
Accepted by Information Systems (Elsevier)    http://dx.doi.org/10.1016/j.is.2014.01.005 
 

1 
 

Parallel Online Spatial and Temporal Aggregations on Multi-core CPUs and 
Many-Core GPUs 

 
Jianting Zhang, Department of Computer Science, the City College of New York, New York, 

NY, 10031, USA, jzhang@cs.ccny.cuny.edu 

Simin You, Department of Computer Science, CUNY Graduate Center, New York, NY, 10016, 
USA, syou@gc.cuny.edu 

Le Gruenwald, School of Computer Science, the University of Oklahoma, Norman, OK 73071, 
USA, ggruenwald@ou.edu 

 
Abstract 

With the increasing availability of locating and navigation technologies on portable wireless 
devices, huge amounts of location data are being captured at ever growing rates. Spatial and 
temporal aggregations in an Online Analytical Processing (OLAP) setting for the large-scale 
ubiquitous urban sensing data play an important role in understanding urban dynamics and 
facilitating decision making. Unfortunately, existing spatial, temporal and spatiotemporal OLAP 
techniques are mostly based on traditional computing frameworks, i.e., disk-resident systems on 
uniprocessors based on serial algorithms, which makes them incapable of handling large-scale 
data on parallel hardware architectures that have already been equipped with commodity 
computers. In this study, we report our designs, implementations and experiments on developing 
a data management platform and a set of parallel techniques to support high-performance online 
spatial and temporal aggregations on multi-core CPUs and many-core Graphics Processing Units 
(GPUs). Our experiment results show that we are able to spatially associate nearly 170 million 
taxi pickup location points with their nearest street segments among 147,011 candidates in about 
5-25 seconds on both an Nvidia Quadro 6000 GPU device and dual Intel Xeon E5405 quad-core 
CPUs when their Vector Processing Units (VPUs) are utilized for computing intensive tasks. 
After spatially associating points with road segments, spatial, temporal and spatiotemporal 
aggregations are reduced to relational aggregations and can be processed in the order of a 
fraction of a second on both GPUs and multi-core CPUs.  In addition to demonstrating the 
feasibility of building a high-performance OLAP system for processing large-scale taxi trip data 
for real-time, interactive data explorations, our work also opens the paths to achieving even 
higher OLAP query efficiency for large-scale applications through integrating domain-specific 
data management platforms, novel parallel data structures and algorithm designs, and  hardware 
architecture friendly implementations.   
 
Keywords: OLAP, Parallel Design, GPU, Multi-core CPU, Spatiotemporal Aggregation, Spatial 
Indexing, Spatial Join, Large-Scale Data 
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1. INTRODUCTION 
With the increasing availability of locating and navigation technologies on portable 

wireless devices, huge amounts of location data are being captured at ever growing rates. For 
example, the approximately 13,000 taxicabs in the New York City (NYC) equipped with GPS 
devices generate more than half a million taxi trip records per day. Cell phone call logs represent 
a category of data at an even larger scale [1][2]. Also as visitors travel around the world more 
frequently, location-dependent social networks such as Foursquare [3], and location-enhanced 
social media such as text posted to Wiki sites [4], and images and videos posted to Flickr and 
YouTube [5], can also potentially generate large-amounts of spatial and temporal data.  All the 
three types of data have a few features in common: (1) they are produced and collected by 
commodity sensing devices and are rich in data volumes in urban areas; and (2) they are a 
special type of spatial and temporal data with an origin location and a destination location in the 
geo-referenced space domain and a starting time and an ending time in the time domain. 
However, the intermediate locations between origins and destinations are either unavailable, 
inaccessible or unimportant. Compared with traditional geographical data collected by 
government agencies for urban planning and city administration purposes, these data can be 
more effective to help people understand the real dynamic of urban areas with respect to 
spatial/temporal resolutions and representativeness. We term such data as Ubiquitous Urban 
Sensing Origin-Destination data, or U2SOD data, for notation convenience [6]. Despite the close 
relationships between U2SOD data and Spatial Databases (SDB) [7] and Moving Object 
Databases (MOD) [8], our experiences have shown that traditional disk-resident and tuple/row 
oriented spatial databases and moving object databases are ineffective in processing large-scale 
U2SOD data for practical applications including multidimensional aggregations, one of the most 
important modules in Online Analytical Processing (OLAP) [9].  

Considerable work on developing efficient data structures and algorithms has been 
proposed for multidimensional aggregations on CPU uniprocessors in the past few decades [10]. 
Modern hardware architectures increasingly rely on parallel technologies to increase the 
processing power due to various limits in improving the speeds of uniprocessors [11]. 
Unfortunately, existing data structures and algorithms that are designed for serial 
implementations may not be able to effectively utilize the parallel processing power of modern 
hardware, including multi-core CPUs and many-core Graphics Processing Units (GPUs) [11]. 
Despite the fact that parallel hardware is already available in the majority of commodity 
computers, there is still relatively little work in exploiting such parallel processing power for 
OLAP queries, especially in the areas of spatial and temporal aggregations of large-scale 
geographical data where complex join operations are required in the aggregations. Examples of 
these are counting the number of taxi pickups at each of the community districts or census blocks 
(spatial aggregation), generating hourly histogram of drop-offs near the JFK airport (temporal 
aggregation) and computing numbers of trips between Time Square and Central Park in morning 
peak hours (OD aggregation).  

In this study, we report our work on developing a data management framework for large-
scale U2SOD data and a set of data parallel designs of spatial and temporal aggregations that can 
be realized on both multi-core CPUs and many-core GPUs in an OLAP setting. Our experiments 
on aggregating the approximately 170 million taxi trip records in NYC in 2009 have 
demonstrated the effectiveness of the proposed framework and parallel techniques. By utilizing 
parallel spatial joins [12] to support efficient online processing, we are able to achieve real-time 
responses for spatial, temporal and spatiotemporal aggregations at different hierarchical levels. 
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Compared with traditional approaches that rely on relational databases and spatial databases for 
aggregations, our techniques have reduced the OLAP query response times from hours to 
seconds. This makes it possible for urban geographers and transportation researchers to explore 
the large-scale origin-destination data in general and taxi trip data in particular in an interactive 
manner.  

The rest of the paper is arranged as follows. Section 2 introduces the background, 
motivation and related work. Section 3 presents a parallelization-friendly data management 
framework for managing large-scale origin-destination data with a focus on taxi trip records. 
Section 4 provides the details on the parallel designs and implementations of spatial and 
temporal aggregations on both multi-core CPUs and many-core GPUs. Section 5 reports the 
experiment results. Finally Section 6 is the conclusion and future work. 

2. BACKGROUND, MOTIVATION AND RELATED WORK 
The increasingly available location data generated by consumer wireless portable 

devices, such as GPS, GPS enhanced cameras and GPS/WiFi/Cellular enhanced mobile phones, 
has significantly changed the ways of collecting, analyzing, disseminating and utilizing urban 
sensing data. Traditionally city government agencies are responsible for collecting various types 
of geographical data for city management purposes, such as urban planning and traffic control.  
The data collection is usually done through sampling, typically at coarse-resolutions, and 
questionnaire-based investigations which often incur long turn-around times. In contrast, as 
consumer mobile devices become ubiquitous, similar data obtained from GPS-traces and mobile 
phone call logs has much finer resolutions. With the help of privacy and security related 
technologies, the aggregated records from such ubiquitous urban sensing data can be enormously 
helpful in understanding and addressing a variety of urban related issues. Research groups from 
both academia (e.g., MIT Sensible City Lab) and industries (e.g., IBM Smart Planet Initiative 
and Microsoft Research Asia) have developed techniques to utilize such data and understand the 
interactions among people and their locations/mobility at the city level (e.g., Beijing [13], Boston 
[14] and Rome [1]), social group level (e.g., friends [15] and taxi-passenger pairs [16]) and 
individuals level [17]. However, most of the existing studies focus on the data mining aspects of 
such ubiquitous urban sensing data through case studies while largely leaving the data 
management aspects untouched. Lacking proper data management techniques can result in 
significant technical hurdles in making full use of such data to address outstanding societal 
concerns. In this study, we focus on efficiently aggregating large-scale taxi trip records to better 
understand human mobility and facilitate transportation planning by developing high-
performance spatial, temporal and spatiotemporal aggregation techniques in an OLAP setting.  

OLAP technologies are attractive to explore the possible patterns from large-scale taxi 
trip records and other types of origin-destination data. As the taxi trip data has spatial dimensions 
and temporal dimensions for both pickup and drop-off locations and conventional dimensions 
(e.g., fare and tip), taxi trips can be naturally modeled as spatial, temporal and spatiotemporal 
data which requires synergizing existing research on Spatial OLAP [18][19] and Temporal 
OLAP [18][20] or their combinations [18]. Due to the popularity of geo-reference data, there are 
increasing research and application interests in Spatial OLAP. However, most of them focus on 
data modeling and query languages [18][21][22][23], and applications on top of spatial databases 
and Geographical Information Systems (GIS) [24][25][26][27]. A few sophisticated indexing 
and query processing algorithms to speed up certain analytical operations, such as 
consolidation/aggregation, drill-down, slicing and dicing, have been proposed 
[10][28][29][30][31]. Spatial OLAP applications on top of spatial databases and GIS, while easy 



Accepted by Information Systems (Elsevier)    http://dx.doi.org/10.1016/j.is.2014.01.005 
 

4 
 

to implement, impose additional I/O and computational overheads which may further slow down 
spatial and temporal aggregations and may not be suitable for applications that involve a large 
number of data records like our taxi trip application. We also note that the existing research on 
Spatial OLAP mostly targeted at the traditional computing framework, i.e., disk-resident systems 
on uniprocessors based on serial algorithms, which makes it incapable of handling large-scale 
data on parallel hardware architectures. 

