department of City Planning (DCP), which is referred to as DCPLION 
and is used in our experiments. The module also supports NAVTEQ street network in the NYC 
area. In addition to the major streets in the five boroughs of NYC, the NAVTEQ data also covers 
several neighboring counties which is good for studying taxi trips whose origin or destination 
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locations are outside of NYC’s five boroughs. In addition to generating node and edge lists and 
computing different types of edge weights that are required by the  CH module, the NI module 
also adds node and edge identifier columns so that nodes and edges in the sequence mining 
results can be mapped back to their geometry later for visualization purposes. Subsequently, a 
Data Bridger (DB) module is developed to combine the node and edge identifiers that are output 
by the Sequoia module and the related geometric data to generate SQL statements. The 
PostgreSQL/PostGISiii  spatial database can take the SQL statements, populate tables and 
generate ESRI shapefilesiv that can be visualized in many Geographical Information System 
(GIS) software, including ESRI’s ArcGISv. The DB module will be replaced by an integrated 
module in the future to visualize frequent sequence mining results without relying on third party 
programs. 

 
4 Experiments and Results 

The more than 13,000 GPS-equipped medallion taxicabs in NYC generate nearly half a 
million taxi trips per day and more than 168 million trips per year serving 300 million passengers 
in 2009. The number of yearly taxi riders is about 1/5 of that of subway riders and 1/3 of that of 
bus riders in NYC, according to MTA ridership statisticsvi. Taxi trips play important roles in 
everyday lives of NYC residents (or any major city worldwide). Understanding the trip purposes 
is instrumental in transportation modeling and planning. In our previous work, we were able to 
compute the shortest paths between all the 168 million O-D pairs in within two hours using a 
single Intel Xeon E5405 CPU (2.0 GHZ) by utilizing the contraction hierarchies technique. The 
performance is orders of magnitude faster than the state-of-the-art (Zhang 2012). However, the 
computed shortest path sequences are too voluminous to manipulate (with respect to streaming 
disk-resident files among different modules) and too cumbersome for visualization (data and 
patterns are cluttered when displays have limited screen resolutions). As a result, we have 
selected a subset of 2009 data for a case study.  

We are particularly interested in the taxi trips between Manhattan and the LaGuardia 
airport (LGA) located in Northern Queens, another borough of NYC.  As one of the three major 
airports in the NYC metro area, the airport accommodated 24.1 and 25.7 million passengers in 
2011 and 2012vii, respectively. We extracted all the taxi trips from all the 13 community districts 
in Manhattan to community district 403 in Queens (where LGA is located) in January 2009 and 
the number of trips is 17,558. As discussed in Section 3, we computed the shortest paths between 
the pickup and drop-off locations of the trips and output the segment identifiers in the computed 
shortest paths for association rule-based frequent sequence mining. We also apply the BC 
module to compute the edge-based betweenness centralities for all the edges using the original 
shortest path sequences. To test the effectiveness of our proposed approach, we output the 
shortcut sequences and apply the BC module to compute the edge-based betweenness centralities 
for all the shortcuts. These shortcuts are unpacked in the DB (Data Bridger) module for 
subsequent visualization purposes. We next present the experiments and results for the three 
modules and compare them where appropriate. 

4.1 Results of BC on Original Sequences 
Fig. 3 visualizes the distributions of edge-based betweenness centralities with non-

involving edges (betweenness centrality = 0) grayed out. The figure clearly shows that the road 
segments of the four bridges and tunnels play important roles in the traffic between Manhattan 
and the airport area as indicated by their high betweenness centralities. There are 2,620,636 road 



segments in the 17,558 shortest paths (~150 segments per path on average) which only take a 
fraction of a second to compute betweenness centralities. While the approach is efficient and 
provides valuable information for visualization purposes, it cannot be used to identify frequent 
sequences directly.  

4.2 Results of Association Rule Mining on Original Sequences 
Table 1 lists the runtimes and several other measurements output by the Sequoia package 

using support values ranging from 50 to 5. Here “Candidate frequent sequences” refers to 
sequences consist of no road segments whose frequencies are below the respective support value 
and thus cannot be pruned by single item frequency counting. The candidate frequent sequences 
need to be fed into the FP-growth algorithm implemented in Sequoia for sequence expanding and 
pruning. As can be seen from Table 1, the runtimes grow super-linearly as the support values 
decrease. The computing is orders of magnitude slower than computing betweenness centralities. 
The numbers of frequent sequences also increase significantly as the support values decrease and 
many of them overlap. The numbers of average segments in the identified frequent sequences, 
however, do not increase as significantly as the runtimes and the numbers of frequent sequences. 
The results indicate that, as the support values become lower, both the numbers of frequent 
sequences and the average numbers of segments of the frequent sequences increase. For this 
particular dataset, the total number of frequent segments grows 3-4 orders (6*20 vs. 1018*57), 
although the support value only decreases 10 times (50 vs. 5). In addition, although the resulting 
frequent sequences do provide useful information for further processing, they are not suitable for 
interactive visualization as there are significant degrees of overlap among the frequent road 
segments, especially when support values are low.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3 Visualization of Edge-based Betweeness Centrality of Original Shortest Paths 



 

Table 1 Results of Frequent Sequence Mining using Sequoia with Different Support Values 
Support Runtime 

