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ABSTRACT 
Point-in-Polygon (PIP) test is fundamental to spatial databases 
and GIS. Motivated by the slow response times in joining large-
scale point locations with polygons using traditional spatial 
databases and GIS, we have designed and developed an end-to-
end system completely on Graphics Processing Units (GPUs) to 
associate points with the polygons that they fall within by 
utilizing massively data parallel computing power of GPUs. The 
system includes an efficient module to generate point quadrants 
that have at most K points from large-scale unordered points, a 
simple grid-file based spatial filtering approach to associate point 
quadrants and polygons, and, a PIP test module to assign 
polygons to points in a GPU computing block using both the 
block and thread level parallelisms. Experiments on joining 170 
million points with more than 40 thousand polygons have resulted 
in a runtime of 11.165 seconds on an Nvidia Quadro 6000 GPU 
device. In contrast, a baseline serial CPU implementation using 
state-of-the-art open source GIS packages required 15+ hours to 
complete. We further discuss several factors and parameters that 
may affect the system performance.  
Categories and Subject Descriptors 
H.2.8 [Database Management]: Database applications -Spatial 
databases and GIS 
General Terms 
Management, Design 
Keywords 
Spatial Join, GPGPU, Point-In-Polygon Test, HPC, GPS  

1. INTRODUCTION 
Point-in-Polygon (PIP) test is an important 

computational geometry operation and has been widely used in 
Computer Graphics (CG), Spatial Databases (SDB) and 
Geographical Information Systems (GIS). As locating and 
navigation sensors (such as GPS, cellular, Wifi and their 
combinations) have been increasingly embedded in personal 
handheld devices, huge amounts of point locations have been 

generated. Very often these point locations need to be associated 
with different types of infrastructure data (such as administrative 
regions and census blocks) for various analysis purposes. This is 
typically done in a SDB or a GIS environment by joining the 
point dataset with the polygon dataset. The functionality has been 
well supported by major commercial and open source packages. 
However, traditional SDB and GIS are mostly designed to be 
disk-resident and run on a single processor. Despite sophisticated 
indexing approaches have been developed over the past decades 
to speed up spatial join process (see [1] for a comprehensive 
review), joining hundreds of millions of points with tens of 
thousands of polygons can take dozens of hours which is far from 
desirable for interactive queries.  

In this study, we aim at utilizing massively data parallel 
computing power provided by Graphics Processing Units (GPUs) 
using General Purpose computing on GPUs (GPGPU1) 
technologies and other performance boosting techniques to speed 
up large-scale PIP test based spatial joins. Following the general 
spatial join strategy in spatial databases [1], we have developed a 
simple grid-file [2, 3] based indexing approach on GPUs for both 
point data and polygon data in the filtering phase and 
implemented an efficient PIP test on GPUs in the refinement 
phase. Together with utilizing in-memory data structures and 
algorithmic improvements on query processing, our experiments 
have shown that the end-to-end runtime in joining 170 million 
points with more than 40 thousand polygons is reduced from 
54,819 seconds (15+ hours) using an open source implementation 
to 11.165  seconds. A signficant speedup of 4,910X has been 
observed which makes real time user interactions possible.  

Our technical contributions are the following. First, we 
have developed an end-to-end, high-performance system to join 
large scale point locations with polygons on GPUs which can be 
applied to a variety of real-world data-intensive applications. 
Second, we have designed and implemented a set of algorithms 
that can efficiently index large-scale point data and pair points 
and polygons in the filtering phase of the spatial join on GPUs. 
Third, we have investigated the design choices and the impacts of 
key parameters for the PIP tests on GPUs in the refinement phase 
of the spatial join. Finally, we have demonstrated that the 
performance of traditional disk-resident spatial databases and GIS 
can be significantly improved by incorporating performance 
boosting techniques including GPU accelerations. The rest of the 
paper is arranged as follows. Section 2 introduces background and 
related work. Section 3 presents the GPU based spatial join 
framework and implementation details. Section 4 provides 
experiment results and discussions. Finally, Section 5 is the 
conclusions and future work. 
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2. BACKGROUND AND RELATED WORK 
Geospatial data is pervasive in our everyday lives. 

While traditionally geo-referenced data are often collected, 
processed and distributed by government agencies (e.g., Census 
Bureau and Department of City Planning), as more and more 
personal handheld devices are equipped with locating and 
navigation capabilities by using Global Positioning System 
(GPS), cellular and Wifi technologies and their combinations, 
geo-referenced point location data becomes an important 
ubiquitous sensing data and the data volumes are increasing very 
fast. It is necessary to associate these point data with 
infrastructure data to make sense out of the point locations. While 
spatial databases and GIS are the commonly used tools to process 
geo-reference data, they are not optimized to associate large-scale 
point data with infrastructure data. From a geospatial modeling 
perspective, associating points to different types of geo-
referenced infrastructure data can be abstracted as a spatial join 
problem. According to the Open Geospatial Consortium (OGC) 
Simple Feature Specification (SFS)2, the SQL expression can be 
something like the following:  

SELECT Point.ID, Polygon.ID WHERE ST_WITHIN 
(Point.geometry, Polygon.geometry)  

The functionality is well supported by most spatial 
databases and GIS. Spatial indexing approaches can be applied to 
both point and polygon data to speed up query processing. While 
spatial join query processing usually works well for small data on 
a single CPU processor, we are not aware of existing systems that 
can take advantages of the multicore or many-core parallel 
hardware resources that are already available in commodity 
computers to speed up spatial queries (we refer to [4] for a review 
on geospatial computing on GPUs). Although relational data 
management on multicore parallel hardware architectures have 
been a popular research topic over the past few years (for reviews 
see [5, 6]), unfortunately, there are no straightforward ways to 
extend relational queries for spatial queries, including PIP test 
based spatial joins.  

