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ABSTRACT 
We report the design and realization of a high-

performance parallel GIS, i.e., CudaGIS, based on the General 
Purpose computing on Graphics Processing Units (GPGPU) 
technologies. Still under active developments, CudaGIS currently 
supports major types of geospatial data (point, polyline, polygon 
and raster) and provides modules for spatial indexing, spatial join 
and other types of geospatial operations on such geospatial data 
types. Experiments have demonstrated 20-40X and 1000-10000X 
speedups over serial CPU implementations on main-memory and 
disk-resident systems, respectively.  

1. INTRODUCTION 
The increasingly larger data volumes and more complex 

semantics of geospatial information never cease to request more 
computing power to turn such data and information into 
knowledge and facilitate decision support, ranging from global 
change research to personal travel planning. While parallel 
processing has been considered as an important component in 
achieving high-performance in geospatial computing [1], it was 
not until the General Purpose computing on Graphics Processing 
Units (GPGPU) technologies appeared in 2007 that large-scale 
parallel geospatial computing on commodity hardware become a 
reality, both technologically and economically. Indeed, while 
supercomputers and parallel computing resources had been made 
available to highly selective research groups in the past, the 
inexpensive commodity GPUs, whose architectures closely 
resemble supercomputers as argued in [2], are affordable to 
virtually all research groups and individuals. As such, there are 
significant potentials for GPU accelerated GIS to boost the 
performance of geospatial computing in a personal computing 
environment for larger and more complex datasets.  

There are quite a few technical challenges in designing 
and realizing such a GPU based parallel GIS. First of all, while 
many geospatial computing tasks (especially local and focal based 
operations) are inherently data parallel, there are also quite some 
tasks (e.g., zonal and global operations) require more 
sophisticated mappings among conceptual designs and parallel 
computing models. Second, GPGPU technologies are relatively 
new and existing programming languages and software tools may 
not be sufficient for cost-effective application developments. 
General purposed software packages and application development 
platforms that can bridge between geospatial applications and 
GPU hardware specific computing models are essential but 
insufficiently supported. In this paper, we introduce our research 
and development efforts in designing and implementing a GPU 
based general purposed parallel GIS targeting at typical personal 
computing environments for a wide range of geospatial 

applications. Since the prototype system was developed using 
Nvidia Compute Unified Device Architecture (CUDA) parallel 
programming language and its libraries [3], we tentatively call the 
collection of modules that we have developed as CudaGIS. While 
still under active development and new modules are being added, 
currently CudaGIS is able to handle major geospatial data types 
such as raster, point, polyline and polygon and support efficient 
indexing and query processing on them. Given that geospatial 
data are both computing and I/O intensive and usually requires 
extensive visualization and interaction, high-performance GIS 
modules that can run on personal computers can be valuable to 
many geospatial applications [4]. Furthermore, by processing 
larger scale geospatial data on a single computing node faster, the 
communication overheads in distributing the computing tasks 
over a set of independent computing nodes in grid or cloud 
computing environments can be significantly reduced [5] which 
allows solve even larger scale problems on cluster computers 
more efficiently. 

While this paper focuses on high-level system design 
and realizations of key components (we refer to relevant 
publications and technical reports [6-13] for performance of 
individual operations), we would like to note that preliminary 
results have shown that CudaGIS is able to achieve signficant 
speedups over serial CPU implementations. For main-memory 
based implementations that have already made full use of large-
memory capacities of modern hardware, the speedups are in the 
range of 10-40X. When compared with open source 
implementations that typically adopt a disk-resident architecture, 
the speedups can be can be 3-4 orders (1000X-10,000X) where 
cache-friendly main-memory data structures also have contributed 
significantly to the overall performance. Since CudaGIS is a 
main-memory based system, in-memory data structures are 
prerequisites for GPU accelerations. To allow CudaGIS to solve 
larger scale problems that are beyond the memory capacities of 
CPUs/GPUs (in a way similar to disk-resident systems), we are in 
the process of investigating a batch-process based approach which 
is different from buffer management technique in traditional 
spatial databases and the relevant techniques will be reported 
separately.  

We plan to provide the source code to the geospatial 
computing community at http://www.cudagis.org when it 
becomes ready for release. We strongly believe a community 
effort is needed to develop the first general purposed parallel GIS 
on GPUs. The rest of the paper is arranged as follows. Section 2 
introduces background, motivations and related work. Section 3 
presents the designs and implementation details of key 
components. Section 4 discusses several high-level design and 



 

 

implementation issues. Finally Section 5 is the summary and the 
future work plan. 

