

Speeding up Large-Scale Point-in-Polygon Test Based
Spatial Join on GPUs

Jianting Zhang
Department of Computer Science

 The City College of the City University of New York
New York, NY, 10031

jzhang@cs.ccny.cuny.edu

Simin You
Department of Computer Science

Graduate Center of the City University of New York
New York, NY, 10016

syou@gc.cuny.edu

ABSTRACT
Point-in-Polygon (PIP) test is fundamental to spatial databases
and GIS. Motivated by the slow response times in joining large-
scale point locations with polygons using traditional spatial
databases and GIS, we have designed and developed an end-to-
end system completely on Graphics Processing Units (GPUs) to
associate points with the polygons that they fall within by
utilizing massively data parallel computing power of GPUs. The
system includes an efficient module to generate point quadrants
that have at most K points from large-scale unordered points, a
simple grid-file based spatial filtering approach to associate point
quadrants and polygons, and, a PIP test module to assign
polygons to points in a GPU computing block using both the
block and thread level parallelisms. Experiments on joining 170
million points with more than 40 thousand polygons have resulted
in a runtime of 11.165 seconds on an Nvidia Quadro 6000 GPU
device. In contrast, a baseline serial CPU implementation using
state-of-the-art open source GIS packages required 15+ hours to
complete. We further discuss several factors and parameters that
may affect the system performance.
Categories and Subject Descriptors
H.2.8 [Database Management]: Database applications -Spatial
databases and GIS
General Terms
Management, Design
Keywords
Spatial Join, GPGPU, Point-In-Polygon Test, HPC, GPS

1. INTRODUCTION
Point-in-Polygon (PIP) test is an important

computational geometry operation and has been widely used in
Computer Graphics (CG), Spatial Databases (SDB) and
Geographical Information Systems (GIS). As locating and
navigation sensors (such as GPS, cellular, Wifi and their
combinations) have been increasingly embedded in personal
handheld devices, huge amounts of point locations have been

generated. Very often these point locations need to be associated
with different types of infrastructure data (such as administrative
regions and census blocks) for various analysis purposes. This is
typically done in a SDB or a GIS environment by joining the
point dataset with the polygon dataset. The functionality has been
well supported by major commercial and open source packages.
However, traditional SDB and GIS are mostly designed to be
disk-resident and run on a single processor. Despite sophisticated
indexing approaches have been developed over the past decades
to speed up spatial join process (see [1] for a comprehensive
review), joining hundreds of millions of points with tens of
thousands of polygons can take dozens of hours which is far from
desirable for interactive queries.

In this study, we aim at utilizing massively data parallel
computing power provided by Graphics Processing Units (GPUs)
using General Purpose computing on GPUs (GPGPU1)
technologies and other performance boosting techniques to speed
up large-scale PIP test based spatial joins. Following the general
spatial join strategy in spatial databases [1], we have developed a
simple grid-file [2, 3] based indexing approach on GPUs for both
point data and polygon data in the filtering phase and
implemented an efficient PIP test on GPUs in the refinement
phase. Together with utilizing in-memory data structures and
algorithmic improvements on query processing, our experiments
have shown that the end-to-end runtime in joining 170 million
points with more than 40 thousand polygons is reduced from
54,819 seconds (15+ hours) using an open source implementation
to 11.165 seconds. A signficant speedup of 4,910X has been
observed which makes real time user interactions possible.

Our technical contributions are the following. First, we
have developed an end-to-end, high-performance system to join
large scale point locations with polygons on GPUs which can be
applied to a variety of real-world data-intensive applications.
Second, we have designed and implemented a set of algorithms
that can efficiently index large-scale point data and pair points
and polygons in the filtering phase of the spatial join on GPUs.
Third, we have investigated the design choices and the impacts of
key parameters for the PIP tests on GPUs in the refinement phase
of the spatial join. Finally, we have demonstrated that the
performance of traditional disk-resident spatial databases and GIS
can be significantly improved by incorporating performance
boosting techniques including GPU accelerations. The rest of the
paper is arranged as follows. Section 2 introduces background and
related work. Section 3 presents the GPU based spatial join
framework and implementation details. Section 4 provides
experiment results and discussions. Finally, Section 5 is the
conclusions and future work.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ACM SIGSPATIAL BIGSPATIAL’12, November 6, 2012. Redondo
Beach, CA, USA
Copyright (c) 2012 ACM ISBN 978-1-4503-1692-7/12/11...$15.00

2. BACKGROUND AND RELATED WORK
Geospatial data is pervasive in our everyday lives.

While traditionally geo-referenced data are often collected,
processed and distributed by government agencies (e.g., Census
Bureau and Department of City Planning), as more and more
personal handheld devices are equipped with locating and
navigation capabilities by using Global Positioning System
(GPS), cellular and Wifi technologies and their combinations,
geo-referenced point location data becomes an important
ubiquitous sensing data and the data volumes are increasing very
fast. It is necessary to associate these point data with
infrastructure data to make sense out of the point locations. While
spatial databases and GIS are the commonly used tools to process
geo-reference data, they are not optimized to associate large-scale
point data with infrastructure data. From a geospatial modeling
perspective, associating points to different types of geo-
referenced infrastructure data can be abstracted as a spatial join
problem. According to the Open Geospatial Consortium (OGC)
Simple Feature Specification (SFS)2, the SQL expression can be
something like the following:

SELECT Point.ID, Polygon.ID WHERE ST_WITHIN
(Point.geometry, Polygon.geometry)

The functionality is well supported by most spatial
databases and GIS. Spatial indexing approaches can be applied to
both point and polygon data to speed up query processing. While
spatial join query processing usually works well for small data on
a single CPU processor, we are not aware of existing systems that
can take advantages of the multicore or many-core parallel
hardware resources that are already available in commodity
computers to speed up spatial queries (we refer to [4] for a review
on geospatial computing on GPUs). Although relational data
management on multicore parallel hardware architectures have
been a popular research topic over the past few years (for reviews
see [5, 6]), unfortunately, there are no straightforward ways to
extend relational queries for spatial queries, including PIP test
based spatial joins.