In the research community, there are increasing 
interests in using GPGPU technologies for data management. 
Two pioneering works, i.e., GDB [7] from HKUST and 
Sphyraena [8] from University of Virginia, have investigated the 
potentials of using GPUs for managing relational data. Sphyraena 
has provided a SQL interface based on SQLLite3, however, its 
functionality is limited to mostly selection types of queries. GDB 
has more support for join-related queries and several indexing 
modules have been provided to speed up relational join 
processing. More recently, a more complete set of relational 
algebra algorithms have been implemented by a group of 
researchers at the Georgia Tech University [9] and reportedly 
they have achieved better performance on new generations of 
Nvidia GPUs. Similar to relational data management on multi-
core CPUs, it is unclear how the parallel relational data 
management and query processing techniques can be extended to 
geo-referenced spatial data that has quite unique operations, for 
example PIP test.  

Using graphics hardware to speed up geospatial 
processing is not a completely new idea. Even before GPGPU 
technologies emerged in 2007, GPU’s OpenGL based graphics 
APIs have been used to assist intersection and distance tests, 
including Minimum Bounding Box (MBR) based spatial filtering 

and point-in-polygon test [10], in processing spatial queries.  
However, the overall performance reported in [10] is not very 
impressive with respect to GPU hardware accelerations, possibly 
due to the overheads for the excessive conversions between native 
geospatial data and graphics data through rasterization and color 
rendering. Furthermore, using GPU’s graphics APIs for spatial 
operations are approximate in nature. For example, the 
GL_POLYGON primitive defined by OpenGL is not guaranteed 
to be rendered correctly on concave polygons. An additional 
limitation is that the need for hardware context does not match 
data management in a client-server computing environment very 
well.  

While there are several attempts to implement the 
classic R-Tree spatial indexing structure [2, 3] on GPUs, the work 
reported in [11] seems to be the most comprehensive one. The 
authors have tested parallel spatial range queries on built R-trees 
on GPUs which can be potentially modified for spatial join by 
treating the independent geometric objects used for queries as the 
non-indexed source dataset to be joined. The in-memory grid-file 
data structure on GPUs proposed by [12] is closely related to the 
simple grid-file structure we have used for the filtering phase of 
the spatial join as both of them are derived from classic grid-file 
structures. However, there are several key differences between the 
two. First of all, their grid file is designed to process individual 
queries while our grid file is designed to process spatial joins. 
Second, the grid file in [12] is used to index points directly while 
our grid file is used to index bounding boxes of both point 
quadrant and polygons (detailed in Section 3). It would be 
impossible to index hundreds of millions point directly on GPUs 
due to the memory capacity constraints. Third, while their range 
queries locate points within query windows directly without 
needing further processing, our spatial join finds unique pairs of 
point quadrants and polygons which requires complex post-
processing including sorting, searching and removing duplicates.   

Finally, there are a few parallel spatial join algorithms 
proposed in the past few decades that mostly targeted at shared-
nothing parallel hardware architectures [13-18]. Many of these 
techniques rely on data declustering techniques to reduce slow 
disk I/Os and network communication costs. More recently, some 
of the spatial join algorithms have been adapted to the 
MapReduce parallel computing environment [19, 20]. However, 
parallel data processing with MapReduce has been criticized for 
its inherent limitations on performance and efficiency [21]. In 
contrast, in this study, we aim at designing and implementing 
spatial joins on modern commodity GPUs whose architectures 
closely resemble supercomputers  as both implement the primary 
Parallel Random Access Machine (PRAM4) characteristic of 
utilizing a very large number of threads with uniform memory 
latency (such as Cray XMT5) [22]. We are not aware of previous 
research on parallel spatial join on GPUs other than similarity join 
on point data [23].  

3. SYSTEM IMPLMENTATION 
3.1 Overview 

The workflow of the proposed approach is illustrated in 
Fig. 1. We first divide points into quadrants so that each quadrant 
contains at most K points. The bounding boxes of the points 
within quadrants are then computed. In order for a point to be 
inside a polygon, the bounding box of the quadrant that the point 



 

 

falls within and the bounding box of the polygon must intersect. 
We thus can filter out point quadrant and polygon pairs whose 
bounding boxes do not intersect and only perform PIP tests for 
points in quadrants whose bounding boxes intersect with the 
bounding boxes of one or more polygons. The output of the 
filtering phase is a list of quadrant identifiers and each quadrant 
identifier is associated with a list of polygon identifiers 
representing the intersected polygon bounding boxes. For an 
element in the output list, i.e., a (qid, {pid}) pair, we assign the 

pair to a GPU computing block. Within the computing block, each 
thread is responsible for processing a single point and test whether 
the point is within any of the polygons represented by the set of 
polygon identifiers. As the polygons representing the real world 
zones are usually mutually excusive (i.e., spatially non-
overlapping), when a point is determined to be within a polygon 
(to be detailed in Section 3.5), the PIP test for the point is 
terminated. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 Framework of Spatial Join on Points and Polygons using PIP Test on GPU 
As illustrated in Fig. 1, the point coordinates and the 

bounding boxes of quadrants are laid out as one-dimensional 
arrays so that they can be easily streamed among hard drives, 
CPU memories and GPU memories. The polygon data is laid 
out by following the same design principle although the data 

layout is a little more complex. While the design details of the 
data layouts is deferred to Section 3.2, we would like to note 
that these simple in-memory data structures are quite effective 
in reducing I/Os (which are getting increasingly expensive on 
modern hardware) and play an important rule in achieving the 
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desired speedup. The implementation details on generating point 
quadrants, computing the (qid, {pid}) list and performing PIP 
tests on GPUs are provided after introducing the in-memory 
data structures in the next few subsections. We note that while 
we strive to optimize our implementation to achieve good 
performance, our existing implementation is largely built on top 
of the Thrust parallel primitives6 which may not have the best 
achievable performance due to the limitations on using parallel 
primitives. It is well known that there is a tradeoff between 
coding complexity and code efficiency in using such parallel 
libraries and we believe there are still quite some rooms for 
future improvements with respect to performance. Nevertheless, 
the implementation can serve as a baseline to understand the 
potentials of GPU accelerations in spatial databases and GIS.  

