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Abstract
With the increasing availability of locating and navigation techgie on portable wireless
devices, huge amounts of location data are being captured at evengyratds. Spatial and
temporal aggregations in an Online Analytical Processing (OLs&®)ng for the large-scale
ubiquitous urban sensing data play an important role in understanding urbania$yrsend
facilitating decision making. Unfortunately, existing spati@mnporal and spatiotemporal OLAP
techniques are mostly based on traditional computing frameworks, ileredident systems on
uniprocessors based on serial algorithms, which makes them incapdialadling large-scale
data on parallel hardware architectures that have alreaely bguipped with commodity
computers. In this study, we report our designs, implementations aednegpts on developing
a data management platform and a set of parallel technigsapport high-performance online
spatial and temporal aggregations on multi-core CPUs and mangraphics Processing Units
(GPUSs). Our experiment results show that we are able to Ibpasaociate nearly 170 million
taxi pickup location points with their nearest street segnantsg 147,011 candidates in about
5-25 seconds on both an Nvidia Quadro 6000 GPU device and dual Intel Xeon E5405 quad-cor
CPUs when their Vector Processing Units (VPUSs) are utilibedcomputing intensive tasks.
After spatially associating points with road segments, spagatporal and spatiotemporal
aggregations are reduced to relational aggregations and can besgdoaeshe order of a
fraction of a second on both GPUs and multi-core CPUs. In adddiatemonstrating the
feasibility of building a high-performance OLAP system for pgsing large-scale taxi trip data
for real-time, interactive data explorations, our work also opengpdlies to achieving even
higher OLAP query efficiency for large-scale application®uigh integrating domain-specific
data management platforms, novel parallel data structures andhagdesigns, and hardware
architecture friendly implementations.

Keywords: OLAP, Parallel Design, GPU, Multi-core CPU, Spatiptieral Aggregation, Spatial
Indexing, Spatial Join, Large-Scale Data
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1. INTRODUCTION

With the increasing availability of locating and navigation techgiel® on portable
wireless devices, huge amounts of location data are being ed@tiever growing rates. For
example, the approximately 13,000 taxicabs in the New York City (N&t@ipped with GPS
devices generate more than half a million taxi trip recordsl@g Cell phone call logs represent
a category of data at an even larger scale [1][2]. Alsosa®rs travel around the world more
frequently, location-dependent social networks such as Foursquare [3pcatior-enhanced
social media such as text posted to Wiki sites [4], and imaggs/ideos posted to Flickr and
YouTube [5], can also potentially generate large-amounts of spatlaeanporal data. All the
three types of data have a few features in common: (1) thepradeiced and collected by
commodity sensing devices and are rich in data volumes in urban areh$2) they are a
special type of spatial and temporal data with an origin locatioha destination location in the
geo-referenced space domain and a starting time and an endagntithe time domain.
However, the intermediate locations between origins and destinatensither unavailable,
inaccessible or unimportant. Compared with traditional geographical catacted by
government agencies for urban planning and city administration purpbsss data can be
more effective to help people understand the real dynamic of urleas aith respect to
spatial/temporal resolutions and representativeness. We termdatechas Ubiquitous Urban
Sensing Origin-Destination data, of$DD data, for notation convenience [6]. Despite the close
relationships between 280D data and Spatial Databases (SDB) [7] and Moving Object
Databases (MOD) [8], our experiences have shown that traditiisiaresident and tuple/row
oriented spatial databases and moving object databases aretivefie processing large-scale
U?SOD data for practical applications including multidimensional egagions, one of the most
important modules in Online Analytical Processing (OLAP) [9].

Considerable work on developing efficient data structures and algoritiamsbeen
proposed for multidimensional aggregations on CPU uniprocessors in tHevpatkcades [10].
Modern hardware architectures increasingly rely on paradehnologies to increase the
processing power due to various limits in improving the speeds of ogegsors [11].
Unfortunately, existing data structures and algorithms that argeigresl for serial
implementations may not be able to effectively utilize thalfgrprocessing power of modern
hardware, including multi-core CPUs and many-core Graphics Pnogddsits (GPUs) [11].
Despite the fact that parallel hardware is already &dailan the majority of commodity
computers, there is still relatively little work in exploitisgch parallel processing power for
OLAP queries, especially in the areas of spatial and tem@amategations of large-scale
geographical data where complex join operations are required igdhegations. Examples of
these are counting the number of taxi pickups at each of the community distriatsus bkcks
(spatial aggregation), generating hourly histogram of drop-offs theaJFK airport (temporal
aggregation) and computing numbers of trips between Time Square ammdl @ark in morning
peak hours (OD aggregation).

In this study, we report our work on developing a data managenaemdwirork for large-
scale USOD data and a set of data parallel designs of spatial and s#raggregations that can
be realized on both multi-core CPUs and many-core GPUs in aP@k#ing. Our experiments
on aggregating the approximately 170 million taxi trip recomsNYC in 2009 have
demonstrated the effectiveness of the proposed framework and paetieiques. By utilizing
parallel spatial joins [12] to support efficient online processvegare able to achieve real-time
responses for spatial, temporal and spatiotemporal aggregationteegndifierarchical levels.
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Compared with traditional approaches that rely on relational dsalsnd spatial databases for
aggregations, our techniques have reduced the OLAP query responsertimelours to
seconds. This makes it possible for urban geographers and transpogsgi@archers to explore
the large-scale origin-destination data in general and taxdatg in particular in an interactive
manner.

The rest of the paper is arranged as follows. Section 2 introdbeebackground,
motivation and related work. Section 3 presents a parallelizatiemdfyi data management
framework for managing large-scale origin-destination @ath a focus on taxi trip records.
Section 4 provides the details on the parallel designs and imple¢moestaf spatial and
temporal aggregations on both multi-core CPUs and many-core GRUsorS5 reports the
experiment results. Finally Section 6 is the conclusion and future work.

2. BACKGROUND, MOTIVATION AND RELATED WORK

The increasingly available location data generated by conswiretess portable
devices, such as GPS, GPS enhanced cameras and GPS/WiFr@alhalaced mobile phones,
has significantly changed the ways of collecting, analyzingenissating and utilizing urban
sensing data. Traditionally city government agencies are reppoifmi collecting various types
of geographical data for city management purposes, such as urbamgland traffic control.
The data collection is usually done through sampling, typically carse-resolutions, and
guestionnaire-based investigations which often incur long turn-around. timeontrast, as
consumer mobile devices become ubiquitous, similar data obtained froAr&ES and mobile
phone call logs has much finer resolutions. With the help of privacy eadgrity related
technologies, the aggregated records from such ubiquitous urban senaingrdaé enormously
helpful in understanding and addressing a variety of urban related.i§&search groups from
both academia (e.g., MIT Sensible City Lab) and industrigs, (BM Smart Planet Initiative
and Microsoft Research Asia) have developed techniques to utithedsita and understand the
interactions among people and their locations/mobility at the city (ewel, Beijing [13], Boston
[14] and Rome [1]), social group level (e.g., friends [15] and taxsqrager pairs [16]) and
individuals level [17]. However, most of the existing studies focutherdata mining aspects of
such ubiquitous urban sensing data through case studies while largeigglehe data
management aspects untouched. Lacking proper data management techaiguesult in
significant technical hurdles in making full use of such dataddress outstanding societal
concerns. In this study, we focus on efficiently aggregdange-scale taxi trip records to better
understand human mobility and facilitate transportation planning byela@ng high-
performance spatial, temporal and spatiotemporal aggregation techniques IARs&Ilng.

OLAP technologies are attractive to explore the possible patteom large-scale taxi
trip records and other types of origin-destination data. As the taxi trijndatspatial dimensions
and temporal dimensions for both pickup and drop-off locations and conventioreisibns
(e.g., fare and tip), taxi trips can be naturally modeledpatiad, temporal and spatiotemporal
data which requires synergizing existing research on SpatialP(18][19] and Temporal
OLAP [18][20] or their combinations [18]. Due to the popularity of gderence data, there are
increasing research and application interests in Spatial OHa®ever, most of them focus on
data modeling and query languages [18][21][22][23], and applicationgaf &patial databases
and Geographical Information Systems (GIS) [24][25][26][27]. A feuphisticated indexing
and query processing algorithms to speed up certain analytical iopgratsuch as
consolidation/aggregation, drill-down, slicing and dicing, have been proposed
[10][28][29][30][31]. Spatial OLAP applications on top of spatialatetses and GIS, while easy
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to implement, impose additional I/O and computational overheads whiclfuntiagr slow down
spatial and temporal aggregations and may not be suitable for appbcttat involve a large
number of data records like our taxi trip application. We also hatethe existing research on
Spatial OLAP mostly targeted at the traditional computiagigwork, i.e., disk-resident systems
on uniprocessors based on serial algorithms, which makes it bleaplahandling large-scale
data on parallel hardware architectures.

Our experiments using the open source PostgreSQL database have bhowime t
performance of spatial aggregations on a large-scale dataset, whigimgdwnindreds of millions
of taxi trip records, using the traditional disk-resident databgstems, is too poor to be useful
for our applications. We note that spatial queries are supportedsigreSQL through the
PostGIS extension [32]. The Appendix at the end of the paper liS§QL&tatements (Q1-Q16)
that are involved in a database based implementation of spatiabmporal queries, where
tablest andn represent the taxi trip records data and street network dspectevely. Note that
gueries Q1 through Q8 are used for spatial associations (includingnigded spatial join). Q9
and Q10 are used for indexing materialized spatial relationshgpsPUSeg and DOSeg are
indexed as relational attributes. Q11 and Q12 are used for spgdi@gations based on the
materialized spatial relationships. Finally, Q13 and Q14 are foseédmporal indexing and Q15
and Q16 are used for temporal aggregations. On a high-end computing node running ®@bstgreS
9.2.3, Q5 took dozens of hours. We note that Q5 is already an optimized&€hesit by using
the non-standard “SELECT DISTINCT ON” clause in PostgreSQL amgroximating the
nearest-neighbor query using the ST_DWithin function and the “ORB¥ERlistance”’ clause.
Obviously the performance is far from satisfactory for on\P queries. While we are aware
of the fact that certain optimization techniques, such as sqitimger parameters and data
partitioning, can potentially improve the overall performance, we\elthat Spatial OLAP
gueries based on traditional database systems cannot achievefdnmaece level that we are
aiming at for the data at the scale using existing techiedo@ur additional experiment results
have also revealed that the performance can be drastically irdpbyvetilizing large main-
memory capacities and GPU parallel processing [33][34]. Thigrtivated us to investigate
techniques in boosting the performance of spatial, temporal and spgiiotd aggregations by
making full use of modern hardware that has already been equipgedomimodity personal
computers.