Our experiments using the open source PostgreSQL database have shown that the 
performance of spatial aggregations on a large-scale dataset, which contains hundreds of millions 
of taxi trip records, using the traditional disk-resident database systems, is too poor to be useful 
for our applications. We note that spatial queries are supported in PostgreSQL through the 
PostGIS extension [32]. The Appendix at the end of the paper lists 16 SQL statements (Q1-Q16) 
that are involved in a database based implementation of spatial and temporal queries, where 
tables t and n represent the taxi trip records data and street network data, respectively. Note that 
queries Q1 through Q8 are used for spatial associations (including indexing and spatial join). Q9 
and Q10 are used for indexing materialized spatial relationships, i.e., PUSeg and DOSeg are 
indexed as relational attributes. Q11 and Q12 are used for spatial aggregations based on the 
materialized spatial relationships. Finally, Q13 and Q14 are used for temporal indexing and Q15 
and Q16 are used for temporal aggregations. On a high-end computing node running PostgreSQL 
9.2.3, Q5 took dozens of hours. We note that Q5 is already an optimized SQL statement by using 
the non-standard “SELECT DISTINCT ON” clause in PostgreSQL and approximating the 
nearest-neighbor query using the ST_DWithin function and the “ORDER BY distance” clause. 
Obviously the performance is far from satisfactory for online OLAP queries. While we are aware 
of the fact that certain optimization techniques, such as setting proper parameters and data 
partitioning, can potentially improve the overall performance, we believe that Spatial OLAP 
queries based on traditional database systems cannot achieve the performance level that we are 
aiming at for the data at the scale using existing technologies. Our additional experiment results 
have also revealed that the performance can be drastically improved by utilizing large main-
memory capacities and GPU parallel processing [33][34]. This has motivated us to investigate 
techniques in boosting the performance of spatial, temporal and spatiotemporal aggregations by 
making full use of modern hardware that has already been equipped with commodity personal 
computers.  

We refer the readers to [9] for a brief review on parallel OLAP computation. We note 
that existing work on parallel OLAP mostly focused on parallelization on shared-nothing 
architectures while leaving parallelization on shared-memory Symmetric Multiprocessing (SMP) 
architectures, including both multi-core CPUs and many-core GPUs, largely untouched. The 
number of processing cores on both single-node CPUs and GPUs is fast increasing. The 
mainstream Intel CPUs and Nvidia GPUs have 4-8 and 512 cores, respectively. Devices based on 
the Intel Many Integrated Core (MIC) architecture (such as Xeon Phi 5110p) have 60 cores [35] 
and devices based on Nvidia Kepler architecture equipped with close to 3,000 cores [36] are 
currently available on the market. These inexpensive devices based on shared-memory SMP 
architectures are cost-effective and relatively easy to program. We believe it is an attractive 
alternative to cluster computing in solving many practical large-scale data management problems 
when compared to MapReduce based cloud computing where computing resources are often 
utilized inefficiently [37]. Despite the fact that shared-nothing based architectures are often 
considered having better scalability than shared-memory based ones, we argue that, from a 
practical perspective, higher scalability can be achieved by integrating the two architectures 
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when necessary. Fully utilizing the parallel processing power of SMP processors (including both 
CPUs and GPUs) will naturally improve the overall system performance in a cluster computing 
environment using grid or cloud computing resources. As a first step, we currently focus on 
parallel aggregations on multi-core CPUs and many-core GPUs equipped in a single computing 
node, i.e., in a personal computing environment that is more suitable for interaction-intensive 
applications such as OLAP queries.  

There are a few pioneering works on using multi-core CPUs and many-core GPUs for 
OLAP queries including aggregations. The design and implementation of the HYRISE system 
[38] have motivated our work in many aspects, such as column-oriented physical data layout, 
data compression and in-memory data structures. However, most of the existing systems 
including HYRISE are designed for traditional business data and do not support geo-referenced 
data. There are also several attempts in using GPUs for OLAP applications with demonstrable 
performance speedups [10][39][40]. However, again, they do not explicitly support spatial or 
spatiotemporal aggregations which are arguably more computationally intensive. Furthermore, 
while previous studies have shown that parallel scan based GPU implementations can be 
effective in processing data records in the order of a few millions , the number of data records in 
our application is almost two orders of magnitude larger which makes GPU implementation 
more technically challenging.  

Our designs and implementations of spatial and temporal aggregations heavily rely on 
parallel primitives that are supported by several parallel libraries on both CPUs and GPUs. 
Parallel primitives, such as sort, scan and reduce [41][42], refer to a collection of fundamental 
algorithms that can be run on parallel machines. The behaviors of popular parallel primitives are 
well-understood. In particular, we have used the open source Thrust library [36] that comes with 
Nvidia CUDA SDK [43] on GPUs and the open source Intel TBB [44] package from Intel on 
CPUs extensively. It is beyond the scope of this paper to provide a comprehensive review of the 
parallel primitives that we have utilized in this study and we refer the interested readers to [42] 
for more details. A brief introduction to several parallel primitives that are involved in our GPU 
implementations of the aggregations is provided online [45]. The parallel sorting primitive that 
we have used in this study comes from the GNU libstdc++ Parallel Mode library which was 
derived from the Multi-Core Standard Template Library (MCSTL) project [46]. In addition, our 
multi-core CPU implementation of spatial associations utilizes the Vector Processing Units 
(VPUs) on CPUs to boost its performance. While several pioneering studies have tried to exploit 
the Single Instruction Multiple Data (SIMD) parallel processing power on VPUs by calling 
lower level hardware-specific APIs (SIMD intrinsics) [47][48][49], we take advantage of the 
Intel ISPC open source compiler [50] that has recently become available. The ISPC compiler 
supports programming SIMD units in a way similar to CUDA based GPU programming which is 
much more productive. To the best of our knowledge, we are not aware of any previous work on 
utilizing VPU’s SIMD processing power for spatial associations by speeding up geometrical 
computation.  

 
3 U2SOD-DB: MANAGING ORIGIN-DESTINATION (OD) DATA IN DBMS  

Almost all taxi cabs in cities of developed countries have been equipped with GPS 
devices and different types of trip related information are recorded. For example, more than 
13,000 GPS-equipped medallion taxicabs in the New York City (NYC) generate nearly half a 
million taxi trips per day and approximately 170 million trips per year serving 300 million 
passengers. The number of yearly taxi riders is about 1/5 of that of subway riders and 1/3 of that 
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of bus riders in NYC according to MTA (Metropolitan Transportation Authority) ridership 
statistics [51]. Taxi trips play important roles in everyday lives of residents and visitors of NYC 
as well as any major city worldwide. The raw service data has a few dozens of attributes such as 
pick-up/drop-off location and time as well as fare/tip/toll amounts. In this study, we generalize 
the taxi trip data as a special type of OD data and present the design and implementation of the 
U2SOD-DB system that is designed for managing U2SOD data on modern hardware.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 1. Illustration of U2SOD-DB Prototype System Components and Interactions 

 
Our design of U2SOD-DB has three tiers. The lowest tier is closely related to physical 

data layout and we have adopted a time-segmented, column-oriented data layout approach. The 
raw data are first transformed into binary representations and attributes are clustered into groups 
based on application semantics. The data corresponding to the attribute groups at a certain time 
granularity are stored as a single database file with the relevant metadata registered with the 
database system. We assume one or more database files can be streamed into CPU main memory 
as a whole to maximize disk I/O utilization. Multi-core CPU processors can access the data files 
in parallel once they are loaded into the CPU main memory. They can also be transferred to GPU 
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global memories should the system determine that GPU parallel processing is more 
advantageous. The middle tier is designed to support efficient data accesses and provides some 
commonly used routines, such as compression, histogramming and indexing. The top tier is more 
application specific. For spatiotemporal aggregations in an OLAP setting, the current U2SOD-
DB supports efficient spatial joins between OD data and urban infrastructure data, such as road 
networks and administrative regions. An illustration of U2SOD-DB prototype system 
components and interactions is provided in Fig. 1 [6]. For the remaining of this section, we 
provide technical details on the data layout and timestamp compression and a high-level 
overview of spatial and temporal aggregations before their parallel designs and implementations 
details are presented in Section 4.  
 
3.1 Time-Segmented Column-Oriented Data Layout 

As shown in Fig. 2 [6], we categorize the attributes that are associated with trip records 
into several groups and data of the attributes in the same group are stored in a single database file 
by following the column-oriented layout design principle: attributes in the same group are likely 
to be used together and thus it is beneficial to load them into main memory as a whole to reduce 
I/O overheads. Given a fixed amount of main memory, as the attribute field lengths of individual 
groups are much smaller than the lengths of all attributes, more records that are related to 
analysis can be loaded into main memory for fast data accesses. In general, the column-oriented 
data layout design improves traditional tuple-based physical storage in relational databases by 
avoiding reading unneeded attribute values into main memory buffers and subsequently 
increasing the number of tuples that can be read into mmeory in a single I/O request. We also 
note that combining several attribute groups into one and extracting attributes from multiple 
groups to form materialized views can be beneficial for certain tasks. For example, in Fig. 2, 
attribute group 5 (start_x, start_y, end_x and end_y) can be considered as a materialized view of 
the attribute group 2 (start_lon, start_lat, end_lon and end_lat) by applying a local map 
projection to the latitude/longitude pairs. Since the projected data are frequently used in 
calculating geometric and shortest path distances and map projections are fairly expensive, 
materializing attribute group 5 can significantly improve system performance. Another example 
to demonstrate the utilization of materialized views on the physically grouped attributes is 
verifying the recorded trip times (indicated by trip_time in group 6) with computed trip times (by 
subtracting pickup time from drop-off time in group 3) by materializing the respective attributes 
in the two groups. We further note that among the attributes in the original dataset shown in Fig. 
2, some of them can be derived from the others. For example, both start/end zip codes (group 9) 
and addresses of pickup and drop-off locations (group 8) can be derived from start/end latitudes 
and longitudes (group 2) through reverse geocoding or other related techniques. 

