

CudaGIS: Report on the Design and Realization of a Massive Data
Parallel GIS on GPUs

Jianting Zhang
Department of Computer Science

 The City College of the City University of New York
New York, NY, 10031

jzhang@cs.ccny.cuny.edu

Simin You
Dept. of Computer Science

CUNY Graduate Center
New York, NY, 10016

syou@gc.cuny.edu

ABSTRACT
We report the design and realization of a high-

performance parallel GIS, i.e., CudaGIS, based on the General
Purpose computing on Graphics Processing Units (GPGPU)
technologies. Still under active developments, CudaGIS currently
supports major types of geospatial data (point, polyline, polygon
and raster) and provides modules for spatial indexing, spatial join
and other types of geospatial operations on such geospatial data
types. Experiments have demonstrated 20-40X and 1000-10000X
speedups over serial CPU implementations on main-memory and
disk-resident systems, respectively.

1. INTRODUCTION
The increasingly larger data volumes and more complex

semantics of geospatial information never cease to request more
computing power to turn such data and information into
knowledge and facilitate decision support, ranging from global
change research to personal travel planning. While parallel
processing has been considered as an important component in
achieving high-performance in geospatial computing [1], it was
not until the General Purpose computing on Graphics Processing
Units (GPGPU) technologies appeared in 2007 that large-scale
parallel geospatial computing on commodity hardware become a
reality, both technologically and economically. Indeed, while
supercomputers and parallel computing resources had been made
available to highly selective research groups in the past, the
inexpensive commodity GPUs, whose architectures closely
resemble supercomputers as argued in [2], are affordable to
virtually all research groups and individuals. As such, there are
significant potentials for GPU accelerated GIS to boost the
performance of geospatial computing in a personal computing
environment for larger and more complex datasets.

There are quite a few technical challenges in designing
and realizing such a GPU based parallel GIS. First of all, while
many geospatial computing tasks (especially local and focal based
operations) are inherently data parallel, there are also quite some
tasks (e.g., zonal and global operations) require more
sophisticated mappings among conceptual designs and parallel
computing models. Second, GPGPU technologies are relatively
new and existing programming languages and software tools may
not be sufficient for cost-effective application developments.
General purposed software packages and application development
platforms that can bridge between geospatial applications and
GPU hardware specific computing models are essential but
insufficiently supported. In this paper, we introduce our research
and development efforts in designing and implementing a GPU
based general purposed parallel GIS targeting at typical personal
computing environments for a wide range of geospatial

applications. Since the prototype system was developed using
Nvidia Compute Unified Device Architecture (CUDA) parallel
programming language and its libraries [3], we tentatively call the
collection of modules that we have developed as CudaGIS. While
still under active development and new modules are being added,
currently CudaGIS is able to handle major geospatial data types
such as raster, point, polyline and polygon and support efficient
indexing and query processing on them. Given that geospatial
data are both computing and I/O intensive and usually requires
extensive visualization and interaction, high-performance GIS
modules that can run on personal computers can be valuable to
many geospatial applications [4]. Furthermore, by processing
larger scale geospatial data on a single computing node faster, the
communication overheads in distributing the computing tasks
over a set of independent computing nodes in grid or cloud
computing environments can be significantly reduced [5] which
allows solve even larger scale problems on cluster computers
more efficiently.

While this paper focuses on high-level system design
and realizations of key components (we refer to relevant
publications and technical reports [6-13] for performance of
individual operations), we would like to note that preliminary
results have shown that CudaGIS is able to achieve signficant
speedups over serial CPU implementations. For main-memory
based implementations that have already made full use of large-
memory capacities of modern hardware, the speedups are in the
range of 10-40X. When compared with open source
implementations that typically adopt a disk-resident architecture,
the speedups can be can be 3-4 orders (1000X-10,000X) where
cache-friendly main-memory data structures also have contributed
significantly to the overall performance. Since CudaGIS is a
main-memory based system, in-memory data structures are
prerequisites for GPU accelerations. To allow CudaGIS to solve
larger scale problems that are beyond the memory capacities of
CPUs/GPUs (in a way similar to disk-resident systems), we are in
the process of investigating a batch-process based approach which
is different from buffer management technique in traditional
spatial databases and the relevant techniques will be reported
separately.

We plan to provide the source code to the geospatial
computing community at http://www.cudagis.org when it
becomes ready for release. We strongly believe a community
effort is needed to develop the first general purposed parallel GIS
on GPUs. The rest of the paper is arranged as follows. Section 2
introduces background, motivations and related work. Section 3
presents the designs and implementation details of key
components. Section 4 discusses several high-level design and

implementation issues. Finally Section 5 is the summary and the
future work plan.