We refer the readers to [9] for a brief review on paralleAP computation. We note
that existing work on parallel OLAP mostly focused on paralleimaon shared-nothing
architectures while leaving parallelization on shared-memupmyngetric Multiprocessing (SMP)
architectures, including both multi-core CPUs and many-core GRtgly untouched. The
number of processing cores on both single-node CPUs and GPUs imdastsing. The
mainstream Intel CPUs and Nvidia GPUs have 4-8 and 512 cores, respectivelgsbaged on
the Intel Many Integrated Core (MIC) architecture (such esnXPhi 5110p) have 60 cores [35]
and devices based on Nvidia Kepler architecture equipped with da3®Q@0 cores [36] are
currently available on the market. These inexpensive devices bassthmu-memory SMP
architectures are cost-effective and relatively easy tgrano. We believe it is an attractive
alternative to cluster computing in solving many practicaldagpale data management problems
when compared to MapReduce based cloud computing where computing resoarcéen
utilized inefficiently [37]. Despite the fact that shared-nothbmged architectures are often
considered having better scalability than shared-memory baseq weeargue that, from a
practical perspective, higher scalability can be achieved bgraiteg the two architectures
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when necessary. Fully utilizing the parallel processing poweMdt Srocessors (including both
CPUs and GPUs) will naturally improve the overall systenfiop@ance in a cluster computing
environment using grid or cloud computing resources. As a first stegumwently focus on

parallel aggregations on multi-core CPUs and many-core GPUs eduippesingle computing

node, i.e., in a personal computing environment that is more suitabletdoadtion-intensive

applications such as OLAP queries.

There are a few pioneering works on using multi-core CPUs amg-owae GPUs for
OLAP queries including aggregations. The design and implementation BIMIRESE system
[38] have motivated our work in many aspects, such as column-orientettghgata layout,
data compression and in-memory data structures. However, most axigteng systems
including HYRISE are designed for traditional business data and dsuppbrt geo-referenced
data. There are also several attempts in using GPUs for @Qppkcations with demonstrable
performance speedups [10][39][40]. However, again, they do not expktigport spatial or
spatiotemporal aggregations which are arguably more computatiomi@hsive. Furthermore,
while previous studies have shown that parallel scan based GPEmemhtions can be
effective in processing data records in the order of anfidlions , the number of data records in
our application is almost two orders of magnitude larger which m&kd implementation
more technically challenging.

Our designs and implementations of spatial and temporal aggregagangy rely on
parallel primitives that are supported by several paralleariés on both CPUs and GPUs.
Parallel primitives, such art, scan andreduce [41][42], refer to a collection of fundamental
algorithms that can be run on parallel machines. The behaviors of ppptddlel primitives are
well-understood. In particular, we have used the open source Thrust [BBhthat comes with
Nvidia CUDA SDK [43] on GPUs and the open source Intel TBB [44kage from Intel on
CPUs extensively. It is beyond the scope of this paper togeg@/comprehensive review of the
parallel primitives that we have utilized in this study and &ferrthe interested readers to [42]
for more details. A brief introduction to several parallel piwes that are involved in our GPU
implementations of the aggregations is provided online [45]. The pgasatkng primitive that
we have used in this study comes from the GNU libstdc++ Plakatide library which was
derived from the Multi-Core Standard Template Library (MCSTilgjgrt [46]. In addition, our
multi-core CPU implementation of spatial associations utilites Vector Processing Units
(VPUSs) on CPUs to boost its performance. While several piorgestudies have tried to exploit
the Single Instruction Multiple Data (SIMD) parallel processpmyver on VPUs by calling
lower level hardware-specific APIs (SIMD intrinsics) [448][49], we take advantage of the
Intel ISPC open source compiler [50] that has recently becomelateaillThe ISPC compiler
supports programming SIMD units in a way similar to CUDA basBtd @rogramming which is
much more productive. To the best of our knowledge, we are not awang pfevious work on
utilizing VPU’s SIMD processing power for spatial assooiasgi by speeding up geometrical
computation.

3 U?SOD-DB: MANAGING ORIGIN-DESTINATION (OD) DATA IN DBMS

Almost all taxi cabs in cities of developed countries have beerpmepiwith GPS
devices and different types of trip related information are redorBler example, more than
13,000 GPS-equipped medallion taxicabs in the New York City (NYC)rgeneearly half a
million taxi trips per day and approximately 170 million trips gear serving 300 million
passengers. The number of yearly taxi riders is about 1/5 abftsabway riders and 1/3 of that
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of bus riders in NYC according to MTA (Metropolitan Transportatioath®rity) ridership
statistics [51]. Taxi trips play important roles in everydagsi of residents and visitors of NYC
as well as any major city worldwide. The raw service dasaahi@w dozens of attributes such as
pick-up/drop-off location and time as well as fare/tip/toll amoumtghis study, we generalize
the taxi trip data as a special type of OD data and présemesign and implementation of the
U?SOD-DB system that is designed for managif§@D data on modern hardware.

Compression, grouping, histogramming and indexing

i A o

A

Physical Data

Layout

Fig. 1. lllustration of 3SOD-DB Prototype System Components and Interactions

Our design of BSOD-DB has three tiers. The lowest tier is closelyteeldo physical
data layout and we have adopted a time-segmented, column-orientdéaydataapproach. The
raw data are first transformed into binary representationstmioutes are clustered into groups
based on application semantics. The data corresponding to the attrilnyte gt a certain time
granularity are stored as a single database file with @levant metadata registered with the
database system. We assume one or more database filesstagabmed into CPU main memory
as a whole to maximize disk I/O utilization. Multi-core CPldgassors can access the data files
in parallel once they are loaded into the CPU main memory. They can alsodferted to GPU
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global memories should the system determine that GPU paratteessing is more
advantageous. The middle tier is designed to support efficient ctzgases and provides some
commonly used routines, such as compression, histogramming and indexing. Teeisomare
application specific. For spatiotemporal aggregations in an OLARgethe current EBOD-
DB supports efficient spatial joins between OD data and urbarsinfcaure data, such as road
networks and administrative regions. An illustration ofSOD-DB prototype system
components and interactions is provided in Fig. 1 [6]. For the remgaofi this section, we
provide technical details on the data layout and timestamp compremstbra high-level
overview of spatial and temporal aggregations before their dadlabeggns and implementations
details are presented in Section 4.

3.1 Time-Segmented Column-Oriented Data L ayout

As shown in Fig. 2 [6], we categorize the attributes thataseciated with trip records
into several groups and data of the attributes in the same group are storedjie dadabase file
by following the column-oriented layout design principle: attribuiethe same group are likely
to be used together and thus it is beneficial to load them intomeimory as a whole to reduce
I/O overheads. Given a fixed amount of main memory, as the attfiblatdengths of individual
groups are much smaller than the lengths of all attributes, recteds that are related to
analysis can be loaded into main memory for fast data ascdssgeneral, the column-oriented
data layout design improves traditional tuple-based physical storag¢ational databases by
avoiding reading unneeded attribute values into main memory bufferssamequently
increasing the number of tuples that can be read into mmeoryimgla §O request. We also
note that combining several attribute groups into one and extractigut@s from multiple
groups to form materialized views can be beneficial for tetasks. For example, in Fig. 2,
attribute group 5 (start_x, start_y, end_x and end_y) can be consadesenhaterialized view of
the attribute group 2 (start_lon, start lat, end _lon and end_lat) by appyifocal map
projection to the latitude/longitude pairs. Since the projected datafrequently used in
calculating geometric and shortest path distances and map jmageeire fairly expensive,
materializing attribute group 5 can significantly improve syspamiormance. Another example
to demonstrate the utilization of materialized views on the palgi grouped attributes is
verifying the recorded trip times (indicated by trip_timegroup 6) with computed trip times (by
subtracting pickup time from drop-off time in group 3) by materiagjzhe respective attributes
in the two groups. We further note that among the attributes ioritieal dataset shown in Fig.
2, some of them can be derived from the others. For example, bothnstaniy codes (group 9)
and addresses of pickup and drop-off locations (group 8) can be deriveddrtend latitudes
and longitudes (group 2) through reverse geocoding or other related techniques.

After determining the data layout by grouping attributes (verpeatitioning), the next
issue is to determine the appropriate number of records in database tilasthege files can be
efficiently streamed among hard drives, CPU main memoryGitid device memory. The sizes
of the database files should be large enough to reduce systdmean®ias much as possible but
small enough to accommodate multiple database files simultan&o@BU/GPU memories so
that typical operations can be completed in the designated méunteys. At the same time, the
numbers of records should correspond to certain time granulastiesieh as possible. In our
design, we use month as the basic unit (temporal granularity@gimesnt taxi trip records
(horizontal partition). Given that there are about half a millionttgx records per day in NYC,
assuming that an attribute group has a record length of 16 leyteddur attributes with each
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represented by a 4-bytes integer), the database file would be 16*028B0segabytes. Since
the main memory capacity in our experiment system is 16 giggsbthe database file size is
appropriate although other sizes might be suitable as well.

