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10.1 Introduction

The past decade has witnessed a dramatic increase in scientific data being generated
in the physical, earth, and life sciences. This development is primarily a result of
major advancements in sensor technology, surveying techniques, computer-based
simulations, and instrumentation of experiments. As stated by Szalay and Gray in [76],
it is estimated that the amount of scientific data generated in these disciplines is now
doubling every year. Organizations in government, industry as well as academic and
private sectors, have made significant investments in infrastructures to collect and
maintain scientific data and make them accessible to the public. Good examples of
such efforts are the Sloan Digital Sky Survey in astronomy [67], the GDB Human
Genome Database and Entrez Genome Database in genomics [13, 26], and the Global
Biodiversity Information Facility in ecology [24], to name only a few.

More and more such domain-specific data management infrastructures are built
to allow users easy access to scientific data, often in a Web-based fashion through
comprehensive Web portals. However, a key challenge is to provide users with effec-
tive means to integrate data from diverse sources to facilitate data exploration and
analysis tasks. Data integration is one of the more traditional yet still very active
fields in the area of databases and data management. It is concerned with models,
techniques, and architectures that provide users with a uniform logical view of and
transparent access to physically distributed and often heterogeneous data sources
(see, e.g., [5, 11, 72, 87]). Data integration is a key theme in many e-commerce and
e-business IT infrastructures, often called enterprise information integration [36]. In
these application domains, the objective is to integrate business and consumer data
from different transactional databases in order to obtain new information that drive
business activities and decisions. Nowadays, several commercial and open-source
data integration platforms exist that help businesses to integrate (typically relational)
data from transactional databases, leading to data warehouse and federated database
architectures.

It seems natural to apply similar techniques realized in those business-oriented
data integration platforms to scientific data collections as well. However, because of
the complexity, unprecedented quantities, and diversity of scientific data, traditional
schema-based approaches to data integration are in general not applicable. In many
scientific application domains, there often is no single conceptual schema that can be
developed from the data and schemas associated with the individual data sources to be
integrated. Furthermore, scientific data integration often occurs in an ad hoc fashion.
For example, data relevant to evaluate a scientific hypothesis needs to be discovered
and dynamically integrated into often complex data analysis and exploration tasks
without requiring to persistently store the data used in these tasks. The problem many
scientists are facing nowadays is how to easily make use of the ever-increasing number
of data repositories in an effective way.

A prominent domain where these problems become more and more apparent and
pressing is in the geosciences. Geospatial data, that is, data that is spatially referenced
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to Earth, have become ubiquitous. This is primarily due to major advancements in
remote-sensing technology, surveying techniques, and computer-based simulations.
As an example, the satellites operated by NASA and NOAA generate dozens of ter-
abytes of imagery and derived data products per day, leading to one of the fastest
growing repositories with petabytes of science data. In the year 2003, NOAA al-
ready maintained about 1,300 databases containing more than 2,500 environmental
variables [1]. The diverse types of geospatial data collected by federal and local gov-
ernments as well as organizations in industry and academia play a significant role in
developing mission-critical spatial data infrastructures [32, 52].

The use of geospatial data obtained through observations and simulations and their
management in spatial data infrastructures have become essential in many application
domains. These include environmental monitoring, climate research, disaster preven-
tion, natural resource management, transportation, and decision support at various
levels of local and state governments. The types of geospatial data considered in
these domains come in a variety of types. Common types include maps and imagery
from air and space-borne instruments, vector data describing geographic objects and
features, outputs from simulations, and numerous types of real-time sensor data. In
particular, the latter are an emerging data source, driven by large-scale environmental
observation networks such as envisioned by NEON [48].

With such a proliferation of a wide range of geospatial data repositories, many of
which are readily accessible through the Web, it is imperative to achieve a high degree
of interoperability among these systems as a prerequisite to facilitate data-integration
tasks. By realizing this objective, geospatial data that is managed in specialized repos-
itories in support of specific domains and tasks can serve whole communities and
scientists in different disciplines.

In this chapter, we present the current trends and technologies in support of devel-
oping interoperable geospatial data sources and management architectures that enable
the efficient sharing, use, and integration of physically distributed and heterogeneous
geospatial data collections. Our primary focus is on emerging technologies that facil-
itate true interoperability among geospatial data repositories, such as the development
and implementation of standards for geospatial content and services promoted by the
Open Geospatial Consortium (OGC) [78]. A key concept underlying this approach is
(geospatial) Web services, which realize a standard way to interoperate with diverse
geospatial data management infrastructures and to access heterogeneous forms of
geospatial data in a uniform and transparent fashion.

Such type of interoperability, of course, is only one ingredient to effective data-
integration approaches. Compared with data-integration techniques for traditional
relational databases, there are several special properties pertinent to geospatial data.
For example, a complicating factor in integrating geospatial data is the variety of for-
mats in which the data is managed, ranging from flat files to specialized geographic
information systems (GIS). As we will illustrate in the following sections, geospatial
Web services provide an effective means to request geospatial data from heteroge-
neous repositories in a format suitable for data integration tasks. Such services help
greatly in dealing with data heterogeneity and conflict resolution aspects in data in-
tegration. Further data integration challenges, such as heterogeneity of the data in
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terms of structure and semantics are often dealt with by employing standard repre-
sentation formats and taxonomies, respectively. In particular, for these two aspects,
we show that there have been significant achievements in various subdisciplines of
the geosciences, especially in the development of schema frameworks for describing
geospatial data and metadata/taxonomy frameworks that focus on the semantics of
geospatial data components.

A novel aspect we focus on in this chapter is the integration of streaming real-time
data, which is becoming a predominant source of geospatial data, for example, in
remote-sensing and sensor observation networks. We describe recent technologies
that have been developed for the service-based management and consumption of
streaming geospatial data and show how computing infrastructures can be built that
effectively consume diverse static as well as dynamic (streaming) geospatial data
from heterogeneous and distributed data sources. General techniques for managing
streaming data are discussed in Chapter 11.