2. BACKGROUND AND RELATED WORK
Geospatial data is among one of the fast growing types

of data due to the advances of sensing and navigation
technologies and newly emerging applications. First of all, the
ever increasing spatial, temporal and spectral resolutions of
satellite imagery data have led to exponential growth of data
volumes. Second, both airborne and mobile radar/lidar sensors
have generated huge amounts of point-cloud data with rich
structural information embedded. Third, many mobile devices are
now equipped with locating and navigation capabilities by using
GPS, cellular and wifi network technologies or their
combinations. Considering the large amounts of mobile devices
and their users, the accumulated GPS traces, which are essential
to understand human mobility, urban dynamics and social
interactions, can be equally computing demanding when
compared with satellite imagery data and lidar point cloud data.
While the traditional infrastructure data, such as administrative
regions, census blocks and transportation networks, remain
relatively stable in growth when compared with the new types of
geospatial data, quite often new sensing and location data need to
be related to the infrastructure data in order to make sense out of
them. While at the first glance its seems that polygonal data may
be the one that has least growth rates from data acquisition
perspective, we argue that the derived data from point (e.g., lidar
point clouds, GPS locations), raster (satellite and airborne remote
sensing imagery) and polyline (GPS traces) data are best
represented as polygons for subsequent analysis. Given the
diverse interests of human societies, it is conceivable that the data
volumes of polygonal data will also grow fast, if not faster than
the other types of geospatial data. Despite certain types of
traditional geospatial data remain relatively stable, the newly
emerged geospatial data and their applications have imposed
signficant computing challenges. Indeed, the gap between the
desired computing capabilities and the available ones is
increasing rather than decreasing when it comes to large-scale
geospatial computing.

There are several noticeable efforts in developing
parallel GIS on different types of hardware architectures over the
past few decades, such as shared-disk [14], shared-memory [15]
and shared-nothing architectures [16, 17, 18, 19]. A major
research effort in shared disk and shared-nothing based parallel
geospatial processing is data partition, replication and
declustering to improve I/O efficiency. In recent years, several
research works [20, 21, 22] on parallel geospatial data processing
on shared-nothing clusters follow the MapReduce parallelization
scheme to simplify algorithmic designs and data communications.
An examination of these existing works reveals that, while
shared-nothing architectures conceptually have excellent
scalability, very few of the existing works have used more than 32
nodes. Furthermore, the reported speedups are far from linear
scalability which may indicate that data communication
overheads may start to play a dominating role when the numbers
of parallel processing units go up. Another trend we can see is
that existing works on parallel geospatial data processing are
primarily research driven which little involvement from industries
and no commercial products are available from leading GIS or
spatial database vendors. Indeed, given that Moore’s law has held

from 1986 to 2002 with processor clock rates double very 18
months, vendors can simply rely on the clock rate improvements
of uniprocessors for higher performance without resorting to
parallelization.

However, due to the physical limits of CMOS
technologies and the power constraints, the growth rates of the
processing speed of uniprocessors are decreasing (instead of
increasing), especially after 2006. Given that parallel processors
are becoming mainstream, it is natural to seek parallel computing
technologies to achieve the desired computing capabilities.
Currently there are three major leading technologies available,
i.e., multi-core CPUs, many-core GPUs and cluster computing (in
both grid and cloud settings) and all of them have been applied to
geospatial data processing. While we refer to [4] for more details
on these three technologies in geospatial applications, we want to
stress that they are technologically complementary in nature
although they do compete with each other when it comes to
system designs for specific applications. We are particularly
interested in massively data parallel GPGPU technologies as they
represent a radical change to traditional serial computing
paradigm which is still the basis for multi-core CPUs and cluster
computing where parallelization can be realized at coarse grains.

GPU hardware architectures closely resemble
supercomputers [2] which allows/requires fine-grained thread
level coordination for data parallelization. This is drastically
different from task parallelization that is more suitable for multi-
core CPUs and cluster computers. Furthermore, from a practical
perspective, as the communications are becoming increasingly
expensive when compared with computation on modern
processors/systems [23], GPU’s shared-memory architectures
allow very fast data communications (up to 400 GB/s) among
processing units when compared with cluster computing (~50
MB/s in cloud computing and a few GB/s in grid computing with
dedicated high-speed interconnection networks) and multi-core
CPUs (a few tens of GB/s), which is desirable for data intensive
computing. Finally, in addition to fast floating point computing
power and energy efficiency, the large number of processing
cores on a single GPU device (3,072 for Nvidia GTX 690 that
currently available from the market under $1,000) makes it ideal
to solve certain large-scale geospatial problems in a personal
computing environment, especially for those that requires
extensive visual explorations and user interactions. As discussed
in [5], solving larger sub-problems on a single processing unit (a
GPU device in this case) will significantly reduce the
communication cost in solving a large problem using the
MapReduce parallel computing model.

The high-throughput and energy efficiency of GPU
computing are largely due to the SIMD (single-instruction-
multiple-data) architectural design. To achieve high performance
on GPUs (as well as other SIMD based processors), threads or
thread groups must be carefully coordinated by ensuring
coalesced memory accesses and minimizing branches in code
execution. This in turn requires geospatial data structures and
algorithms to be parallelization friendly. In the context of spatial
query processing for the data management aspect of geospatial
computing, hundreds of indexing structures and query algorithms
on vector and raster geospatial data have been proposed over the
past few decades [24]. Unfortunately, the majority of them are
designed for serial CPU implementations which left their
suitability of parallelization largely unknown. The CudaGIS

system, to the best of our knowledge, is the first in its kind to
systematically address the technical challenges in large-scale
geospatial data management and processing on GPUs and provide
end-to-end solutions for practical geospatial applications.