In the research community, there are increasing
interests in using GPGPU technologies for data management.
Two pioneering works, i.e., GDB [7] from HKUST and
Sphyraena [8] from University of Virginia, have investigated the
potentials of using GPUs for managing relational data. Sphyraena
has provided a SQL interface based on SQLLite3, however, its
functionality is limited to mostly selection types of queries. GDB
has more support for join-related queries and several indexing
modules have been provided to speed up relational join
processing. More recently, a more complete set of relational
algebra algorithms have been implemented by a group of
researchers at the Georgia Tech University [9] and reportedly
they have achieved better performance on new generations of
Nvidia GPUs. Similar to relational data management on multi-
core CPUs, it is unclear how the parallel relational data
management and query processing techniques can be extended to
geo-referenced spatial data that has quite unique operations, for
example PIP test.

Using graphics hardware to speed up geospatial
processing is not a completely new idea. Even before GPGPU
technologies emerged in 2007, GPU’s OpenGL based graphics
APIs have been used to assist intersection and distance tests,
including Minimum Bounding Box (MBR) based spatial filtering

and point-in-polygon test [10], in processing spatial queries.
However, the overall performance reported in [10] is not very
impressive with respect to GPU hardware accelerations, possibly
due to the overheads for the excessive conversions between native
geospatial data and graphics data through rasterization and color
rendering. Furthermore, using GPU’s graphics APIs for spatial
operations are approximate in nature. For example, the
GL_POLYGON primitive defined by OpenGL is not guaranteed
to be rendered correctly on concave polygons. An additional
limitation is that the need for hardware context does not match
data management in a client-server computing environment very
well.

While there are several attempts to implement the
classic R-Tree spatial indexing structure [2, 3] on GPUs, the work
reported in [11] seems to be the most comprehensive one. The
authors have tested parallel spatial range queries on built R-trees
on GPUs which can be potentially modified for spatial join by
treating the independent geometric objects used for queries as the
non-indexed source dataset to be joined. The in-memory grid-file
data structure on GPUs proposed by [12] is closely related to the
simple grid-file structure we have used for the filtering phase of
the spatial join as both of them are derived from classic grid-file
structures. However, there are several key differences between the
two. First of all, their grid file is designed to process individual
queries while our grid file is designed to process spatial joins.
Second, the grid file in [12] is used to index points directly while
our grid file is used to index bounding boxes of both point
quadrant and polygons (detailed in Section 3). It would be
impossible to index hundreds of millions point directly on GPUs
due to the memory capacity constraints. Third, while their range
queries locate points within query windows directly without
needing further processing, our spatial join finds unique pairs of
point quadrants and polygons which requires complex post-
processing including sorting, searching and removing duplicates.

Finally, there are a few parallel spatial join algorithms
proposed in the past few decades that mostly targeted at shared-
nothing parallel hardware architectures [13-18]. Many of these
techniques rely on data declustering techniques to reduce slow
disk I/Os and network communication costs. More recently, some
of the spatial join algorithms have been adapted to the
MapReduce parallel computing environment [19, 20]. However,
parallel data processing with MapReduce has been criticized for
its inherent limitations on performance and efficiency [21]. In
contrast, in this study, we aim at designing and implementing
spatial joins on modern commodity GPUs whose architectures
closely resemble supercomputers as both implement the primary
Parallel Random Access Machine (PRAM4) characteristic of
utilizing a very large number of threads with uniform memory
latency (such as Cray XMT5) [22]. We are not aware of previous
research on parallel spatial join on GPUs other than similarity join
on point data [23].

3. SYSTEM IMPLMENTATION
3.1 Overview

The workflow of the proposed approach is illustrated in
Fig. 1. We first divide points into quadrants so that each quadrant
contains at most K points. The bounding boxes of the points
within quadrants are then computed. In order for a point to be
inside a polygon, the bounding box of the quadrant that the point

falls within and the bounding box of the polygon must intersect.
We thus can filter out point quadrant and polygon pairs whose
bounding boxes do not intersect and only perform PIP tests for
points in quadrants whose bounding boxes intersect with the
bounding boxes of one or more polygons. The output of the
filtering phase is a list of quadrant identifiers and each quadrant
identifier is associated with a list of polygon identifiers
representing the intersected polygon bounding boxes. For an
element in the output list, i.e., a (qid, {pid}) pair, we assign the

pair to a GPU computing block. Within the computing block, each
thread is responsible for processing a single point and test whether
the point is within any of the polygons represented by the set of
polygon identifiers. As the polygons representing the real world
zones are usually mutually excusive (i.e., spatially non-
overlapping), when a point is determined to be within a polygon
(to be detailed in Section 3.5), the PIP test for the point is
terminated.

Fig. 1 Framework of Spatial Join on Points and Polygons using PIP Test on GPU
As illustrated in Fig. 1, the point coordinates and the

bounding boxes of quadrants are laid out as one-dimensional
arrays so that they can be easily streamed among hard drives,
CPU memories and GPU memories. The polygon data is laid
out by following the same design principle although the data

layout is a little more complex. While the design details of the
data layouts is deferred to Section 3.2, we would like to note
that these simple in-memory data structures are quite effective
in reducing I/Os (which are getting increasingly expensive on
modern hardware) and play an important rule in achieving the

Location Data

Level-wise Space Partitioning

Polygon data

4
9

7
9

2
11

9
7

10
9

11
8

12
5

13
8

14
7

0

1 2 3

4
5

6
7

8

9 10
11 12

13 14

 … 50 60 …

… … 70 73 78 … 100 …

Feature Index

Ring Index

0 … 12

885 913 959 989Vertex Index

X/Y Coordinates

X/Y

Quadrant ID

#of points

 Bounding Box

Q1

Q2

P1

P2

Q1

P1

Q2

P1

Q2

P2

Quadrant-Polygon pairs
after the filtering phase

…

…

…

…

0

1 2

3

4

Loop
Thread
assignment

SM1 SM2 SMn

GPU Global Memory

GPU Accelerator Block
assignment

Bounding Box

desired speedup. The implementation details on generating point
quadrants, computing the (qid, {pid}) list and performing PIP
tests on GPUs are provided after introducing the in-memory
data structures in the next few subsections. We note that while
we strive to optimize our implementation to achieve good
performance, our existing implementation is largely built on top
of the Thrust parallel primitives6 which may not have the best
achievable performance due to the limitations on using parallel
primitives. It is well known that there is a tradeoff between
coding complexity and code efficiency in using such parallel
libraries and we believe there are still quite some rooms for
future improvements with respect to performance. Nevertheless,
the implementation can serve as a baseline to understand the
potentials of GPU accelerations in spatial databases and GIS.

