
Constructing Natural Neighbor Interpolation
Based Grid DEM Using CUDA

Simin You
Dept. of Computer Science

CUNY Graduate Center
New York, NY, 10016
syou@gc.cuny.edu

Jianting Zhang
Dept. of Computer Science
City College of New York

New York, NY, 10031
jzhang@cs.ccny.cuny.edu

Abstract
Constructing digitial elevation model(DEM) from dense LiDAR
points becomes increasingly important. Natural Neighbor Inter-
polation (NNI) is a popular approach to DEM construction from
point datasets but is computationally intensive. In this study, we
present a set of General Purpose computing Graphics Processing
Unit(GPGPU) based algorithms that can significant speed up the
process. Evaluating three real world LiDAR datasets each contains
6~7 million points shows that our CUDA based implementation on
a NVIDIA GTX 480 GPU card is 1-2 orders faster than the current
state-of-the-art.

Categories and Subject Descriptors D.2 [Software]: Software
Engineering; H.2.8 [Database Management]: Database Applications—
Data mining, Image databases, Spatial databases and GIS; I.3.1
[Computer Graphics]: Hardware Architecture—Graphics proces-
sors

General Terms Algorithms, Performance, Design

Keywords GIS, LiDAR, DEM, Natural Neighbor Interpolation,
Voronoi Diagram, GPU, CUDA

1. Introduction
Light Detection And Ranging (LiDAR) technologies are widely
used in many applications recently, such as terrain reconstruction
and 3D modeling. Generally a LiDAR device collects data by scan-
ning target objects with ultra-wave, laser or other light sources.
Each scan generates a set of points with coordinates and other re-
lated information. The points of scanning are usually very dense
and they are referred as point clouds. However, unstructured point
clouds are not suitable for visualization and analysis in geograph-
ical applications. As such, Digital Elevation Models (DEM) need
to be generated based on the scanned points through interpolations.
The resulting DEMs are usually represented as raster grids where a
height value (elevation) is associated with each grid cell.

To construct a grid based DEM for LiDAR dataset, Natural
Neighbor Interpolation, or NNI,[13] is widely used for achieving
better visual quality. A NNI process usually havs two steps: 1) gen-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Copyright c© ACM [to be supplied]. . . $10.00

erating a Voronoi diagram from a LiDAR point cloud. 2) perform-
ing grid queries on the resulting Voronoi diagram to derive a DEM.
These two steps, especially for Voronoi diagram generation, could
be computational intensive. In order to speed up the process, GPU
based hardware accelerations can be adopted to parallelize both
Voronoi diagram generation and grid queries as reported in[1, 2]

While previous works on GPU-accelerated NNI process are
based on the traditional graphics APIs, in this study, we report our
work on accelerating NNI process using GPGPU technologies, i.e.,
using GPU for general purpose computing. More specifically, we
use NVIDIA Compute Unified Device Architecture (CUDA)1 to
program GPUs. Our approach is motivated by an efficient Voronoi
diagram generation algorithm called Parallel Banding Algorithm
(PBA) [3] but adopts a new parallelization desgin where well-
established parallel primitives can be applied. Compared to Ter-
raNNI, our approach is nearly an order faster in generating Voronoi
diagrams and nearly two orders better in constructing grid DEMs.
Furthermore, our approach does not require GPU hardware context
which is more suitable for execution in a client-server environment.
Compared to the original PBA implementation, our implementation
is simpler and more portable while has a comparable performance.

The rest of the paper is organized as follows. Section 2 intro-
duces CUDA background and related work on Voronoi diagram
and NNI based grid DEM construction. Section 3 describes our pro-
posed approach to generating Voronoi diagram and performing grid
query for DEM construction based on GPGPUs. Section 4 provides
implementation and experiment results on three real world datasets.
Finally, Section 5 concludes the paper and briefly discusses future
work directions.