The remainder of this chapter is organized as follows. In Section 10.2, we review
basic geospatial data management and integration concepts, including data formats,
metadata standards, and existing approaches and techniques to geospatial data integra-
tion. In Section 10.3, we discuss in detail the technologies surrounding geospatial Web
services. Furthermore, we outline emerging technologies in the context of sensor Web
enablement architectures. In Section 10.4, we use a relevant practical scenario from
the environmental sciences to demonstrate how the different techniques presented in
this chapter can effectively be deployed to perform geospatial data integration tasks,
including the integration of real-time sensor data. We conclude the chapter in Section
10.5 with a summary.

10.2 Geospatial Data Management and Integration

In this section, we review some fundamental concepts and techniques for the man-
agement of geospatial data. In Section 10.2.1, we give a brief overview of geospatial
data models and representation formats. Section 10.2.2 outlines some standard ap-
proaches to managing geospatial data. Our particular focus in these two sections is
on issues relevant to interoperability and integration aspects. After a discussion of
schema and metadata concepts in Section 10.2.3, we discuss in Section 10.2.4 some
existing approaches for integrating geospatial data.

10.2.1 Geospatial Data Models and Representations

Depending on the application domain and collected geospatial information, geospa-
tial data can be modeled and represented in different ways. The two most common
approaches to model geographic information are using either an object-based model
or a field-based model (see, e.g., [64, 70]). In an object-based model, geographic ob-
jects correspond to real-world entities (also called features) about which information
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Figure 10.1 Examples of object-based (left) and field-based (right) geospatial data
representation.

needs to be managed. A feature typically has two parts: (a) a spatial component
(or spatial extent), which specifies the shape and location of the object in the embed-
ding space; and (b) a descriptive component that describes the nonspatial properties
of the feature in the form of attributes. The spatial extent of an object is typically mod-
eled as a point, polyline, or polygon, depending on the required spatial granularity
and scale of the data to be managed. For the representation of a collection of features,
different approaches exist, such as the network model, spaghetti model, or topolog-
ical model [64]. The left part of Figure 10.1 shows an example of an object-based
presentation of geographic information (a road network).

In field-based approaches, the space to be modeled is partitioned (tessellated) into
two- or multidimensional cells, a cell having a spatial extent. With each cell one or
more attribute values are associated, each attribute describing a continuous function
in space. A typical example of field-based data are multispectral or hyperspectral
raster imagery obtained from remote-sensing instruments. Field-based data are also
common as outputs of simulations where with each point in space a set of attribute
values (measurements) is associated. Note that in a field-based model, there is no
notion of objects but observations of phenomena in space, which are described by
attribute values (measurements) that vary with the location in space. The right part of
Figure 10.1 shows an example of a field-based representation (estimated temperature
over an area).

In order to precisely describe the spatial extent of geographic objects or cells in a
raster image, it is important to have a spatial reference system (SRS) (or coordinate
reference system (CRS)) underlying the space in which features and phenomena are
modeled. A reference system is a particular map projection that represents the two-
dimensional curved surface of the Earth. There are numerous such map projections
used in practice, ranging from global projections such as latitude/longitude or Uni-
versal Transverse Mercator (UTM) to parameterized local ones tailored to specific
regions on the Earth’s surface, such as the State Plane Coordinate System [74] used
in the United State From a spatial data management point of view and in particular
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for the integration of diverse datasets, an important aspect is to be able to re-project
geospatial data from one reference system to another one [39, 86].

10.2.2 Geospatial Data Management Systems and Formats

Compared with data management systems for relational data, which are all based on
the same model (the relational model) and make use of the same language (SQL),
there is a plethora of commercial and open-source systems for managing geospatial
data. In the following, we give a brief overview of the different types of systems and
focus on aspects that are relevant to data integration approaches.

GISs are the predominant type of systems to manage, store, analyze, and display
geographic data and associated attributes that are spatially referenced to the Earth [45].
A widely used type of GIS is ESRI’s (Environmental Systems Research Institute’s)
ArcGIS products, such as ArcView to view spatial data, create maps, and perform basic
spatial analysis operations. ArcInfo is an advanced version of the ArcGIS product line
that also includes functions for manipulating, editing, and analyzing geospatial data
[17, 60] and services for geoprocessing and geocoding [16]. ArcGIS also provides
different types of Web services to access geospatial data.

There are also traditional relational database management system vendors that offer
spatial extensions to their relational engines. For example, Oracle Spatial provides
several functions for storing, querying, and indexing spatial data, including raster
and gridded data [46]. The spatial extension models a majority of the spatial types
and operations described in the SQL/MM spatial standard [75]. IBM’s DB2 product

Please line also offers spatial extensions to their relational DB2 core system such as the
provide full  DB2 Spatial Extender and the DB2 Geodetic Extender [38]. Also here, the spatial
(D extensions implement types and functions specified in the SQL/MM standard.

Prominent open-source GIS type systems are PostGIS [62], the spatial extension of
the object-relational database management system PostgreSQL, and the Geographic
Resources Analysis Support System (GRASS) [33, 51]. Like the spatial extensions
for Oracle and DB2, PostGIS follows the Simple Features for SQL specification
developed as an implementation specification by the OGC [55]. This standard specifies
the storage of different types of geographic objects (points, lines, polygons, etc.) and
includes specifications for various spatial operators to derive new objects from existing
ones. PostGIS makes use of the proj.4 library [63] for converting geographic data
between different map projections, an important functionality to integrate geospatial
objects that are based on different reference systems.

GRASS provides a variety of functions to manage raster data and topological vector
data. It natively uses and supports a number of vector and raster formats, which are
expanded with several other formats using the Geospatial Data Abstraction Library
(GDAL) [25]. GRASS offers the option to manage nonspatial attributes associated
with geographic objects and raster images in either files or an SQL-based database
management system.