3.2 In-Memory Data Structures
The use of in-memory data structures to store the

point coordinates and polygon vertices was actually forced by
the CUDA computing model that favors one-dimensional arrays,
especially in the previous versions of compute capability. As
such, these one-dimensional arrays are used extensively to store
point and polygon data in both CPU memory and hard drives as
well for easy data streaming among them. Although traditional
SDB and GIS implementations favor dynamic memory
allocations and use pointers extensively, we have found that
using the simple array-based in-memory data structures
improves system performance considerably due to its cache
friendly property. This has motivated us to seek a systematic
way to layout large-scale point data and polygon data to balance
between performance and memory footprint. Fortunately, many
real world point data have meaningful spatial and temporal
granularities which can be used to segment the point data into
chunks that are small enough to fit into CPU/GPU memory and
big enough to maximize disk I/O performance. The point
locations that we use in this study actually are the pickup and
drop-off locations of taxi trip records in NYC. On average there
are about half a million taxi trips per day. Assuming each point
takes 8 bytes for lat/lon coordinates, the chunk for a month
would be around 120 MB per month which seems to be a good
choice given that the machine we use for the experiments has 32
MB hard drive cache and the CPU and GPU memory capacities
are 16 GB and 6 GB, respectively.

Unlike the point data that can be stored as one-
dimensional arrays in a straightforward manner, auxiliary
information is needed to store polygons as arrays. This is
because polygons have variable numbers of vertices and a
polygon may have multiple rings, e.g., polygons with holes.
Since OGC SFS has been widely adopted by the SDB and GIS
communities, our in-memory data structures for polygons are
designed to support the standard. According to the specification,
a polygonal feature may have multiple rings and each ring
consists of multiple vertices. As such, we can form a four level
hierarchy from a data collection to vertices, i.e., dataset
feature ring vertex. Five arrays are used for a large
polygon collection. Besides the x and y coordinate arrays, three
auxiliary arrays are used to maintain the position boundaries of
the aforementioned hierarchy. As shown in the top-right part of
Fig. 1, given a dataset ID (0..N-1), the starting position and the
ending position of features in the dataset can be looked up in the
feature index array. For a feature within a dataset, the starting

position and the ending position of rings in the feature can be
looked up in the ring index array. Similarly, for a ring within a
feature, the starting position and the ending position of vertices
belong to the ring can be looked up in the vertex index array.
Finally, the coordinates of the ring can be retrieved by accessing
the x and y coordinate arrays. It is easy to see that retrieving
coordinates of single or a range of datasets, features and rings
can all be done by scanning the five arrays in a cache friendly
manner. It is also clear that the number of features in a dataset,
the number of rings in a feature and the number of vertices in a
ring can be easily calculated by subtracting two neighboring
positions in the respective index array. As such, the array
representation is also space efficient.

To convert existing disk-resident polygon data in
various formats into the array based representation, we use an
open source software called GDAL7 to access polygon datasets,
polygons, rings and vertices sequentially and output polygon
vertices and indexing positions to the respective arrays in a way
similar to ETL (Extract, Transform and Load) in relational
databases and data warehouses8. While this step usually is I/O
intensive due to frequent disk accesses and extensive dynamic
memory allocation and de-allocation to accommodate variable-
sized polygons, this is a one-time process and the resulting
arrays can be written to hard drives and streamed to CPU
memories afterwards. Although a polygon may have a large
number of vertices in practice, the number of polygons is
relatively small and the volume of the polygon data (including
the auxiliary indices) is far less than point location data. For the
NYC census block dataset which we use in the experiments, the
number of polygons is in the order of 40 thousands and the
number of vertices is in the order of 5 millions which can be fit
in both CPU and GPU memories easily. In contrast, there are
nearly 170 million pickup and drop-off locations and the
memory footprint may already be out of the capacity of some
GPU devices. Note that many GPU operations require
intermediate storage which will further reduce the number of
points that can be processed in a single run. The algorithms to
be presented in the subsequent three subsections have taken the
device memory constraints into consideration and allow
processing hundreds of millions of point locations.

3.3 Generating Point Quadrants
Many real world point locations are clustered and

neighboring points often behave similarly. For example, tourist
attractions often receive a large number of taxi pickups and
drop-offs. The locations are usually close to each other and are
associated with a same zone. To group the large number of
points into chunks for parallel spatial join, we have developed
an approach to hierarchically divide the point data space into
quadrants and identify quadrants that have fewer than K points.
Quadrants that have more than K points are further divided
using the same principle until either all points are grouped or the
maximum level (M) is reached. The process is similar to
quadtree constructions [2, 3] but our approach adopts a top-
down subdivision strategy and can be efficiently implemented
using GPU-based parallel primitives provided by the Thrust
library which is now part of the CUDA SDK. Compared to
native CUDA programming which usually have a deep learning
curve in order to achieve high efficiency, parallel primitives
provide a nice tradeoff between coding complexity and code

efficiency. While it is beyond our scope to present the details of
primitives based parallel programming, the appendix9 provides
a brief introduction to several parallel primitives that are needed
in generating point quadrants from large-scale point locations in
parallel on GPGPUs.

The procedure of generating point quadrants is
presented in Fig. 2 where the names of parallel primitives are
bolded and underlined and the variables (either a vector or a
scalar) names are bolded and italicized for easy interpretation.
An illustrative example is also provided in Fig. 3. Steps 1-3 in
Fig. 2 are used to sort points (stored in P) based on their level k
Morton codes (used as keys, stored in PK) and count the
numbers of points (stored in UN) associated with the unique

keys (stored in UK). The points are also sorted based on the
keys so that they can be reordered later (Steps 7 and 8) and get
ready for the next level. Steps 4 and 5 are used to identify
quadrants and the points associated with the quadrants. Note
that the SIGN vector indicates whether a quadrant is identified
and the INDICATOR vector indicates whether a point belongs
to an identified quadrant. For each number in UN (assuming n),
which records the number of points with the same level-k key,
the boolean value in the SIGN vector at the same position will
be replicated n times in INDICATOR. This is done by using the
Expand parallel primitive that has been implemented by
combining a Scatter and a Gather primitive (to be detailed
next).