After determining the data layout by grouping attributes (vertical partitioning), the next 
issue is to determine the appropriate  number of records in database files so that these files can be 
efficiently streamed among hard drives, CPU main memory and GPU device memory. The sizes 
of the database files should be large enough to reduce system overheads as much as possible but 
small enough to accommodate multiple database files simultaneously in CPU/GPU memories so 
that typical operations can be completed in the designated memory buffers. At the same time, the 
numbers of records should correspond to certain time granularities as much as possible. In our 
design, we use month as the basic unit (temporal granularity) to segment taxi trip records 
(horizontal partition). Given that there are about half a million taxi trip records per day in NYC, 
assuming that an attribute group has a record length of 16 bytes (e.g. four attributes with each 
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represented by a 4-bytes integer), the database file would be 16*0.5*30=240 megabytes. Since 
the main memory capacity in our experiment system is 16 gigabytes, the database file size is 
appropriate although other sizes might be suitable as well. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Column-Oriented Physical Data Layout in U2SOD-DB 
 

3.2 Timestamp Compression and Temporal Aggregations 
The text format of the pickup and drop-off times converted from relational databases like 

“2009-01-17 23:52:34” takes 20 bytes. While the format can be easily converted to “struct tm” in 
the standard C language to satisfy the needs of all temporal aggregations (e.g., month, day of 
week) on CPUs, we found that the data structure takes 56 bytes on 64-bit Linux and 44 bytes on 
32-bit Linux platforms which may be too much from a memory footprint perspective. 
Furthermore, the time structure cannot be used on GPUs directly which brings a significant 
compatibility issue. Our solution is to compress the pickup and drop-off times (PUT and DOT) 
into 4-byte (32 bits) memory variables using the following bit layout starting from the most 
insignificant bit: 6 bits for second (0-59), 6 bits for minute (0-59), 5 bits for hour (0-23), 5 bits 
for day (0-30) and 4 bits for month (0-11). The remaining 6 bits (0-63) can be used to specify the 
year relative to a beginning year (e.g. 2000) which should be sufficient for a reasonably long 
study period. Retrieving any of the year, month, day, minute and second fields can be easily done 
by bitwise operations and integer operations which are efficient on both CPUs and GPUs. The 
straightforward technique has reduced memory footprint to 1/5 (4/20) and is friendly to both 
CPUs and GPUs.   

At the first glance, the design does not support temporal aggregations based on “day of 
week” and “day of year” very well as these two fields are not explicitly stored in our design as in 
“struct tm” in the standard C library. Computing the values of these two fields, while feasible on 
CPUs (by using C/C++ mktime function), can incur significant overheads when the number of 
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records is huge. For example, our experiments have shown that computing “day of week” alone 
for 170 million records can take 22 seconds, i.e., 100+ CPU cycles per timestamp on average. 
However, we would like to draw attention to the fact that timestamps can be aggregated by 
“year+month+day” before they are further aggregated according to “day of week” or “day of 
year”. Since the possible combinations of (year, month, day) in a reasonably long period are 
limited (in the orders of a few thousands), they can be aggregated to “day of week” or “day of 
year” in a fraction of a millisecond using the C/C++ mktime function on CPUs. The design also 
eliminates the need for GPU implementation to compute “day of week” or “day of year” from 
“year+month+day” which is nontrivial.  

3.3 Overview of Spatial and Temporal Aggregations 
While many operations and analytical tasks can be performed on U2SOD data, spatial and 

temporal aggregations are among the fundamental ones. In a way similar to efficient OLAP 
operations for decision support on relational data, high-performance spatial and temporal 
aggregations are crucial in effectively supporting more complex analytical operations on OD 
data. Fig. 3 illustrates the general framework and example spatial and temporal aggregations that 
are supported by our U2SOD-DB design. Most of the temporal aggregations (e.g. daily and 
hourly) and some of the spatial aggregations (e.g. grid based) can use data-independent schemes, 
while more complex aggregations rely on the schemas provided by infrastructure data such as 
road network and administrative hierarchies. Our designs and implementations to be presented in 
Section 4 focus on complex spatial aggregations. We note that, as shown in Fig. 3, once the OD 
locations (e.g. pickup and drop locations in the taxi trip data) are associated with street segments 
or different types of zones, spatial, temporal and spatiotemporal aggregations can be reduced to 
simple relational aggregations without involving expensive spatial and/or temporal operations 
any more. The U2SOD-DB architecture is designed to support multiple types of spatial 
aggregations by providing a common spatial indexing and spatial filtering framework to 
efficiently pair subsets of relevant datasets before applying specific refinement approaches for 
associating individual data items, e.g., based on Nearest Neighbor (NN) search or Point-In-
Polygon (PIP) test. In this study, we focus on spatially associating taxi locations with segments 
in road networks by locating the nearest street segment within distance R for each point location. 
After the 170 million NYC tax trip locations are associated with the LION road network dataset 
published by the NYC Department of City Planning (DCP) [52], as street segments are nicely 
associated with quite a few types of polygon zones as shown in Fig. 3, they can be used for 
further relational aggregations.  

It is beyond the scope of our study to implement all the types of spatial, temporal and 
spatiotemporal aggregations that have been modeled in the literature [53][18]. Instead, we focus 
on the aggregations along the spatial and temporal hierarchies shown in Fig. 3. We divide an 
aggregation into two phases: the spatial and temporal association phase and the relational 
aggregation phase. The association phase, typically implemented as a join, can be performed 
either offline or online. The advantage of materializing spatial, temporal or spatiotemporal 
relationships offline is that, as computing the relationships typically is expensive, directly 
accessing the materialized relationships can significantly improve the overall performance. 
However, when dynamic query criteria are imposed (such as those based on taxi fare and tip), 
offline materialization becomes infeasible and fast real-time online aggregations become critical. 
In addition, when spatial aggregations are combined with temporal aggregations (i.e., 
spatiotemporal aggregations) at arbitrary levels, the possible number of aggregations grows 
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quickly which makes offline materialization less attractive due to disk storage, I/O and 
maintenance overheads. Online aggregations are more desirable in such cases.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Example Spatial and Temporal Aggregations in U2SOD-DB 
 

4 PARALLEL DESIGNS AND IMPLEMENTATIONS OF SPATIAL ASSOCIATION 
The U2SOD-DB architecture supports both serial and parallel designs and 

implementations of the spatial and temporal aggregation operations discussed above. In this 
study, we propose a set of data parallel designs that can be implemented on both multi-core 
CPUs and many-core GPUs. For spatial associations, in addition to providing the design and 
implementation details of the Multi Level Quadrants (MLQ) based approach presented in [34] 
that focuses on many-core GPUs, we have also provided an alternative set of designs and 
implementations  of a Flatly Structured Grid (FSG) based approach that focuses more on multi-
core CPUs. While these designs and implementations will be detailed in subsections 4.1 through 
4.5, Table 1 provides an overview of the modules and their available implementations on 
multiple parallel computing platforms. Note that we use “/” to indicate that the implementation is 
applicable to both designs while we use “+” to indicate similar but different implementations are 
required for the MLQ and FSG designs. The rationales are provided when we describe the details 
of each module. Among the four modules in both approaches, the Point Indexing and Polyline 
Indexing modules are used to partition points into groups so that only spatially close points and 
polygons are paired up in the Spatial Filtering module before each point is associated with its 
nearest polyline in the Spatial Refinement module. Provided that a good spatial filtering strategy 
is available, it is possible to reduce the nearest neighbor computing overhead from O(N*M) to 
O(N) where N is the number of points and M is the number of polylines, respectively.  

The primary reason that motivates us to develop the FSG based design and 
implementation for point indexing is to overcome the memory limitation on GPUs (currently 
limited to 6GB) for larger point datasets. The implementation is based on the parallel sorting 
algorithm provided by the GNU libstdc++ Parallel Mode library [46] which is very efficient on 
multi-core CPUs. For the Polyline Indexing module and Spatial Filtering module, we only 
provide a parallel primitive based design (whose implementation is based on Thrust) because 
their runtimes are relatively insignificant on large datasets when compared to the other two 
modules. By changing the underlying computing platform from CUDA to TBB, the parallel 
primitive based implementations based on Thrust can be compiled to CUDA code on GPUs and 
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compiled to TBB code on multi-core CPUs. The downside of this highly portable solution is that, 
in a way similar to using Standard Template Library (STL) [54], there are library overheads 
which can be significant in certain cases, especially for using TBB on multi-core CPUs where 
the Thrust library has not been extensively optimized for multi-core CPUs. However, for the 
Spatial Refinement module, we provide both a native CUDA implementation on GPUs and a 
native TBB implementation on multi-core CPUs as we want to reduce the overheads due to 
parallel libraries and minimize the overall response times. As detailed in Section 5, the modules 
can be organized into different configurations under different scenarios and the performance of 
the configurations can be further compared. We next provide the details of the designs and 
implementations of the four modules in the following subsections.  

 
Table 1. List of Parallel Design and Implementation Choices 

 Multi-core CPU Implementations GPU Implementations 
1 Point Indexing GNU Parallel (FSG) Thrust over CUDA (MLQ) 
2 Polyline Indexing Thrust over TBB (FSG) Thrust over CUDA (FSG/MLQ) 
3 Spatial Filtering Thrust over TBB (FSG) Thrust over CUDA (FSG+MLQ) 
4 Spatial Refinement TBB( with ISPC) (FSG) CUDA (FSG/MLQ) 

 

4.1 Point Indexing Using Multi-Level Quadrants 
As illustrated in Fig. 4, the strategy of the MLQ based point indexing is to partition the 

point data space in a top-down, level-wise manner and identify the quadrants with a maximum of 
K points at multiple levels. While the point quadrants are being identified level-by-level, the 
remaining points get more clustered, the numbers of remaining points become smaller, and the 
data space is reduced. The process completes when either the maximum level is reached or all 
points have been grouped into quadrants. In the example shown in Fig. 4, we first sort all points 
at level 1 using their Z-order [58] code and count the number of points under each level 1 
quadrant. As quadrant 2 has only 11 points which is less than K=20, its key (2) and number of 
points under it (11) are identified and the points are excluded from further processing. We use a 
(key, #of points) pair to represent a quadrant in Fig. 4. The same procedure is applied to the 
remaining points at level 2 to identify two quadrants (4,9) and (7,9) and at level 3 to identify 6 
quadrants (9,7), (10,9), (11,8), (12,5), (13,8), (14,7), in an iterative manner. After the numbers of 
points in all quadrants are derived, the starting positions of the first points in the quadrants can be 
computed in parallel easily by using prefix-sum [41][42] for accesses to the points later.  An 
advantage of limiting the maximum number of points in a quadrant to K is to facilitate load 
balancing in parallel computing. As it shall be clear after we introduce the spatial filtering and 
refinement modules, when the numbers of points and the numbers of polyline vertices are 
bounded, the workload of parallel processing elements is also bounded and no processing 
elements can dominate the whole process.  