3.2 In-Memory Data Structures  
The use of in-memory data structures to store the 

point coordinates and polygon vertices was actually forced by 
the CUDA computing model that favors one-dimensional arrays, 
especially in the previous versions of compute capability. As 
such, these one-dimensional arrays are used extensively to store 
point and polygon data in both CPU memory and hard drives as 
well for easy data streaming among them. Although traditional 
SDB and GIS implementations favor dynamic memory 
allocations and use pointers extensively, we have found that 
using the simple array-based in-memory data structures 
improves system performance considerably due to its cache 
friendly property. This has motivated us to seek a systematic 
way to layout large-scale point data and polygon data to balance 
between performance and memory footprint. Fortunately, many 
real world point data have meaningful spatial and temporal 
granularities which can be used to segment the point data into 
chunks that are small enough to fit into CPU/GPU memory and 
big enough to maximize disk I/O performance. The point 
locations that we use in this study actually are the pickup and 
drop-off locations of taxi trip records in NYC. On average there 
are about half a million taxi trips per day. Assuming each point 
takes 8 bytes for lat/lon coordinates, the chunk for a month 
would be around 120 MB per month which seems to be a good 
choice given that the machine we use for the experiments has 32 
MB hard drive cache and the CPU and GPU memory capacities 
are 16 GB and 6 GB, respectively.  

Unlike the point data that can be stored as one-
dimensional arrays in a straightforward manner, auxiliary 
information is needed to store polygons as arrays. This is 
because polygons have variable numbers of vertices and a 
polygon may have multiple rings, e.g., polygons with holes. 
Since OGC SFS has been widely adopted by the SDB and GIS 
communities, our in-memory data structures for polygons are 
designed to support the standard. According to the specification, 
a polygonal feature may have multiple rings and each ring 
consists of multiple vertices. As such, we can form a four level 
hierarchy from a data collection to vertices, i.e., dataset  
feature  ring  vertex. Five arrays are used for a large 
polygon collection. Besides the x and y coordinate arrays, three 
auxiliary arrays are used to maintain the position boundaries of 
the aforementioned hierarchy. As shown in the top-right part of 
Fig. 1, given a dataset ID (0..N-1), the starting position and the 
ending position of features in the dataset can be looked up in the 
feature index array. For a feature within a dataset, the starting 

position and the ending position of rings in the feature can be 
looked up in the ring index array. Similarly, for a ring within a 
feature, the starting position and the ending position of vertices 
belong to the ring can be looked up in the vertex index array. 
Finally, the coordinates of the ring can be retrieved by accessing 
the x and y coordinate arrays. It is easy to see that retrieving 
coordinates of single or a range of datasets, features and rings 
can all be done by scanning the five arrays in a cache friendly 
manner. It is also clear that the number of features in a dataset, 
the number of rings in a feature and the number of vertices in a 
ring can be easily calculated by subtracting two neighboring 
positions in the respective index array. As such, the array 
representation is also space efficient. 

To convert existing disk-resident polygon data in 
various formats into the array based representation, we use an 
open source software called GDAL7  to access polygon datasets, 
polygons, rings and vertices sequentially and output polygon 
vertices and indexing positions to the respective arrays in a way 
similar to ETL (Extract, Transform and Load) in relational 
databases and data warehouses8. While this step usually is I/O 
intensive due to frequent disk accesses and extensive dynamic 
memory allocation and de-allocation to accommodate variable-
sized polygons, this is a one-time process and the resulting 
arrays can be written to hard drives and streamed to CPU 
memories afterwards. Although a polygon may have a large 
number of vertices in practice, the number of polygons is 
relatively small and the volume of the polygon data (including 
the auxiliary indices) is far less than point location data. For the 
NYC census block dataset which we use in the experiments, the 
number of polygons is in the order of 40 thousands and the 
number of vertices is in the order of 5 millions which can be fit 
in both CPU and GPU memories easily. In contrast, there are 
nearly 170 million pickup and drop-off locations and the 
memory footprint may already be out of the capacity of some 
GPU devices. Note that many GPU operations require 
intermediate storage which will further reduce the number of 
points that can be processed in a single run. The algorithms to 
be presented in the subsequent three subsections have taken the 
device memory constraints into consideration and allow 
processing hundreds of millions of point locations.  

3.3 Generating Point Quadrants  
Many real world point locations are clustered and 

neighboring points often behave similarly. For example, tourist 
attractions often receive a large number of taxi pickups and 
drop-offs. The locations are usually close to each other and are 
associated with a same zone. To group the large number of 
points into chunks for parallel spatial join, we have developed 
an approach to hierarchically divide the point data space into 
quadrants and identify quadrants that have fewer than K points. 
Quadrants that have more than K points are further divided 
using the same principle until either all points are grouped or the 
maximum level (M) is reached. The process is similar to 
quadtree constructions [2, 3] but our approach adopts a top-
down subdivision strategy and can be efficiently implemented 
using GPU-based parallel primitives provided by the Thrust 
library which is now part of the CUDA SDK. Compared to 
native CUDA programming which usually have a deep learning 
curve in order to achieve high efficiency, parallel primitives 
provide a nice tradeoff between coding complexity and code 



 

 

efficiency. While it is beyond our scope to present the details of 
primitives based parallel programming, the appendix9  provides 
a brief introduction to several parallel primitives that are needed 
in generating point quadrants from large-scale point locations in 
parallel on GPGPUs.  