Fig. 2 Algorithm of Parallel Primitives Based Level-Wise Point Quadrant Generation
To better illustrate how the parallel primitives work

together to identify tree leaf nodes, let us consider the following
SQL statement “SELECT * FROM T WHERE #key IN
(SELECT #key FROM T GROUP BY #key HAVING COUNT
(#key)) > #K”. The statement selects individual tuples that
satisfy a count-based group condition and does what we want in
Step 5. While it is straightforward to output individual tuples
whose #key values are in the resulting single-attribute relation
of the sub-query with the group by/having clauses on CPUs, it is
neither convenient nor efficient to perform set membership tests
on GPUs. Actually we do not have to due to the relationships
among UK, UN and PK. Obviously UK and UN are group-
related (when referencing to the SQL statement). The evaluation
results of the HAVING condition should be a boolean vector
(i.e., SIGN) that has the same length as UK and UN. Since UK
and PK has the same key order, when mapping UK back to PK,
each boolean value at SIGN[i] will repeat exactly UN[i] times
and the vector of such boolean values (INDICATOR) exactly

indicates whether a key in vector PK satisfy the group-based
criteria (i.e., the condition specified in the having clause in the
example SQL statement). Now the problem translates into how
to generate the INDICATOR boolean vector from the SIGN
boolean vector and the UN integer vector. This actually can be
done using four parallel primitives that are introduced in the
Appendix. First, an exclusive scan is performed on UN to
compute the group boundaries. Second, a Scatter primitive is
used to scatter the group boundary values to proper positions in
a temporal vector (VT) that has the same size as
PK/INDICATOR. Third, a Scan primitive using the max
associative function is performed to propagate the boundary
values in VT to positions within group boundaries. Finally, a
Gather primitive is applied to update the values in INDICATOR
by the values in SIGN using VT as the map, i.e., the ith element
in INDICATOR is assigned to the value of SIGN[VT[i]].

Step 6 copies the identified quadrant and the
corresponding numbers of points to two new vectors (LK and

Inputs: vector of point dataset P
Outputs: re-arranged point dataset P, quadrant key vector LK, vector of numbers of points falling within quadrants LN, vector of numbers of
starting positions of points in quadrants PN, number of quadrants n_l and number of points falling within the quadrants n_s (at all levels)

Initialization: Set n_p (representing number of identified points in resulting quadrants) to 0 and set n_q (representing number of identified
quadrants) to 0.
For k from 1..M levels (with starting quadrant at n_q and starting points at n_p):

1. Transform point dataset P to key set PK using Z-ordering at level k.
2 Sort_by_key using PK as the key and P as the value
3 Reduce_by_key using PK as the key and copy the unique keys to UK and numbers of the same key in each key group into UN
4 Classify each quadrant (corresponds to a key in UK) based on whether the numbers in UN is above (set to 0) or below (se to 1) the
threshold K and copy the result to a boolean vector SIGN by using Transform.
5 Identify points that are within or not within the quadrants to be pruned based on UN and SIGN by using Expand and output the result
to a boolean vector INDICATOR.
6 Copy the identified quadrant keys to LK and number of points in the quadrant to LN by using Copy_if based on UK, UN and K; also
set n_l to the number of identified quadrants at the level and n_s to the number of points fall within the quadrant
7 Copy all points in P that are in the identified quadrant to PL and those that are not in the identified quadrant to PQ using Copy_if
based on INDICATOR
8 Combine PL and PQ to Pusing Copy by placing PL ahead of PQ
9 Keep elements in PK correspond to points that fall within the identified quadrants and remove the rest using Remove_if
10 Increase n_p by n_s and increase n_q by n_l.

Process points that fall within the last level quadrants but have more than K points
11 Transform point dataset P to key set PK using Z-ordering at level k starting at n_p (similar to Step 1)
12 Reduce_by_key using PK as the key starting at n_q and copy the unique keys to LK and numbers of the same key in each key
group into LN starting at n_q (similar to step 3)

Compute bounding boxes for quadrants
 13 Transform point dataset P into bounding boxes B using Transform
 14 Reduce_by_key on B using PK and store the result in QB

LN. This step also computes the number of identified quadrants
and the number of points that fall within the quadrants in order
to set the proper level boundaries in step 10. Steps 7 and 8
actually rearrange the points by moving points in identified
quadrants to the left and the rest of the points to the right so that
the next level only needs to process the non-identified points.
Step 9 removes elements in PK that correspond to points that do

not fall within any of the identified quadrants at the level. It is
possible that some last-level quadrants have more than K points
and they can not be identified in steps 1-10. As such, step 11
(similar to step 1) and step 12 (similar to step 3) are used to
process these points which can be considered as a simplification
of steps 1-10 since no sorting and reordering are needed at the
last level.

Fig. 3 A Running Example to Illustrate the Process of Generating Point Quadrants using Parallel Primitives
After the quadrants are identified, computing the

bounding boxes of the points that fall within the quadrant
becomes embarrassingly parallelizable by using a transform
primitive and a reduce_by_key primitive. The transform
primitive converts a point into a bounding box by setting the
top-left and bottom-right points of the bounding box to the point
itself (Step 13). Since there is a one-to-one correspondence
between PK and P and the unique values of PK and the
identified quadrants, a straightforward reduce_by_key primitive
can be applied to compute the bounding boxes of points in the
identified quadrants by using a user-defined functor that takes
the extremes of the two bounding boxes and form a larger
bounding box. By applying an exclusive scan on LN we can
obtain the starting positions of the first points of the identified
quadrants in P and hence the point coordinates can be accessed
in parallel for subsequent PIP test. We note that while quadrants
have implicit coordinate information, the computed bounding
boxes provide tighter bounds which may be desirable in certain
cases, especially when the points in the quadrants are sparse.