2. Background and Related Work
2.1 GPGPU and CUDA
Graphics processing units(GPUs) are primarily designed for graph-
ics applications such 3D games, and usually consist of very large
amount of processors(i.e., GeForce GTX 480 has 480 cores). Mod-
ern computers and large clusters nowadays are equipped with GPUs
to achieve higher performance. For example, in the list of Top 500
supercomputers2, more and more supercomputers used GPUs to in-
crease the floating-point operations per second(FLOPS). GPUs also
provide personal workstations great performance improvements in
very low price. For instance, a single GeForce GTX 480 GPU has a
peek performance of 1.35 TeraFLOPS at the price of a several hun-
dreds of U.S dollars currently. Zhang et al [14] discussed the advan-
tages of GPU technology and proposed a framework of using GPUs

1 CUDA: http://www.nvidia.com/object/cuda_home_new.html
2 List of top 500 supercomputers: http://top500.org/

in high performance personal workstation in the context of geospa-
tial computing. Although GPUs were designed as co-processors for
graphics applications where they could only be accessed though
graphics APIs (such as OpenGL3), modern GPUs have increas-
ing support for general computations and can be manipulated us-
ing general programming languages such as C/C++. General Pur-
pose Graphics Processing Units(GPGPUs) refer to GPU devices
with general computing capabilities.

The Compute Unified Device Architecture (CUDA) from NVIDIA
is a SDK and API for GPGPU programming. In CUDA program-
ming model, there are three levels of execution units, i.e.,thread,
block, and grid. Multiple threads are grouped together into blocks,
where the threads in the same block can execute in parallel on
Streaming Multiprocessors(SMs) and can access fast and shared
block memory called shared memory. The highest level execute
unit is called grid which consists of multiple blocks. A grid is a
conceptual mapping of a CUDA function called kernel which can
be invoked by CPUs. GPUs and CPUs have quite different hard-
ware architectures. For CUDA-enabled GPUs, while a CPU core
can only launch a small number of threads (usually 1 or 2), a GPU
SM can simultaneously launch tens of thousands of threads. Unlike
CPUs which can have very large, universally addressable memo-
ries and memories are organized into multiple levels of hierarchies,
CUDA-enabled GPUs usually have a relatively large global mem-
ory (in the order of a few gigabytes) that can be accessed by all
threads but a very small block level shared memory (in the order of
a few kilobytes) that can only be accessed by threads within a block.
While multi-level caching in CPUs is transparent to programmers,
due to the speed gap (in the order of 100X) between accessing
global memory and accessing shared memory, it is very important
for developers to make full use of shared memory to achieve de-
sired performance. It is also very important to balance between
different GPU hardware resources in blocks including number of
threads,shared memory and registers, to achieve maximum degree
of parallelization. Because of the differences, a naive translation
of a CPU based serial implementation into a GPU implementation
usually results in poor performance. Despite tools are emerging to
make CUDA based parallel programming easier, it remains non-
trivial to design and implement parallel algorithms and implement
them in CUDA.

2.2 Voronoi Diagram
Voronoi diagram is spatial decomposition of a given space based
on a given set of points using a distance metric. In this paper, we
consider 2D Voronoi diagrams. Given a 2D space R2 and a set of
points S = {p1...pn} (also called Voronoi sites), the space can
be divided into a set of subspaces VorS(p) for each p ∈ S. The
subspace, denoted as Voronoi cell, is defined as

Vor(p) = {x ∈ R2 | dist(x, p) < dist(x, q), ∀q ∈ S}

where dist is Euclidean distance metric. By using a Voronoi dia-
gram, given any point in the 2D space, we can find its nearest site
by simply look up which Voronoi cell it belongs to. In practice,
the 2D space is discretized into pixel representation, i.e., a matrix.
The Voronoi diagram for such a 2D plane is a matrix where each
element(pixel) is assigned to its corresponding Voronoi site. In this
paper, we generally refer 2D discrete Voronoi diagram as Voronoi
diagram when the context is clear.

The naive approach to generating a Voronoi diagram can be se-
quentially scanning the whole space and comparing the distances in
each pixel to all the sites. The naive approach will compute a plane
inO(S(N−S)) where S is the size of input sites andN is number
of pixels in the plane. Fabbri et al. [4] reviewed and compared many

3 http://www.opengl.org/

state-of-the-art algorithms for Voronoi diagram computation. In or-
der to further accelerate the process, GPU techniques are adopted
in many works[3, 7, 10, 11]. A very early attempt was done by
Hoff et al.[7]. They proposed a GPU based algorithm to compute
Voronoi diagram using graphics APIs. For each input site, they ren-
dered a right-angle cone in the image at a higher dimension and
then projected back the rendering results. The distance test for each
pixel was then performed using depth-testing provided by graphics
APIs. In this approach, a 2D Voronoi diagram can be generated by
rendering a 3D scene. Recent works[3, 10, 11] took advantage of
general purpose GPUs that do not require a graphics context and
achieved higher performance. Among those solutions, PBA[3] is
an efficient design and implementation on GPGPUs using CUDA.
PBA achieved linear computation time by using a dimensionality
reduction approach and is able to compute exact Voronoi diagrams
instead of approximate ones without losing performance.