3. System Design and Implementation
CudaGIS aims at supporting major geospatial data types

and a subset of carefully selected operations on these geospatial
data types as separate modules. Due to time and resource
constraints, each module in CudaGIS is derived from a real
application that we have developed over the past few years but we
have kept general applicability in mind when they were designed
and implemented. In this section, we first provide an overview of
the system architecture and highlight the connections between
different components before we present the details of the designs
and implementations. In a way similar to many modern GIS, these
components can be chained to solve a variety of real world
geospatial problems. We note that CudaGIS is designed to process
large-scale geospatial data that exhibits signficant data parallelism
and fits SIMD parallel computing models. As such, it is not our
intension to support all geospatial operations as we believe some

of them could be more efficient by using serial or coarse-grained
parallelism on multi-core CPUs (or cluster computers). We also
note that a system approach has been adopted with a focus on
achievable efficiencies. Some of the designs and implementations
may not be optimal at present from a research perspective and
some are still under developments. Fig. 1 shows the relationships
among different geospatial data types and the realized or planned
implementations on them in CudaGIS. Numbers within square
brackets (e.g, [12]) indicate the references to our publications and
technical reports that have the details of the designs,
implementations, applications and experiments. Letters within the
curly brackets (e.g, {A}) indicate the planned implementations.
Some of these components (e.g., polygon overlay) have already
been implemented but are skipped in this paper due to space limit.
Index structures that have been developed for each data types are
listed in the boxes next to the data types. While these index
structures can be used to process a single query, to make full use
of data parallel computing power on GPUs, we are more
interested in batch processing a large number of structurally
similar queries and/or large-scale spatial joins [25].

Fig. 1 Supported Geospatial Data Types and Operations in CudaGIS

3.1 Efficient In-memory data structures
While points and rasters usually have fixed lengths,

polylines and polygons consist of variable length points, which
makes their structures irregular. Modern GIS and spatial
databases typically adopt an object-relational model and treat
polyline and polygons as objects that are used as the minimum
units for data accesses and operations. These objects are stored
as BLOBs (Binary Large Objects) on disks and the structures of
the objects need to be reconstructed when they are streamed
from disks to CPU memories. While the design is convenient for
page-based buffer management in both an operating system and
a database setting, reconstructing variable-length data structures
dynamically require extensive memory allocation and
deallocaitons which are quite expensive on modern hardware. In
contrast, simple arrays are naturally cache friendly and
operations based on array scanning can be easier to parallelize.
Array based data structures are especially suitable for read-only
data in an OLAP (Online Analytical Processing) setting where
analytical tasks usually do not need share resources with other
tasks that have unpredictable memory requirements (where

dynamic resource allocations are more important). As
reasonably current desktop computers usually have large
memory capacity (4+ GB) which is orders larger than those that
are 10 or 20 years ago [26], the ability to use large arrays can
signficant reduce the overheads of disk I/Os and improve cache
hit rates which will subsequently improve the overall system
performance.

 Towards this end, we have developed an array-based
data layout schema for both polygon and polyline data.
According to the Open Geospatial Consortium (OGC) Simple
Feature Specification (SFS), a polygonal feature may have
multiple rings and each ring consists of multiple vertices. As
such, we can form a four level hierarchy from a data collection
to vertices, i.e., dataset feature ring vertex. The
hierarchy can be easily extended to polyline data by not
requiring the first and the last vertex in a ring to be the same
(enclosed). Five arrays are used for a large polygon/polyline
collection. Besides the x and y coordinate arrays, three auxiliary
arrays are used to maintain the position boundaries of the
aforementioned hierarchy. As shown in Fig. 2, given a dataset

Point

Voronoi
Diagram

Raster

Polyline

Polygon

Lidar Point
Cloud

GPS Locations
(O/D)

GPS Traces Road Network

[9]
[9] [8]

[15]

[14]

[11]

BMMQ-Tree

Bitplane Quadtree

{C}
[12]

Leaf
Quadrants

{B}

R-Tree
Single-Level

grid file
Multi-Level

grid file

[16]

{A}

CSPT-P
Tree [10]

[12]

[6]
[7]

[13]

Planned developments:
A: multi-level grid file structures for
spatial filtering in spatial joins
B: polygon overlay
C: map matching between GPS traces
and road networks

ID (0..N-1), the starting position and the ending position of
features in the dataset can be looked up in the feature index
array. For a feature within a dataset, the starting position and the
ending position of rings in the feature can be looked up in the
ring index array. Similarly, for a ring within a feature, the
starting position and the ending position of vertices belong to
the ring can be looked up in the vertex index array. Finally, the
coordinates of the ring can be retrieved by accessing the x and y
coordinate arrays and the optional timestamp array. While an
array of bounding boxes can be associated with the hierarchy at
the dataset, feature or ring levels, currently CudaGIS associates
the bounding box array at the feature level as bounding boxes at
this level can potentially provide better filtering power.

It is easy to see that retrieving coordinates of single or
a range of datasets, features and rings can all be done by
scanning the five arrays in a cache friendly manner. It is also
clear that the number of features in a dataset, the number of

rings in a feature and the number of vertices in a ring can be
easily calculated by subtracting the two neighboring positions in
the respective index array. As such, the array representation is
also space efficient. We also note that the data structures and the
hierarchy also make it easy for parallelization for a variety of
operations. For the example at the right of Fig. 2, given the
feature indices of three datasets, assuming each feature is
associated with a Minimum Bounding Rectangles (MBR), by
chaining a scatter primitive, a max-scan primitive and a reduce-
by-key primitive, the MBRs of these three datasets can be
derived in parallel. Here a parallel primitive refers to a
fundamental algorithm whose behavior is well-understood and
can be efficiently executed on parallel hardware. The three
parallel primitives we have used in the example are among the
many that are supported in quite a few parallel libraries
including Thrust that comes with CUDA SDK [3].