3.4 Associating Quadrants and Polygon
Bounding Boxes with Grid Cells

Pairing all point quadrants with all polygons for PIP
test is computationally prohibitive for even relatively small
number of quadrants and number of polygons. This is not
necessary either as the majority of the point quadrants will only
intersect with a small number of polygons. Quite a few spatial
indexing approaches have been proposed for filtering purposes
but the majority is serial in nature and hence is not suitable for
GPU implementation. We propose to use a simple grid-file
spatial indexing structure to index both the bounding boxes of

point quadrants and the bounding boxes of polygons. Our
approach converts the problem of comparing spatial
relationships (e.g., intersection of bounding boxes) in spatial
queries into a searching problem which can be efficiently
implemented by integrating an in-house developed kernel with
the vectorized binary search parallel primitive that is recently
supported by the Thrust library in the CUDA SDK.

As illustrated in Fig. 4, we first rasterize the bounding
boxes of both the point quadrants and polygons using a uniform
grid. Given a fixed grid cell size, the number of rows and the
number of columns of the bounding boxes to be rasterized can
be easily computed. If two bounding boxes overlap then they
will have at least one common grid cell. To find all the polygons
that a point quadrant intersects, for each grid cell of the
bounding box of the point quadrant, we search the grid cell
identifier in the rasterized grid cells of the bounding boxes of
polygons. If there is match, then we pair the point quadrant and
the polygon for further refinement in the next stage. Note that as
a bounding box of a point quadrant usually has multiple grid
cells and each grid cell is searched and matched independently,
there will be (potentially a large number of) duplicates of the
pairs of point quadrants and polygons. These duplicates need to
be removed before the refinement phase. We have implemented
this procedure by using a combination of binary_search and
lower_bound primitives provided by Thrust. We refer to the
appendix and Thrust documentation for details on these two
parallel primitives. In the example show in Fig. 4, among the 12
cells of Q1, two cells have successfully found the corresponding
cells in the rasterized cells of the polygon bounding boxes (and
we term it as “paired”). Similarly one cell in Q2 is paired with
one cell in P1 and two cells in Q2 are paired with two cells in

49 24
11 2

9 16

 13
9

 15
4 7

0 11 20 29 36 44 49 57 64

Level 1

Level 2

Level 1 3

Prefix Sum Starting Position

Z-Order
/Sorting

2
11

4
9

7
9

9
7

10
9

11
8

12
5

13
8

14
7

4
9

7
9

2
11

4
9

7
9

2
11

9
7

10
9

11
8

12
5

13
8

14
7

Leaf Key
points

point vector

Level 3

P2. After applying the unique primitive (see the appendix for
details if needed) we will obtain three pairs. After applying a
sort primitive, we get two pairs (c.f. Section 3.1), i.e., (Q1,{P1})
and (Q2, {P1,P2}) and they are ready to be sent to GPU
computing blocks for PIP tests.

Fig. 4 Illustration of Grid-File based Spatial Join Filtering and
its GPU implementation using Parallel Primitives

While quite a few parallel primitives that are needed
in this step have been provided by the Thrust library, such as
vectorized binary search, unique and sort, we have found that it
is difficult to rasterize bounding boxes using existing parallel
primitives although it seems to be straightforward to split a
rectangle into a set of squares and assign an identifier to each of
the cells. As such, we have developed a simple CUDA kernel
for this purpose. Before launching the rasterization kernel, we
apply an exclusive scan kernel to compute the starting positions
of where each rasterized bounding box should begin to write out
their grid cell identifiers on the vector of the total number of
cells of the respective bounding boxes. The numbers can be
easily calculated as the multiplications of the numbers of rows
the numbers of columns of the respective bounding boxes. With
all these input information, each thread is assigned to process a
bounding box in parallel and write out the cell identifiers
sequentially.

3.5 Parallel PIP Test
As discussed previously (c.f. Section 3.1 and Fig. 1),

each (qid, {pid}) pair is assigned to a computing block to utilize
the first level parallelism in GPGPU computing. Within a
computing block, there are quite some parameters to be fine-
tuned to make full use of the fine-grained thread level
parallelism on GPUs, such as determining number of threads per
block, decisions on using shared memory and approaches to
mitigate register variable pressure. In this subsection, we report
our design and implementation of the parallel PIP test for all
points in a quadrant and all the candidate polygons that are
derived by the filtering phase.

There are quite a few computational geometry
algorithms for point in polygon test and we refer to [24] for a
brief review. While PIP test algorithms that require
preprocessing may obtain sub-linear complexity, algorithms that
do not require preprocessing are usually simpler and more
suitable for GPU implementation. In this study, we use the most

popular ray crossing (ray intersection) algorithm with a
complexity of O(n) where n is the number of edges of a
polygon. The basic idea of the ray crossing algorithm is
illustrated in Fig. 5. If a ray emanating from a test point crosses
the boundary of a polygon odd times, it is inside a polygon
otherwise outside a polygon. In this study, we have adopted the
concise code provided by Randolph Franklin (listed in Fig. 5)
and modified it to run on GPUs. We note that the open source
GIS packages Java Topology Suit (JTS)10 and its C/C++
translation Geometry Engine - Open Source (GEOS)11 also have
implemented a similar ray crossing algorithm for PIP test.
GEOS has been integrated into PostGIS12/PostgreSQL13 to
support PIP test in the form of the ST_Intersects function when
the two inputs are point and polygon geometry objects,
respectively. As such, it is fair to compare a parallel GPU
implementation with a serial CPU implementation of the same
algorithm.

Fig. 5 Illustration and Code Segment of Ray Crossing based
Point-in-Polygon Test (see 14 for more details)
We have adopted a simple thread level parallelization

schema within a computing block, i.e., each thread is
responsible for testing whether it is within the paired polygons.
The simple design has two advantages with respect to GPU
device memory access. First, as points are stored consecutively
in their coordinate arrays (c.f. Section 3.2), neighboring threads
will access consecutive memory addresses and the memory
accesses are perfectly coalesced. Second, all threads will access
the same polygon vertices which are also stored consecutively
in their coordinate arrays. The GPU hardware is able to
broadcast the requested vertex coordinates to all the requesting
threads which significantly reduces memory access costs. While
originally we had planned to use GPU shared memory to store
both coordinates of points in a quadrant and polygon vertices, as
GPU device memory accesses are already optimized, using
shared memory actually decreases performance due to
synchronization costs which is necessary after having threads
collaboratively load data from device memory to shared
memory. Not using shared memory will also improve scalability
as the numbers of points and polygons that can be assigned to a
computing block is not limited by shared memory sizes any
more. If the number of points assigned to a computing block
exceeds the number of threads that is allowed by a computing
block, the points can be divided into chunks and simply have
threads loop through the chunks.