2.3 Natural Neighbor Interpolation
Natural neighbor interpolation is a widely used spatial interpola-
tion developed by [13]. Works reported in [1, 2, 5] discussed dis-
crete and pixel based NNI in a 2D plane. The calculation of natural
neighbor interpolation is based on a set of input points(sites) and
their corresponding Voronoi diagram. The formal definition of nat-
ural neighbor interpolation is as follows, given a query point q in
space R2, and a finite set of points S in R2 which are natural neigh-
bors of q. Then natural neighbor interpolation query on q is defined
as

v(q) =
∑
p∈S

wpv(p)

wherewp is the weight of p, v is the value of corresponding point(in
our case is elevation value). Considering 2D discrete space, the
weight of p for a given query point q can be calculated from

wp(q) =
Area(VorS(p) ∩VorS∪{q}(q))

Area(VorS∪{q}(q))

where Vor is the Voronoi diagram based on the input sites, and
Area is the area of Voronoi cell. So wp actually represents the
“steal” portion from p’s Voronoi cell to form the query point q’s
Voronoi cell. In the 2D discrete case where the space are repre-
sented as pixels, the continous space R2 can be simplified into pixel
space Z2. The interpolation value for a query point q can then be
further simplified as

v(q) =

∑
c∈VorS∪{q}(q)

v(Site(c))

Count(VorS∪{q}(q))

where c is a pixel in q’s Voronoi cell in the new Voronoi diagram,
Site(c) is site of original Voronoi diagram at c, and Count out-
puts number of pixels for the input Voronoi cell. The interpolation
computation now could be simplified as summing up height values
of pixels and counting number of pixels for the Voronoi cell of q.

2.4 Related Works on NNI-based DEM Generation
As we discussed in Section 1, most GIS applications do not use
points directly generated from LiDAR scanners. Instead of visu-
alizing dense point cloud for the terrain surface, most GIS appli-
cations tend to use a raster representation called digital elevation
model(DEM). DEMs are better for analysis and visualization and
many spatial interpolation techniques have been used for gener-
ating DEMs. Mitas et al.[8] reviewed different spatial interpola-
tion techniques. The linear interpolation is efficient but the visual
quality is not good. On the contrary, Regularized Splines with Ten-
sion(RST) is well known to provide good quality but requires ex-
tensive computation. In order to produce better visual quality with-
out suffering from the heavy computation overheads, Fan et al.[5]

proposed GPU assisted DEM construction using natural neighbor
interpolation. The process of natural neighbor interpolation is ac-
celerated by adopting GPU based Voronoi diagram generation pro-
posed by Hoff et al[7]. Later, Beutel et al. [1, 2] extended the work
of Fan et al. Their approach, termed as TerraNNI, used similar idea
of Voronoi diagram generation used in [7]. The approach intro-
duced region of influence for input sites which can handle gaps
without adding pre-processing or post-processing steps. In addi-
tion, their approach improved performance of grid point interpo-
lation by advanced the idea of batch queries used in [5]. How-
ever, their implementation still requires a graphics hardware con-
text for the computation and additional post-processing step which
they called BufferAnalysis for generating the final grid DEM. Un-
like TerraNNI, our NNI implementation use CUDA directly which
do not require graphics hardware contexts. This not only makes it
more suitable for client-server based computing, where graphics
hardware contexts are usually directly accessible to clients,but also
significantly reduces data transfer between CPUs and GPUs due
to graphics API invocations. We next present our designs of the
Voronoi diagram generation and grid query algorithms on CUDA-
enabled GPUs in the following two sections. Implementation de-
tails and experimental results are provided in Section 5.

3. Proposed Approach
Our proposed approach to DEM construction based on NNI has two
components. The first component is to generate discrete Voronoi
diagrams from LiDAR points using a raster representation and the
second component is to query the Voronoi diagrams for each grid
pixel and generate a DEM. During the process of generating a
Voronoi diagram, the original LiDAR points are first rasterized into
grid pixels, i.e., site pixels will have values of their coordinate in-
dices and non-site pixels will be assigned to a special predefined
value. Motivated by the good performance of PBA, we also adopt
dimensionality reduction approach[3, 4] to generate Voronoi dia-
grams. Our approach has two steps: 1) Computing 1D Voronoi di-
agrams for all rows in the rasterized grid. 2) Assigning values for
each column in a 2D Voronoi diagram using 1D Voronoi diagrams
obtained from step 1. We next introduce our designs for the two
steps as well as the grid query algorithm.