2. BACKGROUND AND RELATED WORK 
Geospatial data is among one of the fast growing types 

of data due to the advances of sensing and navigation 
technologies and newly emerging applications. First of all, the 
ever increasing spatial, temporal and spectral resolutions of 
satellite imagery data have led to exponential growth of data 
volumes. Second, both airborne and mobile radar/lidar sensors 
have generated huge amounts of point-cloud data with rich 
structural information embedded.  Third, many mobile devices are 
now equipped with locating and navigation capabilities by using 
GPS, cellular and wifi network technologies or their 
combinations. Considering the large amounts of mobile devices 
and their users, the accumulated GPS traces, which are essential 
to understand human mobility, urban dynamics and social 
interactions, can be equally computing demanding when 
compared with satellite imagery data and lidar point cloud data. 
While the traditional infrastructure data, such as administrative 
regions, census blocks and transportation networks, remain 
relatively stable in growth when compared with the new types of 
geospatial data, quite often new sensing and location data need to 
be related to the infrastructure data in order to make sense out of 
them. While at the first glance its seems that polygonal data may 
be the one that has least growth rates from data acquisition 
perspective, we argue that the derived data from point (e.g., lidar 
point clouds, GPS locations), raster (satellite and airborne remote 
sensing imagery) and polyline (GPS traces) data are best 
represented as polygons for subsequent analysis. Given the 
diverse interests of human societies, it is conceivable that the data 
volumes of polygonal data will also grow fast, if not faster than 
the other types of geospatial data. Despite certain types of 
traditional geospatial data remain relatively stable, the newly 
emerged geospatial data and their applications have imposed 
signficant computing challenges. Indeed, the gap between the 
desired computing capabilities and the available ones is 
increasing rather than decreasing when it comes to large-scale 
geospatial computing.  

There are several noticeable efforts in developing 
parallel GIS on different types of hardware architectures over the 
past few decades, such as shared-disk [14], shared-memory [15] 
and shared-nothing architectures [16, 17, 18, 19]. A major 
research effort in shared disk and shared-nothing based parallel 
geospatial processing is data partition, replication and 
declustering to improve I/O efficiency. In recent years, several 
research works [20, 21, 22] on parallel geospatial data processing 
on shared-nothing clusters follow the MapReduce parallelization 
scheme to simplify algorithmic designs and data communications. 
An examination of these existing works reveals that, while 
shared-nothing architectures conceptually have excellent 
scalability, very few of the existing works have used more than 32 
nodes. Furthermore, the reported speedups are far from linear 
scalability which may indicate that data communication 
overheads may start to play a dominating role when the numbers 
of parallel processing units go up. Another trend we can see is 
that existing works on parallel geospatial data processing are 
primarily research driven which little involvement from industries 
and no commercial products are available from leading GIS or 
spatial database vendors. Indeed, given that Moore’s law has held 

from 1986 to 2002 with processor clock rates double very 18 
months, vendors can simply rely on the clock rate improvements 
of uniprocessors for higher performance without resorting to 
parallelization.  

However, due to the physical limits of CMOS 
technologies and the power constraints, the growth rates of the 
processing speed of uniprocessors are decreasing (instead of 
increasing), especially after 2006. Given that parallel processors 
are becoming mainstream, it is natural to seek parallel computing 
technologies to achieve the desired computing capabilities. 
Currently there are three major leading technologies available, 
i.e., multi-core CPUs, many-core GPUs and cluster computing (in 
both grid and cloud settings) and all of them have been  applied to 
geospatial data processing. While we refer to [4] for more details 
on these three technologies in geospatial applications, we want to 
stress that they are technologically complementary in nature 
although they do compete with each other when it comes to 
system designs for specific applications. We are particularly 
interested in massively data parallel GPGPU technologies as they 
represent a radical change to traditional serial computing 
paradigm which is still the basis for multi-core CPUs and cluster 
computing where parallelization can be realized at coarse grains.  

GPU hardware architectures closely resemble 
supercomputers [2] which allows/requires fine-grained thread 
level coordination for data parallelization. This is drastically 
different from task parallelization that is more suitable for multi-
core CPUs and cluster computers. Furthermore, from a practical 
perspective, as the communications are becoming increasingly 
expensive when compared with computation on modern 
processors/systems [23], GPU’s shared-memory architectures 
allow very fast data communications (up to 400 GB/s) among 
processing units when compared with cluster computing (~50 
MB/s in cloud computing and a few GB/s in grid computing with 
dedicated high-speed interconnection networks) and multi-core 
CPUs (a few tens of GB/s), which is desirable for data intensive 
computing. Finally, in addition to fast floating point computing 
power and energy efficiency, the large number of processing 
cores on a single GPU device (3,072 for Nvidia GTX 690 that 
currently available from the market under $1,000) makes it ideal 
to solve certain large-scale geospatial problems in a personal 
computing environment, especially for those that requires 
extensive visual explorations and user interactions. As discussed 
in [5], solving larger sub-problems on a single processing unit (a 
GPU device in this case) will significantly reduce the 
communication cost in solving a large problem using the 
MapReduce parallel computing model.  