Fig. 2 Array Based In-Memory Data Structures for Polyline/Polygon Data and an Example on Efficient Aggregation Using the Data
Structures and Parallel Primitives

3.2 Indexing and Spatial Joins on Vector
Data

Indexing and joining vector data are the cornerstones
of GIS and spatial databases and we refer to [28] for in-depth
surveys on data structures and algorithms designed for CPU
based serial implementations. In this subsection, we will be
focusing on the designs and implementations of parallel
indexing and join processing on GPUs. We are particularly
interested in supporting spatial joins in CudaGIS as batched
query processing can be treated as spatial joins in a certain way.
For single query processing, unless the query covers a large
portion of records in the dataset to be queried, serial CPU
processing probably can have better performance.

For point data, we have developed an indexing
structure called Constrained Spatial Partition Tree for Point data
(CSPT-P) on GPGUPs [10]. We first transform points into
Morton codes by following the Z-order and then identify leaf
quadrants with a maximum of K points in a level-wise top-down
manner before a CSPT-P tree is constructed in a level-wise
bottom-up manner from the identified leaf quadrants. Both the
leaf identification and CSPT-P tree construction processes can
be implemented by a few parallel primitives [10].

Although the leaf quadrants of point data do not
overlap which makes it suitable for quadtree indexing, the
MBRs of polygons and polylines can overlap significantly
which makes R-Tree indexing more desirable. CudaGIS
currently supports bulk-loading R-Trees through packing [29]
by utilizing GPU’s excellent sorting capabilities. Assuming m
queries are batched in a GPU computing block, two variants of
batched R-Tree are supported in CudaGIS, i.e., Depth-First-

Search (DFS) based and Breadth-First-Search (BFS) based [16].
The DFS based query adopts a Count-Then-Move parallelization
strategy (c.f. Section 4.2) by having each thread traverse the
query R-Tree independently in a depth-first manner, counting
the number of hits for all the queries in a batch, allocating
appropriate output space before actually outputting the query
results in parallel. The strategy essentially requires two passes
of query processing with the first pass for “counting” and the
second pass for “outputting”. While obviously a query is
processed twice which brings some computation redundancy,
the DFS strategy does not require any extra memory beyond the
output size due to the “counting” pass. The BFS based query has
better parallelism in the sense that threads within a computing
block are coordinated through a queue. R-Tree nodes that
intersect with query MBRs are pushed into the queue and each
thread is responsible for processing a single R-Tree node in the
queue by examining whether the child nodes intersect with the
query MBRs. Different from DFS based query where a thread
processes only a single query, in BFS based query, child nodes
that intersect with a same query can be processed by multiple
threads to achieve higher parallelism. Since the output sizes of
individual queries can exceed the pre-allocated capacity, an
overflow handling mechanism is required for this purpose.
Currently CudaGIS simply sets an overflow flag and resorts to
DFS based queries for overflowed cases but other mechanisms
(such as dynamic memory allocations or buffer page
redistributions) are also possible.

There are many types of spatial joins among different
types of geospatial data based on different criteria. Take the
point data for example, after points are grouped into non-
overlapping quadrants, CudaGIS can join point data with

 … 50 60 …

 … 70 73 78 … 100 …

Feature Index

Ring Index

0 … 12

885 913 959 989Vertex Index

X/Y Coordinates

0 …

0 0 0 1 1 2 2 2 2 2

3 5 90

0 1 2

1 20

Scatter

Max-scan

Reduce-by-key

polyline or polygon data based on different distance
measurements, point-in-polygon test or nearest neighbor search
principles. Similar to serial spatial joins on CPUs [28], spatial
join in CudaGIS also has two phases, i.e., filtering phase and
refinement phase. In the filtering phase, CudaGIS pairs point
quadrants with polylines and polygons where the points and
polylines/polygons can potentially satisfy the join criteria. In the
refinement phase, for each of such matched pairs, in parallel,
each point will be evaluated against the vertices of polylines or
polygons based on the join criteria. The evaluated results will
have fixed lengths to facilitate parallelization – the threads will
need to know exactly where to write out the results. The
condition actually can be satisfied in many cases: a boolean
variable for point-in-polygon test, a double variable for distance
between a point and a polygon/polyline, a (double, integer) pair
for nearest-neighbor. The nearest-neighbor search can be
extended to K nearest neighbor (KNN) search where the results
will be K (double, integer) pairs.

The framework can also be extended for point-to-
point, polyline-to-polyline and polygon-to-polygon spatial joins.
For example, by treating a segment of GPS trace as a trajectory,
we are able to perform trajectory similarity join on GPUs to find
two trajectories that are most similar [12] based on the

Hausdorff distance. An interesting application of point-to-point
join might be Geographically Weighted Regression (GWR) on
GPUs [4]. By expanding the leaf quadrants of a point dataset
with the GWR bandwidth (W,H), the quadrants can be paired up
which guarantees that all the points that are within the (W,H)
window of a focal point can be located in one or more of the
quadrant pairs in the filtering phase. In the refinement phase, in
parallel, each point locates all the points in a (W,H) window and
compute its GWR coefficient.

While the join criteria in the refinement phase differ
significantly among applications, the criteria for pairing up
point quadrants, polylines and polygons based on their MBRs in
the filtering phase are relatively uniform which is primarily
based on the simple spatial intersection test. Very often we are
only interested in geographical features (or geospatial objects)
that are no more than distance D away. If the expanded MBR of
an object with expansion D does not intersect with the MBR of
another object, then the two objects are at least D way and
should not be paired. While we are still in the process of
designing and implementing efficient data structures for filtering
in spatial joins and other types of spatial queries, current
CudaGIS utilizes a simple grid-file based data structure for
filtering and we would like to provide more details.