While shared memory is not a limiting factor in our
design and implementation, we have found that the limited
number of register files available to a thread becomes a
bottleneck. Due to the complexity of the algorithm, we can not
reduce the number of registers used by a thread to below 44,

Q1

Q2

P1

P2

Q1 Q2

P1 P2

Binary
Search

Q2
P1

Q1
P1

Q2
P2

Q1
P1

Q2
P2

Q1
P1

Q2
P1

Q2
P2

Unique Q1
P1

Q1
P1

Q2
P1

Q2
P2

Q2
P2

Sort
int pnpoly(int npol, float *xp, float *yp, float x, float y)
{
 int i, j, c = 0;
 for (i = 0, j = npol-1; i < npol; j = i++) {
 if ((((yp[i] <= y) && (y < yp[j])) ||
 ((yp[j] <= y) && (y < yp[i]))) &&
 (x < (xp[j] - xp[i]) * (y - yp[i]) / (yp[j] - yp[i]) + xp[i]))
 c = !c;
 }
 return c;
}

which is more than the number of registers allowed when a SM
is fully utilized under CUDA compute capability 2.0
(32768/1024=32). As reported in the experiment section, we
have found that using 256 threads per block seems to achieve
the best performance for a quadrant size K=512. We expect the
register pressure will be reduced under compute capability 3.0
where each thread is allowed to use 65536/1024=64 register
variables when a SM is fully utilized. Another option to try is to
allow register spilling which requires more careful design to
improve the overall performance.

4. EXPERIMENTS
4.1 Data and Experiment Setup

Through a partnership with the New York City (NYC)
Taxi and Limousine Commission (TLC), we have access to
roughly 300 million GPS-based trip records in about two years
(2008-2010). Each taxi trip has a GPS recorded pickup location
and a drop-off location expressed as a pair of latitude and
longitude. In this study, we use the approximately 170 million
pickup locations in 2009 for experiments. The polygon data we
use is the NYC Census 2000 dataset15. There are more than 40
thousand census block polygons in NYC with more than 5
million vertices. All experiments are performed on a Dell
Precision T5400 workstation equipped with dual quadcore
CPUs running at 2.26 GHZ with16 GB memory, a 500G hard
drive and an Nvidia Quadra 6000 GPU device. The sustainable
disk I/O speed is about 100 megabytes per second while the
theoretical data transfer speed between the CPU and the GPU is
4 gigabytes per second through a PCI-E card. We have set M,
the maximum number of levels in point quadrant generation, to
8 and each parent quadrant has 2l*2l=4*4=16 child quadrants
with l = 2. With a cell size of 2 feet at the finest level, the whole
NYC area is rasterized into a 2s*2s grid where s=l*M=16. As
such, all quadrants can be identified by a 32-bit Morton code.

We compare the GPU implementation with an
optimized serial CPU implementation that we have developed
previously based on leading open source geospatial packages.
The serial CPU implementation uses libspatialindex16 to index
polygon data by building an R-Tree and GDAL, which
implicitly uses GEOS, to perform PIP test. While we could have
also built an R-Tree for the point locations by treating the points
as bounding boxes, given the large number of points, it is very
costly to index the point data using R-Tree indexing. In
addition, coordinating the two index structures to perform the
spatial join is non-trivial and is beyond the scope of this
research. As such, the CPU implementation queries each point
against the indexed polygons. If the point falls within any of the
bounding boxes of polygons, the polygon identifiers will be
returned for refinement. It is clear that, while the polygons do
not spatially overlap, their bounding boxes can overlap and a
point query may return multiple polygons for PIP test in the
refinement phase. The CPU implementation performs the PIP
test for each of the polygons in the query result set and breaks if
any of the PIP test returns true.

Our GPU implementation has several parameters to
set. The first parameter is K, the maximum number of points in
a quadrant and the second parameter is the number of threads
per computing block (N). In this section, we will first report the
best results in Section 4.2. We then provide the experiment

results on generating point quadrants in Section 4.3 as it is the
most time consuming component in the whole process. In
Section 4.4, we vary both N and K and report their impacts on
the overall performance.

4.2 Overall Experiment Results
The best performance of our GPU implementation is

achieved with K=512 and N=256 with a total end-to-end
runtime of 11.165 seconds. In contrast, the serial CPU
implementation takes 54,819 seconds (15.223 hours). As such, a
significant speedup of 4,910X has been achieved. Note that we
have not included the disk I/O times to load the points and
polygons as this is a one-time cost and is not directly related to
the spatial join. Furthermore, as discussed before, these data are
stored as binary files on disk. With a sustainable disk I/O speed
of 100 MB per second, the point and polygon data can be
streamed into CPU main memory in about 15 seconds. Since the
disk I/O time is comparable to the spatial join time, even if the
disk I/O times are included, the order of speedup will not be
changed.

We attribute the 3-4 orders of improvements to the
following factors. First, all the point, polygon and auxiliary data
are memory resident in our GPU implementation. In contrast,
the open source GIS packages are designed to be disk resident
and data and indices are brought to CPU memory dynamically.
While the sophisticated design is necessary for old generations
of hardware with very limited CPU memory, current commodity
computers typically have tens of gigabytes of CPU memory
which renders the sophisticated design inefficient. We also have
observed that the open source packages use dynamic memory
and pointers extensively which can result in signficant cache
misses. Second, in our GPU implementation, we have divided
points into quadrants before we query against the polygons in
the filtering phase using a GPU based grid file indexing
structure (i.e., collective query). In the serial CPU
implementation, each point queries against the polygon dataset
individually. While the polygon dataset is indexed, each point
query needs to travel from the root of R-Tree of the polygon
dataset to leaf nodes which is quite costly. While not tested in
this study, we expect querying the bounding boxes of points in
quadrants, instead of querying the points individually, can
potentially improve the serial CPU implementation. The
improvement and the comparison are left for future work. Third,
in addition to the improved floating point computation on
GPUs, the massively data parallel GPU computing power is
utilized for all phases of the spatial join process, including
generating point quadrants, filtering quadrant-polygon pairs and
PIP test in computing blocks.