The high-throughput and energy efficiency of GPU 
computing are largely due to the SIMD (single-instruction-
multiple-data) architectural design. To achieve high performance 
on GPUs (as well as other SIMD based processors), threads or 
thread groups must be carefully coordinated by ensuring 
coalesced memory accesses and minimizing branches in code 
execution. This in turn requires geospatial data structures and 
algorithms to be parallelization friendly. In the context of spatial 
query processing for the data management aspect of geospatial 
computing, hundreds of indexing structures and query algorithms 
on vector and raster geospatial data have been proposed over the 
past few decades [24]. Unfortunately, the majority of them are 
designed for serial CPU implementations which left their 
suitability of parallelization largely unknown. The CudaGIS 



 

 

system, to the best of our knowledge, is the first in its kind to 
systematically address the technical challenges in large-scale 
geospatial data management and processing on GPUs and provide 
end-to-end solutions for practical geospatial applications.  

3. System Design and Implementation 
CudaGIS aims at supporting major geospatial data types 

and a subset of carefully selected operations on these geospatial 
data types as separate modules. Due to time and resource 
constraints, each module in CudaGIS is derived from a real 
application that we have developed over the past few years but we 
have kept general applicability in mind when they were designed 
and implemented. In this section, we first provide an overview of 
the system architecture and highlight the connections between 
different components before we present the details of the designs 
and implementations. In a way similar to many modern GIS, these 
components can be chained to solve a variety of real world 
geospatial problems. We note that CudaGIS is designed to process 
large-scale geospatial data that exhibits signficant data parallelism 
and fits SIMD parallel computing models. As such, it is not our 
intension to support all geospatial operations as we believe some 

of them could be more efficient by using serial or coarse-grained 
parallelism on multi-core CPUs (or cluster computers). We also 
note that a system approach has been adopted with a focus on 
achievable efficiencies. Some of the designs and implementations 
may not be optimal at present from a research perspective and 
some are still under developments. Fig. 1 shows the relationships 
among different geospatial data types and the realized or planned 
implementations on them in CudaGIS. Numbers within square 
brackets (e.g, [12]) indicate the references to our publications and 
technical reports that have the details of the designs, 
implementations, applications and experiments. Letters within the 
curly brackets (e.g, {A}) indicate the planned implementations. 
Some of these components (e.g., polygon overlay) have already 
been implemented but are skipped in this paper due to space limit. 
Index structures that have been developed for each data types are 
listed in the boxes next to the data types. While these index 
structures can be used to process a single query, to make full use 
of data parallel computing power on GPUs, we are more 
interested in batch processing a large number of structurally 
similar queries and/or large-scale spatial joins [25].  

 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 Supported Geospatial Data Types and Operations in CudaGIS 

3.1 Efficient In-memory data structures 
While points and rasters usually have fixed lengths, 

polylines and polygons consist of variable length points, which 
makes their structures irregular. Modern GIS and spatial 
databases typically adopt an object-relational model and treat 
polyline and polygons as objects that are used as the minimum 
units for data accesses and operations. These objects are stored 
as BLOBs (Binary Large Objects) on disks and the structures of 
the objects need to be reconstructed when they are streamed 
from disks to CPU memories. While the design is convenient for 
page-based buffer management in both an operating system and 
a database setting, reconstructing variable-length data structures 
dynamically require extensive memory allocation and 
deallocaitons which are quite expensive on modern hardware. In 
contrast, simple arrays are naturally cache friendly and 
operations based on array scanning can be easier to parallelize. 
Array based data structures are especially suitable for read-only 
data in an OLAP (Online Analytical Processing) setting where 
analytical tasks usually do not need share resources with other 
tasks that have unpredictable memory requirements (where 

dynamic resource allocations are more important). As 
reasonably current desktop computers usually have large 
memory capacity (4+ GB) which is orders larger than those that 
are 10 or 20 years ago [26], the ability to use large arrays can 
signficant reduce the overheads of disk I/Os and improve cache 
hit rates which will subsequently improve the overall system 
performance.  