The design is highly data parallel and can be implemented using a few parallel primitives 
as detailed in [34] where the point indexing module is also used for point-in-polygon test based 
spatial joins. The design is implemented on top of the Thrust parallel library that provides all the 
necessary parallel primitives. Previous studies have shown that the parallel sorting primitives 
implemented in Thrust are capable of handling hundreds of millions of data items per second and 
are highly efficient [55]. Our experiments have shown that the most expensive step in this 
module is to sort points based on their quadrant identifiers before counting the numbers of points 
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in the quadrants and determining whether the points in the quadrants should be excluded for 
further partition. By making full use of high-performance GPU-based sorting parallel primitives, 
as shown in Section 5.2, the GPU-based implementation of the MLQ approach for point indexing 
has achieved 13X speedup over CPU-based serial implementation.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4. Parallel-Primitive Based Point Indexing Using MLQ Design  

 
However, while the underlying radix sort algorithm itself is scalable on shared memory 

systems (including both CPUs and GPUs), the applicability of the parallel sort primitives to 
large-scale point datasets is limited by GPU memory capacity (currently 6 GB). Our experiments 
have shown that the GPU implementation of the Point Indexing module based on the MLQ 
design allows a maximum number of points in the order of 150-200 million on an Nvidia Quadro 
6000 device. While it is possible to use pinned memory on CPUs to “virtually” expand the GPU 
memory, our experiments suggest that extensive data communication (partially due to the nature 
of the underlying radix sort algorithm) incurs significant overheads which makes the technique 
impractical. In addition, our previous experiments have shown that copying all the point data 
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from CPU memory to GPU memory incurred 25% of overhead which is quite significant. While 
the GPU-based design and implementation is still useful for reasonably sized point datasets, it is 
necessary to seek alternative solutions to efficiently index large point datasets. While our CPU-
based point indexing approach on multi-core CPUs that will be presented in the next subsection 
overcomes these problems, we note that several research efforts are available to support GPU-
based sorting on CPU memory and external memory (e.g. [56]) and we plan to incorporate these 
techniques once they become available to make the MLQ based point indexing technique more 
scalable.  

4.2 Point Indexing Using Flatly Structured Grids  
We design an alternative approach for point indexing that completely runs on multi-core 

CPUs. As CPUs can have much larger memory capacity (up to hundreds of GBs on commodity 
workstations) than GPUs, the approach will eliminate the memory constraints to a certain extent.  
In addition, there is no need to copy data from CPU memory to GPU memory anymore which 
can potentially reduce end-to-end runtime considerably. Grid files are among the most classic 
techniques for spatial indexing [57]. The FSG design for point indexing on multi-core CPUs is 
based on a flat grid-file structure which is significantly simpler than the MLQ based design. 
Given a grid resolution, we can generate a key based on the coordinates of a point, i.e., deriving 
a Space Filling Curve (SFC) code based on row-major order or Z-order [58]. This step is highly 
parallelizable and is expected to be very fast as only element-wise operations, i.e., operations 
apply to all vector elements in parallel, are involved. The most important step in the FSG 
approach is parallel sorting of the point records based on keys. Our implementation is based on 
the GNU libstdc++ Parallel Mode library [46]. Based on our experiments, the implementation is 
memory efficient and is effective in making full use of multi-core CPU hardware. In addition to 
being applicable to large point datasets whose volumes are beyond the capacity of GPU memory, 
eliminating the need to transfer data back-and-forth between CPU and GPU memories can 
potentially improve end-to-end response time of the FSG approach on CPUs. As detailed in 
Section 5.3, the new approach is significantly more efficient than straightforward porting of the 
MLQ based GPU design and implementation to multi-core CPU, a feature offered by the Thrust 
library. The efficiency is largely due to the simplified design using a flatly structured grid. 
However, the simplified design also loses the load balancing feature provided by the MLQ 
approach, as the numbers of points in grid cells can potentially be unbounded. However, we 
argue that, when the grid resolutions are sufficiently fine (which is typically true in our 
applications using millions of grid cells), the chance of extreme cases where points in a few grid 
cells dominate the whole computation (in the Spatial Refinement module) is very small on multi-
core CPUs. This is especially true on CPUs where the number of processing units (cores) is 
typically small (in the order of a few to a few dozens) and tasks can be dynamically balanced by, 
for example, using the scheduling modules provided by TBB explicitly or implicitly.  

4.3 Polyline Indexing 
Polylines can be indexed in a similar way as polygons based on their Minimum Bounding 

Boxes (MBBs). While many approaches have been proposed in the serial computing setting 
where data partition based approaches (such as R-Trees) are preferred [57], it remains unclear 
what is the best way to index polylines and polygons in parallel settings. In this study, we index 
polylines that represent street segments also based on grid files. As it shall be clear when the 
Spatial Filtering module is introduced in Section 4.4, after rasterizing the expanded polyline 
MBBs to grid cells, binary searches can be applied to pair point quadrants (MLQ approach) and 
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point cells (FSG approach) with polylines for refinement. As the number of polylines is typically 
much smaller than the number of points in spatial associations, we assume polyline MBBs can fit 
into GPU memory completely and thus we will only provide a GPU-based implementation that is 
independent of the MLQ and FSG designs.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 5. Parallel-Primitive Based Polyline MBB Indexing 

 
To support locating the nearest polyline for a point (x,y) within a query window width of 

R, as shown at the top-right part of Fig. 5, it is sufficient to examine all the polylines whose 
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distance away from a polyline is that the bounding box of the point group intersects with the 
expanded MBB of the polyline (x1-R,y1-R,x2+R,y2+R). The observation requires rasterizing the 
expanded MBBs of polylines, which we introduce next through an example with two expanded 
MBBs shown in the bottom part of Fig. 5. Assuming that the widths and heights of the two 
MBBs are W1, W2 and H1 and H2, and the coordinates of their top-left corners are 
(TPX1,TPY1) and (TPX2,TPY2), the first step is to compute the numbers of the cells that the 
two MBBs cover by using a Transform primitive. After computing the starting positions of the 
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first cell in the output cell vector through a Scan (prefix-sum) primitive in Step 2, the identifiers 
of the MBBs are scattered to the output cell vector and they are subsequently propagated along 
the vector using a (max) Scan primitive in Step 3. Using the sequences of cells in the MBBs 
generated in Step 4 and the MBB identifier vector derived in Step 3, Step 5 first retrieves the top-
left coordinates of the MBBs and adds the local offsets of the cells they cover to compute the 
global cell identifiers for all cells in parallel by using a Transform primitive again. The algorithm 
is sketched in the top-left part of Fig. 5. We note that, for the derived multi-level point quadrants 
in the MLQ approach, the same procedure can be applied to rasterize the quadrants to grid cells. 

4.4 Spatial Filtering 
The Spatial Filtering module requires two similar but different implementations for the 

MLQ and FSG approaches. While the MLQ requires rasterizing the resulting quadrants as 
discussed previously and pair polylines and point quadrants indirectly through grid cell 
identifiers, the point grid cells can be directly paired with polylines in the FSQ approach, both 
through parallel binary searches as indicated by the dotted lines in the middle of Fig. 6A and Fig. 
6B. In Fig. 6A (top), vectors VQQ and VQC keep the 1-to-many relationship between point 
quadrants and grid cells, and vectors VPP and VPC keep the 1-to-many relationship between 
polyline MBBs and grid cells. Identifiers of point quadrants in vector VQQ and identifiers of 
polyline MBBs can be paired through common grid cell identifiers in vectors VQC and VPC. In 
Fig. 6B (bottom), vector VGC used in the FSG approach is equivalent to VQC used in the MLQ 
approach and polyline MBBs are paired with grid cells directly. It is clear that the set of 
operations needed in the MLQ approach is a superset of those in the FSG approach. Although the 
implementation of the FSG approach for spatial filtering is simpler, unlike the MLQ approach 
that is designed explicitly for load balancing, it can potentially suffer from load unbalancing as 
the numbers of points in grid cells can vary significantly while the numbers of points in point 
quadrants are bounded by threshold K in the MLQ design. This may cause workload unbalancing 
in the refinement phase. However, similar to point indexing, we argue that when the grid 
resolutions are sufficiently high and the total number of cells is significantly larger than the 
number of processing units, load balancing can be achieved to a certain degree by dynamically 
scheduling (cell, MBB) pairs to parallel processing units.  