3.1 1D Voronoi Diagram
The Voronoi diagram for all the site pixels in a row is considered
as a 1D Voronoi diagram. 1D Voronoi diagrams for all rows are
processed in parallel and independently. Our design uses paral-
lel scan primitives to generate 1D Voronoi diagrams. We believe
using primitives can significantly reduce the design complexities
and make implementations more portable. Furthermore, optimizing
primitives naturally improves the efficiency of the implementations
based on the primitives. Similarly, the implementations can be eas-
ily ported to other computing platforms that support the primitives.

To generate a 1D Voronoi diagram for each row, each pixel
in the row needs to be assigned by its nearest site in its corre-
sponding row. It is easy to see that the nearest site for a pixel in
a 1D Voronoi Diagram is either the right-most site to its left (or
left nearest site) or the left-most site to its right (or right nearest
site). This step can be divided into two parallel scans, termed as
left_scan and right_scan. The left_scan finds the left nearest site
for each pixel and right_scan searches for the right nearest site
for each pixel. The Voronoi site for each pixel can be derived by
comparing the distances from the pixel to its left and right nearest
sites. Suppose a pixel is pi,j where (i, j) is the index of current
pixel, then its left nearest site Si,left[j] = left_scan(pi,0...pi,j)
and right nearest site Si,right[j] = right_scan(pi,j ...pi,0). By
obtaining pi,j’s left and right nearest sites, the pixel can be as-
signed by min_by_dist(pi,j ,Si,left[j],Si,right[j]), where opera-

Algorithm 1 1D Voronoi diagram
foreach row i do
Si,left ← left_scan(pi,0...pi,n)
Si,right ← right_scan(pi,n...pi,0)
foreach pixel j do

output[i, j]←(i,min_by_dist(pi,j ,Si,left[j],Si,right[j]))
end

end

tor min_by_dist returns the site which is closer to current pixel pi,j
using Euclidean distance metric. The implementation of left_scan
and right_scan can be directly derived from GPU parallel scan
with minor modifications. More specifically, in the row based 1D
Voronoi diagram where indices for pixels at each row is increas-
ing from left to right, the left_scan is actually the maximum in-
dex of all sites appears before pixel pi,j on row i. In such case,
we can set non-site pixels’ column indices to a special negative
value(MIN_MARKER) and then perform a scan on these values us-
ing operator MAX. On the other hand, the right_scan can be thought
as the reversed scan using operator MIN and non-site pixels’ col-
umn indices can be set to a large positive value(MAX_MARKER).
The reversed scan can be realized by reversing the order of data
layout in a regular scan. The 1D Voronoi diagram generation algo-
rithm is shown in Algorithm 1. The work efficient parallel prefix
scan on the GPU[12] can be adapted for the two scans.

3.2 Column Assignment
The column assignment step is to compute the final 2D Voronoi di-
agram based on 1D Voronoi diagram. Different from the first step
that works on rows, this step works on columns. As discussed in
PBA[3], the results of each column in the 1D Voronoi diagram
generated in previous step are the candidates for column assign-
ment.In PBA, candidate sets are maintained and pruned in a stack
using doubly linked list. In contrast, instead of using complex data
structures, our design works on pixels using parallel scans directly.
We further divide the column assignment into two phases. The first
phase is to generate a set of candidate sites for each column. And
the second phase is to assign each pixel with its corresponding 2D
Voronoi site coordinate using candidate set of each column.

Since columns are independent to each other, without losing
generality we only consider one-column case. Assuming we are
working on column Cj , and Vj is the candidate set of nearest
Voronoi sites for the column Cj . A set of nearest sites(Vj) is a
candidate set of nearest Voronoi sites for the column Cj if ∀c ∈
Cj , Site(c) ∈ Vj , where Site(c) is c’s corresponding Voronoi
site. Initially, Vj contains all the values in column j of 1D Voronoi
diagram generated from the previous step. In this case, there might
be some sites in Vj which are not Voronoi sites for any elements in
the column. In other words, those sites which are not Voronoi sites
for column Cj and can be removed from Vj without breaking the
definition of Vj . We call a candidate set as final when no more sites
can be removed from the set. The final candidate set for column
j will be Vfinal

j , which holds the property that for any point pi,j
in column j and row i, there exists a unique element v ∈ Vfinal

j

such that dist(v, pi,j) < dist(s, pi,j) where s is any Voronoi
site except v and dist is Euclidean distance in this application. We
denote the process of generating Vfinal

j from Vj as candidate set
pruning. Before introducing our design for this step, we first show
two properties that are used in our design.