 Towards this end, we have developed an array-based 
data layout schema for both polygon and polyline data. 
According to the Open Geospatial Consortium (OGC) Simple 
Feature Specification (SFS), a polygonal feature may have 
multiple rings and each ring consists of multiple vertices. As 
such, we can form a four level hierarchy from a data collection 
to vertices, i.e., dataset  feature  ring  vertex. The 
hierarchy can be easily extended to polyline data by not 
requiring the first and the last vertex in a ring to be the same 
(enclosed). Five arrays are used for a large polygon/polyline 
collection. Besides the x and y coordinate arrays, three auxiliary 
arrays are used to maintain the position boundaries of the 
aforementioned hierarchy. As shown in Fig. 2, given a dataset 
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ID (0..N-1), the starting position and the ending position of 
features in the dataset can be looked up in the feature index 
array. For a feature within a dataset, the starting position and the 
ending position of rings in the feature can be looked up in the 
ring index array. Similarly, for a ring within a feature, the 
starting position and the ending position of vertices belong to 
the ring can be looked up in the vertex index array. Finally, the 
coordinates of the ring can be retrieved by accessing the x and y 
coordinate arrays and the optional timestamp array. While an 
array of bounding boxes can be associated with the hierarchy at 
the dataset, feature or ring levels, currently CudaGIS associates 
the bounding box array at the feature level as bounding boxes at 
this level can potentially provide better filtering power.   

It is easy to see that retrieving coordinates of single or 
a range of datasets, features and rings can all be done by 
scanning the five arrays in a cache friendly manner. It is also 
clear that the number of features in a dataset, the number of 

rings in a feature and the number of vertices in a ring can be 
easily calculated by subtracting the two neighboring positions in 
the respective index array. As such, the array representation is 
also space efficient. We also note that the data structures and the 
hierarchy also make it easy for parallelization for a variety of 
operations. For the example at the right of Fig. 2, given the 
feature indices of three datasets, assuming each feature is 
associated with a Minimum Bounding Rectangles (MBR), by 
chaining a scatter primitive, a max-scan primitive and a reduce-
by-key primitive, the MBRs of these three datasets can be 
derived in parallel. Here a parallel primitive refers to a 
fundamental algorithm whose behavior is well-understood and 
can be efficiently executed on parallel hardware. The three 
parallel primitives we have used in the example are among the 
many that are supported in quite a few parallel libraries 
including Thrust that comes with CUDA SDK [3].  

 

 
 
 
 
 
 

Fig. 2 Array Based In-Memory Data Structures for Polyline/Polygon Data and an Example on Efficient Aggregation Using the Data 
Structures and Parallel Primitives 

3.2 Indexing and Spatial Joins on Vector 
Data 

Indexing and joining vector data are the cornerstones 
of GIS and spatial databases and we refer to [28] for in-depth 
surveys on data structures and algorithms designed for CPU 
based serial implementations. In this subsection, we will be 
focusing on the designs and implementations of parallel 
indexing and join processing on GPUs. We are particularly 
interested in supporting spatial joins in CudaGIS as batched 
query processing can be treated as spatial joins in a certain way. 
For single query processing, unless the query covers a large 
portion of records in the dataset to be queried, serial CPU 
processing probably can have better performance.  

For point data, we have developed an indexing 
structure called Constrained Spatial Partition Tree for Point data 
(CSPT-P) on GPGUPs [10]. We first transform points into 
Morton codes by following the Z-order and then identify leaf 
quadrants with a maximum of K points in a level-wise top-down 
manner before a CSPT-P tree is constructed in a level-wise 
bottom-up manner from the identified leaf quadrants. Both the 
leaf identification and CSPT-P tree construction processes can 
be implemented by a few parallel primitives [10].  

Although the leaf quadrants of point data do not 
overlap which makes it suitable for quadtree indexing, the 
MBRs of polygons and polylines can overlap significantly 
which makes R-Tree indexing more desirable. CudaGIS 
currently supports bulk-loading R-Trees through packing [29] 
by utilizing GPU’s excellent sorting capabilities. Assuming m 
queries are batched in a GPU computing block, two variants of 
batched R-Tree are supported in CudaGIS, i.e., Depth-First-