4.5 Spatial Refinement 
Recall that our goal is to compute the nearest polylines of points that are at most R 

distance away. After the spatial filtering phase, each point group (multi-level quadrant or grid 
cell) is associated with a set of polyline identifiers. What needs to be done in the Spatial 
Refinement module is to identify the polylines that are nearest to each of the points in the group 
by computing and ordering the distances between the point and the candidate polylines. Here the 
distance between a point and a polyline, as illustrated in Fig. 7, is canonically defined as the 
shortest distance between the point and all the line segments in a polyline. When the point is 
projected to a line segment, if the projection point falls between the two ends of the line segment, 
the point-to-line-segment distance is the distance between the point and the projection point 
(perpendicular distance); otherwise the point-to-line-segment distance will be the shorter of the 
distances between the point and the two ends of the line segment. Clearly, the spatial refinement 
module is more computation intensive than the rest of the modules as quite many floating point 
computations are required. For each point in a point group, looping through all the line segments 
of all the polylines whose expanded MBBs intersect with the bounding box of the point group is 
required in our design.  
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Fig. 6. Parallel Primitives based Spatial Filtering in MLQ (Top) and FSG (Bottom) 

 
 
 

 
 
 
 

Fig. 7, Illustration of Computing Shortest Distance between a Point and a Line Segment 
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Fig. 8. Illustration of Neighbor-Polyline-Searching based Spatial Refinement on GPUs 

 
Our GPU implementation of the refinement module uses CUDA directly to achieve better 

performance for two reasons. First, there are some unavoidable library overheads when using the 
Thrust parallel library. Second, more importantly, the refinement design involves multi-level 
loops and it does not fit the parallel primitives designed mostly for 1D vectors very well. In our 
GPU implementation, as shown in Fig. 8, we assign each point quadrant to a thread block and 
assign points in the quadrant to threads in the thread block. Threads within the computing block 
process points in the point quadrant in parallel and each thread loops through all the paired 
polylines and their line segments to compute the shortest distance. The identifier of the polyline 
with the shortest distance will be associated with the point. We note that the scheme is similar to 
the nested loop join in relational databases. Although nested loop joins are typically considered 
inefficient in disk-resident relational databases, as all GPU threads in a thread block access a 
continuous memory chunk that holds the point coordinates and all threads access the same line 
segment during a looping step on GPUs, the memory accesses are highly coalesced. Similarly, as 
the result of each point is a pair of polyline identifier and the shortest distance, the thread that 
processes the point knows exactly where to output the results. In a way similar to read accesses 
to point coordinates, neighboring threads also access neighboring vector elements of the outputs 
and memory accesses are also highly coalesced. Unlike CPUs, GPUs have very limited cache 
capacities and rely on coalesced memory accesses to hide high memory access latencies and 
achieve high performance. Our GPU implementation is thus able to achieve high performance 
due to the coalesced memory accesses in addition to utilizing GPU’s excellent floating point 
computing power. We would like to note that while the GPU implementation is applicable to 
both the MLQ and FSG designs (as indicated in Table 1) as the inputs are in the same format for 
both designs, the implementation may incur different workloads and produce different results. 
This is because the pairs in the MLQ approach are at the quadrant level where quadrants can 
have different sizes although the numbers of points are bounded by K, while the pairs in the FSG 
approach are at the grid cell level where grid cells are no larger than quadrants and the numbers 
of points are unbounded. As such, there will be more points in the quadrants paired with 
polylines in the MLQ approach than the points in the grid cells paired with polylines in the FSG 
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approach. This is very similar to the well-known fact in spatial filtering that using coarse grids 
will incur more false positives, although the MLQ approach uses quadrants with variable sizes at 
different levels (but still larger than the grid cells in the FSG approach in this study). We expect 
the workload for the implementation based on the MLQ design will be heavier than that based on 
the FSG design which is verified in Section 5.3.  

 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Fig. 9. Illustration of Neighbor-Polyline-Searching based Spatial Refinement on CPUs Equipped 
with Vector Processing Units (VPUs)  

 
Our multi-core CPU implementation of the refinement module is based on the Intel open 

source TBB package [44] that typically performs better for computing tasks that are not well 
balanced.  As shown in Fig. 9, we formulate processing a point cell as a task and let TBB handle 
the mapping between tasks and CPU threads. In runtime, TBB assigns a group of tasks to a CPU 
thread and lets the CPU thread loop through all the corresponding point cells. For each point cell, 
the thread loops through all the points in the cell and loops through all the line segments in the 
paired polylines. When compared with the GPU implementation, we can see that a CPU thread 
does much more work than a GPU thread. In addition, reading and writing to CPU memory are 
automatically cached by CPU caching subsystem which makes programming much easier. As an 
optimization of the multi-core CPU based implementation, we have developed a module to 
utilize the VPUs (Vector Processing Units) that are available on modern CPUs. SIMD based 
parallel processing on VPUs are considered closely related to the Single Instruction Multiple 
Thread (SIMT) model on CUDA enabled GPUs [36]. SIMD width has increased from 128-bit 
(4-way) in SSE (Steaming SIMD extensions) to 256-bit (8-way) in AVX (Advanced Vector 
Extensions) and both are available on mainstream CPUs. In addition, the gap between GPU 
SIMD width (currently 1024-bit, 32-way in a warp) and VPU SIMD width is rapidly decreasing 
(for example, Intel MIC VPUs have a 512-bit, 16-way SIMD width [35]). As such, exploiting 
VPUs for high performance on CPUs is becoming increasingly important. Our implementation 
utilizes the ISPC complier [50] that is available from Intel as an open source package. Unlike 
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CUDA threads that have their own program counters and thus allow complex control logic, all 
the SIMD elements of VPUs need to follow the same execution path which makes their 
utilization less flexible. Another difference is that, while CUDA allows much larger logic SIMD 
width (which is limited by the maximum number of threads in a computing block – currently in 
the order of thousands), the SIMD width need to match the VPU physical SIMD width of multi-
core CPUs. As such, our design is to partition the points in a cell into chunks and use the VPUs 
to process the points in batches through explicit looping as shown in the mid-right part of Fig. 9.   

4.6 Relational Aggregations on CPUs and GPUs 
After a database tuple is associated with one or more keys based on spatial, temporal and 

spatiotemporal relations, the next step in spatial and temporal aggregations is to derive statistics 
in groups defined by the individual keys or their combinations which can be informative in 
decision making. Counting and similar relational aggregation operations in deriving group-based 
statistics are fundamental operators in relational databases and have been well researched, 
including some recent work on parallel aggregations on many-core GPUs [9][39][40]. A 
straightforward implementation of the relational aggregation operators on CPUs is to use STL 
map data structure to store (key, stat) pairs where stat can be one or more statistics, such as 
count/sum/avg/min/max. As the number of cores on multi-core CPUs is currently limited, a 
commonly used strategy on parallelizing the relational aggregation operations on multi-core 
CPUs is to provide each thread (typically assigned to a processor exclusively) a private copy of 
the map structure so that threads can work in parallel over non-overlapping partitions of tuples 
and avoid using expensive locks. The private map structures are then combined to derive the 
final result across threads/cores using a single thread. Unfortunately, this strategy is largely 
unrealistic on many-core GPUs as it is neither possible nor efficient to provide hundreds of 
thousands of threads with their private copies of result structures (e.g., maps). Furthermore, as 
the map structure is essentially a hashing based structure, it requires random accesses to hash 
tables and may incur significant cache misses and reduce performance. While large caches on 
CPUs can tolerate random data accesses to a certain extent, hashing typically performs poorly on 
GPUs due to the uncoalesced data accesses among threads in computing blocks [59].  

Given that sorting is among the best studied parallel algorithms and efficient sorting 
implementations are provided by major parallel packages on parallel systems, we propose a 
Transform-Sort-Reduce based approach for relational aggregations on GPUs. The approach first 
derives keys based on domain knowledge, then sorts database tuples based on the keys and 
finally reduces on groups (identified by the keys) to produce the desired statistics for the groups. 
We note that many statistic operators, including the commonly used count/sum/avg/min/max 
operators that are supported by relational DBMS, are associative and can be applied in parallel 
within groups. Our GPU implementation of the relational aggregation module closely follows the 
three-step procedure design. For the first step in combining key attributes and generating keys 
for all tuples, the element-wise operation is highly parallelizable and is efficiently supported by 
several parallel libraries, including Thrust (using transform primitives).  Note that the decision 
on whether to concatenate relevant value attributes to form a new relation (in a way similar to 
materialized views in relational databases) or to directly operate on the original relation is left to 
applications. As we have adopted a column-oriented database physical layout, deriving a new 
relation is performed by vertically concatenating relevant in-memory column files. For the 
second step in sorting the database tuples based on their keys, as radix sorting on fixed-length 
keys are typically more efficient than comparison based sorting and have a theoretical linear 
complexity with respect to number of data items to be sorted, our implementation requires 
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formulating keys as 32-bit or 64-bit integers to take the advantage of efficient parallel sorting 
implementations on GPUs. We argue that 32-bit keys can be sufficient for many practical 
applications. Since users are typically interested in only a limited amount of top-ranked groups, 
the keys can be hierarchically refined into multi levels while still using 32-bit keys at each level. 
For the third step in applying reduction operators within groups to derive statistics, Thrust 
provides a reduce (by key) primitive that meets our requirement.   

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10. Code Segment of a Parallel Relational Aggregation using Spatiotemporal Keys 
 
Assuming that we want to perform a spatiotemporal aggregation on the street segment 

and hour, i.e., counting the number of taxi pickup locations at each of the street segments at the 
each of the 24 hours, Fig. 10 provides the code segment for illustration purposes. Here we are 
given two vectors with the first storing the street segments and the second storing the pickup 
times in the compressed form (Section 3.2) for all taxi trip records using a column-oriented data 
layout. Note that the zip iterator is used to combine the elements in the two input vectors into 
tuples in the temp_keys vector so that they can be used in the required functor (C++ function 
object) in the transform primitive to convert the segment identifiers and pickup hours into keys 
for reduction. The last five bits in a resulting key are allocated to hour (24<25) and the rest of the 
bits are allocated to segment identifiers which allows up to 227 segment identifiers and is 
sufficient in our application. The same procedure can be applied when variables of higher 
dimensions are involved in key formations. The reduce_by_key primitive in Thrust is a 
segmented version of the regular reduce primitive. To help understand the procedure, a simple 
example is provided in the top-right part of Fig. 10. After sorting in Step 2, the same keys are 
arranged consecutively in the temp_keys vector. For each of the unique keys in the temp_keys 
vector (which is output to the pu_keys vector), the count in the pu_count vector is increased 
(defined by the thrust::plus functor) by 1 (as defined by the thrust::constant_iterator). The 
primitive allows us to define how to determine whether two keys are equal by providing a 
functor to replace the thrust::equal_to functor and how to perform the reduction by providing a 
functor to replace the thrust::plus functor and thus is very flexible. Since thrust::make_tuple 

3 1 2 1 3 1 1 2 3 3 
sort 

1 2 3 

2 1 2 

reduce_by_key 
key 

count 

Inputs: vectors pu_seg and pu_t  
Outputs: vectors pu_key and pu_count representing aggregated keys and counts 
 
Step 1:  transform pu_seg and pu_t into a vector of bin keys as the following:  
thrust::transform ( 

thrust::make_zip_iterator(thrust::make_tuple(pu_seg.begin(),pu_t.begin()), 
thrust::make_zip_iterator(thrust::make_tuple(pu_seg.end(),pu_t.end()), 
temp_keys.begin(), 
make_key() 
); 
 

Step 2: in-place sort the key vector to get ready for reduction  
thrust:sort(temp_keys.begin(),temp_keys.end()); 
 

Step 3: reduce by key to count the number of trips in each bin and output the results to 
pu_count as the following:  
int num_keys=thrust::reduce_by_key( 

temp_keys.begin(),temp_keys.end(),hrust::constant_iterator<int>(1) 
pu_keys.begin(), pu_count.begin(),  
thrust::equal_to<uint>(),  thrust::plus<int>() 
).pu_keys.begin() 

struct make_key 
{ 
     
    __host__ __device__ 
    uint operator()(thrust::tuple<uint, uint> v) 
    {  
         uint segid=(thrust::get(0)(v))  &0x07FFFFFF 
         uint hour  =(thrust::get(1)(v)>>12)&0x0000001F; 
        return ((segid<<5)|hour); 
    } 
}; 



Accepted by Information Systems (Elsevier)    http://dx.doi.org/10.1016/j.is.2014.01.005 
 

21 
 

takes up to 10 parameters to make tuples, it should be more than sufficient to combine 
dimensional values and make keys in most cases.  