Property 1. Suppose three sites si(xi, yi), sj(xj, yj) and
sk(xk, yk) with yi < yj < yk hold the relationship that
bisector(si, sj)y=c > bisector(sj , sk)y=c, where bisector(a, b)

is the intersection point4 for perpendicular bisector of point a and
b at column c, then sj can be pruned by si and sk at column
c. This property we used is from [3]. For each site in the set of
nearest sites, a pair of intersection y coordinates could be calcu-
lated using its left and right neighbor sites. We define the pair of
intersection points as intersection interval for the corresponding
site. And the intersection point between two sites si(xi, yi) and
sj(xj , yj) can be calculated by (yi+yj)

2
− xj−xi

yj−yi
· (xj − xi+xj

2
).

By introducing the concept of intersection interval, a site can be
determined to prunable by comparing values in its corresponding
intersection interval. For instance, if the intersection interval for
site sj is (ym, yn) where ym < yn, then sj can be pruned by si
and sk, otherwise sj is not prunable. Figure 1 is an illustration of
this property.

b

b

b

b

b

b

b

si(xi, yi)

sj(xj , yj)

sk(xk, yk)

ym

yn

x

y

Figure 1. sj is pruned by si and sk. The intersection interval of sj
is (ym, yn).

Property 2. All the intersection points of the final candidate
sites set Vfinal

j for column Cj are non-decreasing order with re-
spect of increasing row indices. This property can be proved by
contradiction. Assuming there exists an intersection point p for
Vfinal
j which breaks the property of non-decreasing order, and the

corresponding site of p is S. Then for S, its intersection interval
should be (p, q) where q < p. Obviously, S can be pruned by its
left and right neighbor using the Property 1 which leads to contra-
diction that Vfinal

j is final.
Inspired by Property 2, we have designed an iterative algorithm

to prune the candidate set. In each iteration, we prune sites that do
not hold Property 1 by calculating and checking the intersection
interval. Property 1 specified in [3] provides an efficient approach
only requires local neighbor information to prune a site from can-
didate site. Property 2 guarantees that the iteration is terminated in
finite steps and at least one site can be pruned at one iteration. So
for a candidate set with size N , the final candidate set can be ob-
tained at mostN iterations. Since each site’s intersection interval is
only relying on its left and right neighbor, the intersection intervals
for all sites can be calculated in parallel. The calculation of inter-
section interval is introduced in Property 1 and denoted as interval.
After checking the intersection intervals, we will know whether a
site can be pruned or not. In order to keep track of this information,
we use a flag array to represent the pruning status (0 for pruning
and 1 for keeping) for the corresponding sites. With the help of flag
array, the sites can be compacted by performing prefix sum on the
flags. The whole algorithm is listed in Algorithm 2. left and right

4 Since the whole column will have the same x coordinate, the intersect
point will be represented by its y coordinate in our context.

Algorithm 2 Iterative Pruning
foreach column Cj do
Viter
j ←Vj num_sites←size(Viter

j)
repeat

foreach site s(xcurrent, ycurrent) in Viter
j do

(p, q)←interval(sleft, scurrent, sright)
if p < q then

flag[current]←1
else

flag[current]←0
end
index← parallel-prefix-sum(flag)
foreach site s(xcurrent, ycurrent) in Viter

j do
if flag[current] = 1 then
Viter
j [index]← Viter

j [current]
end

end
num_sites←size(Viter

j)
end

until num_sites does not change;
Vfinal
j ←Viter

j

end

Algorithm 3 Parallel Assignment
foreach column Cj do

foreach site v in Vfinal
j do

(start, end)←interval(v)
for index from start to end do

output[index]←v
end

end
end

functions are used for get left and right neighbors for the target site.
The interval accepts three sites and produces the intersection inter-
val for the center site. During the iteration, number of sites in Viter

j

is updated in order to terminate the loop.
The last phase is to assign sites for each pixel. We keep inter-

section intervals for last iteration in previous phase, so each site
in Vfinal

j will be associated with an interval (ym, yn). With this
information, we can located the corresponding pixels using the in-
terval directly which leads to the parallel assignment algorithm in
Algorithm 3.