The procedure of generating point quadrants is 
presented in Fig. 2 where the names of parallel primitives are 
bolded and underlined and the variables (either a vector or a 
scalar) names are bolded and italicized for easy interpretation. 
An illustrative example is also provided in Fig. 3.  Steps 1-3 in 
Fig. 2 are used to sort points (stored in P) based on their level k 
Morton codes (used as keys, stored in PK) and count the 
numbers of points (stored in UN) associated with the unique 

keys (stored in UK). The points are also sorted based on the 
keys so that they can be reordered later (Steps 7 and 8) and get 
ready for the next level. Steps 4 and 5 are used to identify 
quadrants and the points associated with the quadrants. Note 
that the SIGN vector indicates whether a quadrant is identified 
and the INDICATOR vector indicates whether a point belongs 
to an identified quadrant. For each number in UN (assuming n), 
which records the number of points with the same level-k key, 
the boolean value in the SIGN vector at the same position will 
be replicated n times in INDICATOR. This is done by using the 
Expand parallel primitive that has been implemented by 
combining a Scatter and a Gather primitive (to be detailed 
next). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Fig. 2 Algorithm of Parallel Primitives Based Level-Wise Point Quadrant Generation 
To better illustrate how the parallel primitives work 

together to identify tree leaf nodes, let us consider the following 
SQL statement “SELECT * FROM T WHERE #key IN 
(SELECT #key FROM T GROUP BY #key HAVING COUNT 
(#key)) > #K”. The statement selects individual tuples that 
satisfy a count-based group condition and does what we want in 
Step 5. While it is straightforward to output individual tuples 
whose #key values are in the resulting single-attribute relation 
of the sub-query with the group by/having clauses on CPUs, it is 
neither convenient nor efficient to perform set membership tests 
on GPUs. Actually we do not have to due to the relationships 
among UK, UN and PK. Obviously UK and UN are group-
related (when referencing to the SQL statement). The evaluation 
results of the HAVING condition should be a boolean vector 
(i.e., SIGN) that has the same length as UK and UN. Since UK 
and PK has the same key order, when mapping UK back to PK, 
each boolean value at SIGN[i] will repeat exactly UN[i] times 
and the vector of such boolean values (INDICATOR) exactly 

indicates whether a key in vector PK satisfy the group-based 
criteria (i.e., the condition specified in the having clause in the 
example SQL statement).  Now the problem translates into how 
to generate the INDICATOR boolean vector from the SIGN 
boolean vector and the UN integer vector. This actually can be 
done using four parallel primitives that are introduced in the 
Appendix. First, an exclusive scan is performed on UN to 
compute the group boundaries. Second, a Scatter primitive is 
used to scatter the group boundary values to proper positions in 
a temporal vector (VT) that has the same size as 
PK/INDICATOR. Third, a Scan primitive using the max 
associative function is performed to propagate the boundary 
values in VT to positions within group boundaries. Finally, a 
Gather primitive is applied to update the values in INDICATOR 
by the values in SIGN using VT as the map, i.e., the ith element 
in INDICATOR is assigned to the value of SIGN[VT[i]]. 

Step 6 copies the identified quadrant and the 
corresponding numbers of points to two new vectors (LK and 

Inputs: vector of point dataset P 
Outputs: re-arranged point dataset P, quadrant key vector LK, vector of numbers of points falling within quadrants LN, vector of numbers of 
starting positions of points in quadrants PN, number of  quadrants n_l and number of points falling within the quadrants n_s (at all levels) 
 
Initialization: Set n_p (representing number of identified points in resulting quadrants) to 0 and set n_q (representing number of identified 
quadrants) to 0.   
For k from 1..M  levels (with starting quadrant at n_q and starting points at n_p): 

1. Transform point dataset P to key set PK using Z-ordering at level k.   
2 Sort_by_key using PK as the key and P as the value  
3 Reduce_by_key using PK as the key and copy the unique keys to UK and numbers of the same key in each key group into UN   
4 Classify each quadrant (corresponds to a key in UK) based on whether the numbers in UN is above (set to 0) or below (se to 1) the 
threshold K and copy the result to a boolean vector SIGN by using Transform.  
5 Identify points that are within or not within the quadrants to be pruned based on UN and SIGN by using Expand and output the result 
to a boolean vector INDICATOR.  
6 Copy the identified quadrant keys to LK and number of points in the quadrant to LN  by using Copy_if based on UK, UN and K; also 
set n_l to the number of identified quadrants at the level and n_s to the number of points fall within the quadrant 
7 Copy all points in P that are in the identified quadrant to PL and those that are not in the identified quadrant to PQ using Copy_if 
based on INDICATOR 
8 Combine PL and PQ to Pusing Copy by placing PL ahead of PQ  
9 Keep elements in PK correspond to points that fall within the identified quadrants and remove the rest using  Remove_if 
10 Increase n_p by n_s and increase n_q by n_l.  