The readers might have observed that the same Transform-Sort-Reduce based relational 
aggregation scheme can also be applied to multi-core CPUs. Indeed, parallel libraries on CPUs, 
such as Intel TBB, provide similar parallel primitives such as parallel_for, parallel_sort and 
parallel_reduce which make the multi-core CPU implementation of parallel relational 
aggregations possible. However, as shown in Section 5, sorting on multi-core CPUs is several 
times slower than sorting on GPUs in our experiment system which makes the primitive-based 
multi-core CPU implementation less preferable. On the other hand, while it is more efficient for 
GPUs to use more costly sorting operator to coordinate a large number of threads to make full 
use of the massively data parallel computing power of the hardware, multi-core CPUs are 
characterized by having small numbers of powerful processors with large caches. The 
Transform-Sort-Reduce scheme that works well for GPUs may not be the most efficient 
implementation for multi-core CPUs. In fact, as many of the relational aggregation operators are 
associative, it is unnecessary to produce a total order through sorting. As mentioned earlier, 
given that the numbers of cores on CPUs are typically small, when the numbers of groups are not 
extremely large, it is technically feasible to provide each CPU thread a private copy of data 
structures for storing statistics. The advantages of using private copies are to completely 
eliminate concurrent data accesses that typically require expensive locking, and, to eliminate 
expensive sorting. Each thread can just sequentially loops through the partition of the tuples 
assigned to it and generate statistics for the partition serially before the private copies of the 
statistics are combined. To reduce the memory management overheads in STL map structures, in 
our multi-core CPU implementation, we use dynamic allocated arrays instead as the sizes of keys 
are often known before relational aggregations. As shown in Section 5.5, the efficiency of 
relational aggregations can be significantly improved by using pre-allocated dynamic arrays and 
narrow the performance gaps between the GPU and CPU implementations.  

We would like to take the opportunity to briefly comment on the implementations using 
native parallel programming languages or similar approaches (e.g., CUDA on GPUs and Pthreds 
on CPUs) and those that are based on parallel primitives (e.g., Thrust on GPUs and TBB on 
CPUs). In the context of OLAP aggregations, the work reported in [9] adopted a native 
implementation approach which requires a deep understanding of GPU hardware details and high 
parallel programming skills. Even though parallel reduction is a well-studied problem and the 
mapping between the reduction primitive and OLAP aggregations is relatively straightforward, it 
remains non-trivial to implement the aggregations with good performance using a native 
programming  approach [9]. Another research effort on MOLAP cube [39] utilized parallel 
primitives which allowed the authors to focus on high-level constructs without diving into too 
many hardware details. While we are in favor of the parallel primitive based approach in general 
due to its simplicity and portability, the tradeoffs between code efficiency and coding complexity 
of parallel primitive based implementations and native implementations need to be justified in 
different applications. We also note that the primitive based implementation does incur some 
overheads that can be avoided if implemented directly on top of native parallel programming 
languages. For example, the temp_keys vector in Fig. 10 of our example is accessed multiple 
times when different primitives are invoked. In addition, most parallel primitives are designed 
for 1-dimensional data that can be represented as arrays or vectors. The similar arguments can be 
applied to CPU-based implementations in general, for example, Pthread and TBB. However, as 
multi-core CPUs typically favor coarse-grained task level parallelization and allow serial 
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implementation within parallel tasks, the differences on multi-core CPUs are not as significant as 
those on GPUs from an implementation perspective in the context of data management 
applications. To the best of our knowledge, there are no parallel libraries that support multi-
dimensional data and provide a similar set of functionality. Our designs on parallel spatial 
indexing, filtering and refinements have the potential to be abstracted as multi-dimensional 
primitives for spatial and temporal aggregations and we leave this interesting topic for future 
work.  

5 EXPERIMENTS AND RESULTS 

5.1 Data and Experiment Setup  
Through a partnership with the NYC Taxi and Limousine Commission (TLC), we have 

access to roughly 300 million GPS-based trip records collected during a period of about two 
years (2008-2010). In this study, we use the approximately 170 million pickup locations and 
times in 2009 for experiments. The NYC DCP LION street network dataset with 147,011 street 
segments is used as the urban infrastructure data to associate taxi locations with street segments 
and subsequent spatial and temporal aggregations. Among the 168,379,168 taxi pickup locations 
in NYC, the majority are successfully associated with their nearest street segments within R=250 
feet. However, there are 867,163 (0.515%) locations whose computed shortest distances are 
more than 250 feet. They are considered as outliers and are excluded from subsequent analysis. 
All experiments are performed on a Dell Precision T5400 workstation equipped with dual quad-
core CPUs running at 2.0 GHZ with 16 GB memory, a 500 GB hard drive and an Nvidia Quadra 
6000 GPU device with 448 cores (running at 1.15 GHZ) and 6GB memory.   

5.2 Results on MLQ-based Spatial Associations on GPUs 
Fig. 11 shows the results of MLQ-based spatial associations implemented on GPUs using 

the maximum quadrant depth L=16 (2 feet cell resolution at the finest level), the maximum point 
quadrant size K= 512 and the expanded window width of R=25 feet for polyline MBBs.  In this 
figure, the horizontal axis represents the months in the year 2009 that are used in the spatial 
associations, N1 is the number of point locations, N2 is the number of derived point quadrants, 
T1, T2, T3, and T4 are the runtimes measured in seconds of the four modules, point indexing, 
polyline indexing, spatial filtering, and spatial refinement, respectively, and T is the total 
runtime. We can see that the runtimes of point indexing dominate the total runtime in all tests 
and increase almost linearly with the number of point locations. This is mostly due to the radix-
sort based parallel primitive for sorting that incurs linear runtimes with respect to the number of 
points. The runtimes of the remaining parallel primitives are mostly linear with respect to the 
number of points or quadrants, except in cases that a same point quadrant might be paired with 
multiple grid cells. We note that the runtimes for point indexing have already included data 
transfer times between CPUs and GPUs which account for nearly 25% of the end-to-end runtime 
using 12 months data (the whole year of 2009). Also note that the polyline indexing time is fixed 
across the months, which is relatively insignificant. From the results we can see that it takes 
about 15 seconds to complete the spatial associations between the 168.38 million pick-up 
locations and the 147 thousand street segments based on the nearest-neighbor searching principle 
within a 25 feet window width. The GPU-based spatial associations are considerably faster than 
running queries similar to query Q5 (listed in the Appendix at the end of the paper) in 
PostgreSQL that takes hours to days. Although it is not our intension to compare our results with 
PostgreSQL directly as they are designed for different purposes and exploit different sets of 



Accepted by Information Systems (Elsevier)    http://dx.doi.org/10.1016/j.is.2014.01.005 
 

23 
 

technologies, the results clearly demonstrate the level of achievable performance on aggregating 
large-scale geospatial data on modern commodity parallel hardware.  

An interesting observation of the experiment results on spatial filtering runtimes is that, 
as the number of point locations grows across months, the spatial filtering runtime actually 
decreases which is counter-intuitive. A careful examination reveals that, as the threshold K is 
fixed in our experiments, when the number of point locations is small, the number of derived 
point quadrants is likely to be large which results in a large number of cells after rasterization. 
Subsequently, it takes longer for binary searching, sorting and duplication removal. As the 
spatial filtering runtimes can be several times larger than the spatial refinement runtimes and 
even larger than the point indexing runtimes (for cases using smaller numbers of months in Fig. 
11), it is desirable to reduce the runtimes as much as possible as users generally expect lower 
response times when the numbers of points are small. As such, we suggest to use adaptive grid 
resolutions in the GPU-based MLQ implementation, i.e., use coarser grid resolutions for smaller 
numbers of points being associated. Assuming that statistical distributions of point locations do 
not change significantly across months, it is likely that a cost model can be formally derived to 
suggest an optimal grid resolution for the implementation. This is left for our future work.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 11 Plot of Runtimes of MLQ-based Spatial Associations on GPUs 
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# of months 

N1= #of points (*106) N2= #of quadrants (*106) 
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To further evaluate the performance of many-core GPUs for spatial associations, we have 
performed the same sets of operations corresponding to T1 (point indexing runtime) and T4 
(spatial refinement runtime) on a single core CPU for the points in all the 12 months. The 
runtimes are T1’=162.004 seconds and T4’=35.338 seconds, respectively. We have not measured 
T2’ (polyline indexing runtime) and T3’ (spatial filtering runtime) on single core CPUs because 
we are not aware of efficient implementations of main-memory data structures for polyline 
indexing and spatial filtering. It would not be fair to simply port their GPU implementations to 
CPUs which might not be efficient. However, even if T2’ and T3’ are excluded, we still get a 
13X speedup calculated as (T1’+T4’)/(T1+T2+T3+T4)= 197.342/15.236. The result indicates the 
efficiency of GPU based spatial association based on the MLQ design.  