3.3 Grid DEM Construction
Our grid DEM construction is based on natural neighbor interpola-
tion for each grid point. We term the process of assigning value for
each grid point as grid query. LiDAR instruments produce dense
point cloud and elevation value for most locations. However, some
objects such as lake can not be scanned by LiDAR devices(no el-
evation value will be returned). In order to take account of quality
of the final DEM, we should also consider the gaps in the original
data. As discussed in [1], these gaps are marked as “NO_DATA“.
Varies of methods can be used for processing these gaps, either in
pre-processing, post-processing or during the interpolation. In our
report, we use the same notation region of influence for input sites
introduced by [1], which can handle gaps without additional pre-
processing or post-processing. For a query point, the interpolation
only uses the sites whose radius contain the query point. Similar to

Algorithm 4 Grid DEM construction based on NNI
foreach query point q do

sum←0 count←0
foreach pixel p in circle(q, rquery) do

if dist(q, site(p)) < rsite and p ∈ Vor(q) then
sum←sum + v(p)
count←count + 1

end
if count > 0 then

output[q]←sum/count
else

output[q]←NO_DATA
end

end
end

TerraNNI, we also restrict the influence size of query points using
query radius.

Different from previous works that rely on rendering scenes on
GPUs using graphics API to determine neighboring Voronoi sites
for query points before the interpolation [1, 2], our design on grid
query loops through the pixels within the query radius of the query
points directly. As listed in Algorithm 4, our interpolation for the
grid DEM construction uses only one single function which can be
realized in one CUDA kernel. rquery and rsite are parameters for
query radius and site influence radius in the algorithm. The condi-
tion p ∈ Vor(q) in the algorithm can be implemented by comparing
distance of p and its Voronoi site and distance of p and q. Actually,
the calculation of condition p ∈ Vor(q) is mathematically equiva-
lent to draw the query cone in TerraNNI.

4. Implementation and Experiments
4.1 Implementation Details
Implementing the 1D Voronoi diagram algorithm on CUDA ex-
ploits two levels parallelism: rows are mapped to CUDA comput-
ing blocks and pixels within rows are mapped to CUDA threads.
We have adapted a parallel scan implementation from Thrust[6]
codebase for our implementation but other work efficient parallel
scan implementations [12] can also be used. Directly derived from
the Algorithm 1, our implementation contains two kernels each for
a scan. For both kernels, we use number of rows as the number of
blocks, and each block use 1024 threads. The parallel scan for a
row is inside a block, so if the length of the row is larger than 1024,
then the row will be grouped by size of 1024 and processed by
1024 threads serially. The comparison in the last step for the final
output in Section 3.1 is combined with the second scan to reduce
the overhead of lunching a new kernel.

Similar to 1D Voronoi diagram generation, we use one CUDA
block for each column in the first part of column assignment, i.e.,
iterative pruning. If the size of the candidate set at a column is
larger than the number of threads in the block (maximum 1024), a
loop is then used. We have also tried to use shared memory to speed
up accesses to GPU global memory in this phase but was not able
to significantly improve the performance which lead us to suspect
that the CUDA kernel for this step is computation bound rather
than I/O bound. The second part on parallel assignment is currently
implemented in a straightforward manner where each thread within
a block is responsible for assigning pixels in an interval. A more
load-balancing implementation (again using prefix sum for count-
then-write) is being developed.

The implementation for grid query is straightforward by assign-
ing each point query to a single thread. This step is obviously I/O
bound and the classical stencil technique is used to reduce data

b b b

b b

rquery

Figure 2. Grid Query

accesses to GPU global memory by using GPU shared memory.
As shows in Figure 2, five queries with query radius rquery are il-
lustrated in the figure. The shadow pixels are those which will be
used in multiple queries. Loading these pixels once in a memory-
coalesced manner to serve for multiple queries can significant im-
prove performance. However, the GPU shared memory is relatively
small(48KB per SM in our GPU) and thus the number of threads
in a block which can use the same shared memory relies on rquery .
As rquery increases, number of threads per block will decrease.
Not being able to fully utilize threads certainly will hurt the per-
formance. Since the number of threads per block(η) can be deter-
mined by a configuration of rquery and size of shared memory, we
propose using a threshold θ for number of threads per block to de-
termine whether to use shared memory or not. If η < θ, then using
shared memory will achieve good performance.