Process points that fall within the last level quadrants but have more than K points 
11 Transform point dataset P to key set PK using Z-ordering at level k starting at n_p (similar to Step 1) 
12 Reduce_by_key using PK as the key starting at n_q and copy the unique keys to LK and numbers of the same key in each key 
group into LN starting at n_q (similar to step 3) 

Compute bounding boxes for quadrants 
 13 Transform point dataset P into bounding boxes B using Transform 
 14 Reduce_by_key on B using PK and store the result in QB 



 

 

LN. This step also computes the number of identified quadrants 
and the number of points that fall within the quadrants in order 
to set the proper level boundaries in step 10.  Steps 7 and 8 
actually rearrange the points by moving points in identified 
quadrants to the left and the rest of the points to the right so that 
the next level only needs to process the non-identified points. 
Step 9 removes elements in PK that correspond to points that do 

not fall within any of the identified quadrants at the level. It is 
possible that some last-level quadrants have more than K points 
and they can not be identified in steps 1-10. As such, step 11 
(similar to step 1) and step 12 (similar to step 3) are used to 
process these points which can be considered as a simplification 
of steps 1-10 since no sorting and reordering are needed at the 
last level.   

 
 

 
 
 
 
 
 
 
 

Fig. 3    A Running Example to Illustrate the Process of Generating Point Quadrants using Parallel Primitives 
After the quadrants are identified, computing the 

bounding boxes of the points that fall within the quadrant 
becomes embarrassingly parallelizable by using a transform 
primitive and a reduce_by_key primitive. The transform 
primitive converts a point into a bounding box by setting the 
top-left and bottom-right points of the bounding box to the point 
itself (Step 13). Since there is a one-to-one correspondence 
between PK and P and the unique values of PK and the 
identified quadrants, a straightforward reduce_by_key primitive 
can be applied to compute the bounding boxes of points in the 
identified quadrants by using a user-defined functor that takes 
the extremes of the two bounding boxes and form a larger 
bounding box. By applying an exclusive scan on LN we can 
obtain the starting positions of the first points of the identified 
quadrants in P and hence the point coordinates can be accessed 
in parallel for subsequent PIP test. We note that while quadrants 
have implicit coordinate information, the computed bounding 
boxes provide tighter bounds which may be desirable in certain 
cases, especially when the points in the quadrants are sparse. 

3.4 Associating Quadrants and Polygon 
Bounding Boxes with Grid Cells 

Pairing all point quadrants with all polygons for PIP 
test is computationally prohibitive for even relatively small 
number of quadrants and number of polygons. This is not 
necessary either as the majority of the point quadrants will only 
intersect with a small number of polygons. Quite a few spatial 
indexing approaches have been proposed for filtering purposes 
but the majority is serial in nature and hence is not suitable for 
GPU implementation. We propose to use a simple grid-file 
spatial indexing structure to index both the bounding boxes of 

point quadrants and the bounding boxes of polygons. Our 
approach converts the problem of comparing spatial 
relationships (e.g., intersection of bounding boxes) in spatial 
queries into a searching problem which can be efficiently 
implemented by integrating an in-house developed kernel with 
the vectorized binary search parallel primitive that is recently 
supported by the Thrust library in the CUDA SDK.  

As illustrated in Fig. 4, we first rasterize the bounding 
boxes of both the point quadrants and polygons using a uniform 
grid. Given a fixed grid cell size, the number of rows and the 
number of columns of the bounding boxes to be rasterized can 
be easily computed. If two bounding boxes overlap then they 
will have at least one common grid cell. To find all the polygons 
that a point quadrant intersects, for each grid cell of the 
bounding box of the point quadrant, we search the grid cell 
identifier in the rasterized grid cells of the bounding boxes of 
polygons. If there is match, then we pair the point quadrant and 
the polygon for further refinement in the next stage. Note that as 
a bounding box of a point quadrant usually has multiple grid 
cells and each grid cell is searched and matched independently, 
there will be (potentially a large number of) duplicates of the 
pairs of point quadrants and polygons. These duplicates need to 
be removed before the refinement phase. We have implemented 
this procedure by using a combination of binary_search and 
lower_bound primitives provided by Thrust. We refer to the 
appendix and Thrust documentation for details on these two 
parallel primitives. In the example show in Fig. 4, among the 12 
cells of Q1, two cells have successfully found the corresponding 
cells in the rasterized cells of the polygon bounding boxes (and 
we term it as “paired”). Similarly one cell in Q2 is paired with 
one cell in P1 and two cells in Q2 are paired with two cells in 
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P2. After applying the unique primitive (see the appendix for 
details if needed) we will obtain three pairs. After applying a 
sort primitive, we get two pairs (c.f. Section 3.1), i.e., (Q1,{P1}) 
and (Q2, {P1,P2}) and they are ready to be sent to GPU 
computing blocks for PIP tests. 

  
 
 
 
 
 
 
 
 
 
 
 

Fig. 4 Illustration of Grid-File based Spatial Join Filtering and 
its GPU implementation using Parallel Primitives 

While quite a few parallel primitives that are needed 
in this step have been provided by the Thrust library, such as 
vectorized binary search, unique and sort, we have found that it 
is difficult to rasterize bounding boxes using existing parallel 
primitives although it seems to be straightforward to split a 
rectangle into a set of squares and assign an identifier to each of 
the cells. As such, we have developed a simple CUDA kernel 
for this purpose. Before launching the rasterization kernel, we 
apply an exclusive scan kernel to compute the starting positions 
of where each rasterized bounding box should begin to write out 
their grid cell identifiers on the vector of the total number of 
cells of the respective bounding boxes. The numbers can be 
easily calculated as the multiplications of the numbers of rows 
the numbers of columns of the respective bounding boxes. With 
all these input information, each thread is assigned to process a 
bounding box in parallel and write out the cell identifiers 
sequentially.   

3.5 Parallel PIP Test  
As discussed previously (c.f. Section 3.1 and Fig. 1), 

each (qid, {pid}) pair is assigned to a computing block to utilize 
the first level parallelism in GPGPU computing. Within a 
computing block, there are quite some parameters to be fine-
tuned to make full use of the fine-grained thread level 
parallelism on GPUs, such as determining number of threads per 
block, decisions on using shared memory and approaches to 
mitigate register variable pressure. In this subsection, we report 
our design and implementation of the parallel PIP test for all 
points in a quadrant and all the candidate polygons that are 
derived by the filtering phase.  