Search (DFS) based and Breadth-First-Search (BFS) based [16]. 
The DFS based query adopts a Count-Then-Move parallelization 
strategy (c.f. Section 4.2) by having each thread traverse the 
query R-Tree independently in a depth-first manner, counting 
the number of hits for all the queries in a batch, allocating 
appropriate output space before actually outputting the query 
results in parallel. The strategy essentially requires two passes 
of query processing with the first pass for “counting” and the 
second pass for “outputting”. While obviously a query is 
processed twice which brings some computation redundancy, 
the DFS strategy does not require any extra memory beyond the 
output size due to the “counting” pass. The BFS based query has 
better parallelism in the sense that threads within a computing 
block are coordinated through a queue. R-Tree nodes that 
intersect with query MBRs are pushed into the queue and each 
thread is responsible for processing a single R-Tree node in the 
queue by examining whether the child nodes intersect with the 
query MBRs. Different from DFS based query where a thread 
processes only a single query, in BFS based query, child nodes 
that intersect with a same query can be processed by multiple 
threads to achieve higher parallelism. Since the output sizes of 
individual queries can exceed the pre-allocated capacity, an 
overflow handling mechanism is required for this purpose. 
Currently CudaGIS simply sets an overflow flag and resorts to 
DFS based queries for overflowed cases but other mechanisms 
(such as dynamic memory allocations or buffer page 
redistributions) are also possible.  

There are many types of spatial joins among different 
types of geospatial data based on different criteria. Take the 
point data for example, after points are grouped into non-
overlapping quadrants, CudaGIS can join point data with 
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polyline or polygon data based on different distance 
measurements, point-in-polygon test or nearest neighbor search 
principles. Similar to serial spatial joins on CPUs [28], spatial 
join in CudaGIS also has two phases, i.e., filtering phase and 
refinement phase. In the filtering phase, CudaGIS pairs point 
quadrants with polylines and polygons where the points and 
polylines/polygons can potentially satisfy the join criteria. In the 
refinement phase, for each of such matched pairs, in parallel, 
each point will be evaluated against the vertices of polylines or 
polygons based on the join criteria. The evaluated results will 
have fixed lengths to facilitate parallelization – the threads will 
need to know exactly where to write out the results. The 
condition actually can be satisfied in many cases: a boolean 
variable for point-in-polygon test, a double variable for distance 
between a point and a polygon/polyline, a (double, integer) pair 
for nearest-neighbor. The nearest-neighbor search can be 
extended to K nearest neighbor (KNN) search where the results 
will be K (double, integer) pairs.  

The framework can also be extended for point-to-
point, polyline-to-polyline and polygon-to-polygon spatial joins. 
For example, by treating a segment of GPS trace as a trajectory, 
we are able to perform trajectory similarity join on GPUs to find 
two trajectories that are most similar [12] based on the 

Hausdorff distance. An interesting application of point-to-point 
join might be Geographically Weighted Regression (GWR) on 
GPUs [4]. By expanding the leaf quadrants of a point dataset 
with the GWR bandwidth (W,H), the quadrants can be paired up 
which guarantees that all the points that are within the (W,H) 
window of a focal point can be located in one or more of the 
quadrant pairs in the filtering phase. In the refinement phase, in 
parallel, each point locates all the points in a (W,H) window and 
compute its GWR coefficient.  

While the join criteria in the refinement phase differ 
significantly among applications, the criteria for pairing up 
point quadrants, polylines and polygons based on their MBRs in 
the filtering phase are relatively uniform which is primarily 
based on the simple spatial intersection test. Very often we are 
only interested in geographical features (or geospatial objects) 
that are no more than distance D away. If the expanded MBR of 
an object with expansion D does not intersect with the MBR of 
another object, then the two objects are at least D way and 
should not be paired. While we are still in the process of 
designing and implementing efficient data structures for filtering 
in spatial joins and other types of spatial queries, current 
CudaGIS utilizes a simple grid-file based data structure for 
filtering and we would like to provide more details.  

 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3 Illustrate the Single-Level Grid File based Spatial Filtering in CudaGIS 

Given a user-specified grid, the MBRs of the two 
datasets that participate a spatial join are rasterized to grid cells 
with each grid cell associated with any (0, 1 or many) numbers 
of the MBRs. After the rasterization, the pairing process can be 
reduced to a binary search process as shown in Fig. 3. Assuming 
P represents the pairing dataset and Q represents the dataset to 
be paired and the rasterization results (after Step 1 and Step 2) 
are stored in VPC and VQC, respectively. The filtering 
algorithm in CudaGIS first sorts VQC based on their 
feature/object identifiers (stored in VQQ) so that feature/object 
identifiers correspond to a cell identifiers appear consecutively 
in VQQ. For all the elements in VPC (whose feature/object 
identifier is stored in VPP), a lower bound binary search and an 
upper bound binary search are performed in parallel to locate 
the starting and ending positions of the cell in VQC. If there is a 
hit, all the elements in VQQ between the starting and ending 
positions will be paired with the corresponding element in VPP 
(Step 3). It is clear that there will be duplicates after the initial 
pairing process and they need to be removed. This can be done 

by chaining a sort and a unique primitive using the combination 
of the P and Q identifiers. Since sort, binary search and unique 
primitives are supported by parallel library such as Thrust that 
comes with CUDA SDK, the filtering phase can be efficiently 
implemented on top of these primitives.  