4.2 Performance
We have evaluated our design and implementation using real world
datasets and compared the results with those of TerraNNI. Our
experiment environment is a workstation equipped with two In-
tel Xeon X5650 CPUs at 2.67GHz and 24 GB internal memory.
The operating system for the machine is Windows 7 Professional
64-bit. We used NVIDIA GeForce GTX 480 graphics card running
on CUDA 4.0 as our GPU platform. GTX 480 has 15 multiproces-
sors(480 CUDA cores in total), 1.4 GHz clock speed, 1.5 GB global
memory and 48 KB shared memory per multiprocessor. According
to the manual[9], GTX 480 can accommodate up to 8 active thread
blocks per multiprocessor(or up to 1536 active threads / 48 active
warps per multiprocessor), and each computing block can have up
to 1024 threads. CUDA computing compatibility 2.0 with O2 opti-
mization are used.

To evauate the performance of our design and implementation,
we have downloaded three LiDAR datasets collected by Florida
Division of Emergency Management Coastal LIDAR Mapping
Project5. We set the output grid size to 5000 × 5000, the influ-
ence radius of sites to 10, scale size to 1 and the query radius to 3
for all the experiments. As a comparison, we also tested the same
datasets using the same parameters on TerraNNI6. For TerraNNI,
both cone and plane settings are used and reported. Table 1 shows
the results of experiments. One DEM result from our algorithm
shows in Figure 3.

In Table 1, “Voronoi” refers to Voronoi diagram generation and
“Query” refers to grid DEM query. We note that the running times

5 http://mapping.ihrc.fiu.edu/fldemlidar20120119/Default.aspx.
6 downloaded from https://github.com/thomasmoelhave/TerraNNI with mi-
nor changes to make it run on Windows.

TerraNNI (Cone) TerraNNI (Plane) ScanIteration
Datafile # of points Voronoi Query Voronoi Query Voronoi Query

LID2007_075111_W 6982873 7.779 38.14 2.502 12.66 0.677 0.142
LID2007_075689_W 6066378 6.794 38.629 2.273 12.539 0.637 0.14
LID2007_073008_W 6211257 6.967 39.29 2.298 12.568 0.652 0.137

Table 1. Running time for the FL datasets (time in seconds)

Figure 3. DEM generated by our algorithms

listed in Table 1 include data transfer times between CPU and
GPU. As discussed in [1, 2], cones were approximated by k-gons
for Voronoi diagrams generation and planes rendering were further
used for achieving better performance. Our scan and iteration based
implementation does not use approximation and the interpolation
error will only be bounded by the grid discretization error. Com-
pared with TerraNNI, even when plane approximation is used, our
implementation outperforms TerraNNI on both Voronoi diagram
generation(~3.5 times) and grid query(~88 times).

For Voronoi diagram, the performance differences between Ter-
raNNI and our implementation might be due to the overheads of
using GPU graphics APIs. Using CUDA to directly manipulate can
better utilize GPU hardware resources, such as shared memory. For
the grid query, the number of concurrent queries in TerraNNI is re-
stricted by the graphics APIs. Batching queries in TerraNNI, while
effective in improving parallelization, needs to save the results as
intermediate representation which requires additional analysis to
derive a final result. Furthermore, the number of queries at a batch
in TerraNNI is determined by the size of query radius which limits
its parallelism. In contrast, our implementation can handle arbitrary
size of query radius and fully utilize GPU hardware resources.

5. Conclusion
This paper presents a set of GPU algorithms implemented using
CUDA for constructing grid DEMs. The two parts of our proposed
solution, including Voronoi diagram generation and grid queries,
significantly outperforms TerraNNI which is a state-of-the-art soft-
ware for NNI based grid DEM construction. We have also pro-
posed a new approach to generating Voronoi diagram on GPGPUs.
Our approach is simple, efficient and scalable by using parallel
scan primitives. Meanwhile, our implementation is also scalable
for large datasets.

For future work, we plan to further improve the efficiency of
our design and implementation. For the iteration algorithm used
for candidate sites pruning and the parallel assignment algorithm,
we plan to investigate load balancing techniques and tailor them
for GPGPUs. We also would like to evaluate our design and imple-
mentations on more and larger real world datasets to examine the
scalability and efficiency of our design and implementations.