8
Trip_Pickup_Location Start_Zip_Code Time_between_service
Trip_Dropoff_Location End_Zip_Code Distance_between_service

X /

start_x 3
Start_Lon start_y Trip_Pickup_DateTime ?
Start_Lat end_x Trip_Dropoff_DateTime
End_Lon | end_y
End_Lat g 2 ; (local

projection) Passenger_Count
Medallion# Fare_Amt

Tolls Amt

?ng ©) Trip_Time @ Tip_Amt @

Trip_Distance

Payment_Type
Vendor_name @ Surcharge
Date loaded Total Amt
Store_and_forward Rate_Code

Fig. 2. Column-Oriented Physical Data Layout fSOD-DB

3.2 Timestamp Compression and Temporal Aggregations

The text format of the pickup and drop-off times converted frdatiomal databases like
“2009-01-17 23:52:34" takes 20 bytes. While the format can be easily conversaditbtih” in
the standard C language to satisfy the needs of all tempggatgations (e.g., month, day of
week) on CPUs, we found that the data structure takes 56 bytes anL@i#ikiand 44 bytes on
32-bit Linux platforms which may be too much from a memory footprintspeative.
Furthermore, the time structure cannot be used on GPUs diwaityr brings a significant
compatibility issue. Our solution is to compress the pickup and dropyast(PUT and DOT)
into 4-byte (32 bits) memory variables using the following byold starting from the most
insignificant bit: 6 bits for second (0-59), 6 bits for minute (0-59),t$ for hour (0-23), 5 bits
for day (0-30) and 4 bits for month (0-11). The remaining 6 bits (0-63pearsed to specify the
year relative to a beginning year (e.g. 2000) which should be suffitor a reasonably long
study period. Retrieving any of the year, month, day, minute and second fieldsezsilypelone
by bitwise operations and integer operations which are effioieriioth CPUs and GPUs. The
straightforward technigue has reduced memory footprint to 1/5 (4fD)safriendly to both
CPUs and GPUs.

At the first glance, the design does not support temporal aggreghtised on “day of
week” and “day of year” very well as these two fieldsraseexplicitly stored in our design as in
“struct tm” in the standard C library. Computing the values of these twadsfi@thile feasible on
CPUs (by using C/C+#ktime function), can incur significant overheads when the number of
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records is huge. For example, our experiments have shown that augolaty of week” alone
for 170 million records can take 22 seconds, i.e., 100+ CPU cyclesmmstdamp on average.
However, we would like to draw attention to the fact that tinrmpsacan be aggregated by
“year+month+day” before they are further aggregated accordiriday of week” or “day of
year”. Since the possible combinations of (year, month, day)regasonably long period are
limited (in the orders of a few thousands), they can be aggregatddyt of week” or “day of
year” in a fraction of a millisecond using the C/Crrktime function on CPUs. The design also
eliminates the need for GPU implementation to compute “day ekier “day of year” from
“year+month+day” which is nontrivial.

3.3 Overview of Spatial and Temporal Aggregations

While many operations and analytical tasks can be performed®@MJdata, spatial and
temporal aggregations are among the fundamental ones. In a wagr sonéfficient OLAP
operations for decision support on relational data, high-performandel spad temporal
aggregations are crucial in effectively supporting more comphakycal operations on OD
data. Fig. 3 illustrates the general framework and examplelspatl temporal aggregations that
are supported by our280D-DB design. Most of the temporal aggregations (e.g. daily and
hourly) and some of the spatial aggregations (e.g. grid basedyeatata-independent schemes,
while more complex aggregations rely on the schemas providedfiagtructure data such as
road network and administrative hierarchies. Our designs and implations to be presented in
Section 4 focus on complex spatial aggregations. We note that, as ishbign3, once the OD
locations (e.g. pickup and drop locations in the taxi trip datadsseciated with street segments
or different types of zones, spatial, temporal and spatiotemponagegpns can be reduced to
simple relational aggregations without involving expensive spatial ateltgooral operations
any more. The BSOD-DB architecture is designed to support multiple types ofiaspat
aggregations by providing a common spatial indexing and spatialingtédramework to
efficiently pair subsets of relevant datasets before appbpegific refinement approaches for
associating individual data items, e.g., based on Nearest Nei¢brsearch or Point-In-
Polygon (PIP) test. In this study, we focus on spatially agsogitaxi locations with segments
in road networks by locating the nearest street segment withémdeR for each point location.
After the 170 million NYC tax trip locations are associateththe LION road network dataset
published by the NYC Department of City Planning (DCP) [52], emesegments are nicely
associated with quite a few types of polygon zones as shown irf3,FHilgey can be used for
further relational aggregations.

It is beyond the scope of our study to implement all the typepatial, temporal and
spatiotemporal aggregations that have been modeled in the literatyis3[5Bistead, we focus
on the aggregations along the spatial and temporal hierarchies sindwgn 3. We divide an
aggregation into two phases: the spatial and temporal assocptase and the relational
aggregation phase. The association phase, typically implementegbizs ean be performed
either offline or online. The advantage of materializing spateahpbral or spatiotemporal
relationships offline is that, as computing the relationships typical expensive, directly
accessing the materialized relationships can significantjyrawe the overall performance.
However, when dynamic query criteria are imposed (such as those dadaxi fare and tip),
offline materialization becomes infeasible and fast real-bmiae aggregations become critical.
In addition, when spatial aggregations are combined with temporalegadgms (i.e.,
spatiotemporal aggregations) at arbitrary levels, the possibldaruof aggregations grows
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quickly which makes offline materialization less attractive doedisk storage, 1/0 and
maintenance overheads. Online aggregations are more desirable in such cases.
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Fig. 3. Example Spatial and Temporal Aggregations’®8QD-DB

4 PARALLEL DESIGNSAND IMPLEMENTATIONS OF SPATIAL ASSOCIATION

The U'SOD-DB architecture supports both serial and parallel designd a
implementations of the spatial and temporal aggregation operatioanssgbsl above. In this
study, we propose a set of data parallel designs that canpbemented on both multi-core
CPUs and many-core GPUsor spatial associations, in addition to providing the design and
implementation details of the Multi Level Quadrants (MLQ) klaapproach presented in [34]
that focuses on many-core GPUs, we have also provided an altersetivé designs and
implementations of a Flatly Structured Grid (FSG) based apprbat focuses more on multi-
core CPUs. While these designs and implementations will beedktaisubsections 4.1 through
4.5, Table 1 provides an overview of the modules and their available immti&ions on
multiple parallel computing platforms. Note that we use “/” togatk that the implementation is
applicable to both designs while we use “+” to indicate smhild different implementations are
required for the MLQ and FSG designs. The rationales are provided whencnubealdse details
of each module. Among the four modules in both approaches, the Point Indedifplgline
Indexing modules are used to partition points into groups so that otigllypelose points and
polygons are paired up in the Spatial Filtering module before eaoh ipaassociated with its
nearest polyline in the Spatial Refinement module. Provided that asgatidl filtering strategy
is available, it is possible to reduce the nearest neighbor commutamgead from O(N*M) to
O(N) where N is the number of points and M is the number of polylines, respectively.

The primary reason that motivates us to develop the FSG based dasign
implementation for point indexing is to overcome the memory liroitaon GPUs (currently
limited to 6GB) for larger point datasets. The implementation sedan the parallel sorting
algorithm provided by the GNU libstdc++ Parallel Mode libra¢g][which is very efficient on
multi-core CPUs. For the Polyline Indexing module and Spatiagriity module, we only
provide a parallel primitive based design (whose implementatitwaged on Thrust) because
their runtimes are relatively insignificant on large datasethen compared to the other two
modules. By changing the underlying computing platform from CUDATBB, the parallel
primitive based implementations based on Thrust can be compildd#& €ode on GPUs and
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compiled to TBB code on multi-core CPUs. The downside of this highly portableosoisithat,

in a way similar to using Standard Template Library (ST34][ there are library overheads
which can be significant in certain cases, especially for UuBBB on multi-core CPUs where
the Thrust library has not been extensively optimized for mula-€PUs. However, for the
Spatial Refinement module, we provide both a native CUDA implementatn GPUs and a
native TBB implementation on multi-core CPUs as we want to retheeverheads due to
parallel libraries and minimize the overall response timesieAailed in Section 5, the modules
can be organized into different configurations under different sosnand the performance of
the configurations can be further compared. We next provide thdsdetaihe designs and
implementations of the four modules in the following subsections.

Table 1. List of Parallel Design and Implementation Choices

Multi-core CPU ImplementationsGPU Implementations
1 Point Indexing GNU Parallel (FSG) Thrust over CUDA (MLQ)
2 Polyline Indexing | Thrust over TBB (FSG) Thrust over CUDA (FSG/MLQ)
3 Spatial Filtering Thrust over TBB (FSG) Thrust over CUDA (FSG+MLQ)
4 Spatial RefinementTBB( with ISPC) (FSG) CUDA (FSG/MLQ)

4.1 Point Indexing Using Multi-Level Quadrants

As illustrated in Fig. 4, the strategy of the MLQ based pointximgeis to partition the
point data space in a top-down, level-wise manner and identify the gtsadith a maximum of
K points at multiple levels. While the point quadrants are beingifi@éehtevel-by-level, the
remaining points get more clustered, the numbers of remaining poocambesmaller, and the
data space is reduced. The process completes when either timeumabevel is reached or all
points have been grouped into quadrants. In the example shown in Fig. dstwsertiall points
at level 1 using their Z-order [58] code and count the number of points eadbrlevel 1
guadrant. As quadrant 2 has only 11 points which is less than K=20yi{&)kand number of
points under it (11) are identified and the points are excluded fudhmef processing. We use a
(key, #of points) pair to represent a quadrant in Fig. 4. The samedprecis applied to the
remaining points at level 2 to identify two quadrants (4,9) and (7,9palevel 3 to identify 6
guadrants (9,7), (10,9), (11,8), (12,5), (13,8), (14,7), in an iterative manner.h&ftenmnbers of
points in all quadrants are derived, the starting positions of the first points in thamjsaan be
computed in parallel easily by using prefix-sum [41][42] foremsses to the points later. An
advantage of limiting the maximum number of points in a quadrant i® tK facilitate load
balancing in parallel computing. As it shall be clear afterimroduce the spatial filtering and
refinement modules, when the numbers of points and the numbers of polgtinees are
bounded, the workload of parallel processing elements is also bounded gmdceesing
elements can dominate the whole process.