5.3 Results on FSG-based Spatial Association on Multi-core CPUs and GPUs 
We have tested our FSG-based spatial association module on multi-core CPUs under the 

following settings. A fixed grid cell size G=16 feet is used for all experiments. We have chosen 
to experiment on four R values (25 feet, 50 feet, 100 feet and 250 feet) to examine how end-to-
end runtimes change as the polyline expanded window width increases. Using larger expanded 
window widths typically results in larger numbers of (cell, polyline) pairs that need to be refined 
after the spatial filtering. As such, both spatial filtering and spatial refinement runtimes are likely 
to increase. As indicated in Table 1 in Section 4, we use GNU Parallel Mode for sorting on 
multi-core CPUs. As the Polyline Indexing module is independent of FSG/MLQ designs, we re-
use the MLQ implementation on GPUs directly and port it to multi-core CPUs through Thrust by 
changing the Thrust library device backend from CUDA on GPUs to TBB on multi-core CPUs. 
For spatial filtering, we have implemented the FSG-based design on GPUs to compare with 
MLQ based GPU implementation and port it to multi-core CPUs in a similar way. Also as 
discussed in Section 4.3, although we have ported the FSG based GPU implementations to multi-
core CPUs (results listed in Table 2 in the FSG-MC column), we note that the library overheads 
for the TBB ports may be higher than the overheads for the native CUDA implementation of the 
Thrust library and the factor is taken into account during the analysis. While it is beyond the 
scope of our work to optimize the Thrust library on multi-core CPUs, we plan to natively 
implement the parallel primitives that are used in polyline indexing and spatial filtering based on 
the FSG design to improve their performance in our future work. For spatial refinement module 
using the FSG design, since we have explored VPUs in our multi-core CPU implementations, the 
runtimes for the following implementations are listed in Table 2:  serial implementation using a 
single core (SC), parallel implementation on a single core with VPU (SC-VPU), parallel 
implementation on multiple cores without VPU (MC), and parallel implementation on multiple 
cores with VPU (MC-VPU). The runtimes for the spatial filtering module using the GPU 
implementations based on both FSG and MLQ designs under the four R values are also listed in 
Table 2 for comparison purposes.  

From Table 2, we can see that the FSG-based multi-core CPU implementation for point 
indexing is about 2.3X faster than the MLQ-based GPU implementation (12.233/5.382). On the 
other hand, while the GPU implementation has achieved 13X speedups over serial 
implementation in the MLQ approach, only a 4.2X speedup (22.447/5.382) has been achieved 
for multi-core implementation over serial implementation in the FSG approach. This can be 
explained by that, as detailed in Section 4.1, the FSG design is significantly simpler than the 
MLQ design which subsequently requires much less computation. Unfortunately, the large 
memory footprints (for both the resulting grid cells and temporal memory during sorting) have 
prevented us from implementing the Point Indexing module on GPUs based on the FSG design 
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for direct comparisons. In addition, the CPU-based implementation of the FSG design does not 
require copying the point data from CPUs to GPUs which also contributes to its efficiency. 
Furthermore, as sorting is typically memory intensive and the bandwidth of our GPU device is 
much higher (144 GB/s vs. 2*12.8 GB/s), we would expect the implementation of the FSG 
design on GPUs to be more efficient than the multi-core GPU implementation when GPU 
memory capacity gets larger. We also suspect that insufficient memory bandwidth on multi-core 
CPUs is one of the important reasons that the multi-core CPU implementation achieves only half 
of the theoretical speedup (8X for 8 cores). As the future generation CPUs are likely to have 
higher memory bandwidths and more cores, we expect the performance of the multi-core CPU 
based implementation will increase accordingly. 

Table 2. Results on FSG-based Spatial Associations  
 FSG-

SC 
FSG-SC-

VPU 
FSG-
MC 

FSG-MC-
VPU 

FSG-
GPU 

MLQ-
GPU 

Point Indexing (PNI) 22.447  5.382   12.233 
Polyline Indexing 

(PLI) 
R=25   1.750  0.181 

0.244 
0.401 
1.148 

R=50   2.448  
R=100   4.140  
R=250   13.450  

Spatial Filtering 
(SF) 

R=25   0.738  0.068 1.221 
R=50   0.984  0.083 1.391 
R=100   1.521  0.118 1.702 
R=250   4.305  0.264 3.207 

Spatial 
Refinement (SR) 

R=25 21.126 7.251 2.631 0.930 1.002 1.601 
R=50 28.642 9.480 3.559 1.198 1.267 2.088 
R=100 43.419 13.913 5.440 1.749 1.839 3.019 
R=250 100.738 31.117 12.487 3.874 4.156 6.573 

 
 
For polyline indexing, the runtimes under all R values are relatively insignificant on 

GPUs. However, their runtimes are more than 10X higher when the GPU implementation (the 
same in both the MLQ and FSG designs) is ported to multi-core CPUs. While the low 
performance can also occur due to the small number of cores and low memory bandwidth as we 
have discussed previously (and low CPU clock rate in our experiment system), we also believe 
that the Thrust library overheads of the TBB port on multi-core CPUs are significantly higher 
than its native implementation on GPUs. For future work, we plan to provide an optimized native 
implementation of the polyline indexing module in order to compare the best performance of the 
multi-core CPU implementation with the performance of the GPU implementation.  

The Spatial Filtering results provided in Table 2 show that the FSG-based GPU 
implementation is 10-20X faster (by dividing values in the MLQ-GPU column by those in the 
FSG-GPU column in the four SF rows) than the MLQ-based GPU implementation which is 
preferred. When comparing the FSG-based implementation on multi-core CPUs and GPUs 
(using the values in FSG-GPU column and FSG-MC column in the same SF rows), we can see 
that the GPU-based implementation is again more than 10X faster than the multi-core CPU 
implementation by porting the same implementation from CUDA to TBB. Again, we attribute 
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this result to a small number of cores and low memory bandwidth on multi-core CPUs in our 
experiment system and the higher library overheads on CPUs.  

More comprehensive comparisons can be performed for the Spatial Refinement module 
as all the six implementations are available for this module. Our results in Table 2 show that the 
runtimes of the MLQ-GPU implementation are approximately 60% higher than the runtimes for 
the FSG-GPU implementation for the four R values.  This may also indicate that load balancing 
is not a dominating factor due to fine data decompositions as discussed in Section 4. It might be 
more interesting to compare the performance of the five implementations for the FSG design, 
especially the FSG-MC-VPU implementation, which has the best performance on multi-core 
CPUs, and the GPU implementation. From Table 2 we can see that the GPU implementation has 
achieved 13-15X speedups over the serial implementation in the FSG approach for the four R 
values (FSG-SC/FSG-GPU for SR rows). They are comparable with the speedups of the GPU 
implementation over the serial implementation in the MLQ based approach (13X for R=25 as 
reported in Section 5.2). When comparing the GPU performance (FSG-GPU) and multi-core 
CPU performance (FSG-MC), we can see that the GPU implementation has achieved 2.6-3.0X 
speedups over multi-core CPUs (FSG-MC/FSG-GPU for SR rows). When comparing the 
runtimes of FSG-MC with those of FSG-SC, we observe linear speedups (around 8X) and we 
attribute these results to both the parallel design with regular data access patterns and the 
efficiency of TBB scheduling in balancing the workloads among grid cells. We next turn to 
analyzing the CPU performance with multi-cores and VPUs.  

When comparing the runtimes between the FSG-SC and FSG-SC-VPU columns in Table 
2 for the spatial refinement module, we can see that the speedups due to VPUs (vectorization) 
are around 3X (FSG-SC/FSG-SC-VPU for SR rows). Slightly lower speedups (but still around 
3X) can be observed by comparing the runtimes in the FSG-MC and FSG-MC-VPU columns 
where all cores are utilized. Given that the VPUs on the Intel Xeon CPUs in our experiment 
system have 128-bit SIMD width (4-way) and the maximum possible speedup is only 4X, the 
achieved speedups are very significant, especially considering that not all the numbers of points 
in grid cells can be divided by 4 and the remaining points that cannot be fed to a SIMD batch 
need to be processed sequentially. By combining multi-cores and VPUs, the multi-core CPU 
implementation has achieved 21-24X speedups over serial implementation without using multi-
cores and VPUs (FSG-SC/FSG-MC-VPU for SR rows). The performance is about 5%-7% better 
than the GPU implementation in the FSG design (calculated as (FSG-GPU/FSG-MC-VPU)-1 for 
SR rows). As the CPUs in our experiment system are relatively weak (released in 2007), we 
believe more recent systems with more CPU cores and higher CPU frequencies can achieve 
better performance. The results are exciting in the sense that, when parallel hardware (including 
multi-cores and VPUs) is fully utilized, multi-core CPUs have the potential to achieve 
comparable or even better performance than GPUs in our application.  

5.4 Results on End-to-End Response Times of Spatial Associations on Hybrid Systems 
While we have compared the performance of the individual modules on either multi-core 

CPUs or GPUs or both under different settings for the FSG-based approach in Section 5.3, we 
next provide comparisons on the end-to-end response times of spatial associations in this 
subsection. Although the end-to-end response time of the MLQ-based approach for R=25 feet 
has been provided and discussed in Section 5.2, we would like to compare the two approaches 
under different R values. In Table 3, we refer the MLQ-based approach as Config1 where all the 
runtimes are based on the GPU implementations. In contrast, for Config2, the runtimes are 
mixtures of the GPU and CPU implementations by taking the best performance of all available 
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implementations of the respective module. The decision is based on several considerations. First, 
only CPU implementation is available for the FSG design as the point data is beyond the 
memory capacity of the GPU device in our experiment system for the GPU implementation 
using the FSG design. Second, the multi-core CPU implementations of the polyline indexing and 
spatial filtering modules are naïve ports of the corresponding GPU designs and are not 
optimized. It would be unfair to use them in calculating the end-to-end response times for multi-
core CPUs. Third, by utilizing VPUs on CPUs, the CPU based implementation of the Spatial 
Refinement module actually slightly outperforms the corresponding GPU implementation 
although the GPU implementation is still about 2.6-3.0X better than the multi-core CPU 
implementation without VPUs. It would not be appropriate to simply refer to the VPU enhanced 
implementation as a multi-core CPU implementation. By taking the best runtimes of the modules 
in the FSG-based approach, we can compute the best performance in the hybrid CPU-GPU 
system for the FSG-based approach and compare it with the MLQ-based approach with a pure 
GPU implementation.  