Besides the above GIS type of data management infrastructures, geospatial data are
also often managed just at the file level. That is, applications generate geospatial data
and simply record them in standard file formats for consumption by and exchange
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with other programs. One can basically distinguish between file formats for vector
data (object-based data) and file formats for raster or gridded data (field-based data).
One of the most common formats for vector data are shapefiles, which have been
developed by ESRI and are used to exchange data among ESRI products and other
software [18]. Another important, although less widely used, format for vector data is
the Topologically Integrated Geographic Encoding and Referencing (TIGER) format
used by the U.S. Census Bureau. It is employed for modeling geographic information
such as roads, rivers, lakes and census tracts [82].

For raster and gridded data, widely used file formats are the Network Common Data
Form (NetCDF) [49], the Hierarchical Data Format (HDF5) [37], and GeoTIFF [50].
These file formats only represent a small but important portion of a large collection
of scientific data formats (many of which also come in an XML framework) that have
been developed over the past decades in different disciplines.

The above discussions about the variety of commercial and open-source geospa-
tial data management software as well as file formats for the exchange of complex
(geo)spatial data clearly illustrate that achieving interoperability among heteroge-
neous geospatial data sources is a great challenge.

10.2.3 Schemas and Metadata

An essential ingredient to any data integration approach is to have information about
the schemas as well as metadata for schema components and the data managed in het-
erogeneous scientific data repositories. In the following, we first discuss an emerging
standard for geospatial data to represent both schema information and data and then
detail some prominent metadata frameworks used in the context of geospatial data.

10.2.3.1 GML Application Schemas

The Geography Markup Language (GML) is an XML-based specification developed
by the OGC for representing geographic features [42, 56]. GML serves as an open
interchange format for geospatial data as well as a modeling language for geographic
information. In GML, real-world objects are called features and have a spatial com-
ponent (geometry) and nonspatial properties. The most recent GML version, 3.1, is Should this
being standardized as ISO 19136. While earlier GML versions used Document Type say version
Definitions (DTDs), the later versions are based on XML-Schema. GML version 3.x L
also includes support for two-dimensional complex geometries and topology, three-
dimensional geometries, spatial and temporal reference systems, and visualization.

Because GML is based on XML-Schema, it allows users to create their own appli-
cation schemas by making use of GML (core) schema components such as geometry,
topology, and time, and follow the simple, structured rules of the GML encoding
specification. GML application schemas are very flexible in that they allow users to
tailor and extend predefined GML data types (mostly geometrical and topological) to
specific needs in an application domain. GML also serves as data exchange format
for geospatial data, an aspect that is particularly important to achieve a high degree of
interoperability among geospatial data repositories through geospatial Web services.
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10.2.3.2 Metadata Standards

There are many metadata frameworks for spatial data and applications that have
geospatial components. Most of these frameworks and initiatives are driven by in-
dividual science communities. Metadata frameworks can be found at all data man-
agement levels, ranging from metadata associated with traditional database and GIS
schemas to approaches where metadata is simply encoded as part of a file format
containing the (geo)spatial data.

The most widely used geospatial metadata standard in GIS products is the stan-
dard developed and maintained by the Federal Geographic Data Committee (FGDC)
[21]. The FGDC developed the Content Standard for Digital Geospatial Metadata
(CSDGM) in 1994, which is often simply referred to as the FGDC metadata stan-
dard [20]. This standard has components to describe the availability, fitness for use,
and access and transfer information of geospatial datasets. According to the CSDGM
version 2 published in 1998, Section 1 has entries to describe the geographical area
a geospatial dataset covers; Section 3 describes the spatial data model that is used to
encode the spatial data (vector/raster) or other possible methods for indirect georef-
erencing; and Section 4 describes the information about the spatial reference system.

In addition to the CSDGM, several other metadata standards have been devel-
oped over the past few years for different application domains in the geosciences
and environmental sciences. For example, the Ecological Metadata Language (EML)
developed by the National Center for Ecological Analysis and Synthesis (NCEAS)
has been widely adopted in the ecological data management community [10, 12, 40].
EML has been designed as a collection of modules and has an extensible architec-
ture. For the data module, EML has detailed structures to describe tabular, raster, and
vector data. In EML, the metadata is much more tightly coupled with data, compared
with that of the FGDC metadata standard. Such a coupling is an important aspect in
metadata-driven data integration [40]. Another extensive data description framework
for Earth science initiatives is the Semantic Web for Earth and Environmental Termi-
nology (SWEET) developed by NASA [47]. SWEET is a standard vocabulary rather
than a full-fledged metadata framework, and it includes a variety of data description
components in the context of physical phenomena; processes; and properties, sensors,
space, time, and units.

10.2.4 Approaches to Integrating Geospatial Data

Traditional data integration basically follows a schema-matching approach in which
related schema components (relations and attributes) from the different sources are
identified, homogenized, and suitably integrated to provide the user with a single
conceptual view over the data managed at the sources (see, e.g., [5, 11, 72, 87]).
Using such a view, the distributed data then can either be physically integrated at a
single site or queried in a uniform and transparent fashion. The former approach then
leads to some kind of data warehouse that physically stores the integrated data, but
now in a homogeneous representation and format, leading to the physical integration
of data. The latter approach, on the other hand, results in a federated or multidatabase
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Figure 10.2 TIllustration of an overlay of themes in a GIS. Geo-referenced and
aligned layers include both vector data and field-based data.

system, realizing a so-called logical integration. Key to the integration is resolving the
various types of structural and semantic heterogeneities that occur due to differences
in data representation and meaning [71].

For integrating geospatial data sources, the approach can be significantly more
complicated, especially because there is a wider variety of geospatial data types
(compared to just relational data), including various vector data representations and
formats for field-based data, as discussed above. But, what is actually meant by
integrating geospatial data? In practice, the most common view of this is to have a GIS
that allows users to overlay different themes (or layers). That is, for a given geographic
area, there are several georeferenced themes that represent different characteristics
of that area. Figure 10.2 illustrates an example in which several themes based on
vector and field-based data are overlayed. Theme overlays allow to view and explore
geographic data in different contexts. Being able to visualize data in context is an
important functionality in integrating diverse types of geospatial data.