There are quite a few computational geometry 
algorithms for point in polygon test and we refer to [24] for a 
brief review. While PIP test algorithms that require 
preprocessing may obtain sub-linear complexity, algorithms that 
do not require preprocessing are usually simpler and more 
suitable for GPU implementation. In this study, we use the most 

popular ray crossing (ray intersection) algorithm with a 
complexity of O(n) where n is the number of edges of a 
polygon. The basic idea of the ray crossing algorithm is 
illustrated in Fig. 5. If a ray emanating from a test point crosses 
the boundary of a polygon odd times, it is inside a polygon 
otherwise outside a polygon. In this study, we have adopted the 
concise code provided by Randolph Franklin (listed in Fig. 5) 
and modified it to run on GPUs. We note that the open source 
GIS packages Java Topology Suit (JTS)10 and its C/C++ 
translation Geometry Engine - Open Source (GEOS)11 also have 
implemented a similar ray crossing algorithm for PIP test. 
GEOS has been integrated into PostGIS12/PostgreSQL13 to 
support PIP test in the form of the ST_Intersects function when 
the two inputs are point and polygon geometry objects, 
respectively. As such, it is fair to compare a parallel GPU 
implementation with a serial CPU implementation of the same 
algorithm.  

 
 
 
 
 
 
 
 

Fig. 5 Illustration and Code Segment of Ray Crossing based 
Point-in-Polygon Test (see 14 for more details) 
We have adopted a simple thread level parallelization 

schema within a computing block, i.e., each thread is 
responsible for testing whether it is within the paired polygons. 
The simple design has two advantages with respect to GPU 
device memory access. First, as points are stored consecutively 
in their coordinate arrays (c.f. Section 3.2), neighboring threads 
will access consecutive memory addresses and the memory 
accesses are perfectly coalesced. Second, all threads will access 
the same polygon vertices which are also stored consecutively 
in their coordinate arrays. The GPU hardware is able to 
broadcast the requested vertex coordinates to all the requesting 
threads which significantly reduces memory access costs. While 
originally we had planned to use GPU shared memory to store 
both coordinates of points in a quadrant and polygon vertices, as 
GPU device memory accesses are already optimized, using 
shared memory actually decreases performance due to 
synchronization costs which is necessary after having threads 
collaboratively load data from device memory to shared 
memory. Not using shared memory will also improve scalability 
as the numbers of points and polygons that can be assigned to a 
computing block is not limited by shared memory sizes any 
more. If the number of points assigned to a computing block 
exceeds the number of threads that is allowed by a computing 
block, the points can be divided into chunks and simply have 
threads loop through the chunks.  

While shared memory is not a limiting factor in our 
design and implementation, we have found that the limited 
number of register files available to a thread becomes a 
bottleneck. Due to the complexity of the algorithm, we can not 
reduce the number of registers used by a thread to below 44, 

Q1

Q2 

P1 

P2 

Q1 Q2 

P1 P2 

Binary 
Search 

Q2 
P1 

Q1
P1

Q2
P2

Q1
P1

Q2
P2

Q1 
P1 

Q2 
P1 

Q2 
P2 

Unique Q1 
P1 

Q1 
P1 

Q2 
P1 

Q2 
P2 

Q2 
P2 

Sort 
int pnpoly(int npol, float *xp, float *yp, float x, float y) 
{ 
      int i, j, c = 0; 
      for (i = 0, j = npol-1; i < npol; j = i++) { 
        if ((((yp[i] <= y) && (y < yp[j])) || 
             ((yp[j] <= y) && (y < yp[i]))) && 
            (x < (xp[j] - xp[i]) * (y - yp[i]) / (yp[j] - yp[i]) + xp[i])) 
          c = !c; 
      } 
      return c; 
}



 

 

which is more than the number of registers allowed when a SM 
is fully utilized under CUDA compute capability 2.0 
(32768/1024=32). As reported in the experiment section, we 
have found that using 256 threads per block seems to achieve 
the best performance for a quadrant size K=512. We expect the 
register pressure will be reduced under compute capability 3.0 
where each thread is allowed to use 65536/1024=64 register 
variables when a SM is fully utilized. Another option to try is to 
allow register spilling which requires more careful design to 
improve the overall performance.  

4. EXPERIMENTS 
4.1 Data and Experiment Setup 

Through a partnership with the New York City (NYC) 
Taxi and Limousine Commission (TLC), we have access to 
roughly 300 million GPS-based trip records in about two years 
(2008-2010). Each taxi trip has a GPS recorded pickup location 
and a drop-off location expressed as a pair of latitude and 
longitude. In this study, we use the approximately 170 million 
pickup locations in 2009 for experiments. The polygon data we 
use is the NYC Census 2000 dataset15. There are more than 40 
thousand census block polygons in NYC with more than 5 
million vertices. All experiments are performed on a Dell 
Precision T5400 workstation equipped with dual quadcore 
CPUs running at 2.26 GHZ with16 GB memory, a 500G hard 
drive and an Nvidia Quadra 6000 GPU device. The sustainable 
disk I/O speed is about 100 megabytes per second while the 
theoretical data transfer speed between the CPU and the GPU is 
4 gigabytes per second through a PCI-E card. We have set M, 
the maximum number of levels in point quadrant generation, to 
8 and each parent quadrant has 2l*2l=4*4=16 child quadrants 
with l = 2. With a cell size of 2 feet at the finest level, the whole 
NYC area is rasterized into a 2s*2s grid where s=l*M=16. As 
such, all quadrants can be identified by a 32-bit Morton code.  