While the design and the implementation are 
relatively simple and straightforward, a drawback is large 
memory footprints. It is conceivable that the finer the grid used 
for rasterization and the larger the MBRs, the greater numbers 
of the matched pair before Step 4. Our experiments have shown 
that, when the size of the grid used for rasterization is not 
properly set, the number of pairs after the initial pairing process 
can be very large and the GPU memory can be depleted. We are 
currently extending the single-level grid files data structure to 
multiple-level one. In multi-level grid file based spatial filtering, 
MBRs are decomposed to the highest levels of quadrants 
possible so that O(max(W,H)) cells instead of O(W*H) cells are 
generated [30] which will also reduce the numbers of duplicated 
pairs in spatial joins. As an alternative to grid-files based 
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indexing structures, we are also in the process of extending R-
Tree indexing for spatial join [16].  

3.3 Raster Indexing and Vector Data 
Rasterization 

For raster data, two indexing approaches have been 
developed. The Binned Min-Max Quadtree (BMMQ-Tree) is 
proposed to associate statistics such as minimum and maximum 
values with quadtree nodes to speed up spatial window queries 
and Region of Interests (ROIs) types of queries on raster data 
[6]. The Bitplane Quadtree (BQ-Tree) focuses on efficient 
coding of large-scale rasters for simultaneously data 
compression and indexing at the bitplane level [7]. Despite the 
resulting trees are irregular, both the inputs of BMMQ-Tree 
construction and BQ-Tree encoding are regular which makes it 
easier to process. Our experiments have shown that the 
CudaGIS implementations of both trees have achieved more 
than 1 billion raster cell per second rate on a single GPU card 
which has positive implications for practical applications. For 
BQ-Tree, while still remains to be implemented, dynamically 
generated binary rasters can be used to efficiently support 
different types or range queries on raster values in a way similar 
to bitmap indexing in relational database (see more discussions 
in the technical report at [7]).  

Besides indexing and query processing on rasters 
themselves, like many GIS, it is important to allow conversions 
between vector and raster data. We note that the image 
processing and computer vision community have already 
developed techniques to achieve the similar goal on GPUs (e.g., 
region labeling [31]). Currently CudaGIS focuses on 
rasterization of vector data. It is relatively straightforward to 
convert points to rasters where a scatter primitive can serve the 
right purpose after converting the point coordinate to a position 
in a row-major order using a transform primitive. However, 
when more than two points have a same coordinate which will 
cause a write conflict when executed in parallel, the results are 
often undefined unless an atomic operation is applied, which 
can be costly if the resulting raster are dense. Given that many 
applications actually require deriving statistics (count, average, 
min/max, standard deviation etc.) for points that fall within 
raster cells, CudaGIS sorts the point dataset to be rasterized 
based on the desired raster dimension and uses the non-empty 
cell positions as the keys to derive the required statistics by 
using one or more reduce parallel primitives. The derived 
statistics are then associated with corresponding non-empty grid 
cells while leaving the empty cells with default values [11, 12].   

 
 
 
 
 
 
 

Fig. 4 Illustration of Polygon Rasterization on GPUs in CudaGIS 
We have not implemented the rasterization module for 

polyline data but we believe it can be realized in a similar way 
as the point data. On the other hand, rasterizing polygon data on 
GPS seems to be technically challenging. The polygon 
rasterization module currently in CudaGIS is based on our 
preliminary work reported in [8]. The implementation is based 
on the classic scan line fill algorithm that has also been adopted 
by the open source GRASS GIS. A polygon is assigned to a 
computing block and each thread is responsible for a polygon 
vertex. As illustrated in Fig. 4, all threads, in parallel, loop 
through the (ymax-ymin+1) scan lines to compute the 
intersection points and compact them by removing (scan-line, 
edge) pairs that do not intersect before outputting the intersected 
points to GPU device memory for actually filling raster cells. To 
optimize the performance, all threads collaboratively upload the 
polygon vertices from GPU global memory to shared memory 
and collaboratively output the computed intersection points to 
global memory. The vertices in shared memory are re-used 
(ymax-ymin+1) times to achieve the desired efficiency.   