Fig. 3 Illustrate the Single-Level Grid File based Spatial Filtering in CudaGIS

Given a user-specified grid, the MBRs of the two
datasets that participate a spatial join are rasterized to grid cells
with each grid cell associated with any (0, 1 or many) numbers
of the MBRs. After the rasterization, the pairing process can be
reduced to a binary search process as shown in Fig. 3. Assuming
P represents the pairing dataset and Q represents the dataset to
be paired and the rasterization results (after Step 1 and Step 2)
are stored in VPC and VQC, respectively. The filtering
algorithm in CudaGIS first sorts VQC based on their
feature/object identifiers (stored in VQQ) so that feature/object
identifiers correspond to a cell identifiers appear consecutively
in VQQ. For all the elements in VPC (whose feature/object
identifier is stored in VPP), a lower bound binary search and an
upper bound binary search are performed in parallel to locate
the starting and ending positions of the cell in VQC. If there is a
hit, all the elements in VQQ between the starting and ending
positions will be paired with the corresponding element in VPP
(Step 3). It is clear that there will be duplicates after the initial
pairing process and they need to be removed. This can be done

by chaining a sort and a unique primitive using the combination
of the P and Q identifiers. Since sort, binary search and unique
primitives are supported by parallel library such as Thrust that
comes with CUDA SDK, the filtering phase can be efficiently
implemented on top of these primitives.

While the design and the implementation are
relatively simple and straightforward, a drawback is large
memory footprints. It is conceivable that the finer the grid used
for rasterization and the larger the MBRs, the greater numbers
of the matched pair before Step 4. Our experiments have shown
that, when the size of the grid used for rasterization is not
properly set, the number of pairs after the initial pairing process
can be very large and the GPU memory can be depleted. We are
currently extending the single-level grid files data structure to
multiple-level one. In multi-level grid file based spatial filtering,
MBRs are decomposed to the highest levels of quadrants
possible so that O(max(W,H)) cells instead of O(W*H) cells are
generated [30] which will also reduce the numbers of duplicated
pairs in spatial joins. As an alternative to grid-files based

1 1 1 2 2 2 2 21

2 3 … … 3 5 2 ……

1 5 … 2 4 …3

1 1 2 2 21

VQQ

VQC

VPP

VPC

Q1
P1

Q1
P1

Q2
P1

Q1
P2

Q2
P2

2 1 2 2 ...1

2 3 3 5 …2

VQQ

VQC

Lower bound binary search
Upper bound binary search

Q1
P1

Q2
P1

Q2
P2

Unique

Q1
P1

Q1
P1

Q1
P2

Q2
P1

Q2
P2

Q1
P2

Sort
Q2

5

3

2

Q1 P1

P2

D

D

Sort
1

2

3
4

Refinement phase

indexing structures, we are also in the process of extending R-
Tree indexing for spatial join [16].

3.3 Raster Indexing and Vector Data
Rasterization

For raster data, two indexing approaches have been
developed. The Binned Min-Max Quadtree (BMMQ-Tree) is
proposed to associate statistics such as minimum and maximum
values with quadtree nodes to speed up spatial window queries
and Region of Interests (ROIs) types of queries on raster data
[6]. The Bitplane Quadtree (BQ-Tree) focuses on efficient
coding of large-scale rasters for simultaneously data
compression and indexing at the bitplane level [7]. Despite the
resulting trees are irregular, both the inputs of BMMQ-Tree
construction and BQ-Tree encoding are regular which makes it
easier to process. Our experiments have shown that the
CudaGIS implementations of both trees have achieved more
than 1 billion raster cell per second rate on a single GPU card
which has positive implications for practical applications. For
BQ-Tree, while still remains to be implemented, dynamically
generated binary rasters can be used to efficiently support
different types or range queries on raster values in a way similar
to bitmap indexing in relational database (see more discussions
in the technical report at [7]).

Besides indexing and query processing on rasters
themselves, like many GIS, it is important to allow conversions
between vector and raster data. We note that the image
processing and computer vision community have already
developed techniques to achieve the similar goal on GPUs (e.g.,
region labeling [31]). Currently CudaGIS focuses on
rasterization of vector data. It is relatively straightforward to
convert points to rasters where a scatter primitive can serve the
right purpose after converting the point coordinate to a position
in a row-major order using a transform primitive. However,
when more than two points have a same coordinate which will
cause a write conflict when executed in parallel, the results are
often undefined unless an atomic operation is applied, which
can be costly if the resulting raster are dense. Given that many
applications actually require deriving statistics (count, average,
min/max, standard deviation etc.) for points that fall within
raster cells, CudaGIS sorts the point dataset to be rasterized
based on the desired raster dimension and uses the non-empty
cell positions as the keys to derive the required statistics by
using one or more reduce parallel primitives. The derived
statistics are then associated with corresponding non-empty grid
cells while leaving the empty cells with default values [11, 12].