(seconds) 
#of candidate 

frequent 
sequences 

#of frequent 
sequences 

#of average 
segments 

50 0.12 3624 6 20 
25 4.42 5470 36 38 
10 37.64 10077 275 41 
5 129.64 12771 1018 57 

4.3 Results of the Proposed Approach  
Recall that our proposed approach computes the edge-based centralities of shortcuts and 

use frequent shortcuts as the approximations of frequent sequences. The approach also allows 
apply the classic association rule-based frequent sequence mining algorithm to further identify 
sequences of shortcuts with lower computing overheads. Among the 17,558 shortest paths, 2,204 
shortcuts are derived. There are 149,536 segments of either original road segments or shortcuts 
among the 17,558 shortest paths. The average number of segments per shortest path is thus less 
than 9. Compared with the original shortest path sequences with about 150 segments per path on 
average (c.f. Section 4.1), the average path length is reduced by almost 16 times. The reduction 
is considerably significant with respect to both storage and frequent pattern mining. By 
significantly reducing the number of segments in frequent sequences and overlap among frequent 
sequences, as shown in Fig. 4, it is easier to visualize and interpret the identified frequent 
sequences in a GIS environment (ESRI ArcMap in particular).   

To better understand the derived shortcuts, the distributions as well as major statistics are 
shown in Fig. 5. We can see that, while the average number of road segments per shortcut is 
close to 9, there are a few shortcuts that have large numbers of road segments. This may partially 
due to the unique road network topology in NYC where the connections between Manhattan and 
Queens (and also the rest of the three boroughs) are mostly through a limited number of bridges 
and tunnels. Expressways (e.g., Interstate 495) that connect the bridges/tunnels and the airport 
area are likely to be major parts of the shortest paths for the taxi trips between the origins and 
destinations. While it is still possible to discover frequent sequences that consist of more than 
one shortcut, it is unlikely that all the shortcuts in such sequences have large numbers of road 
segments. For shortcuts with long sequences of road segments, it might be advantageous to 
visually explore them directly and exclude them from frequent sequence mining on such 
shortcuts.  

By applying the Sequoia module on the 17,558 shortest paths with shortcuts, our 
approach is able to compute frequent sequences in negligible runtime for all support values (as 
low as 1). This is much more efficient than mining the original shortest path sequences, which 
took more than 2 minutes with the support value set to 5 as shown in Table 1. We note that 
mining the shortcut sequences will likely miss frequent sequences in several cases when 
compared with mining original sequences directly, such as those that cover only parts of the road 
segments in neighboring shortcuts. Another case might be subsequences that overlap with 
multiple shortcuts. When the shortcuts are not qualified as frequent sequences, the subsequences 
will not be identified as frequent ones within individual shortcuts. However, subsequences might 
be frequent across multiple shortcuts which can be identified if mining on the original sequences 



directly. We are working on techniques that can avoid or reduce the chances of such cases, for 
example, by limiting the lengths of road segments in shortcuts. We will report the efficiency and 
effectiveness of these techniques in our future work. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 Examples of Visualizing Identified Frequent Sequences (Shortcuts) 

   
Fig. 3 

 

 

 

 

 

Fig. 5 Frequency Distribution against Number of Road Segments in Shortcuts 

Count: 2204 

Minimum: 3 

Maximum: 165 

Mean: 8.79 

Standard Deviation: 12.97 

 



5 Conclusion and Future Work 
In this study, we have proposed a new approach to mining frequent patterns from large-

scale GPS trajectory data after mapping GPS traces to road network segments. Instead of 
applying association rule-based frequent sequence mining algorithms directly which generally 
have high computation overhead and are not scalable, our approach utilizes the inherent 
hierarchies of road networks. After contracting nodes and creating shortcuts by applying 
contraction hierarchy algorithms, the original road segment sequences are transformed into 
sequences of shortcuts and the data volumes of the original sequences can be significantly 
reduced. Edge-based betweenness centrality measurements can be directly computed on 
shortcuts efficiently with a linear time complexity, and, frequent sequence mining algorithms can 
be applied to the shortcut sequences to identify frequent patterns with significantly reduced 
complexity. By using computed shortest paths as simulated GPS trajectories, our experiments on 
17,558 taxi trip records have shown that computing betweenness centrality measurements of 
shortcuts and frequent sequence mining on shortcut sequences incur negligible computing 
overheads. The runtimes of frequent sequence mining on shortcut sequences are orders of 
magnitude faster than on original road segment sequences. In addition, frequent subsequences in 
shortcuts are more informative and interpretable based on the betweenness centralities of the 
shortcuts than visualizing betweenness centralities of individual road segments.  

The reported work naturally leads to several future research directions. First, we would 
like to evaluate and validate the assumption that real world GPS trajectories in urban areas 
follow the shortest path principle with different metrics, especially for long trajectories. While 
we currently do not have access to complete GPS traces in NYC, we plan to use the publically 
available T-Drive datasetviii  for this purpose. Second, among the 168 million taxi trips in NYC in 
2009, we have used only a small fraction of the dataset and we plan to evaluate our proposed 
approach on larger subsets to test its efficiency and scalability. Finally, the prototype we have 
developed so far is loosely coupled in nature. We plan to tightly integrate the essential 
components in the prototype and automate the big-data analytics process. We strongly believe 
that by integrating road network hierarchies into frequent pattern mining algorithms, specialized 
and highly efficient trajectory frequent sequence mining algorithms can be developed and 
tailored for parallel computing.  
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