A theme can be represented by either vector data or field-based data. A road network
with roads being individual features, for example, would be represented as vector data,
whereas a vegetation index would be represented as field-based data (more specifically
a raster image). If the data for the layers come from different sources, two problems
can occur. First, the system used to integrate the data has to be interoperable with the
other systems the geospatial data are retrieved from. Here, interoperability means that
systems can exchange information and data using standard protocols and formats.
As we will discuss below, a high degree of interoperability can be achieved when
distributed and heterogeneous geospatial data sources can be uniformly accessed
using geospatial Web services.

Second, the geospatial data may come in different formats with conflicting struc-
tures and semantics. For example, if two sources provide vector data for the same
theme and region, the data might conflict in terms of their spatial components as well
as their descriptive components (see Section 10.2.1). Such a situation can even occur if
both datasets are based on the same projection (spatial reference system), have been
georeferenced/aligned and have the same scale (spatial resolution). Re-projection,
georeferencing, and scaling are tasks that are frequently used in the context of re-
motely sensed imagery and are typically performed on the datasets prior to their
overlay or integration. Another typical example often occurring in practice is when
some raster imagery is overlayed with vector data. Phenomena in the image might
not align or match up with the features modeled by the vector data. Approaches to
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resolving these types of conflicts are known as conflation, meaning to “replace two or
more versions of the same information with a single version that reflects the pooling,
weighted averaging, of the sources” [45].

The key in dealing with conflicting spatial components of two or more datasets to be
integrated is to make use of the location information associated with geospatial objects
(and cells/pixels in a raster image), something unique to spatial datasets. Several
approaches have been proposed that deal with the integration of vector data and road
maps in particular and the combination of imagery with vector data [6, 66, 83]. More
fine-grained approaches have been developed for finding corresponding objects in
datasets to be integrated. Corresponding objects (features) represent the same real-
world entity but are possibly misaligned across different data sources. Approaches for
point-based data have been presented by Beeri et al. in [2, 3], referred to as location-
based join. Related approaches are so-called entity resolution techniques, which try
to determine the true location of a real-world entity in case geospatial data about the
entity comes from a collection of data sources [69].

For resolving spatial conflicts, that is, if the same real-world entity has conflicting
feature location information in the different sources, nonspatial attributes associated
with the features can help in resolving such conflicts. For example, if it is known that
a feature has been updated recently at a source, the feature at this source might be
more likely to represent the correct location information about the real-world entity.
As with any other data integration approach, the quality of the data plays a crucial
role in resolving individual spatial and nonspatial data conflicts [73].

Once different features have been matched to the same real-world entity, the next
step is to resolve conflicts that might exist among the descriptive attributes. As these
are ordinary attributes such as in relational databases, respective approaches can be
used. In the context of geospatial data such attributes are typically based on metadata
standards and application schemas described in Section 10.2.3, which are likely to
produce a more coherent data description in terms of semantics.

10.3 Service-Based Data and Application Integration

In the following, we present emerging standards, techniques, and architectures that
enable interoperability among distributed and heterogeneous geospatial data sources.
In Section 10.3.1, we outline the relationships between interoperability and data inte-
gration aspects. An overall framework for data integration employed by the techniques
presented in this chapter is the service-oriented architecture, which is described in
Section 10.3.2. In Sections 10.3.3 and 10.3.4, we give an overview of service registry
and geospatial Web services, respectively. We place a particular focus on services that
deal with real-time sensor data, described in Section 10.3.5. We conclude the section
with a brief overview of a practically relevant alternative to geospatial Web services.
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10.3.1 Approaching Integration through Interoperability

Interoperability among heterogeneous and distributed data sources is a fundamental
requirement not only in the context of scientific data management, but in any type
of distributed computing infrastructure. Interoperability is generally defined as “the
ability of two or more systems or components to exchange information and to use
the information that has been exchanged” [53]. Interoperability can be achieved at
different levels of network protocols and data exchange formats. In several scientific
application domains, interoperability among data repositories and applications has
become a main driver to facilitate scientific data management and exploration on
a large scale. Grid computing infrastructures have significantly contributed to this
development [22] and are widely employed in science domains, such as in Earth
observation [27], climate modeling [15], and physics [35], to name only a few. A
more recent trend in these science initiatives is to increase interoperability aspects
through service-oriented science [23]. A well-known early example that realizes such
an approach is the WorldWide Telescope [34].

One major driver in the area of geoprocessing and geospatial data management
technologies is the OGC Interoperability Institute [54], where the OGC is also de-
veloping and promoting diverse types of geospatial Web services. Such type of Web
services play an increasing role in geospatial data integration frameworks. Services
do not just provide easy access to diverse types of geospatial data using standard
protocols and interfaces, but they also often offer functionality that helps in resolving
data conflicts. For example, requesting data in a particular projection or at a particular
scale are important data preprocessing steps that already can be accomplished by ser-
vices rather than at the data integration site. In this sense, such services provide some
application functionality too. There are a few geospatial Web services approaches that
address both interoperability and integration aspects, for example, based on media-
tion [9], services [44], or a combination of service and mediation-based techniques
[4, 19, 43]. In the following, we describe how integration infrastructures can be built
based on such services and architectures.