The design is highly data parallel and can be implemented adgawg parallel primitives
as detailed in [34] where the point indexing module is also used foripgiotygon test based
spatial joins. The design is implemented on top of the Thrust dditaléey that provides all the
necessary parallel primitives. Previous studies have shownhigiarallel sorting primitives
implemented in Thrust are capable of handling hundreds of milliongaftdens per second and
are highly efficient [55]. Our experiments have shown that the exystnsive step in this
module is to sort points based on their quadrant identifiers bedorging the numbers of points
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in the quadrants and determining whether the points in the quadrants shaaxdiumed for
further partition. By making full use of high-performance GPU-bas®ting parallel primitives,

as shown in Section 5.2, the GPU-based implementation of the MLQ approach for point indexing
has achieved 13X speedup over CPU-based serial implementation.
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Fig. 4. Parallel-Primitive Based Point Indexing Using MLQ Design

However, while the underlying radix sort algorithm itself ialable on shared memory
systems (including both CPUs and GPUs), the applicability ofp#rallel sort primitives to
large-scale point datasets is limited by GPU memory dgp@crrently 6 GB). Our experiments
have shown that the GPU implementation of the Point Indexing modséd an the MLQ
design allows a maximum number of points in the order of 150-200 million dlvidia Quadro
6000 device. While it is possible to use pinned memory on CPUs to tyiteapand the GPU
memory, our experiments suggest that extensive data communicatitall{pdue to the nature
of the underlying radix sort algorithm) incurs significant ovedseahich makes the technique
impractical. In addition, our previous experiments have shown thatrgpayli the point data
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from CPU memory to GPU memory incurred 25% of overhead whkiduite significant. While
the GPU-based design and implementation is still useful fsonedly sized point datasets, it is
necessary to seek alternative solutions to efficiently indegelpoint datasets. While our CPU-
based point indexing approach on multi-core CPUs that will be pessanthe next subsection
overcomes these problems, we note that several research efoagadable to support GPU-
based sorting on CPU memory and external memory (e.g. [56]) apthwéo incorporate these
techniques once they become available to make the MLQ based poinhgnteohnique more
scalable.

4.2 Point Indexing Using Flatly Structured Grids

We design an alternative approach for point indexing that completesyan multi-core
CPUs. As CPUs can have much larger memory capacity (up to ksnofr&Bs on commodity
workstations) than GPUs, the approach will eliminate the memoryraoris to a certain extent.
In addition, there is no need to copy data from CPU memory to GRibrgeanymore which
can potentially reduce end-to-end runtime considerably. Grid filearamng the most classic
techniques for spatial indexing [57]. The FSG design for point indexingulti-core CPUs is
based on a flat grid-file structure which is significantly @ien than the MLQ based design.
Given a grid resolution, we can generate a key based on the coordihatpsint, i.e., deriving
a Space Filling Curve (SFC) code based on row-major ordetoodet [58]. This step is highly
parallelizable and is expected to be very fast as only elewisatoperations, i.e., operations
apply to all vector elements in parallel, are involved. The mugbitant step in the FSG
approach is parallel sorting of the point records based on keysmplementation is based on
the GNU libstdc++ Parallel Mode library [46]. Based on our expamis) the implementation is
memory efficient and is effective in making full use of mutiree CPU hardware. In addition to
being applicable to large point datasets whose volumes are beyong@db#ycaf GPU memory,
eliminating the need to transfer data back-and-forth between CPUGRRH memories can
potentially improve end-to-end response time of the FSG approach os. @BUetailed in
Section 5.3, the new approach is significantly more efficient gtaightforward porting of the
MLQ based GPU design and implementation to multi-core CPUatargeoffered by the Thrust
library. The efficiency is largely due to the simplified desigging a flatly structured grid.
However, the simplified design also loses the load balancing éeatavided by the MLQ
approach, as the numbers of points in grid cells can potentially be unbotiweever, we
argue that, when the grid resolutions are sufficiently fine (ahg typically true in our
applications using millions of grid cells), the chance of extreaseswhere points in a few grid
cells dominate the whole computation (in the Spatial Refinement mjadwery small on multi-
core CPUs. This is especially true on CPUs where the numbgooéssing units (cores) is
typically small (in the order of a few to a few dozens) asig@an be dynamically balanced by,
for example, using the scheduling modules provided by TBB explicitly or implicitly

4.3 Polyline Indexing
Polylines can be indexed in a similar way as polygons based on their Minimum Bounding

Boxes (MBBs). While many approaches have been proposed in the csgnputing setting
where data partition based approaches (such as R-Tregwetered [57], it remains unclear
what is the best way to index polylines and polygons in parallehget In this study, we index
polylines that represent street segments also based on gadA8s it shall be clear when the
Spatial Filtering module is introduced in Section 4.4, after liasigrthe expanded polyline
MBBs to grid cells, binary searches can be applied to pair goadrants (MLQ approach) and
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point cells (FSG approach) with polylines for refinement. Asilmaber of polylines is typically
much smaller than the number of points in spatial associations, we assunregdBBs can fit
into GPU memory completely and thus we will only provide a GPU-based implatoerthat is
independent of the MLQ and FSG designs.

. Algorithm PolylineMBBIndexing i i
. Inputs: vectors W and H (widths and heights i ° B
' of polyline MBBS)

: Outputs: vectors M and C (pairs of polyline id o P ?R;- T

. and grid cell ids where the polyline MBBs ! I |o

i intersect with grids) ! / 8 ‘/_\ W

i Steps: |

' 1 Compute MBB areas in the unit of grid cell

: 2 Compute the numbers of grid cells that [ Hy

. . intersect/overlap with MBBs i
. 3 Compute MBB masks for all grid cells |
. 4 Compute sequences of cell id offsets Wlthliﬂ rH2
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Fig. 5. Parallel-Primitive Based Polyline MBB Indexing

To support locating the nearest polyline for a point (x,y) withjuary window width of
R, as shown at the top-right part of Fig. 5, it is sufficientxtangne all the polylines whose
expanded MBBs intersect with the point. Assuming the MBB of a ipelys (x1,y1,x2,y2), the
necessary condition for the polyline to be at nivdistance away from the point is that the point
intersects with the rectangle (x1-R,y1-R,x2+R,y2+R). Subsequdotly group of points in a
guadrant or a cell, the necessary condition for at least onleeopoints that are at moR
distance away from a polyline is that the bounding box of the poinfpgrdersects with the
expanded MBB of the polyline (x1-R,y1-R,x2+R,y2+R). The observationnesjtasterizing the
expanded MBBs of polylines, which we introduce next through an exanighléewo expanded
MBBs shown in the bottom part of Fig. 5. Assuming that the widths armghtiseof the two
MBBs are W1, W2 and H1 and H2, and the coordinates of their top-left reoare
(TPX1,TPY1) and (TPX2,TPY2), the first step is to compute the nundfeise cells that the
two MBBs cover by using @&ransform primitive. After computing the starting positions of the
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first cell in the output cell vector throughSaan (prefix-sum) primitive in Step 2, the identifiers
of the MBBs are scattered to the output cell vector and thegulisequently propagated along
the vector using &max) Scan primitive in Step 3. Using the sequences of cells in the MBBs
generated in Step 4 and the MBB identifier vector derived in Step 3, Step Stfiestazthe top-
left coordinates of the MBBs and adds the local offsets of th& tbey cover to compute the
global cell identifiers for all cells in parallel by using@ansform primitive again. The algorithm

is sketched in the top-left part of Fig. 5. We note that, for theetkmulti-level point quadrants

in the MLQ approach, the same procedure can be applied to rasterize the quadyaahisells.

4.4 Spatial Filtering

The Spatial Filtering module requires two similar but diffenemplementations for the
MLQ and FSG approaches. While the MLQ requires rasterizingrabelting quadrants as
discussed previously and pair polylines and point quadrants indirectlygthrgud cell
identifiers, the point grid cells can be directly paired withyfpoés in the FSQ approach, both
through parallel binary searches as indicated by the dottedrities middle of Fig. 6A and Fig.
6B. In Fig. 6A (top), vectors VQQ and VQC keep the 1-to-manytioglship between point
guadrants and grid cells, and vectors VPP and VPC keep the 1-torslatignship between
polyline MBBs and grid cells. Identifiers of point quadrants in ve®tQQ and identifiers of
polyline MBBs can be paired through common grid cell identifiergertors VQC and VPC. In
Fig. 6B (bottom), vector VGC used in the FSG approach is equivial&@C used in the MLQ
approach and polyline MBBs are paired with grid cells directlyis Iclear that the set of
operations needed in the MLQ approach is a superset of those in the FSG apprbaaghAlie
implementation of the FSG approach for spatial filtering ispm unlike the MLQ approach
that is designed explicitly for load balancing, it can potentisliffer from load unbalancing as
the numbers of points in grid cells can vary significantly wthke numbers of points in point
guadrants are bounded by threshiloh the MLQ design. This may cause workload unbalancing
in the refinement phase. However, similar to point indexing, we aigatewhen the grid
resolutions are sufficiently high and the total number of cslisignificantly larger than the
number of processing units, load balancing can be achieved to ia cegaee by dynamically
scheduling (cell, MBB) pairs to parallel processing units.