CudaGIS also provides a module to compute a 
discrete Voronoi diagram from a point dataset and perform 
Natural Neighborhood Interpolation (NNI) to create a raster 
based on the Voronoi diagram [9]. The functionality can be 
considered as a different type of rasterization for points and 
polygons (the constructed Voronoi diagram). The 

implementation is motivated by the recent work on Parallel 
Banding Algorithm (PBA) [32] in computer graphics 
applications by adding an efficient NNI module on top of the 
discrete Voronoi diagram generated by PBA. Our preliminary 
results show that our implementation is 10X+ faster than the 
state-of-art NNI implementation using OpenGL based GPU 
graphics APIs [33]. Similar to polygon rasterization, computing 
Voronoi diagrams and rasterizing Voronoi polygons using 
GPGPU technologies eliminates the need for graphics hardware 
context and is more suitable for data management [8].   

4. Discussions  
Designing and implementing a GIS on a completely 

new parallel hardware architecture is technically challenging. It 
is beyond our scope to design and implement all of geospatial 
operations. Instead, our focus is to understand how commodity 
parallel hardware can potentially affect geospatial computing, 
its applications and user communities by providing a 
prototypical reference implementation with a framework and 
infrastructure to allow extension, modification or simply testing. 
We encourage interested readers to join our research and 
development efforts on exploring the potentials of parallel GIS 
on GPUs. In addition to sharing the concrete design and 
implementation experiences detailed in Section 3, we would 
also like to discuss several more general methodological issues 
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which can potentially help catalyzing more efficient and 
effective designs and implementations.  

4.1 Parallelizing Geospatial Computing: 
evolutionary or revolutionary? 

Designing and implementing a GIS on a new 
hardware architecture from scratch represents a revolutionary 
approach. As discussed in Section 2, a more evolutionary 
approach is to adopt the MapReduce parallel computing 
framework and wrap existing modules as Hapdoop (or its alike) 
jobs for parallel execution. In this case, very few essential 
changes are required to achieve parallelization. The same 
technical trend has already happened in business data 
management where a large number of non-traditional relational 
database systems have been created to bridge the gap between 
the insufficient performance of the mainstream databases and 
the high-performance (but also highly priced) parallel systems 
for large-scale data analytics. The balanced performance-cost 
are embraced by many application domains. We believe the 
same technical trend will happen in geospatial computing in the 
near future. However, from a research perspective, while 
MapReduce, as a parallelization scheme, does not specify how 
the intermediate results should be managed, the Hadoop 
implementation (or its alike) relies on a distributed file system 
to store, replicate and process intermediate (key,value) pairs. 
Although some more advanced techniques have been developed 
to reduce such disk I/O overheads, as disk I/Os (in the order of 
50~100 MB/s) and network bandwidth (1-100 MB/s) are several 
orders slower than CPU and GPU memory bandwidths 10-400 
GB/s), it seems that naive use of MapReduce and its 
implementation may not be a good choice for data intensive 
applications which is very often the case in geospatial 
computing.  

One of our goals of developing CudaGIS is to 
investigate to what degree a single GPU device can achieve the 
comparable performance of a cluster computer running Hadoop. 
Our preliminary results have shown that, when joining 168 
million point locations with 3/4 million polygons based on the 
nearest neighbor principle, a Nvidia Quadro 6000 GPU takes 
about 33 seconds while an optimized CPU implementation using 
the leading open source geospatial packages for indexing and 
distance calculation takes more than 30 hours [14]. Even 
assuming a linear scalability of a Hadoop cluster (which is 
highly unlikely), 3,000+ nodes would be required. The similar 
results have been obtained when joining point locations with 
polygons through point-in-polygon test and with street networks 
based on the nearest neighbor principle. Further investigation 
revealed that the simple array-based main-memory data 
structures and the GPU accelerations have contributed about 
37X and 24X, respectively [14]. The experiment results have 
made us believe that a complete new design and implementation 
of selected geospatial operations by making full use of modern 
hardware capabilities may reduce the need of Hadoop systems 
significantly which will not only be faster but also energy 
efficient. We hope our experiments can provide a better 
guideline in using parallel computing resources more effectively 
and efficiently and we believe our “revolutionary” approach 
(and its CudaGIS realization) can have certain advantages even 
from a practical perspective.  