10.3.2 Service-Oriented Architectures

In the past few years, there have been significant developments in terms of architec-
tures and standards that help developers build Web-based services that allow for a
uniform and transparent access to data managed at different sources. One such devel-
opment is the service-oriented architecture (SOA) (see, e.g., [14]), which allows an
effective cooperation among data sources and data processing components hosted at
different organizational units. In particular, SOA supports reusability and interoper-
ability of software and service components on the Web, thus increasing the efficiency
of developing and composing new services. In a SOA-based system, all data and
process components are modeled as Web services.
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10.3.3 Registry and Catalog Services

Of particular interest in this chapter are catalog and registry services. As scientific
data are accumulating in an ever increasing speed, it is very difficult if not impos-
sible for users to know exactly the details of all the data that might be relevant to
their project. As such, repositories that provide catalog services and allow users to
interactively or programmatically search and retrieve metadata that are related to the
use of the datasets are playing an inreasingly important role in scientific data man-
agement. In the context of geospatial applications, OGC’s Catalog Service for the
Web (CSW) Implementation Standard [58] provides this functionality in the form of
several operations: the mandatory GetCapabilities operation returns metadata about
the specific repository server (Serviceldentification), the operations supported by
the service including the URL(s) for operation requests (OperationMetadata), the
type of resource cataloged by the repository server (Content), and the query lan-
guage and its functionality supported by the repository. The GetRecords operation
allows users to specify query constraints and metadata to be retrieved and returns
the number of items in the result set and/or selected metadata for the result set. The
DescribeRecord operation allows a client to discover elements of the information
model supported by the target catalog service. The optional GetDomain operation is
used to obtain runtime information about the range of values of a metadata record
element. Finally, the mandatory GetRecordByID request retrieves the default repre-
sentation of catalog records using their identifier. Through the GetCapabilities —
GetRecords — DescribeRecord — GetDomain — GetRecordByID sequence, users
are able to probe the repository server’s capabilities, search the repository, nego-
tiate the format of the metadata and finally retrieve the metadata of the dataset(s)
of interest.

10.3.4 Geospatial Web-Services and Standards

The OGC was founded with the mission of advancing the “development of interna-
tional standards for geospatial interoperability” [78]. The OGC currently comprises,
at time of writing, over 350 companies, universities, and government agencies from
around the world. In the Earth sciences in particular, the role of standard data and
interface protocols is crucial in the context of climate monitoring and forecasting.
The National Weather Service [41], for example, has recently started to make fore-
cast data available to users using Web Feature Service (WFS) and Geography Markup
Language (GML), two of the open standards developed by OGC.

In this Web service framework, the concepts of coverage, feature, and layer play a
key role in publishing and accessing diverse types of geospatial datasets through OGC
Web services. Both coverage and feature provide associations between observed or
measured values with a geographical domain, such as a particular region or spatial
extent (see also Section 10.2.4). A coverage can be thought of as a measurement that
varies over space, while a feature is a spatial object that has associated measurements.
In the context of remotely-sensed data, for example, a satellite image covering an
area can be represented as a coverage. On the other hand, the observation values of a
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Integration e&format=GeoTIFF&Coverage=U&Vertical=6.0
&TIME=2007-07-02T07:00:00Z
4
Operations
Services GetCapabilities GetMap
WMS
WeS GetCapabilities DescribeCoverage GetCoverage
WES GetCapabilities DéscribeFeatureType GetFeatuye
............................ ¥
Example:

Data format, schema and

semantics (e.g., GML) http://host/service/ SERVICE=WFS&REQUEST

=GetFeature&typename=cimisstation

v
Example:

http://host/service/SERVICE=WFS&REQUEST
=DesribeCoverage&Coverage=ET0

Data representation and
encoding (e.g., XML)

Figure 10.3 OGC Services, Operations, and Example Calls (indicated by dotted
lines) for Web Map Service (WMS), Web Coverage Service (WCS), and Web Feature
Service (WES).

(point-based) weather station can be represented as a feature. A layer, which basically
corresponds to the concept of a theme, can be either a gridded coverage or a collection
of similar features.

The ability to map heterogeneous forms of geospatial datasets to a few simple
types (such as features, coverages, and layers) greatly reduces the complexity of
diverse data types in application and data integration scenarios in particular, and it
makes it possible to standardize publishing datasets using Web services. Although it
is beyond the scope of this chapter to give a detailed technical description of OGC
Web standards, Figure 10.3 shows the three major OGC standard services along with
example operations. These services, which cover the two different types of geospatial
data (features and coverages) and their visualization, are as follows:

* Web Feature Service (WFS): WES defines interfaces for querying and retrieving
features based on spatial and nonspatial properties of the features. The data is
exchanged between a Web Feature Service and the client in the form of GML
documents, which in the case of this service encode vector data.
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* Web Coverage Service (WCS): WCS defines interface to query and retrieve
spatially referenced coverages, i.e., gridded or raster data.

* Web Map Service (WMS): This service produces maps (in the form of digital
images) of spatially referenced data (i.e., features or coverages) from a data
source managing geographic information. Standard image formats that can be
requested by a client include PNG, GIF, GeoTIFF, and JPEG.

In summary, WFS is used for object-based data, and WCS is used for gridded/raster
data. Displaying such data and their overlays is done using WMS. To illustrate the
functionality of these OGC services, consider the WCS standard as an example. Like
the other two services, it defines a mandatory GetCapabilities operation, which al-
lows clients to get WCS server metadata, including an optional list of the offered
coverages with some metadata for each coverage. In addition, WCS also defines
a mandatory DescribeCoverage operation that allows clients to get more metadata
about identified grid coverage(s), including details about the spatial extent of the
coverage. A WCS GetCoverage operation requests and returns coverages represent-
ing space-time varying phenomena. In general, through a sequence of GetCapabil-
ities — GetMap (WMS), GetCapabilities — DescribeCoverage — GetCoverage
(WCS), and GetCapabilities — DescribeFeatureType — GetFeature (WFS), client
applications are able to retrieve both metadata and data subsets of interests in a
standard way.