4.5 Spatial Refinement

Recall that our goal is to compute the nearest polylines of pthiatsare at mosR
distance away. After the spatial filtering phase, each point gmougii{evel quadrant or grid
cell) is associated with a set of polyline identifiers. Whaeds to be done in the Spatial
Refinement module is to identify the polylines that are neéwesach of the points in the group
by computing and ordering the distances between the point and theatarmbtylines. Here the
distance between a point and a polyline, as illustrated in Fig.cAnisnically defined as the
shortest distance between the point and all the line segmentgoiylime. When the point is
projected to a line segment, if the projection point falls between the two enddinétbegment,
the point-to-line-segment distance is the distance between the gmanthe projection point
(perpendicular distance); otherwise the point-to-line-segment destaill be the shorter of the
distances between the point and the two ends of the line segmemty Glee spatial refinement
module is more computation intensive than the rest of the modules asmguiy floating point
computations are required. For each point in a point group, looping through lle segments
of all the polylines whose expanded MBBs intersect with the boundixg@fthie point group is
required in our design.
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Fig. 8. lllustration of Neighbor-Polyline-Searching based Spatial RefineomGPUs

Our GPU implementation of the refinement module uses CUDA bjirecachieve better
performance for two reasons. First, there are some unavoidably byerheads when using the
Thrust parallel library. Second, more importantly, the refinemesigdeinvolves multi-level
loops and it does not fit the parallel primitives designed mostlgBovectors very well. In our
GPU implementation, as shown in Fig. 8, we assign each point quéararnhread block and
assign points in the quadrant to threads in the thread block. Threads tiwehiomputing block
process points in the point quadrant in parallel and each thread loopshtlaibube paired
polylines and their line segments to compute the shortest distameéd@ntifier of the polyline
with the shortest distance will be associated with the poinmdteethat the scheme is similar to
the nested loop join in relational databases. Although nested loop joitypiaadly considered
inefficient in disk-resident relational databases, as all Gitehatls in a thread block access a
continuous memory chunk that holds the point coordinates and all threads #te same line
segment during a looping step on GPUs, the memory accesseshdyebalesced. Similarly, as
the result of each point is a pair of polyline identifier and thetsbibdistance, the thread that
processes the point knows exactly where to output the results. In simiar to read accesses
to point coordinates, neighboring threads also access neighboring \teotents of the outputs
and memory accesses are also highly coalesced. Unlike CHPUs ave very limited cache
capacities and rely on coalesced memory accesses to hide higbrynaccess latencies and
achieve high performance. Our GPU implementation is thus ablentevachigh performance
due to the coalesced memory accesses in addition to utilizingsGéddellent floating point
computing power. We would like to note that while the GPU implementasi applicable to
both the MLQ and FSG designs (as indicated in Table 1) as the amputs the same format for
both designs, the implementation may incur different workloads and @raliiierent results.
This is because the pairs in the MLQ approach are at the quéelrahtvhere quadrants can
have different sizes although the numbers of points are boundedwiyle the pairs in the FSG
approach are at the grid cell level where grid cells arengerddhan quadrants and the numbers
of points are unbounded. As such, there will be more points in the quadramts wih
polylines in the MLQ approach than the points in the grid alised with polylines in the FSG
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approach. This is very similar to the well-known fact in spdili@ring that using coarse grids
will incur more false positives, although the MLQ approach uses quadvéhtvariable sizes at
different levels (but still larger than the grid cells in B®&G approach in this study). We expect
the workload for the implementation based on the MLQ design will be heavier Hidvaied on
the FSG design which is verified in Section 5.3.

—> CPU Memor |
| <—> [l [Private L2 Cachje¢—>[] <> [ [Registers )
v
Looping over Points
L]
SIMD Unit
M O 0 O

T Line
segs 7
SIMD Unit

v
distance [ | [ T |
CPU Corefthread - | identifiers [T}

Fig. 9. lllustration of Neighbor-Polyline-Searching based Spatial RefimeomeCPUs Equipped
with Vector Processing Units (VPUS)

Our multi-core CPU implementation of the refinement module isas the Intel open
source TBB package [44] that typically performs better fonguting tasks that are not well
balanced. As shown in Fig. 9, we formulate processing a point celiess and let TBB handle
the mapping between tasks and CPU threads. In runtime, TBB aagggosp of tasks to a CPU
thread and lets the CPU thread loop through all the corresponding point celackguoint cell,
the thread loops through all the points in the cell and loops throudtedihe segments in the
paired polylines. When compared with the GPU implementation, we eatihata CPU thread
does much more work than a GPU thread. In addition, reading and voitgU memory are
automatically cached by CPU caching subsystem which makgsaprming much easier. As an
optimization of the multi-core CPU based implementation, we havelaj®gd a module to
utilize the VPUs (Vector Processing Units) that are abél on modern CPUs. SIMD based
parallel processing on VPUs are considered closely related tSitigée Instruction Multiple
Thread (SIMT) model on CUDA enabled GPUs [36]. SIMD width haseamed from 128-bit
(4-way) in SSE (Steaming SIMD extensions) to 256-bit (8-wayAUX (Advanced Vector
Extensions) and both are available on mainstream CPUs. In additiogaphbetween GPU
SIMD width (currently 1024-bit, 32-way in a warp) and VPU SIMD widk rapidly decreasing
(for example, Intel MIC VPUs have a 512-bit, 16-way SIMD width [33§$ such, exploiting
VPUs for high performance on CPUs is becoming increasingbpitant. Our implementation
utilizes the ISPC complier [50] that is available from Intelas open source package. Unlike
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CUDA threads that have their own program counters and thus allow eommhtrol logic, all
the SIMD elements of VPUs need to follow the same execution waich makes their
utilization less flexible. Another difference is that, while @AJallows much larger logic SIMD
width (which is limited by the maximum number of threads in a comgutiock — currently in
the order of thousands), the SIMD width need to match the VPU phgidD width of multi-
core CPUs. As such, our design is to partition the points in ent@lthunks and use the VPUs
to process the points in batches through explicit looping as shown in the mid-rightfigrtSf

4.6 Relational Aggregationson CPUsand GPUs

After a database tuple is associated with one or more keyd baspatial, temporal and
spatiotemporal relations, the next step in spatial and temporagagigns is to derive statistics
in groups defined by the individual keys or their combinations which camfbemative in
decision making. Counting and similar relational aggregation operatiafesiving group-based
statistics are fundamental operators in relational datakesgshave been well researched,
including some recent work on parallel aggregations on many-cores G#[B9][40]. A
straightforward implementation of the relational aggregation apsrain CPUs is to use STL
map data structure to storkey, stat) pairs wherestat can be one or more statistics, such as
count/sum/avg/min/max. As the number of cores on multi-core CPUs is currentlytdithia
commonly used strategy on parallelizing the relational aggregapenations on multi-core
CPUs is to provide each thread (typically assigned to a prooessiosively) a private copy of
the map structure so that threads can work in parallel over nolaopeg partitions of tuples
and avoid using expensive locks. The private map structures aredimained to derive the
final result across threads/cores using a single thread. Unftatynthis strategy is largely
unrealistic on many-core GPUs as it is neither possible nmiestff to provide hundreds of
thousands of threads with their private copies of result structergs fnaps). Furthermore, as
the map structure is essentially a hashing based structuegjuites random accesses to hash
tables and may incur significant cache misses and reduce part@mn#hile large caches on
CPUs can tolerate random data accesses to a certain @eignng typically performs poorly on
GPUs due to the uncoalesced data accesses among threads in computing blocks [59].

Given that sorting is among the best studied parallel algoritmdse#icient sorting
implementations are provided by major parallel packages on pasgiitems, we propose a
Transform-Sort-Reduce based approach for relational aggregations on GPUs. The appraach fir
derives keys based on domain knowledge, then sorts database tuples base#eys Hrel
finally reduces on groups (identified by the keys) to produce theedestiatistics for the groups.
We note that many statistic operators, including the commonly caed/sunvavg/min/max
operators that are supported by relational DBMS, are assecaid can be applied in parallel
within groups. Our GPU implementation of the relational aggregation moduléydiobaws the
three-step procedure design. For the first step in combining kdyutds and generating keys
for all tuples, the element-wise operation is highly paraliéle and is efficiently supported by
several parallel libraries, including Thrust (usingnsform primitives). Note that the decision
on whether to concatenate relevant value attributes to form aetation (in a way similar to
materialized views in relational databases) or to directlyat@en the original relation is left to
applications. As we have adopted a column-oriented database phggam#, deriving a new
relation is performed by vertically concatenating relevammemory column files. For the
second step in sorting the database tuples based on their keydixasorang on fixed-length
keys are typically more efficient than comparison based soanghave a theoretical linear
complexity with respect to number of data items to be sorted, oplementation requires
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formulating keys as 32-bit or 64-bit integers to take the advamhg#icient parallel sorting
implementations on GPUs. We argue that 32-bit keys can be suiffitie many practical
applications. Since users are typically interested in only igelinramount of top-ranked groups,
the keys can be hierarchically refined into multi levels whileusing 32-bit keys at each level.
For the third step in applying reduction operators within groups tivedstatistics, Thrust
provides aeduce (by key) primitive that meets our requirement.

sort
elallela]fs—[2]2]2]3]3]
Inputs: vectors pu_seg and pu_t reduce_by ke ¢

Outputs: vectors pu_key and pu_count representigcegated keys and counts
P P P P key
Step 1: transform pu_seg and pu_t into a vectbirokeys as the following: count 2[11[2]
thrust:transform ( |
thrust:make_zip_iterator (thrust::make_tuple(pu_seg.begin(),pu_t.begin()),
thrust:make_zip_iterator (thrust::make_tuple(pu_seg.end(),pu_t.end()),

temp_keys.begin (s struct make_key

make_key() ]

)
Step 2: in-place sort the key vector to get reatydduction __host____device__ ¢ y
thrustsort(temp_keys.begin(),temp_keys.end(); uint operator()(thrust::tuple<uint, uint> v)
Step 3: reduce by key count the number of trips in each bin and outhetresults to uint segid=(thrust::get(0)(v)) &0x07FFRFF
pu_count as the following: uint hour =(thrust::get(1)(v)>>12)&0X0CUILF;
int num_keys=thrust.educe by key( return ((segid<<5)|hour);

temp_keys.begin(),temp_keys.end(),hrust::constamator<int>(1) }

pu_keys.begin(), pu_count.begin(), b

thrust::equal_to<uint>(), thrust::plus<int>()

).pu_keys.begin()