We compare the GPU implementation with an 
optimized serial CPU implementation that we have developed 
previously based on leading open source geospatial packages. 
The serial CPU implementation uses libspatialindex16 to index 
polygon data by building an R-Tree and GDAL, which 
implicitly uses GEOS, to perform PIP test. While we could have 
also built an R-Tree for the point locations by treating the points 
as bounding boxes, given the large number of points, it is very 
costly to index the point data using R-Tree indexing. In 
addition, coordinating the two index structures to perform the 
spatial join is non-trivial and is beyond the scope of this 
research. As such, the CPU implementation queries each point 
against the indexed polygons. If the point falls within any of the 
bounding boxes of polygons, the polygon identifiers will be 
returned for refinement. It is clear that, while the polygons do 
not spatially overlap, their bounding boxes can overlap and a 
point query may return multiple polygons for PIP test in the 
refinement phase. The CPU implementation performs the PIP 
test for each of the polygons in the query result set and breaks if 
any of the PIP test returns true.  

Our GPU implementation has several parameters to 
set. The first parameter is K, the maximum number of points in 
a quadrant and the second parameter is the number of threads 
per computing block (N). In this section, we will first report the 
best results in Section 4.2. We then provide the experiment 

results on generating point quadrants in Section 4.3 as it is the 
most time consuming component in the whole process. In 
Section 4.4, we vary both N and K and report their impacts on 
the overall performance.  

4.2 Overall Experiment Results 
The best performance of our GPU implementation is 

achieved with K=512 and N=256 with a total end-to-end 
runtime of 11.165 seconds. In contrast, the serial CPU 
implementation takes 54,819 seconds (15.223 hours). As such, a 
significant speedup of 4,910X has been achieved. Note that we 
have not included the disk I/O times to load the points and 
polygons as this is a one-time cost and is not directly related to 
the spatial join. Furthermore, as discussed before, these data are 
stored as binary files on disk. With a sustainable disk I/O speed 
of 100 MB per second, the point and polygon data can be 
streamed into CPU main memory in about 15 seconds. Since the 
disk I/O time is comparable to the spatial join time, even if the 
disk I/O times are included, the order of speedup will not be 
changed.   

We attribute the 3-4 orders of improvements to the 
following factors. First, all the point, polygon and auxiliary data 
are memory resident in our GPU implementation. In contrast, 
the open source GIS packages are designed to be disk resident 
and data and indices are brought to CPU memory dynamically. 
While the sophisticated design is necessary for old generations 
of hardware with very limited CPU memory, current commodity 
computers typically have tens of gigabytes of CPU memory 
which renders the sophisticated design inefficient. We also have 
observed that the open source packages use dynamic memory 
and pointers extensively which can result in signficant cache 
misses. Second, in our GPU implementation, we have divided 
points into quadrants before we query against the polygons in 
the filtering phase using a GPU based grid file indexing 
structure (i.e., collective query). In the serial CPU 
implementation, each point queries against the polygon dataset 
individually. While the polygon dataset is indexed, each point 
query needs to travel from the root of R-Tree of the polygon 
dataset to leaf nodes which is quite costly. While not tested in 
this study, we expect querying the bounding boxes of points in 
quadrants, instead of querying the points individually, can 
potentially improve the serial CPU implementation. The 
improvement and the comparison are left for future work. Third, 
in addition to the improved floating point computation on 
GPUs, the massively data parallel GPU computing power is 
utilized for all phases of the spatial join process, including 
generating point quadrants, filtering quadrant-polygon pairs and 
PIP test in computing blocks.  

Before we provide more detailed results in the next 
two subsection, we would like to report that among the 11.165  
seconds end-to-end runtime for the point-to-polygon spatial 
join, the majority (8.170 seconds) is spent on generating point 
quadrants. The runtimes to rasterize bounding boxes of point 
quadrants and polygons are 0.469 and 0.640 second, 
respectively. The binary search and duplication removal take 
0.265 and 0.405 second, respectively. The PIP test kernel takes 
1.206 second which is only 10.8% of the total runtime. We note 
that the total runtime includes the data transfer time from CPU 
to GPU for both the point and polygon data (1.030 second).  



 

 

To further evaluate the performance of GPU-based 
PIP test, we have implemented the PIP test on a single CPU core 
using the in-memory data structures. The runtime is 22.924 
seconds and a speedup of 19X (22.924/1.206) has been achieved 
by GPU acceleration alone on PIP test. By separating GPU 
acceleration from the overall speedup, we can see that the in-
memory data structures and algorithmic improvement (e.g., 
collective query) also play key roles in achieving the high-
performance.  

4.3 Results on Generating Point Quadrants 
 As discussed in Section 3.3, the modules in 

generating point quadrants are implemented on top of the Thrust 
parallel library. Each of the steps listed in Fig. 2 (except Step 
10) corresponds to a call to the respective parallel primitive. 
Since this is the most time consuming step in the whole process, 
to better understand the distributions of computing workloads, 
the runtimes of the step groups are listed in Table 1. We have 

not included the runtimes for processing last level (steps 11/12) 
as they are negligibly small. From the table, we can see that the 
majority of the times are spent on point sorting and shuffling. 
From the 6th and 7th rows of Table 1, we can see that the 
majority of the quadrants/points are identified at level 6 and 7 
where the quadrant sizes are 8*8 and 4*4 feet, respectively. This 
is understandable as the majority of taxi pickup locations are 
clustered at the street intersections, especially in the midtown 
and downtown Manhattan area. For the quadrants identified at 
the higher levels, they will have larger bounding boxes and are 
likely to intersect with more polygons based on our filtering 
algorithm. Using a smaller K will reduce the number of such big 
quadrants to improve the pruning power and improve the PIP 
test performance in the refinement phase. On the other hand, 
using a small K will increase the number of quadrants. This in 
turn will increase the time to generate the quadrants due to the 
fact that more sorting work is needed to put points in smaller 
quadrants. 