The realization of the above services typically occurs in the form of middleware
layers that clients can access through the Web. Among the most prominent represen-
tatives of such middleware layers are the open source systems GeoServer [29] and
MapServer [81]. Either system provides a client with transparent access (using the
above OGC services) to diverse types of data stores. That is, these servers can be
configured to access geographic data managed in, for example, PostGIS, Shapefiles,
or Oracle Spatial, and to provide clients with access to the data through WFS, WMS,
and WCS interfaces. In this sense, such a type of middleware layer already realizes
an important component to data integration scenarios, namely the transparent and
uniform access the diverse geospatial data sources. For example, using the services,
one can request data in a particular (common) coordinate system. Thus, the services
help in resolving some data heterogeneity issues.

10.3.5 Sensor Web Enablement

Of particular relevance are the activities recently taken by the OGC Sensor Web
Enablement (SWE) program, one of the OGC Web Services initiatives [57, 61]. The
SWE initiative seeks to provide interoperability between disparate sensors and sensor
processing systems by establishing a set of standard protocols to enable a “Sensor
Web,” by which sensors of all types in the Web are discoverable, accessible, and
taskable. The SWE standards allow the determination of the capabilities and quality
of measurements from sensors, the retrieval of real-time observations in standard
data formats, the specification of tasks to obtain observations of interest, and the
asynchronous notification of events and alerts from remote sensors.
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SWE components include models and XML Schemas (SensorML, Observations &
Measurements, TransducerML) and Web service interfaces (SOS, SPS, SAS, WNS),
which are briefly described as follows (see [57, 61] for more details):

* SensorML, Sensor Model Language: An XML Schema to describe sensors and
sensor platforms. SensorML provides a functional description of detectors,
actuators, filters, operators, and other sensor systems.

* O&M, Observations & Measurements: A specification for encoding observa-
tions and measurements from sensors.

* TransducerML, Transducer Markup Language: A specification that supports
real-time streaming of data to and from transducers and other sensor systems.
Besides being used to describe the hardware response characteristics of trans-
ducers, TransducerML provides a method for transporting sensor data.

* SOS, Sensor Observation Service: This Web service interface is used to request
and retrieve metadata information about sensor systems as well as observation
data.

* SPS, Sensor Planning Service: Using this Web interface, users can control
taskable sensor systems and define tasks for the collection of observations and
the scheduling of requests.

* SAS, Sensor Alert Service: Through this Web service interface, users are able
to publish and subscribe to alerts from sensors.

* WNS, Web Notification Service. This Web service interface allows the asyn-
chronous interchange of messages between a client and one or more services
(e.g., SAS and SPS).

In accordance with the philosophy of Web services in general, and the SWE initia-
tive in particular, data consumers should be concerned only with registries and service
interfaces. For example, an SOS provider needs to be “discovered” first through a reg-
istry mechanism, which is the OGC Catalog Services (see Section 10.3.3) in the SWE
context. Section 10.4 describes specific elements from SensorML, O&M, and SOS
that have been included in a prototype to chain data stream processing services. The
general sequence of steps to obtain sensor metadata and data is shown in Figure 10.4.

As an SOS service, the provider first provides a capabilities document as a response
to a GetCapabilities request by a client. This document includes the identification of
the provider and the description of the offered services, that is, the available streams in
the system, which are organized in the form of observation offerings. An offering in-
cludes information about the period of time for which observations can be requested,
the phenomena being sensed, and the geographic region covered by the observations.
A schematic example of a capabilities document is shown in Figure 10.5. (We use a
simplified structure style to illustrate XML documents in this section; we use ¢ sym-
bols to indicate relevant XML elements, and example values are shown in cursive.)

Once a client is interested in a particular geospatial data stream, it will submit a
DescribeSensor request to the provider. The response is a document describing the
sensor that generates the data stream. This response takes the form of SensorML or a
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SOS Capabilities

DescribeSensor (id)

SML/TML doc

GetObservation

O&M Observation

Open stream

Stream
T T

Figure 10.4 SOS sequence diagram for getting metadata and observations, includ-
ing access to streaming data

TransducerML document. Next, the client will request the actual data from the sensor.
This is done by submitting a GetObservation request. The corresponding response
is an O&M document containing the observation, either explicitly (inlined in the
document), or by providing a hyperlink to the actual data. This is illustrated in the
lower part of Figure 10.4 where the client requests a connection to the data stream

© sos:Capabilities
¢ Serviceldentification
¢ Title, © Abstract, ¢ Keywords
¢ ServiceProvider
¢ Name, ¢ Contactlnfo, ¢ Site
¢ Operations
GetCapabilities, DescribeSensor, GetObservation
¢ FilterCapabilities
¢ Spatial, ¢ Temporal, ¢ Scalar
© ObservationOfferings
visible radiance, near-infrared, mid-infrared
¢ boundedBy
o Envelope: field of view of GOES Imager
© TimePosition
¢ beginPosition: 2003-10-10
¢ endPosition: indeterminatePosition
© Result format: zext/xml;subtype=“OM”

Figure 10.5 Schematic example of an SOS capabilities document with observation

offerings exemplified with typical spectral sensors from an environmental satellite
(NOAA’s GOES satellite).
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directly to the back-end system. We use this mechanism for allowing the access to
real-time data in an application scenario, detailed in Section 10.4.

10.3.6 OPeNDAP

We conclude this section by giving a brief overview of a framework that also pro-
vides services, mostly in the form of protocols, to manage and access scientific data.
While OGC standard components are designed to handle georeferenced data, the Open
Source Project for Network Data Access Protocol (OPeNDAP) standards describe the
management of multidimensional array data that are not necessarily georeferenced
[59]. OPeNDAP includes specifications for encapsulating structured data, annotat-
ing the data with attributes and adding semantics that describe the data. In addition
to the Distributed Oceanographic Data System (DODS) protocol that allows users
to transparently access distributed data across the Internet in a way similar to the
GetCoverage operation in the OGC WCS standard, OPeNDAP has protocols for ex-
changing metadata. More specifically, the dataset attribute structure (DAS) is used to
store attributes for variables in the dataset. The dataset description structure (DDS) is
a textual description of the variables and their classes that make up a scientific dataset.