Fig. 4 Illustration of Polygon Rasterization on GPUs in CudaGIS
We have not implemented the rasterization module for

polyline data but we believe it can be realized in a similar way
as the point data. On the other hand, rasterizing polygon data on
GPS seems to be technically challenging. The polygon
rasterization module currently in CudaGIS is based on our
preliminary work reported in [8]. The implementation is based
on the classic scan line fill algorithm that has also been adopted
by the open source GRASS GIS. A polygon is assigned to a
computing block and each thread is responsible for a polygon
vertex. As illustrated in Fig. 4, all threads, in parallel, loop
through the (ymax-ymin+1) scan lines to compute the
intersection points and compact them by removing (scan-line,
edge) pairs that do not intersect before outputting the intersected
points to GPU device memory for actually filling raster cells. To
optimize the performance, all threads collaboratively upload the
polygon vertices from GPU global memory to shared memory
and collaboratively output the computed intersection points to
global memory. The vertices in shared memory are re-used
(ymax-ymin+1) times to achieve the desired efficiency.

CudaGIS also provides a module to compute a
discrete Voronoi diagram from a point dataset and perform
Natural Neighborhood Interpolation (NNI) to create a raster
based on the Voronoi diagram [9]. The functionality can be
considered as a different type of rasterization for points and
polygons (the constructed Voronoi diagram). The

implementation is motivated by the recent work on Parallel
Banding Algorithm (PBA) [32] in computer graphics
applications by adding an efficient NNI module on top of the
discrete Voronoi diagram generated by PBA. Our preliminary
results show that our implementation is 10X+ faster than the
state-of-art NNI implementation using OpenGL based GPU
graphics APIs [33]. Similar to polygon rasterization, computing
Voronoi diagrams and rasterizing Voronoi polygons using
GPGPU technologies eliminates the need for graphics hardware
context and is more suitable for data management [8].

4. Discussions
Designing and implementing a GIS on a completely

new parallel hardware architecture is technically challenging. It
is beyond our scope to design and implement all of geospatial
operations. Instead, our focus is to understand how commodity
parallel hardware can potentially affect geospatial computing,
its applications and user communities by providing a
prototypical reference implementation with a framework and
infrastructure to allow extension, modification or simply testing.
We encourage interested readers to join our research and
development efforts on exploring the potentials of parallel GIS
on GPUs. In addition to sharing the concrete design and
implementation experiences detailed in Section 3, we would
also like to discuss several more general methodological issues

0
1
2
3
4
5
6
7

0 1 2 3 4 5 6 7

b
c

d e

f

3

2

1

4

5
6

a

which can potentially help catalyzing more efficient and
effective designs and implementations.

4.1 Parallelizing Geospatial Computing:
evolutionary or revolutionary?

Designing and implementing a GIS on a new
hardware architecture from scratch represents a revolutionary
approach. As discussed in Section 2, a more evolutionary
approach is to adopt the MapReduce parallel computing
framework and wrap existing modules as Hapdoop (or its alike)
jobs for parallel execution. In this case, very few essential
changes are required to achieve parallelization. The same
technical trend has already happened in business data
management where a large number of non-traditional relational
database systems have been created to bridge the gap between
the insufficient performance of the mainstream databases and
the high-performance (but also highly priced) parallel systems
for large-scale data analytics. The balanced performance-cost
are embraced by many application domains. We believe the
same technical trend will happen in geospatial computing in the
near future. However, from a research perspective, while
MapReduce, as a parallelization scheme, does not specify how
the intermediate results should be managed, the Hadoop
implementation (or its alike) relies on a distributed file system
to store, replicate and process intermediate (key,value) pairs.
Although some more advanced techniques have been developed
to reduce such disk I/O overheads, as disk I/Os (in the order of
50~100 MB/s) and network bandwidth (1-100 MB/s) are several
orders slower than CPU and GPU memory bandwidths 10-400
GB/s), it seems that naive use of MapReduce and its
implementation may not be a good choice for data intensive
applications which is very often the case in geospatial
computing.

One of our goals of developing CudaGIS is to
investigate to what degree a single GPU device can achieve the
comparable performance of a cluster computer running Hadoop.
Our preliminary results have shown that, when joining 168
million point locations with 3/4 million polygons based on the
nearest neighbor principle, a Nvidia Quadro 6000 GPU takes
about 33 seconds while an optimized CPU implementation using
the leading open source geospatial packages for indexing and
distance calculation takes more than 30 hours [14]. Even
assuming a linear scalability of a Hadoop cluster (which is
highly unlikely), 3,000+ nodes would be required. The similar
results have been obtained when joining point locations with
polygons through point-in-polygon test and with street networks
based on the nearest neighbor principle. Further investigation
revealed that the simple array-based main-memory data
structures and the GPU accelerations have contributed about
37X and 24X, respectively [14]. The experiment results have
made us believe that a complete new design and implementation
of selected geospatial operations by making full use of modern
hardware capabilities may reduce the need of Hadoop systems
significantly which will not only be faster but also energy
efficient. We hope our experiments can provide a better
guideline in using parallel computing resources more effectively
and efficiently and we believe our “revolutionary” approach
(and its CudaGIS realization) can have certain advantages even
from a practical perspective.