Table 1 Runtimes of Steps in Generating Point Quadrants of 8 Levels (milliseconds) 
Quadrant Level 1 2 3 4 5 6 7 8 

1 Point Transformation time (Step 1) 26.14 25.65 34.77 34.72 34.67 33.75 27.19 2.23 
2 Point Sorting (Key-Value) time (Step 2) 281.80 336.12 494.54 514.75 513.23 546.00 526.84 47.35 
3 Key Reducing Time (Step 3)  71.83 71.87 73.24 72.96 73.62 74.36 63.37 6.44 
4 Quadrant Identifying Time (Steps 4, 5, 6) 95.27 95.50 94.53 95.98 94.08 93.30 78.39 8.99 
5 Point shuffling Time (Steps 7, 8, 9) 246.48 248.17 259.06 263.09 261.98 269.61 271.70 26.05 
6 # of identified points 0 15955 291,342 1,351,989 3,546,982 30,510,995 120,775,838 11,551,455 
7 # of identified quadrants 0 73 1,938 12,350 36,653 225081 1,250,597 219,730 
8 Bounding box derivation time (Steps 13/14) 651.78 
 

  

4.4 Impacts of Quadrant Point sizes and 
Threads Numbers  

To further discuss the impacts of the quadrant point 
sizes (K) and threads numbers (N) on the performance, we have 
varied K from 256 to 1280 while fixing N to 256. We have also 
varied N from 64 to 704 while fixing K to 512. The results are 
plotted in Fig. 6 and Fig.7, respectively. Note that “query” time 
in Fig. 6 refers to pairing point quadrants and polygons, 
including binary search and duplication removal times as 
discussed in Section 3.4. The “total” refers to the sum of the 
“query” time and the PIP test time in the refinement phase. We 
have not included the quadrant generation time in Fig. 6 as here 
we are concerned with the tradeoff between the filtering phase 
and the refinement phase in a spatial join (conceptually the 
quadrant generation is considered as part of indexing).  

From Fig. 6 we can see that, as the maximum number 
of points in quadrants (K) increases, the query times decrease 
slightly while the PIP test time reaches the minimum at K=512. 
The query time decreases as K increase can be explained that 
both the number of point quadrants and the number of the 
resulting filtered pairs decrease as K increases and thus less 
computing is needed in the filtering phase (“query”). As 
discussed previously, a smaller K will result in smaller bounding 
boxes which may improve the filtering power (fewer false 
positives) and can potentially reduce the number of PIP test in 
the refinement phase. On the other hand, a small K will also 
increase the number of quadrants. As each quadrant is assigned 
to a computing block, the overhead of launching computing 

blocks may increase and can potentially overshadow the 
benefits of the increased filtering power. The results in Fig. 6 
show that K=512 provides a good tradeoff 

 
 
 
 
 
 

Fig. 6 Variations of Spatial Join Runtimes for 
Different K Sizes 

. 
From Fig. 7 we can see that as the number of threads 

(N) increase, the runtime for the PIP test in the refinement phase 
decreases until N=256 before the runtime increases again. Fig 7 
also shows a spike of bad performance when N=384. As 
discussed in Section 3.5, the implementation is limited by the 
number of register files that can be used by a computing block. 
When N is small, while a SM can accommodate more blocks 
(but 8 or lower in compute capability 2.0), the threads in a SM 
is underutilized and the performance is not maximized. As N 
increases, the occupancy rate gets higher and the performance 
gets better until N=256 where two computing blocks are 
accommodated in a SM (three block would require more than 
32K registers) and the occupancy rate is 33%. Although 
increasing N to 352 will increase the occupancy rate to 46%, 
since 352 does not divide K=512, 160 out of the 352 threads will 



 

 

be idle in the second round of processing the points (c.f. Section 
3.5), the performance gets worse. When N is increased to 384, 
only one computing block can be accommodated in a SM and, 
similar to N=352, a considerable portion of threads are idle in 
the second round, the worst performance is observed (the spike 
in Fig. 7). When N reaches 512 and above, although still only 
one computing block can be accommodated in a SM, only one 
loop is needed for the N threads to process the K=512 points and 
the performance remains the same.  

 
 
 
 
 
 

Fig. 7 Variations of PIP Test Runtimes for Different Numbers of 
Threads in a Computing Block 

5. CONCLUSION AND FUTURE WORK 
In this study, we have reported our design and 

implementation of a point-in-polygon test based spatial join 
technique on large-scale data which is a fundamental operation 
in spatial databases and GIS. The high-performance system 
based on the technique can help understand the interactions 
between people and place more effectively when applied to 
processing large-scale ubiquitous urban sensing data such as 
GPS recorded pickup and drop off locations of taxi trip records. 
Experiments have shown that, with a combination of in-memory 
data structures, algorithm improvement and parallel 
accelerations on GPU hardware, we have achieved 3-4 orders of 
speedup when compared to a baseline serial CPU 
implementation on top of the state-of-the-art open source GIS 
packages.  

For future work, first of all, we would like to analyze 
the potential of further performance improvements. The kernels 
we have developed can be optimized in terms of load balancing 
and algorithmic engineering. Second, we plan to further 
quantify the relative contributions of the performance boosting 
factors and provide insights on adapting traditional SDB and 
GIS to modern hardware architectures, including large memory, 
deep cache hierarchy and parallel processors. Finally, we would 
like to expand the PIP test based spatial join framework to other 
types of spatial joins, such as distance based nearest neighbor.  
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