Existing implementations based on OPeNDAP standards provide a convenient
framework for retrieving multidimensional scientific data using simple HTTP-GET
requests and are widely used by governmental organizations such as NASA and
NOAA to serve satellite, weather, and other Earth science data [65, 84]. Since there
are no coordinate referencing systems involved in OPeNDAP standards, they are best
used for datasets with a common underlying coordinate system. However, OPeNDAP
services may not be sufficient when datasets with different coordinate systems need
to be integrated. In such cases, OGC-based services are more suitable. OGC stan-
dards and OPeNDAP standards are not necessarily exclusive. By enhancing multi-
dimensional arrays data with proper coordinate systems, it is possible to construct
coverages and serve the data using OGC WCS and WMS standards.

10.4 An Example of an Integration and Interoperability Scenario

The concept of service-based geospatial data integration can be demonstrated in
many environmental monitoring scenarios. In this section, we consider a particular
environmental scenario involving several integration aspects and describe the features
an integration framework should in general provide to support such kind of scenarios.

10.4.1 Environmental Modeling Task — Evapotranspiration

We elaborate on a particular use case involving the integration of real-time evapotran-
spiration observations and its comparison with estimations from a weather model for
accuracy assessment. Evapotranspiration (or ET) is a term used to describe the sum of
evaporation and plant transpiration from the Earth’s land surface to the atmosphere,
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which is an important part of the water cycle. ET estimations are used in irrigation
scheduling, watershed management, weather forecasting, and the study of long-term
effects of land use change and global climate change [31]. A standard reference evap-
otranspiration, denoted ETo, can be determined by using meteorological measure-
ments, which can be obtained from multiple sources for the same region. Compared
with station-observed ETo (point data), the weather model-based ETo (raster data)
has a continuous spatial coverage. In general, the model output accuracy needs to be
verified against the station observations. Assuming the observed and the predicted
data are published as WFS and WCS services, respectively, data integration is needed
to retrieve the model predicted data at the station locations and compare the values,
possibly after normalization and unit conversions.

The scientific goal in this scenario is the visualization, monitoring, and validation
of model-based evapotranspiration for different eco-regions and selected locations
in California. This requires the overlay of ETo from the various sources on a single
display for visual analysis. We show next a geospatial integration approach that allows
the realization of this scenario.

10.4.2 Integration Platform

The overall conceptual architecture for geospatial data integration and interoper-
ability, which consists of data sources, structured repositories, service middleware
systems, and client applications, is depicted in Figure 10.6. Data sources include
remotely sensed imagery, model outputs, GIS stores, sensor network systems, as well
as other service-enabled data providers. The structured data repositories in general re-
fer to data management systems including databases and data stream engines. Service
middleware refers to service enabling infrastructures that make the data available to
clients by means of Web service standards. Client applications allow users to search,
query, and retrieve metadata and data by using the provided Web services (CSW,
WES, SOS, etc.), possibly in combination with more traditional access mechanisms
(HTTP, FTP, etc.) with the back-end data repositories.

In general, a service-oriented scientific data integration framework consists of a
set of interconnected service-enabled computation nodes. A service enabled com-
putation node consists of both structured data repositories and service middleware.
Structured data repositories, such as DBMS, GIS data stores, and data stream engines,
store relational data, vector/raster geospatial data, and real-time data streams. They
can be connected to physical devices to receive or pull streaming data. Structured
data repositories are not necessarily independent; derived products from raw data
can be generated and saved as additional data repositories. For example, the daily
maximum/average ETo value of an hourly model output (in raster format) can be
derived and saved in a GIS. Also monthly ETo average from weather stations can
be implemented as either a regular view (named database query) or a materialized
view (a physical instantiation of the query result) in a database. In addition, a stream
engine (e.g., Ring Buffer Network Bus, RBNB [79]), whose primary functionality
is to serve as a middleware for real-time data, can be used by certain client mod-
ules to update a database for archiving purposes. Middleware at the service level
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Figure 10.6 Conceptual architecture for geospatial data integration and interoper-
ability

is responsible for extracting data from structured data repositories and provide it
to clients in standard-compliant formats. Several commercial and open source ser-
vice middleware systems, such as MapServer [81], GeoServer [29], THREDDS Data
Server (TDS) [80], 52North [30], and so forth. are currently available. As such, struc-
tured data repositories should be formulated to work with the service middleware
when possible. For example, PostgreSQL databases storing weather station measure-
ment data can adopt the Community Observations Data Model (ODM) developed by
CUAHSI [8] in formulating their table structures.

We note that the relationship between the structured data repositories, the ser-
vice middleware, and their services are not necessary one-to-one. For example, both
MapServer and GeoServer can connect to the PostgreSQL databases and provide
WMS/WFS/WCS services. Similarly, TDS can provide WCS and OPeNDAP services
from NetCDF data repositories. We also note that while Web service—based proto-
cols are preferred for geospatial data integration in a Web application environment,
more traditional communication protocols among the service-enabled computation
nodes, such as distributed databases over TCP/IP, are not precluded. In addition, quite
a few service middleware systems have the capability of connecting to remote data
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repositories either through database interfaces or service interfaces (WES, WMS,
WCS, SOS); thus they can integrate different data sources that are stored in local
or remote data repositories and provide new services. While normally such type of
integration is simple and limited in functionality, it could be appropriate in some
applications or be used as parts of larger integration tasks. For example, MapServer
can be configured to consume remote WFS services and use them along with local
data in formulating the structure of a new WMS service.

In the next section, we will illustrate the incorporation of the various components
of our scenario including the integration of real-time data.