4.2 What are the good parallelization
strategies on GPUs?

While the Hadoop implementation of MapReduce
represents a simplified yet effective parallelization strategy by
regularizing materialized intermediate data to be (key, value)
pairs, shared-memory parallel architectures allow more diverse
data organizations. Four parallelization techniques have been
discussed on multicore CPUs, namely Independent Output,
Concurrent Output, Count-Then-Move and Parallel Buffers
[34]. For the Independent Output technique, each thread has a
private output buffer for each data partition assigned to it. For
the Concurrent Output technique, all threads share a same
output buffer and threads are coordinated through atomic
operations or locks. The Count-Then-Move technique has two
passes over data partitions with the first pass calculates the
positions to which a thread should output its data and the second
pass actually outputs the results. The Parallel Buffer technique
can be considered as a hybridization of the Independent Output
and Concurrent Output techniques where each thread is
assigned a private chunk and more chunks are allocated
dynamically by coordinating with other threads (concurrent
output using atomic operations or locks). While these four
techniques are applicable to GPUs in general, since GPUs
usually have a much larger number of processing cores and even
larger numbers of concurrent threads, the first two techniques
are generally not scalable on GPUs. The implementation of
CudaGIS has used Count-Then-Move technique extensively to
achieve better performance while minimizing coding
complexity, mostly within computing blocks. For example, BFS
based R-Tree query processing (Section 3.2 and [16]),
rasterizing MBRs for grid-file based filtering in spatial join
(Section 3.2 and [12-15]) and computing the intersections
between polygon edges and scan lines in polygon rasterization
(Section 3.3 and [8]).

Over the course of designing and implementing
CudaGIS, we have also developed a novel parallelization
strategy by adopting a transformation approach. The idea is to
decompose spatial objects into smallest units at the appropriate
granularities to transform a spatial problem into a non-spatial
problem and apply parallel primitives, which are often highly
parallelizable in implementation, to solve the original spatial
problem (e.g., spatial joins). The single-level grid file based
spatial filtering framework (Section 3.2) is a typical example of
the strategy. The advantage is that, non-spatial primitive data
types (such as integer identifiers) allows only a few limited
operations (e.g., equality test) and usually follow a single path
when traversing complex data structures (e.g., tree indices). This
in turn produces a fixed output size (typically small) and is
suitable for parallel execution. Take the single-level grid file
based spatial filtering for example, after the two input MBR sets
are rasterized into grid cells, binary searches (based on equality
test of the cell identifiers) on the grid cells can be used for
pairing identifiers in the joining datasets. Unlike search on an R-
Tree, a binary search on a sorted integer vector follows a single
path and outputs whether there is a hit and the position where
the corresponding element is closest to the value being searched.

We do not believe one or two parallelization strategies
can dominate the others in all cases. While parallelization is not
a completely new concept from a research perspective, given

that it has been only a few years when commodity multi-core
CPUs and many-core GPUs became the mainstream processors
in the market and there are even fewer research and
developments on paralleling geospatial computing (other than
local and focal operations on rasters), there is still considerable
amount work to understand both the geospatial problems and
parallel hardware characteristics and design better
parallelization strategies for domain-specific problems.

4.3 Geospatial-specific parallel primitives:
essential or cosmetic?

The design and implementation of CudaGIS benefits
from the Thrust parallel primitives that come with CUDA SDK
significantly. While our initial developments are purely based
on the native parallel programming language (CUDA), as the
project goes on, we have been using parallel primitives more
frequently as the targeted geospatial operations and their
implementation get more complex. Using parallel primitives not
only reduces coding time and code complexity but also
improves the maintainability of the increasingly larger CudaGIS
codebase. Furthermore, as discussed previously, the experiences
that we have learnt from using parallel primitives actually have
motivated us to develop spatial data structures and query
processing algorithms that are more friendly to using parallel
primitives. On the other hand, the primitives that are available in
most parallel libraries (including Thrust) are predominately
designed for one dimensional vectors or arrays. Although there
are quite a few Space Filling Curves (SFC) based orderings [35]
available to transform multi-dimensional geospatial data to one-
dimensional data in order to apply such 1D parallel primitives,
the semantics need to be maintained by developers can be
cumbersome in practical developments. We are considering
reorganize the modules that have been implemented in CudaGIS
as a set of geospatial-specific parallel primitives so that they can
be invoked in a way similar to the 1D primitives.

5. Future Work Plans
In addition to improving the existing design and

implementations, efficiently implementing the designs for
planned modules and adding new modules that are essential for
geospatial computing, we would like to complete the following
tasks in the near future: 1) Clean up the codebase for alpha
release (2) encourage community contributions (3) develop data
generators to produce synthetic data for testing purposes.

References
1. A. Clematis, M. Mineter, and R. Marciano. High performance

computing with geographical data. Parallel Computing, 29(10):1275–
1279, 2003.

2. Hong, S., Kim, S. K., et al., 2011. Accelerating CUDA graph
algorithms at maximum warp. Proceedings of the 16th ACM
symposium on Principles and practice of parallel programming.

3. http://www.nvidia.com/object/cuda_home_new.html
4. Zhang, J. 2010. Towards Personal High-Performance Geospatial

Computing (HPC-G): Perspectives and a Case Study. Proceedings of
ACM HPDGIS workshop.

5. Foto N. Afrati, Anish Das Sarma, Semih Salihoglu, Jeffrey D. Ullman:
Upper and Lower Bounds on the Cost of a Map-Reduce Computation
CoRR abs/1206.4377: (2012)

6. Zhang, J., You., S. and Gruenwald, (2010). Indexing Large-Scale
Raster Geospatial Data Using Massively Parallel GPGPU Computing.
Proceedings of ACMGIS 2010.

7. Zhang, J., You., S. and Gruenwald, (2011). Parallel Quadtree Coding
of Large-Scale Raster Geospatial Data on GPGPUs. Proceedings of

ACMGIS 2010. Expanded version at http://www-
cs.ccny.cuny.edu/~jzhang/papers/ACMGIS11_Extended.pdf

8. Zhang J. (2011). Speeding Up Large-Scale Geospatial Polygon
Rasterization on GPGPUs. Proceedings of ACM HPDGIS Workshop.