Before we provide more detailed results in the next
two subsection, we would like to report that among the 11.165
seconds end-to-end runtime for the point-to-polygon spatial
join, the majority (8.170 seconds) is spent on generating point
quadrants. The runtimes to rasterize bounding boxes of point
quadrants and polygons are 0.469 and 0.640 second,
respectively. The binary search and duplication removal take
0.265 and 0.405 second, respectively. The PIP test kernel takes
1.206 second which is only 10.8% of the total runtime. We note
that the total runtime includes the data transfer time from CPU
to GPU for both the point and polygon data (1.030 second).

To further evaluate the performance of GPU-based
PIP test, we have implemented the PIP test on a single CPU core
using the in-memory data structures. The runtime is 22.924
seconds and a speedup of 19X (22.924/1.206) has been achieved
by GPU acceleration alone on PIP test. By separating GPU
acceleration from the overall speedup, we can see that the in-
memory data structures and algorithmic improvement (e.g.,
collective query) also play key roles in achieving the high-
performance.

4.3 Results on Generating Point Quadrants
 As discussed in Section 3.3, the modules in

generating point quadrants are implemented on top of the Thrust
parallel library. Each of the steps listed in Fig. 2 (except Step
10) corresponds to a call to the respective parallel primitive.
Since this is the most time consuming step in the whole process,
to better understand the distributions of computing workloads,
the runtimes of the step groups are listed in Table 1. We have

not included the runtimes for processing last level (steps 11/12)
as they are negligibly small. From the table, we can see that the
majority of the times are spent on point sorting and shuffling.
From the 6th and 7th rows of Table 1, we can see that the
majority of the quadrants/points are identified at level 6 and 7
where the quadrant sizes are 8*8 and 4*4 feet, respectively. This
is understandable as the majority of taxi pickup locations are
clustered at the street intersections, especially in the midtown
and downtown Manhattan area. For the quadrants identified at
the higher levels, they will have larger bounding boxes and are
likely to intersect with more polygons based on our filtering
algorithm. Using a smaller K will reduce the number of such big
quadrants to improve the pruning power and improve the PIP
test performance in the refinement phase. On the other hand,
using a small K will increase the number of quadrants. This in
turn will increase the time to generate the quadrants due to the
fact that more sorting work is needed to put points in smaller
quadrants.

Table 1 Runtimes of Steps in Generating Point Quadrants of 8 Levels (milliseconds)
Quadrant Level 1 2 3 4 5 6 7 8

1 Point Transformation time (Step 1) 26.14 25.65 34.77 34.72 34.67 33.75 27.19 2.23
2 Point Sorting (Key-Value) time (Step 2) 281.80 336.12 494.54 514.75 513.23 546.00 526.84 47.35
3 Key Reducing Time (Step 3) 71.83 71.87 73.24 72.96 73.62 74.36 63.37 6.44
4 Quadrant Identifying Time (Steps 4, 5, 6) 95.27 95.50 94.53 95.98 94.08 93.30 78.39 8.99
5 Point shuffling Time (Steps 7, 8, 9) 246.48 248.17 259.06 263.09 261.98 269.61 271.70 26.05
6 # of identified points 0 15955 291,342 1,351,989 3,546,982 30,510,995 120,775,838 11,551,455
7 # of identified quadrants 0 73 1,938 12,350 36,653 225081 1,250,597 219,730
8 Bounding box derivation time (Steps 13/14) 651.78

4.4 Impacts of Quadrant Point sizes and
Threads Numbers

To further discuss the impacts of the quadrant point
sizes (K) and threads numbers (N) on the performance, we have
varied K from 256 to 1280 while fixing N to 256. We have also
varied N from 64 to 704 while fixing K to 512. The results are
plotted in Fig. 6 and Fig.7, respectively. Note that “query” time
in Fig. 6 refers to pairing point quadrants and polygons,
including binary search and duplication removal times as
discussed in Section 3.4. The “total” refers to the sum of the
“query” time and the PIP test time in the refinement phase. We
have not included the quadrant generation time in Fig. 6 as here
we are concerned with the tradeoff between the filtering phase
and the refinement phase in a spatial join (conceptually the
quadrant generation is considered as part of indexing).

From Fig. 6 we can see that, as the maximum number
of points in quadrants (K) increases, the query times decrease
slightly while the PIP test time reaches the minimum at K=512.
The query time decreases as K increase can be explained that
both the number of point quadrants and the number of the
resulting filtered pairs decrease as K increases and thus less
computing is needed in the filtering phase (“query”). As
discussed previously, a smaller K will result in smaller bounding
boxes which may improve the filtering power (fewer false
positives) and can potentially reduce the number of PIP test in
the refinement phase. On the other hand, a small K will also
increase the number of quadrants. As each quadrant is assigned
to a computing block, the overhead of launching computing

blocks may increase and can potentially overshadow the
benefits of the increased filtering power. The results in Fig. 6
show that K=512 provides a good tradeoff

Fig. 6 Variations of Spatial Join Runtimes for
Different K Sizes

.
From Fig. 7 we can see that as the number of threads

(N) increase, the runtime for the PIP test in the refinement phase
decreases until N=256 before the runtime increases again. Fig 7
also shows a spike of bad performance when N=384. As
discussed in Section 3.5, the implementation is limited by the
number of register files that can be used by a computing block.
When N is small, while a SM can accommodate more blocks
(but 8 or lower in compute capability 2.0), the threads in a SM
is underutilized and the performance is not maximized. As N
increases, the occupancy rate gets higher and the performance
gets better until N=256 where two computing blocks are
accommodated in a SM (three block would require more than
32K registers) and the occupancy rate is 33%. Although
increasing N to 352 will increase the occupancy rate to 46%,
since 352 does not divide K=512, 160 out of the 352 threads will

be idle in the second round of processing the points (c.f. Section
3.5), the performance gets worse. When N is increased to 384,
only one computing block can be accommodated in a SM and,
similar to N=352, a considerable portion of threads are idle in
the second round, the worst performance is observed (the spike
in Fig. 7). When N reaches 512 and above, although still only
one computing block can be accommodated in a SM, only one
loop is needed for the N threads to process the K=512 points and
the performance remains the same.