4.2 What are the good parallelization 
strategies on GPUs?  

While the Hadoop implementation of MapReduce 
represents a simplified yet effective parallelization strategy by 
regularizing materialized intermediate data to be (key, value) 
pairs, shared-memory parallel architectures allow more diverse 
data organizations. Four parallelization techniques have been 
discussed on multicore CPUs, namely Independent Output, 
Concurrent Output, Count-Then-Move and Parallel Buffers 
[34]. For the Independent Output technique, each thread has a 
private output buffer for each data partition assigned to it. For 
the Concurrent Output technique, all threads share a same 
output buffer and threads are coordinated through atomic 
operations or locks. The Count-Then-Move technique has two 
passes over data partitions with the first pass calculates the 
positions to which a thread should output its data and the second 
pass actually outputs the results. The Parallel Buffer technique 
can be considered as a hybridization of the Independent Output 
and Concurrent Output techniques where each thread is 
assigned a private chunk and more chunks are allocated 
dynamically by coordinating with other threads (concurrent 
output using atomic operations or locks). While these four 
techniques are applicable to GPUs in general, since GPUs 
usually have a much larger number of processing cores and even 
larger numbers of concurrent threads, the first two techniques 
are generally not scalable on GPUs. The implementation of 
CudaGIS has used Count-Then-Move technique extensively to 
achieve better performance while minimizing coding 
complexity, mostly within computing blocks. For example, BFS 
based R-Tree query processing (Section 3.2 and [16]), 
rasterizing MBRs for grid-file based filtering in spatial join 
(Section 3.2 and [12-15]) and computing the intersections 
between polygon edges and scan lines in polygon rasterization 
(Section 3.3 and [8]).  

Over the course of designing and implementing 
CudaGIS, we have also developed a novel parallelization 
strategy by adopting a transformation approach. The idea is to 
decompose spatial objects into smallest units at the appropriate 
granularities to transform a spatial problem into a non-spatial 
problem and apply parallel primitives, which are often highly 
parallelizable in implementation, to solve the original spatial 
problem (e.g., spatial joins). The single-level grid file based 
spatial filtering framework (Section 3.2) is a typical example of 
the strategy. The advantage is that, non-spatial primitive data 
types (such as integer identifiers) allows only a few limited 
operations (e.g., equality test) and usually follow a single path 
when traversing complex data structures (e.g., tree indices). This 
in turn produces a fixed output size (typically small) and is 
suitable for parallel execution. Take the single-level grid file 
based spatial filtering for example, after the two input MBR sets 
are rasterized into grid cells, binary searches (based on equality 
test of the cell identifiers) on the grid cells can be used for 
pairing identifiers in the joining datasets. Unlike search on an R-
Tree, a binary search on a sorted integer vector follows a single 
path and outputs whether there is a hit and the position where 
the corresponding element is closest to the value being searched.  

We do not believe one or two parallelization strategies 
can dominate the others in all cases. While parallelization is not 
a completely new concept from a research perspective, given 



 

 

that it has been only a few years when commodity multi-core 
CPUs and many-core GPUs became the mainstream processors 
in the market and there are even fewer research and 
developments on paralleling geospatial computing (other than 
local and focal operations on rasters), there is still considerable 
amount work to understand both the geospatial problems and 
parallel hardware characteristics and design better 
parallelization strategies for domain-specific problems.   

4.3 Geospatial-specific parallel primitives: 
essential or cosmetic? 

The design and implementation of CudaGIS benefits 
from the Thrust parallel primitives that come with CUDA SDK 
significantly. While our initial developments are purely based 
on the native parallel programming language (CUDA), as the 
project goes on, we have been using parallel primitives more 
frequently as the targeted geospatial operations and their 
implementation get more complex. Using parallel primitives not 
only reduces coding time and code complexity but also 
improves the maintainability of the increasingly larger CudaGIS 
codebase. Furthermore, as discussed previously, the experiences 
that we have learnt from using parallel primitives actually have 
motivated us to develop spatial data structures and query 
processing algorithms that are more friendly to using parallel 
primitives. On the other hand, the primitives that are available in 
most parallel libraries (including Thrust) are predominately 
designed for one dimensional vectors or arrays. Although there 
are quite a few Space Filling Curves (SFC) based orderings [35] 
available to transform multi-dimensional geospatial data to one-
dimensional data in order to apply such 1D parallel primitives, 
the semantics need to be maintained by developers can be 
cumbersome in practical developments. We are considering 
reorganize the modules that have been implemented in CudaGIS 
as a set of geospatial-specific parallel primitives so that they can 
be invoked in a way similar to the 1D primitives.  

5. Future Work Plans 
In addition to improving the existing design and 

implementations, efficiently implementing the designs for 
planned modules and adding new modules that are essential for 
geospatial computing, we would like to complete the following 
tasks in the near future: 1) Clean up the codebase for alpha 
release (2) encourage community contributions (3) develop data 
generators to produce synthetic data for testing purposes.  
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