Fig. 10. Code Segment of a Parallel Relational Aggregation using SpatiotéKgygsa

Assuming that we want to perform a spatiotemporal aggregation onréle¢ segment
and hour, i.e., counting the number of taxi pickup locations at each ofd¢leé stgments at the
each of the 24 hours, Fig. 10 provides the code segment for illustratipospar Here we are
given two vectors with the first storing the street segmantsthe second storing the pickup
times in the compressed form (Section 3.2) for all taxi tripndusing a column-oriented data
layout. Note that theip iterator is used to combine the elements in the two input veictiors
tuples in thetemp_keys vector so that they can be used in the required functor (C++ dancti
object) in thetransform primitive to convert the segment identifiers and pickup hours into keys
for reduction. The last five bits in a resulting key are atled@o hour (24<3 and the rest of the
bits are allocated to segment identifiers which allows a*f segment identifiers and is
sufficient in our application. The same procedure can be applied whablea of higher
dimensions are involved in key formations. Theduce by key primitive in Thrust is a
segmented version of the regutaduce primitive. To help understand the procedure, a simple
example is provided in the top-right part of Fig. 10. After sorim&tep 2, the same keys are
arranged consecutively in themp_keys vector. For each of the unique keys in ta@p_keys
vector (which is output to thpu_keys vector), the count in thpu_count vector is increased
(defined by thethrust::plus functor) by 1 (as defined by thérust::constant_iterator). The
primitive allows us to define how to determine whether two kegsemual by providing a
functor to replace ththrust::equal_to functor and how to perform the reduction by providing a
functor to replace théhrust::plus functor and thus is very flexible. Sintlerust::make tuple
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takes up to 10 parameters to make tuples, it should be more thanestffici combine
dimensional values and make keys in most cases.

The readers might have observed that the sBraesform-Sort-Reduce based relational
aggregation scheme can also be applied to multi-core CPUs. Indeadtel pidoraries on CPUs,
such as Intel TBB, provide similar parallel primitives suchpasallel_for, parallel_sort and
parallel_reduce which make the multi-core CPU implementation of paralldiati@al
aggregations possible. However, as shown in Section 5, sorting on mulGetle is several
times slower than sorting on GPUs in our experiment system winédtes the primitive-based
multi-core CPU implementation less preferable. On the other hdni# Mvis more efficient for
GPUs to use more costly sorting operator to coordinate a tamgéer of threads to make full
use of the massively data parallel computing power of the haedwaulti-core CPUs are
characterized by having small numbers of powerful processors laitte caches. The
Transform-Sort-Reduce scheme that works well for GPUs may not be the most efficient
implementation for multi-core CPUs. In fact, as many of tlhetiomal aggregation operators are
associative, it is unnecessary to produce a total order throutthgscAs mentioned earlier,
given that the numbers of cores on CPUs are typically small, when the sumhigeoups are not
extremely large, it is technically feasible to provide e@&J thread a private copy of data
structures for storing statistics. The advantages of using @rie@pies are to completely
eliminate concurrent data accesses that typically requirensixeelocking, and, to eliminate
expensive sorting. Each thread can just sequentially loops througbattigon of the tuples
assigned to it and generate statistics for the partitioallyebefore the private copies of the
statistics are combined. To reduce the memory management overn&3Idsmap structures, in
our multi-core CPU implementation, we use dynamic allocated arraysdrestdbe sizes of keys
are often known before relational aggregations. As shown in Sectiorthg.%fficiency of
relational aggregations can be significantly improved by usin@lpyeated dynamic arrays and
narrow the performance gaps between the GPU and CPU implementations.

We would like to take the opportunity to briefly comment on the implgations using
native parallel programming languages or similar approaehgs CUDA on GPUs and Pthreds
on CPUs) and those that are based on parallel primitives Témst on GPUs and TBB on
CPUSs). In the context of OLAP aggregations, the work reported in déptad a native
implementation approach which requires a deep understanding of GPU harda#seaddthigh
parallel programming skills. Even though parallel reduction iseh-studied problem and the
mapping between the reduction primitive and OLAP aggregationk&ts/ety straightforward, it
remains non-trivial to implement the aggregations with good perfonaistng a native
programming approach [9]. Another research effort on MOLAP cubg B&ed parallel
primitives which allowed the authors to focus on high-level constmitt®ut diving into too
many hardware details. While we are in favor of the paraliglifwe based approach in general
due to its simplicity and portability, the tradeoffs between cofildezfcy and coding complexity
of parallel primitive based implementations and native implementatneed to be justified in
different applications. We also note that the primitive based mmgaiéation does incur some
overheads that can be avoided if implemented directly on top of rzdinadlel programming
languages. For example, thamp keys vector in Fig. 10 of our example is accessed multiple
times when different primitives are invoked. In addition, most parphietitives are designed
for 1-dimensional data that can be represented as arraystorsvdte similar arguments can be
applied to CPU-based implementations in general, for example, @thineaTBB. However, as
multi-core CPUs typically favor coarse-grained task levelalpgization and allow serial
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implementation within parallel tasks, the differences on molte€PUs are not as significant as
those on GPUs from an implementation perspective in the context af ndahagement
applications. To the best of our knowledge, there are no parallalidbrdat support multi-
dimensional data and provide a similar set of functionality. Ogigde on parallel spatial
indexing, filtering and refinements have the potential to be abstiaws multi-dimensional
primitives for spatial and temporal aggregations and we leaventiei®sting topic for future
work.

5 EXPERIMENTSAND RESULTS

5.1 Data and Experiment Setup

Through a partnership with the NYC Taxi and Limousine Commission ,TW€ have
access to roughly 300 million GPS-based trip records collectedgdariperiod of about two
years (2008-2010). In this study, we use the approximately 170 millakupilocations and
times in 2009 for experiments. The NYC DCP LION street networasga with 147,011 street
segments is used as the urban infrastructure data to assaxidteations with street segments
and subsequent spatial and temporal aggregations. Among the 168,379,168 taXppatiups
in NYC, the majority are successfully associated with thearest street segments within R=250
feet. However, there are 867,163 (0.515%) locations whose computed shoteestedisare
more than 250 feet. They are considered as outliers and dweexkérom subsequent analysis.
All experiments are performed on a Dell Precision T5400 worksta&tijuipped with dual quad-
core CPUs running at 2.0 GHZ with 16 GB memory, a 500 GB hard drovaraNvidia Quadra
6000 GPU device with 448 cores (running at 1.15 GHZ) and 6GB memory.

5.2 Resultson ML Q-based Spatial Associations on GPUs

Fig. 11 shows the results of MLQ-based spatial associationsnmapted on GPUs using
the maximum quadrant depth L=16 (2 feet cell resolution at the faesd), the maximum point
guadrant size K= 512 and the expanded window widR=@5 feet for polyline MBBs. In this
figure, the horizontal axis represents the months in the year 200@réhased in the spatial
associations, N1 is the number of point locations, N2 is the numberieédi@oint quadrants,
T1, T2, T3, and T4 are the runtimes measured in seconds of the doutas, point indexing,
polyline indexing, spatial filtering, and spatial refinement, respely, and T is the total
runtime. We can see that the runtimes of point indexing dominatetdderuntime in all tests
and increase almost linearly with the number of point locations.i3m®stly due to the radix-
sort based parallel primitive for sorting that incurs linearinues with respect to the number of
points. The runtimes of the remaining parallel primitives are lgpntisear with respect to the
number of points or quadrants, except in cases that a same point quaidrarie paired with
multiple grid cells. We note that the runtimes for point indexing haxeady included data
transfer times between CPUs and GPUs which account for nearlpP®f end-to-end runtime
using 12 months data (the whole year of 2009). Also note that the pohdiereng time is fixed
across the months, which is relatively insignificant. From thaltsesve can see that it takes
about 15 seconds to complete the spatial associations between8B8 ifillion pick-up
locations and the 147 thousand street segments based on the neghéstrrseiarching principle
within a 25 feet window width. The GPU-based spatial associatiensoaisiderably faster than
running queries similar to query Q5 (listed in the Appendix at the entheofpaper) in
PostgreSQL that takes hours to days. Although it is not our intersemntpare our results with
PostgreSQL directly as they are designed for different purpmsgsexploit different sets of
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technologies, the results clearly demonstrate the level ofvatiieeperformance on aggregating
large-scale geospatial data on modern commaodity parallel hardware.

An interesting observation of the experiment results on spdtalrfg runtimes is that,
as the number of point locations grows across months, the spagahdltruntime actually
decreases which is counter-intuitive. A careful examination I®\bat, as the threshold K is
fixed in our experiments, when the number of point locations is sthallnumber of derived
point quadrants is likely to be large which results in a large nuofbeells after rasterization.
Subsequently, it takes longer for binary searching, sorting and diguice@moval. As the
spatial filtering runtimes can be several times larger thanspatial refinement runtimes and
even larger than the point indexing runtimes (for cases usingesmambers of months in Fig.
11), it is desirable to reduce the runtimes as much as possibke@sgenerally expect lower
response times when the numbers of points are small. As such, veststeggse adaptive grid
resolutions in the GPU-based MLQ implementation, i.e., use coardaregalutions for smaller
numbers of points being associated. Assuming that statistgtabdtions of point locations do
not change significantly across months, it is likely that a casteincan be formally derived to
suggest an optimal grid resolution for the implementation. This is left for oue fwink.
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Fig. 11 Plot of Runtimes of MLQ-based Spatial Associations on GPUs
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To further evaluate the performance of many-core GPUs &tia$jassociations, we have
performed the same sets of operations corresponding to T1 (point inderiimge) and T4
(spatial refinement runtime) on a single core CPU for thatpdn all the 12 months. The
runtimes are T1'=162.004 seconds and T4'=35.338 seconds, respectively. We have not measured
T2’ (polyline indexing runtime) and T3’ (spatial filtering runtijmen single core CPUs because
we are not aware of efficient implementations of main-memotg dauctures for polyline
indexing and spatial filtering. It would not be fair to simplytpbieir GPU implementations to
CPUs which might not be efficient. However, even if T2' and T3 exeluded, we still get a
13X speedup calculated as (T1'+T4")/(T1+T2+T3+T4)= 197.342/15.236. The result indiwates
efficiency of GPU based spatial association based on the MLQ design.