References
[1] BEUTEL, A., MØ LHAVE, T., AND AGARWAL, P. K. Natural neigh-

bor interpolation based grid DEM construction using a GPU. In Pro-
ceedings of the 18th SIGSPATIAL International Conference on Ad-
vances in Geographic Information Systems (New York, NY, USA,
2010), GIS ’10, ACM, pp. 172–181.

[2] BEUTEL, A., MØ LHAVE, T., AGARWAL, P. K., BOEDIHARDJO,
A. P., AND SHINE, J. A. TerraNNI: natural neighbor interpolation on
a 3D grid using a GPU. In Proceedings of the 19th ACM SIGSPATIAL
International Conference on Advances in Geographic Information
Systems (New York, NY, USA, 2011), GIS ’11, ACM, pp. 64–74.

[3] CAO, T.-T., TANG, K., MOHAMED, A., AND TAN, T.-S. Parallel
Banding Algorithm to compute exact distance transform with the
GPU. In Proceedings of the 2010 ACM SIGGRAPH symposium on
Interactive 3D Graphics and Games (New York, NY, USA, 2010),
I3D ’10, ACM, pp. 83–90.

[4] FABBRI, R., COSTA, L. D. F., TORELLI, J. C., AND BRUNO, O. M.
2D Euclidean distance transform algorithms: A comparative survey.
ACM Comput. Surv. 40, 1 (Feb. 2008), 2:1—-2:44.

[5] FAN, Q., EFRAT, A., KOLTUN, V., KRISHNAN, S., AND VENKATA-
SUBRAMANIAN, S. S.: Hardwareassisted natural neighbor interpola-
tion. In In: Proc. 7th Workshop on Algorithm Engineering and Exper-
iments (ALENEX (2005).

[6] HOBEROCK, J., AND BELL, N. Thrust: A Parallel Template Library,
2010.

[7] HOFF III, K. E., KEYSER, J., LIN, M., MANOCHA, D., AND CUL-
VER, T. Fast computation of generalized Voronoi diagrams using
graphics hardware. In Proceedings of the 26th annual conference on
Computer graphics and interactive techniques (New York, NY, USA,
1999), SIGGRAPH ’99, ACM Press/Addison-Wesley Publishing Co.,
pp. 277–286.

[8] MITAS, L., AND MITASOVA, H. Spatial interpolation. In Geograph-
ical Information Systems: Principles, Techniques, Management and
Applications, P. Longley, M. F. Goodchild, D. J. Maguire, and D. W.
Rhind, Eds., vol. 1. Wiley, 1999, pp. pages 481—-492.

[9] NVIDIA. NVIDIA CUDA C Programming Guide 4.0, 2011.
[10] RONG, G., AND TAN, T.-S. Jump flooding in GPU with applications

to Voronoi diagram and distance transform. In Proceedings of the
2006 symposium on Interactive 3D graphics and games (New York,
NY, USA, 2006), I3D ’06, ACM, pp. 109–116.

[11] RONG, G., AND TAN, T.-S. Variants of Jump Flooding Algorithm
for Computing Discrete Voronoi Diagrams. In Proceedings of the 4th
International Symposium on Voronoi Diagrams in Science and Engi-
neering (Washington, DC, USA, 2007), ISVD ’07, IEEE Computer
Society, pp. 176–181.

[12] SENGUPTA, S., HARRIS, M., ZHANG, Y., AND OWENS, J. D. Scan
primitives for GPU computing. In Proceedings of the 22nd ACM SIG-
GRAPH/EUROGRAPHICS symposium on Graphics hardware (Aire-
la-Ville, Switzerland, Switzerland, 2007), GH ’07, Eurographics As-
sociation, pp. 97–106.

[13] SIBSON, R. A brief description of natural neighbour interpolation. In
Interpreting multivariate data, V. Barnett, Ed., vol. 21. John Wiley &
Sons, 1981, ch. 2, pp. 21–36.

[14] ZHANG, J. Towards personal high-performance geospatial comput-
ing (HPC-G): perspectives and a case study. In Proceedings of the
ACM SIGSPATIAL International Workshop on High Performance and
Distributed Geographic Information Systems (New York, NY, USA,
2010), HPDGIS ’10, ACM, pp. 3–10.