Fig. 7 Variations of PIP Test Runtimes for Different Numbers of
Threads in a Computing Block

5. CONCLUSION AND FUTURE WORK
In this study, we have reported our design and

implementation of a point-in-polygon test based spatial join
technique on large-scale data which is a fundamental operation
in spatial databases and GIS. The high-performance system
based on the technique can help understand the interactions
between people and place more effectively when applied to
processing large-scale ubiquitous urban sensing data such as
GPS recorded pickup and drop off locations of taxi trip records.
Experiments have shown that, with a combination of in-memory
data structures, algorithm improvement and parallel
accelerations on GPU hardware, we have achieved 3-4 orders of
speedup when compared to a baseline serial CPU
implementation on top of the state-of-the-art open source GIS
packages.

For future work, first of all, we would like to analyze
the potential of further performance improvements. The kernels
we have developed can be optimized in terms of load balancing
and algorithmic engineering. Second, we plan to further
quantify the relative contributions of the performance boosting
factors and provide insights on adapting traditional SDB and
GIS to modern hardware architectures, including large memory,
deep cache hierarchy and parallel processors. Finally, we would
like to expand the PIP test based spatial join framework to other
types of spatial joins, such as distance based nearest neighbor.

6. REFERENCES
[1] Jacox, E. H. and Samet, H. (2007). Spatial join techniques. ACM

Transaction on Database System 32(1).
[2] Gaede V. and Gunther O. (1998). Multidimensional access

methods. ACM Computing Surveys 30(2), 170-231.
[3] Samet, H. (2005). Foundations of Multidimensional and Metric

Data Structures Morgan Kaufmann.
[4] Zhang, J. (2010). Towards personal high-performance geospatial

computing (HPC-G): perspectives and a case study. Proceedings of
the ACM SIGSPATIAL HPDGIS workshop.

[5] A.Pavlo, E. Paulson et al. (2009). A comparison of approaches to
large-scale data analysis. Proceedings of ACM SIGMOD
Conference, 165–178.

[6] Cieslewicz, J. and Ross, K. A. (2008). Database Optimizations for
Modern Hardware. Proceedings of the IEEE 96(5).

[7] He, B. S., Lu, M., Yang, K., Fang, R., Govindaraju, N. K., Luo, Q.
and Sander, P. V. (2009). Relational Query Coprocessing on
Graphics Processors. ACM Transactions on Database Systems
34(4).

[8] Bakkum, P. and Skadron, K. (2010). Accelerating SQL database
operations on a GPU with CUDA. Proceedings of GPGPU
workshop, 94-103.

[9] Gregory Frederick Diamos, Wu, H., Lele, A. and Wang, J. (2012).
Efficient Relational Algebra Algorithms and Data Structures for
GPU. Georgia Tech University technical report.

[10] Sun, C., D. Agrawal, et al. (2003). Hardware acceleration for
spatial selections and joins. ACM SIGMOD Conference, 455-466.

[11] Luo, L., Wong, M. D. F., et al. (2011). Parallel implementation of
R-trees on the GPU. Proceedings ASP-DAC.

[12] Yang, K., He, B., Fang, R., Lu, M., Govindaraju, N., Luo, Q.,
Sander, P. and Shi, J. (2007). In-memory grid files on graphics
processors. Proceedings of ACM DaMoN Workshop.

[13] Hoel, E. G. and Samet, H., 1994. Performance of Data-Parallel
Spatial Operations. Proceedings of VLDB Conference.

[14] Brinkhoff, T., Kriegel, H.-P. and Seeger, B. (1996). Parallel
Processing of Spatial Joins Using R-trees. Proceedings of IEEE
ICDE Conference.

[15] Zhou, X., Abel, D. J. and Truffet, D. (1998). Data Partitioning for
Parallel Spatial Join Processing. GeoInformatica 2(2): 175-204.

[16] Patel, J. M. and DeWitt, D. J. (2000). Clone join and shadow join:
two parallel spatial join algorithms. Proceedings of ACM GIS
Conference.

[17] Kim, J.-D. and Hong, B.-H. (2000). Parallel Spatial Joins Using
Grid Files. Proceedings of IEEE International Conference on
Parallel and Distributed Systems.

[18] Luo, G., Naughton, J. F. and Ellmann:, C. J. (2002). A Non-
Blocking Parallel Spatial Join Algorithm. IEEE ICDE Conference.

[19] Zhang, S., Han, J., Liu, Z., Wang, K. and Xu, Z. (2009). SJMR:
Parallelizing spatial join with MapReduce on clusters. Proceedings
of IEEE International Conference on Cluster Computing.

[20] Zhang, C., Li, F. and Jestes, J. (2012). Efficient parallel kNN joins
for large data in MapReduce. Proceedings of EDBT Conference

[21] Lee, K.-H., Lee, Y.-J., Choi, H., Chung, Y. D. and Moon, B.
(2012). Parallel data processing with MapReduce: a survey.
SIGMOD Record, 40 (4), 11-20.

[22] Hong, S., Kim, S. K., et al., 2011. Accelerating CUDA graph
algorithms at maximum warp. Proceedings of ACM symposium on
PPoPP.

[23] Lieberman, M. D., Sankaranarayanan, J. and Samet, H. (2008). A
Fast Similarity Join Algorithm Using Graphics Processing Units.
Proceedings of IEEE ICDE Conference.

[24] Zalik, B. and Kolingerova, I. (2001). A cell-based point-in-polygon
algorithm suitable for large sets of points. Computers &
Geosciences 27(10): 1135-1145.

1 http://en.wikipedia.org/wiki/GPGPU
2 http://www.opengeospatial.org/standards/sfs
3 http://www.sqlite.org/
4 http://en.wikipedia.org/wiki/Parallel_Random_Access_Machine
5 http://www.cray.com/products/XMT.aspx
6 http://thrust.github.com/
7 http://www.gdal.org/
8 http://en.wikipedia.org/wiki/Extract,_transform,_load
9 http://geoteci.engr.ccny.cuny.edu/pub/intro_pp.pdf
10 http://www.vividsolutions.com/jts/jtshome.htm
11 http://geos.osgeo.org
12 http://postgis.refractions.net/
13 http://www.postgresql.org/
14 http://local.wasp.uwa.edu.au/~pbourke/geometry/insidepoly/
15 http://www.nyc.gov/html/dcp/html/bytes/applbyte.shtml
16 http://libspatialindex.github.com/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