 
Table 3. Runtimes of Multiple Design and Implementation Configurations 

  R=25 R=50 R=100 R=250 
Config1 

( MLQ-GPU) 
PNI 12.233 
PLI 0.181 0.244 0.401 1.148 
SF 1.221 1.391 1.702 3.207 
SR 1.601 2.088 3.019 6.573 
Tot 15.236 15.956 17.355 23.161 

Config2 
(FSG-Hybrid) 

PNI(FSG-MC) 5.382 
PLI (FSG-GPU) 0.181 0.244 0.401 1.148 

SF (FSG-SC) 0.068 0.083 0.118 0.264 
SR (FSG-MC-VPU) 0.930 1.198 1.749 3.874 

Tot 6.561 6.907 7.65 10.668 
Speedup=Config1-Tot/Config2-Tot 2.32 2.31 2.27 2.17 

 
From the last row of Table 3 we can see that the FSG-hybrid configuration has achieved a 

little over 2X speedups over the MLQ-GPU configuration which indicates that the FSG design is 
a better choice for spatial associations on our experiment system. We expect that, after the native 
multi-core CPU implementations of the polyline indexing and spatial filtering modules become 
available, although it is likely to increase the end-to-end runtimes of the two modules when 
compared to the current GPU implementations, the FSG implementation that runs completely on 
multi-core CPUs will still likely be better than the MLQ-based approach on GPUs. The better 
performance of the FSG approach on multi-core CPUs can be attributed to three major factors. 
The first factor is the algorithmic improvement to significantly reduce the computing overheads 
of spatial filtering/refinement as well as point indexing. The efficiency on reducing computing 
overheads is evidenced by comparing the runtimes in FSG-GPU and MLQ-GPU columns in 
Table 2 where GPU implementations for both approaches are available. The efficiency on point 
indexing based on the FSG design can be inferred based on the fact that sorting the 168 million 
records should take less than 1 second on the GPU if memory is sufficient based on previous 
results [55] while it is more than 12 seconds based on the MLQ design. The second factor is the 
elimination of the need to transfer data between CPUs and GPUs (3 seconds based on our 
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experiments). The third factor is the effective utilization of VPUs on CPUs that have been 
largely untouched in previous studies in the spatial refinement module. We expect the end-to-end 
runtimes of the pure multi-core CPU based implementation can be further reduced after utilizing 
the SIMD processing powers on VPUs in other three modules in spatial associations. Finally, 
despite the fact that different parallel designs and implementations have resulted in different 
performance, we would like to note that the end-to-end runtimes of both the FSG-Hybrid and 
MLQ-GPU implementations are in the order of 5-25 seconds for the R values ranging from 25 
feet to 250 feet as shown in Table 3. The results clearly indicate the high efficiency of our 
parallel designs and implementations although there are still rooms for improvements. The end-
to-end response times are getting closer to meeting the requirement of interactive spatial OLAP 
query processing. We believe interactive OLAP queries on spatially associating hundreds of 
millions of points and hundreds of thousands of polylines are technically feasible through further 
algorithmic engineering, implementation optimization and heterogeneous/distributed processing 
and they are left for our future work.  

5.5 Results on Parallel Relational Aggregations 
After spatial and temporal associations, spatial and temporal aggregations are reduced to 

relational aggregations. We have performed three groups of experiments on relational 
aggregations on both many-core GPUs and multi-core CPUs using the 168 million taxi pick up 
locations after spatial and temporal associations.  The first group of experiments counts on the 
147,011 street segments after spatial aggregations based on the nearest neighbor search. The 
second group of experiments counts on the 24 hours (temporal aggregation) and the third group 
of experiments counts on both street segments and hours (spatiotemporal aggregation).  Clearly, 
the number of bins in the spatial aggregations based on segment identifiers is 3-4 orders of 
magnitude larger than the number of bins in the temporal aggregations based on hours. They can 
be used to represent the two extremes in aggregations with respect to cardinality. The experiment 
results for the three groups of queries on multi-core CPUs and many-core GPUs are plotted in 
Fig. 12 and are compared with serial implementations. For the CPU implementations (serial and 
multi-core), we have experimented on using both STL map structures and dynamic arrays. For 
the GPU implementation, as it is based on the Thrust parallel library, we use multiple vectors 
instead.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 12. Runtimes of Parallel Relational Aggregations 
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Our results show that the speedups of the multi-core CPU implementations over the serial 
implementations range from 4.5-6.0X when STL maps are used and 1.5-2.7X when dynamic 
arrays are used. The results are expected as the relational aggregations are mostly memory 
intensive which may severely limit the achievable speedups (maximum 8X for 8 cores). When 
dynamic arrays are used, memory bandwidth contention is likely to be a major factor in further 
limiting the achievable speedups. The GPU implementations have achieved slightly better 
performance than the multi-core implementations using dynamic arrays. Given that the GPU 
device used in our experiment system has a larger number of processing cores (although weaker 
than CPU cores) and higher memory bandwidth, we believe it is quite possible to further 
improve the performance of the GPU implementation by using CUDA directly to reduce the 
Thrust library overheads. While it remains nontrivial to design and implement sophisticated 
parallel primitives that are optimized for OLAP applications using low-level programming 
languages and libraries on parallel hardware, we plan to provide designs and implementations 
that can be compatible on both GPUs and VPUs of CPUs and make full use of their SIMD 
parallel processing power.  

 

6 CONCLUSION AND FUTURE WORK 
In this study, we reported our designs, implementations and experiments on developing a 

data management platform and a set of parallel techniques to support high-performance online 
spatial and temporal aggregations on multi-core CPUs and many-core GPUs that are becoming 
increasingly available but largely under-utilized for OLAP applications. Our results have shown 
that we are able to spatially associate nearly 170 million taxi pickup location points with their 
nearest street segments among 147,011 candidates in about 5-25 seconds, depending on different 
configurations of indexing structures, computing models and parameters such as expanded 
window widths. After spatially associating points with road segments, spatial, temporal and 
spatiotemporal aggregations are reduced to relational aggregations and can be processed in the 
order of a fraction of a second on both multi-core CPUs and GPUs. The experiment results 
support the feasibility of building a high-performance OLAP system for processing large-scale 
taxi trip data for real-time, interactive data explorations on GPUs, multi-core CPUs and their 
hybridizations.  

For the future work, first of all,  we would like to further reduce the processing times for 
both spatial associations and relational aggregations by fine tuning important parameters and 
further reducing memory footprint. Second, to ensure usability, we would like to investigate the 
appropriate spatial and temporal resolutions so that interactive OLAP processing can be 
smoothly performed on commodity personal computers with different hardware configurations. 
Third, while our designs and implementations reported in this study are application driven, we 
are interested in formally analyzing the complexity and scalability of the proposed solution by 
varying numbers of CPU/GPU processors and empirically validating the analysis through 
extensive experiments. Fourth, while our techniques are designed and developed mostly in the 
context of managing large-scale OD data, many of them are applicable to other types of spatial 
and spatiotemporal data and we plan to investigate the possibilities. Finally, we plan to explore 
cluster computing technologies to process larger scale data, for example, multi-year and multi-
city taxi trip data and cell phone call log data. 
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APPENDIX SQL STATEMENTS FOR SPATIAL/TEMPORAL AGGREGATIONS IN POSTGRESQL  
 
Q1: UPDATE t SET PUGeo = ST_SetSRID(ST_Point("PULong","PuLat"),4326);  
Q2: UPDATE t SET DOGeo = ST_SetSRID(ST_Point("DOLong","DOLat"),4326); 
Q3: CREAT INDEX ti_pugeo ON t USING GIST (PUGeo); 
Q4: CREAT INDEX ti_dogeo ON t USING GIST (DOGeo); 
Q5: SELECT DISTINCT ON (ID, PUT) ID, PUT, segmentid,  
ST_Distance ( ST_Transform (PUGeo,2263), the_geom) as ndis INTO temp_PU FROM t, n   
WHERE ST_DWithin (ST_Transform (PUGeo, 2263), the_geom, 100) ORDER BY PUT, ID, ndis 
Q6: UPDATE t set PUSeg=(SELECT segmentid From temp_PU WHERE t.ID=temp_PU.ID AND t.PUT=temp_PU.PUT;  
Q7: SELECT DISTINCT ON (ID, DOT) ID, DOT, segmentid,  
ST_Distance ( ST_Transform (DOGeo,2263), the_geom) as ndis INTO temp_DO FROM t, n  
WHERE ST_DWithin(ST_Transform(DOGeo,2263), the_geom, 100) ORDER BY DOT, ID, ndis 
Q8: UPDATE t set DOSeg=(SELECT segmentid From temp_DO WHERE t.ID=temp_DO.ID AND t.DOT=temp_DO.DOT; 
Q9: CREAT INDEX ti_pus ON t(PUSeg); 
Q10: CREAT INDEX ti_dos ON t(DOSeg); 
Q11: SELECT PUSeg, COUNT(*) FROM t GROUP BY PUSeg  ORDER BY PUSeg; 
Q12: SELECT DOSeg, COUNT(*) FROM t GROUP BY DOSeg  ORDER BY DOSeg; 
Q13: CREAT INDEX ti_put ON t (PUT); 
Q14: CREAT INDEX ti_dot ON t (DOT); 
Q15: SELECT EXTRACT (hour FROM PUT) as hour, count(*) FROM t GROUP BY hour ORDER BY hour 
Q16: SELECT EXTRACT (hour FROM DOT) as hour, count(*) FROM t GROUP BY hour ORDER BY hour 
 