10.4.3 Overall Integration and Results

As indicated at the beginning of this section, the goal in our scenario is the visual-
ization, monitoring, and validation of model-based evapotranspiration for different
eco-regions and selected locations in California. This goal is accomplished as fol-
lows. Using the integration tool, the user selects some weather stations to perform a
comparison of ETo estimations against observed measurements at the given locations
on an hourly basis (see Figure 10.7). The integration platform sends WFS requests to
the relevant service endpoints to retrieve the station locations as well as the eco-region
data, which are returned as vector features. It then sends a WCS request to the weather
model output repository and retrieves the model output for the current time in NetCDF
format. In general, the integration platform has to re-project the station geographi-
cal coordinates (usually given in latitude/longitude) to the model output projection
(which is an equal-area based projection in the case of the WRF model [85]) before
the corresponding station locations in the model output grids can be retrieved. The
integration platform then loops through the time steps (hours in the figure) to retrieve

= Observed
2 = Estimated
{93}

»

08 09 10 11 12 13 14 15 16 17 18 19
2008-02-09 15:00

Figure 10.7 Main stages in the integration of sensor and model-generated data
streams. Left: Estimated ETo map for the current hour; Center: Eco-regions and
station locations overlayed; Right: Real-time charts for selected locations including
the model prediction for a several-hour period and the actual observed values until
current time.
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© sml:SensorML
o sml:Sensor: id = CIMIS_S33_ETO
oname = CIMIS STATION 33 ETO
< Identification, ¢ Classification
¢ ReferenceFrame
¢ Input: name = eto
© Quantity: urn:ogc:def:phenomenon:eto
< Output: name = eto
¢ Quantity: urn:ogc:def:phenomenon:eto

Figure 10.8 Schematic SensorML document describing measured ETo

the ETo predictions at the station locations. The retrieved data can be rendered as
charts by the integration platform for all desired stations for visualization purposes.

In real-time, the generated chart for each selected location also includes the obser-
vations from ground stations (from the CIMIS network [7] in our example). For this
component, we use sensor web enablement (SWE)-related technologies. As already
indicated in Section 10.2, both static and real-time sensor data can be provided through
the Sensor Observation Service (SOS) interface; however, here we focus on repre-
sentative sensor definitions and possible real-time access mechanisms. Following the
SOS interface, a provider generates a capabilities document as shown in Figure 10.5.
A DescribeSensor request for a particular detector produces a SensorML document
describing the instrument that generates the stream. Figure 10.8 is a schematic depic-
tion of part of a SensorML document for ETo measurements from a weather station
system.

The response to a GetObservation request is an O&M document including a hy-
perlink that allows the client to open a connection to the data stream. An example of
an O&M observation document is shown in Figure 10.9. A realization architecture
would utilize a middleware data stream system as the entry point for all incoming
stream data sources. This intermediate component would allow the implementation
of various possible connections. An RBNB system [79] can be used as the entry point.

< om:Observation: id = CIMIS_S33_ETO

¢ Description: Observation with remote streaming result

oname = CIMIS STATION 33 ETO

¢ TimePeriod
© beginPosition: 2008-02-10T12:00:00:00
o endPosition: future

¢ Result
xlink:href="“http://comet.ucdavis.edu:9090/CIMIS/?ch=/833/eto”
xlink:role=“application/octect-stream”

Figure 10.9 Example of an O&M observation response
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In this case, the hyperlink shown in Figure 10.9 points directly to the corresponding
channel in the RBNB server. However, various other types of connections are pos-
sible, including a TransducerML (TML) stream as a wrapper for the original, native
stream, a TML stream as a wrapper for the RBNB stream, and the RBNB stream
directly. The capabilities document would advertise the supported connection types
so a client application can choose the one it is able to use.

In summary, as shown in Figure 10.7, right, both the prediction and the real-time
ETo values can be displayed in chart form next to the respective station locations,
and showed in the context of eco-regions (vector data) and current ETo maps (raster
data), thus providing users and scientists with a vivid interface to monitor ETo values
and easily compare them with weather model prediction over time.

It finally should be noted that the integration platform outlined above provides
transparent and uniform access to heterogeneous geospatial data sources. However,
in general, certain integration tasks such as resolving structural and semantic hetero-
geneities (see Section 10.2.4) still need to be explicitly realized at the client side and
integration platform. These tasks include matching vector-based objects from two or
more sources, selecting respective non-spatial attributes, and resolving general con-
flation aspects among data to be integrated. A viable approach to support such tasks is
through scientific workflows (see Chapter 13), where the logic of conflict-resolving
techniques is implemented in the form of actors.

10.5 Conclusions

With the amount of geospatial data growing at unprecedented rates, its effective
sharing, exchange, and integration becomes a more critical necessity than ever before.
We have seen that this goal involves not only dealing with various types of scientific
data, but also integrating the increasing number of data and value-added services
that are being deployed by geospatial communities in several important scientific
application domains. The primary objective in this context is indeed a high degree
of interoperability as a prerequisite for effective data integration and uniform and
transparent data access.

In this chapter, we have reviewed emerging data integration requirements partic-
ularly in the context of the geosciences, where advancements in sensor and network
technologies are placing an immense amount of diverse data at the scientist’s dis-
posal. We reviewed integration concepts from basic notions like data formats and
metadata standards, to more comprehensive approaches including standards for in-
teroperability and supporting Web-based technologies. We paid special attention to
current efforts in the context of geospatial sensor data streams, amply exemplified
with the enormous deal of data generated by air and space-borne instruments as well
as numerous oceanic and ground sensor networks. With a practical environmental sce-
nario, we illustrated an approach for integration and interoperability involving several
of the components discussed in the chapter, which is in fact being developed in the
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context of the COMET Project [77]. Related projects, such as the Geoscience Network
(GEON) [28] and the Science Environment for Ecological Knowledge (SEEK) [68],
have also made great progress in building service-oriented architectures and portals
that facilitate the efficient access to and integration of diverse geospatial datasets and
repositories.

We have illustrated how current technologies, characterized by concerted efforts
in standardization, are making the interoperability goal not only better defined but
also effectively realizable in critical scientific application scenarios. Although much
is still to be accomplished, especially in terms of the specification of ontologies in
several areas of the geosciences, the science community can already take advantage
of currently available infrastructures and technologies, and start benefiting from the
progress underway.
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