5.3 Resultson FSG-based Spatial Association on Multi-core CPUs and GPUs

We have tested our FSG-based spatial association module on mell@ftis under the
following settings. A fixed grid cell size G=16 feet is useddibrexperiments. We have chosen
to experiment on fouR values (25 feet, 50 feet, 100 feet and 250 feet) to examine how end-to-
end runtimes change as the polyline expanded window width increaseg.lalgier expanded
window widths typically results in larger numbers of (cell, polg)i pairs that need to be refined
after the spatial filtering. As such, both spatial filterimgl @patial refinement runtimes are likely
to increase. As indicated in Table 1 in Section 4, we use GNUIddviode for sorting on
multi-core CPUs. As the Polyline Indexing module is independent GIMMEQ designs, we re-
use the MLQ implementation on GPUs directly and port it to mahle-€PUs through Thrust by
changing the Thrust library device backend from CUDA on GBURBB on multi-core CPUs.
For spatial filtering, we have implemented the FSG-based rdesigGPUs to compare with
MLQ based GPU implementation and port it to multi-core CPUa similar way. Also as
discussed in Section 4.3, although we have ported the FSG based GPU implensetatatiulti-
core CPUs (results listed in Table 2 in the FSG-MC columnhote that the library overheads
for the TBB ports may be higher than the overheads for the natizA@mplementation of the
Thrust library and the factor is taken into account during the sisalWhile it is beyond the
scope of our work to optimize the Thrust library on multi-core CRAs plan to natively
implement the parallel primitives that are used in polyline intgand spatial filtering based on
the FSG design to improve their performance in our future worksjpatral refinement module
using the FSG design, since we have explored VPUs in our multi-core CPU im@tamenthe
runtimes for the following implementations are listed in Tables@rial implementation using a
single core (SC), parallel implementation on a single core WU (SC-VPU), parallel
implementation on multiple cores without VPU (MC), and parallel em@ntation on multiple
cores with VPU (MC-VPU). The runtimes for the spatial fitg module using the GPU
implementations based on both FSG and MLQ designs under thR f@lues are also listed in
Table 2 for comparison purposes.

From Table 2, we can see that the FSG-based multi-core @plémentation for point
indexing is about 2.3X faster than the MLQ-based GPU implementdiib#33/5.382). On the
other hand, while the GPU implementation has achieved 13X speedups aisr se
implementation in the MLQ approach, only a 4.2X speedup (22.447/5.382) has beaedchie
for multi-core implementation over serial implementation in tis&Fapproach. This can be
explained by that, as detailed in Section 4.1, the FSG desiggni§icgintly simpler than the
MLQ design which subsequently requires much less computation. Unfi@iyynthe large
memory footprints (for both the resulting grid cells and temporahong during sorting) have
prevented us from implementing the Point Indexing module on GPUs baskd B8& design
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for direct comparisons. In addition, the CPU-based implementation ¢i3edesign does not
require copying the point data from CPUs to GPUs which also bates to its efficiency.
Furthermore, as sorting is typically memory intensive and theviadth of our GPU device is
much higher (144 GB/s vs. 2*12.8 GB/s), we would expect the implementatitme d&FSG
design on GPUs to be more efficient than the multi-core GPU mmspigation when GPU
memory capacity gets larger. We also suspect that insuafficiemory bandwidth on multi-core
CPUs is one of the important reasons that the multi-core CP\énmepitation achieves only half
of the theoretical speedup (8X for 8 cores). As the future gemer@aPUs are likely to have
higher memory bandwidths and more cores, we expect the performftiee multi-core CPU
based implementation will increase accordingly.

Table 2. Results on FSG-based Spatial Associations

FSG- | FSG-SC-| FSG- | FSG-MC-| FSG- MLQ-

SC VPU MC VPU GPU GPU

Point Indexing (PNI) 22.447 5.382 12.233
Polyline Indexing| R=25 1.750 0.181
(PLI) R=50 2.448 0.244
R=100 4.140 0.401
R=250 13.450 1.148
Spatial Filtering | R=25 0.738 0.068 1.221
(SF) R=50 0.984 0.083 1.391
R=100 1.521 0.118 1.702
R=250 4.305 0.264 3.207
Spatial R=25 | 21.126 7.251 2.631 0.930| 1.002 1.601
Refinement (SR)| R=50 | 28.642 9.480 3.559 1.198| 1.267 2.088
R=100| 43.419 13.913 5.440 1.749| 1.839 3.019
R=250| 100.738| 31.117 12.487 3.874| 4.156 6.573

For polyline indexing, the runtimes under &lvalues are relatively insignificant on
GPUs. However, their runtimes are more than 10X higher when theii@plementation (the
same in both the MLQ and FSG designs) is ported to multi-core CRlbde the low
performance can also occur due to the small number of cores amaelmwery bandwidth as we
have discussed previously (and low CPU clock rate in our expersyst&m), we also believe
that the Thrust library overheads of the TBB port on multi-cor&d<C&re significantly higher
than its native implementation on GPUSs. For future work, we plan to provide an optimixed nat
implementation of the polyline indexing module in order to compare thtepleeformance of the
multi-core CPU implementation with the performance of the GPU implementation.

The Spatial Filtering results provided in Table 2 show that tB&-Based GPU
implementation is 10-20X faster (by dividing values in the MLQ-Gillmn by those in the
FSG-GPU column in the four SF rows) than the MLQ-based GRWementation which is
preferred. When comparing the FSG-based implementation on multi-dds @nd GPUs
(using the values in FSG-GPU column and FSG-MC column in the semaa8), we can see
that the GPU-based implementation is again more than 10X thsterthe multi-core CPU
implementation by porting the same implementation from CUDA t8.T8gain, we attribute
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this result to a small number of cores and low memory bandwidthubi-care CPUs in our
experiment system and the higher library overheads on CPUs.

More comprehensive comparisons can be performed for the SpdiiaRent module
as all the six implementations are available for this module r€uuits in Table 2 show that the
runtimes of the MLQ-GPU implementation are approximately 60%sdrighan the runtimes for
the FSG-GPU implementation for the four R values. This mayiadicate that load balancing
is not a dominating factor due to fine data decompositions as disicusSection 4. It might be
more interesting to compare the performance of the five impietiens for the FSG design,
especially the FSG-MC-VPU implementation, which has the be$brpgance on multi-core
CPUs, and the GPU implementation. From Table 2 we can sebd¢h@PtJ implementation has
achieved 13-15X speedups over the serial implementation in the FSGdpfoodéhe fourR
values (FSG-SC/FSG-GPU for SR rows). They are comparaliethng speedups of the GPU
implementation over the serial implementation in the MLQ based ag@ipr(13X forR=25 as
reported in Section 5.2). When comparing the GPU performance (FSG-&mRUnulti-core
CPU performance (FSG-MC), we can see that the GPU implatien has achieved 2.6-3.0X
speedups over multi-core CPUs (FSG-MC/FSG-GPU for SR rows).nVébenparing the
runtimes of FSG-MC with those of FSG-SC, we observe linear spe¢diqsd 8X) and we
attribute these results to both the parallel design with regldta access patterns and the
efficiency of TBB scheduling in balancing the workloads among geits. We next turn to
analyzing the CPU performance with multi-cores and VPUs.

When comparing the runtimes between the FSG-SC and FSG-SCaliruns in Table
2 for the spatial refinement module, we can see that the speedufis \@B&)s (vectorization)
are around 3X (FSG-SC/FSG-SC-VPU for SR rows). Slightly tospeedups (but still around
3X) can be observed by comparing the runtimes in the FSG-MC aneM&S@PU columns
where all cores are utilized. Given that the VPUs on the Ine@inXCPUs in our experiment
system have 128-bit SIMD width (4-way) and the maximum possf@dedup is only 4X, the
achieved speedups are very significant, especially considaahgat all the numbers of points
in grid cells can be divided by 4 and the remaining points that céwenfed to a SIMD batch
need to be processed sequentially. By combining multi-cores and \Wsulti-core CPU
implementation has achieved 21-24X speedups over serial implememétout using multi-
cores and VPUs (FSG-SC/FSG-MC-VPU for SR rows). The pedoceis about 5%-7% better
than the GPU implementation in the FSG design (calculated & @GFBJ/FSG-MC-VPU)-1 for
SR rows). As the CPUs in our experiment system are rehatwebk (released in 2007), we
believe more recent systems with more CPU cores and highérfléBuencies can achieve
better performance. The results are exciting in the sensenian parallel hardware (including
multi-cores and VPUSs) is fully utilized, multi-core CPUs have tpotential to achieve
comparable or even better performance than GPUs in our application.

5.4 Resultson End-to-End Response Times of Spatial Associationson Hybrid Systems

While we have compared the performance of the individual modules on reitittecore
CPUs or GPUs or both under different settings for the FSG-bggedaah in Section 5.3, we
next provide comparisons on the end-to-end response times of spatidhtamsodn this
subsection. Although the end-to-end response time of the MLQ-based apfmo&si25 feet
has been provided and discussed in Section 5.2, we would like to compake tiyeptoaches
under differenR values. In Table 3, we refer the MLQ-based approactoaigl where all the
runtimes are based on the GPU implementations. In contras€ofdig2, the runtimes are
mixtures of the GPU and CPU implementations by taking thepsggirmance of all available
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implementations of the respective module. The decision is based oal s®residerations. First,
only CPU implementation is available for the FSG design as tha pata is beyond the
memory capacity of the GPU device in our experiment systenthe GPU implementation
using the FSG design. Second, the multi-core CPU implementatiomes pblyline indexing and
spatial filtering modules are naive ports of the corresponding @e4igns and are not
optimized. It would be unfair to use them in calculating the erehtbresponse times for multi-
core CPUs. Third, by utilizing VPUs on CPUs, the CPU based mei&ation of the Spatial
Refinement module actually slightly outperforms the correspondifRy) Gmplementation
although the GPU implementation is still about 2.6-3.0X better thanmthi-core CPU
implementation without VPUSs. It would not be appropriate to simphyr ref the VPU enhanced
implementation as a multi-core CPU implementation. By takindpése runtimes of the modules
in the FSG-based approach, we can compute the best performatiee hybrid CPU-GPU
system for the FSG-based approach and compare it with the Mé&pHagproach with a pure
GPU implementation.