9. You, S., Zhang, J. (2012). Constructing Natural Neighbor Interpolation
Based Grid DEM Using CUDA. Proceedings of COM.Geo Conference.

10. Zhang, J. and Gruenwald, (2012). Spatial Indexing of Large-Scale Geo-
Referenced Point Data on GPGPUs Using Parallel Primitives.
http://geoteci.engr.ccny.cuny.edu/primcsptp/CSPTP_tr.pdf.

11. Zhang, J., Gong, H., Kamga, C. and Gruenwald L. (2012). U2SOD-DB:
A Database System to Manage Large-Scale Ubiquitous Urban Sensing
Origin-Destination Data. Proceedings of ACM SIGKDD UrbComp
workshop

12. Zhang, J., You., S. and Gruenwald, (2012). U2STRA: High-
Performance Data Management of Ubiquitous Urban Sensing
Trajectories on GPGPUs. To appear in Proceedings of ACM CDMW
workshop. http://geoteci.engr.ccny.cuny.edu/pub/u2stra_tr.pdf

13. Zhang, J., You., S. and Gruenwald, (2012). High-Performance Online
Spatial and Temporal Aggregations on Multi-core CPUs and Many-
Core GPUs. To appear in Proceedings of ACM DOLAP workshop.
http://www-cs.ccny.cuny.edu/~jzhang/papers/aggr_tr.pdf

14. Zhang, J., You., S. and Gruenwald, (2012). High-Performance Spatial
Join Processing on GPGPUs with Applications to Large-Scale Taxi
Trip Data. http://www-cs.ccny.cuny.edu/~jzhang/papers/nnsp_tr.pdf

15. Zhang, J. and You., S. (2012). Speeding up Large-Scale Point-in-
Polygon Test Based Spatial Join on GPUs. Technical report online at
http://geoteci.engr.ccny.cuny.edu/pub/pipsp_tr.pdf

16. You., S. and Zhang, J. (2012). Batched R-Tree Queries on GPUs.
Technical report at. http://geoteci.engr.ccny.cuny.edu/pub/rtree_tr.pdf.

17. Patel, J. M. and DeWitt, D. J. (2000). Clone join and shadow join: two
parallel spatial join algorithms. Proceedings of ACMGIS.

18. Shekhar, S., Ravada, S., Kumar, V., Chubb, D. and Turner, G. (1996).
Parallelizing a GIS on a Shared Address Space Architecture. IEEE
Computer 29(12): 42-48.

19. Hoel, E. G. and Samet, H., 1994. Performance of Data-Parallel Spatial
Operations. Proceedings of VLDB Conference.

20. Brinkhoff, T., Kriegel, H.-P. and Seeger, B. (1996). Parallel Processing
of Spatial Joins Using R-trees. Proceedings of IEEE ICDE Conference.

21. Patel, J., Yu, J., et al (1997). Building a scaleable geo-spatial DBMS:
technology, implementation, and evaluation. Proceedings of SIGMOD
conference.

22. Zhou, X., Abel, D. J. and Truffet, D. (1998). Data Partitioning for
Parallel Spatial Join Processing. Geoinformatica 2(2): 175-204.

23. Zhang, S., Han, J., Liu, Z., Wang, K. and Xu, Z. (2009). SJMR:
Parallelizing spatial join with MapReduce on clusters. Proceedings of
IEEE International Conference on Cluster Computing.

24. Liu, Y., Wu, K., Wang, S., Zhao, Y. and Huang, Q. (2010). A
MapReduce approach to Gi*(d) spatial statistic. Proceedings of ACM
HPDGIS Workshop.

25. Zhang, C., Li, F. and Jestes, J. (2012). Efficient parallel kNN joins for
large data in MapReduce. Proceedings of EDBT Conference

26. Hennessy, J.L. and Patterson, D. A, 2011. Computer Architecture: A
Quantitative Approach (5th ed.). Morgan Kaufmann.

27. Gaede V. and Gunther O., 1998. Multidimensional access methods.
ACM Computing Surveys 30(2), 170-231

28. Jacox, E. H. and Samet, H. (2007). Spatial join techniques. ACM
Transaction on Database System 32(1).

29. Ibrahim, K. and Christos, F. (1993). On packing R-trees. Proceedings
of CIKM

30. Tsai, Y. H., Chung, K. and Chen, W. Y. (2004). A strip-splitting-based
optimal algorithm for decomposing a query window into maximal
quadtree blocks. IEEE TKDE 16(4): 519-523.

31. Stava, O. and Benes, B (2010). Connected component labeling in
CUDA. in Hwu.,W. W. (Ed.), GPU Computing Gems.

32. Cao, T.-T., Tang, K., Mohamed, A. and Tan, T.-S. (2010). Parallel
Banding Algorithm to compute exact distance transform with the GPU.
Proceedings of ACM I3D Workshop.

33. Beutel, A., Molhave, T. et al, (2011). TerraNNI: natural neighbor
interpolation on a 3D grid using a GPU. Proceedings of ACMGIS.

34. Cieslewicz, J. and Ross, K. A. (2008). Data partitioning on chip
multiprocessors." Proceedings of DaMoN Workshop.

35. http://en.wikipedia.org/wiki/Space-filling_curve

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