Table 3. Runtimes of Multiple Design and I mplementation Configurations

R=25| R=50| R=100R=250

Configl PNI 12.233
(MLQ-GPU) PLI 0.181| 0.244| 0.401| 1.148
SF 1.221 1.391| 1.702| 3.207

SR 1.601 2.088| 3.019| 6.573

Tot 15.236| 15.956| 17.355| 23.161

Config2 PNI(FSG-MC) 5.382
(FSG-Hybrid)| PLI (FSG-GPU) 0.181 0.244| 0.401| 1.148
SF (FSG-SC) 0.068 0.083| 0.118| 0.264

SR (FSG-MC-VPU) 0.930| 1.198| 1.749| 3.874

Tot 6.561| 6.907| 7.65|10.668
Speedup=Configl-Tot/Config2-Tat 2.32 231 227 217

From the last row of Table 3 we can see that the FSG-hybrid configuratiochiexgea a
little over 2X speedups over the MLQ-GPU configuration which indsctitet the FSG design is
a better choice for spatial associations on our experimeminsygte expect that, after the native
multi-core CPU implementations of the polyline indexing and sp#itiating modules become
available, although it is likely to increase the end-to-end r@#iof the two modules when
compared to the current GPU implementations, the FSG implemerttaiomns completely on
multi-core CPUs will still likely be better than the MLQdeal approach on GPUs. The better
performance of the FSG approach on multi-core CPUs can be atiitnuthree major factors.
The first factor is the algorithmic improvement to significaméduce the computing overheads
of spatial filtering/refinement as well as point indexing. Eficiency on reducing computing
overheads is evidenced by comparing the runtimes in FSG-GPU and@®LOeolumns in
Table 2 where GPU implementations for both approaches are availablefficiency on point
indexing based on the FSG design can be inferred based on theafasdrting the 168 million
records should take less than 1 second on the GPU if memory isesiifbased on previous
results [55] while it is more than 12 seconds based on the MLOQnd&3ig second factor is the
elimination of the need to transfer data between CPUs and @PWYsconds based on our
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experiments). The third factor is the effective utilizationMi#Us on CPUs that have been
largely untouched in previous studies in the spatial refinement modulexpéet the end-to-end
runtimes of the pure multi-core CPU based implementation can berfueduced after utilizing
the SIMD processing powers on VPUs in other three modules iralspasociations. Finally,
despite the fact that different parallel designs and implememsahave resulted in different
performance, we would like to note that the end-to-end runtimes of hhetRSG-Hybrid and
MLQ-GPU implementations are in the order of 5-25 seconds foRt@ues ranging from 25
feet to 250 feet as shown in Table 3. The results clearly indibaténigh efficiency of our
parallel designs and implementations although there are still rimnmaprovements. The end-
to-end response times are getting closer to meeting the requoirefmateractive spatial OLAP
qguery processing. We believe interactive OLAP queries onaflgaissociating hundreds of
millions of points and hundreds of thousands of polylines are technieaBibfe through further
algorithmic engineering, implementation optimization and heter@ges/distributed processing
and they are left for our future work.

5.5 Resultson Parallel Relational Aggregations

After spatial and temporal associations, spatial and temporagaggms are reduced to
relational aggregations. We have performed three groups of egmés on relational
aggregations on both many-core GPUs and multi-core CPUs using timillié8 taxi pick up
locations after spatial and temporal associations. The fiosipgof experiments counts on the
147,011 street segments after spatial aggregations based on th& neaghbor search. The
second group of experiments counts on the 24 hours (temporal aggregatidmg gmncdtgroup
of experiments counts on both street segments and hours (spatioteaggoegation). Clearly,
the number of bins in the spatial aggregations based on segmentiadeidi 3-4 orders of
magnitude larger than the number of bins in the temporal aggreghtieed on hours. They can
be used to represent the two extremes in aggregations with resspaatinality. The experiment
results for the three groups of queries on multi-core CPUs ang-coae GPUs are plotted in
Fig. 12 and are compared with serial implementations. For thei@plementations (serial and
multi-core), we have experimented on using both STL map struaaceslynamic arrays. For
the GPU implementation, as it is based on the Thrust parbltahy, we use multiple vectors
instead.
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Fig. 12. Runtimes of Parallel Relational Aggregations
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Our results show that the speedups of the multi-core CPU impletimastaver the serial
implementations range from 4.5-6.0X when STL maps are used and 1.5-2.7X wianid
arrays are used. The results are expected as the relaigg@gations are mostly memory
intensive which may severely limit the achievable speedupsirfraax 8X for 8 cores). When
dynamic arrays are used, memory bandwidth contention is likely gorbajor factor in further
limiting the achievable speedups. The GPU implementations have athséghtly better
performance than the multi-core implementations using dynamaysarGiven that the GPU
device used in our experiment system has a larger number of gngcesres (although weaker
than CPU cores) and higher memory bandwidth, we believe it ig gaissible to further
improve the performance of the GPU implementation by using Cldéctly to reduce the
Thrust library overheads. While it remains nontrivial to design iamglement sophisticated
parallel primitives that are optimized for OLAP applicationsngslow-level programming
languages and libraries on parallel hardware, we plan to provgigndeand implementations
that can be compatible on both GPUs and VPUs of CPUs and make eulif ukeir SIMD
parallel processing power.

6 CONCLUSION AND FUTURE WORK

In this study, we reported our designs, implementations and expesioredeveloping a
data management platform and a set of parallel techniques to shggeperformance online
spatial and temporal aggregations on multi-core CPUs and maay=ddds that are becoming
increasingly available but largely under-utilized for OLAP aatlons. Our results have shown
that we are able to spatially associate nearly 170 mith@npickup location points with their
nearest street segments among 147,011 candidates in about 5-25 seconds\glepehifierent
configurations of indexing structures, computing models and paramaiels as expanded
window widths. After spatially associating points with road sexgs, spatial, temporal and
spatiotemporal aggregations are reduced to relational aggregationarabe processed in the
order of a fraction of a second on both multi-core CPUs and GPUs. Xpeeireent results
support the feasibility of building a high-performance OLAP sysi@nprocessing large-scale
taxi trip data for real-time, interactive data explorationsG#iJs, multi-core CPUs and their
hybridizations.

For the future work, first of all, we would like to further redtice processing times for
both spatial associations and relational aggregations by fine tumgrtant parameters and
further reducing memory footprint. Second, to ensure usability, we Vi&altb investigate the
appropriate spatial and temporal resolutions so that interactivePOprocessing can be
smoothly performed on commodity personal computers with differediMaae configurations.
Third, while our designs and implementations reported in this studgpgiecation driven, we
are interested in formally analyzing the complexity andadxktly of the proposed solution by
varying numbers of CPU/GPU processors and empirically valglatie analysis through
extensive experiments. Fourth, while our techniques are designed amopddweostly in the
context of managing large-scale OD data, many of thempglecable to other types of spatial
and spatiotemporal data and we plan to investigate the possibHitiadly, we plan to explore
cluster computing technologies to process larger scale dataxdample, multi-year and multi-
city taxi trip data and cell phone call log data.
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APPENDI X sQL STATEMENTSFOR SPATIAL/TEMPORAL AGGREGATIONSIN POSTGRESQL

Q1:
Q2:
Qs:
Q4:
Q5:
ST_|

WHERE ST_DWithin (ST_Transform (PUGeo, 2263), theom, 100) ORDER BY PUT, ID, ndis

Q6:
Q7:
ST_|

WHERE ST_DWithin(ST_Transform(DOGe0,2263), the_gedfi0) ORDER BY DOT, ID, ndis

Q8:
Q9:

Q10:
Q11:
Q12:
Q13:
Q14:
Q15:
Q1le6:

UPDATE t SET PUGeo = ST_SetSRID(ST_Point("PUjgPuLat"),4326);

UPDATE t SET DOGeo = ST_SetSRID(ST_Point("DOg4tDOLat"),4326);

CREAT INDEX ti_pugeo ON t USING GIST (PUGeo0);

CREAT INDEX ti_dogeo ON t USING GIST (DOGeo0);

SELECT DISTINCT ON (ID, PUT) ID, PUT, segmentid

Distance ( ST_Transform (PUGe0,2263), the_gemmdis INTO temp_PU FROM t, n

UPDATE t set PUSeg=(SELECT segmentid From téPtpWHERE t.ID=temp_PU.ID AND t.PUT=temp_PU.PUT;
SELECT DISTINCT ON (ID, DOT) ID, DOT, segmentid
Distance ( ST_Transform (DOGeo0,2263), the_geammdis INTO temp_DO FROM t, n

UPDATE t set DOSeg=(SELECT segmentid From tdbp WHERE t.ID=temp_DO.ID AND t.DOT=temp_DO.DOT;
CREAT INDEX ti_pus ON t(PUSeg);

CREAT INDEX ti_dos ON t(DOSeg);

SELECT PUSeg, COUNT(*) FROM t GROUP BY PUSBRDER BY PUSeg;

SELECT DOSeg, COUNT(*) FROM t GROUP BY DOSEG{RDER BY DOSeg;

CREAT INDEX ti_put ON t (PUT);

CREAT INDEX ti_dot ON t (DOT);

SELECT EXTRACT (hour FROM PUT) as hour, cotinfROM t GROUP BY hour ORDER BY hour

SELECT EXTRACT (hour FROM DOT) as hour, codhEROM t GROUP BY hour ORDER BY hour
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