
Published at http://www.tandfonline.com/doi/abs/10.1080/13658816.2013.828840

High-Performance Quadtree Constructions on Large-Scale
Geospatial Rasters Using GPGPU Parallel Primitives

Jianting Zhang1,2 and Simin You2

1 Department of Computer Science, the City College of New York, New York, NY, 10031
2 Department of Computer Science, CUNY Graduate Center, New York, NY, 10006

Correspondent author email: jzhang@cs.ccny.cuny.edu

Abstract

The increasingly available Graphics Processing Units (GPU) hardware and the emerging
General Purpose computing on GPU (GPGPU) technologies provide an attractive solution to
high-performance geospatial computing. In this study, we have proposed a parallel primitive
based approach to quadtree construction by transforming a multidimensional geospatial
computing problem into chaining a set of generic parallel primitives that are designed for one
dimensional arrays. The proposed approach is largely data independent and can be efficiently
implemented on GPGPUs. Experiments on 4096*4096 and 16384*16384 raster tiles have shown
that the implementation can complete the quadtree constructions in 13.33 milliseconds and
250.75 milliseconds, respectively, on average on an NVidia GPU device. Compared with an
optimized serial CPU implementation based on the traditional recursive Depth-First Search
(DFS) tree traversal schema that requires 1191.87 milliseconds on 4096*4096 raster tiles, a
significant speedup of nearly 90X has been observed. The performance of the GPU based
implementation also suggests that an indexing rate in the order of more than one billion raster
cells per second can be achieved on commodity GPU devices.

1 Introduction
High-performance geospatial computing is an important component of geospatial

cyberinfrastructure and is critical to large-scale geospatial data processing and problem solving
(Wang and Liu 2009, Yang et al. 2010). Recently there is increasing interest in GPGPU
technologies, i.e., General Computing on Graphics Processing Units, for high-performance
geospatial data processing (Zhang 2010). High-end workstations equipped with GPGPU devices
with hundreds and even thousands of processing cores that are capable of launching hundreds of
thousands of threads simultaneously are ideal for massively data parallel, high-throughput and
highly interactive applications in a personal computing environment. Recently Hong et al. (2011)
argued that GPU architectures closely resemble supercomputers as both implement the primary
Parallel Random Access Machine (PRAM1) characteristic of utilizing a very large number of
threads with uniform memory latency (such as Cray XMT2). Solving small to medium sized
problems directly on GPU-equipped personal workstations is both cost-effective and energy
efficient. Equally important, as modern grid and cloud computing technologies increasingly rely
on cluster computers made of identical computing nodes using commodity hardware, algorithms
that can fully utilize GPGPU hardware capability on a single node will naturally boost the
performance of cluster computers to solve larger scale problems.

Geospatial data processing on GPGPUs have attracted signficant research and application
interest in the past few years ranging from data management to physics based environmental
simulation. The throughput-oriented architectural designs of GPGPUs (Garland and Kirk 2010)

1 http://en.wikipedia.org/wiki/Parallel_Random_Access_Machine
2 http://www.cray.com/products/XMT.aspx

Published at http://www.tandfonline.com/doi/abs/10.1080/13658816.2013.828840

are especially suitable for geospatial data processing due to the inherent parallelism of local and
focal geospatial operations (Theobald 2005). However, it is generally nontrivial to use GPGPUs
for zonal and global geospatial operations (Theobald 2005) whose parallelism can not be easily
mapped to GPGPU computing architectures. Constructing tree indices to speed up query
processing and data analysis is one of the most important operations in geospatial data
processing which can be considered as a special type of global geospatial operation. Hundreds of
tree indices have been proposed over the past few decades (Gaede and Gunther 1998, Samet
2005) and some of them have been efficiently implemented on CPUs.

The volume of raster geospatial data are increasing quickly. For example, the next
generation geostationary weather satellite GOES-R serials3 will improve the current generation
weather satellite by 3, 4 and 5 times with respect to spectral, spatial and temporal resolutions
(Schmit et al. 2009). With a temporal resolution of 5 minutes, GOES-R will generate 288 global
coverages everyday for each of its 16 bands. At a spatial resolution of 2 km, each coverage and
band combination has 360*60 cells in width and 180*60 cells in height, i.e., nearly a quarter of a
billion cells. Such data volume growths are well above the computing power growth rate of
uniprocessors. While Moore’s law predicts that CPU computing power doubles every 18 months
which has been true for more than 16 years before 2002, the growth rate of uniprocessors have
dropped to about 20% per year from 2002 to 2006 and even lower in recent years (Hennessy and
Patterson 2011). As such, it is natural to seek alternative parallel solutions to provide sufficient
computing power to facilitate better understanding of the environments and their human impacts,
including GPGPU technologies. Unfortunately, the current generation of GPGPUs have quite
different hardware features than CPUs and it is nontrivial to port such algorithms from CPUs to
GPUs. Despite the great potentials on using massively data parallel GPGPU technologies for
geospatial computing, the performance of GPGPU-based parallel spatial indexing, including
quadtrees for raster data, largely remains unknown to the geospatial computing community.

The work presented in this paper is a re-design and re-implementation of the Binned Min-
Max Quadtree (BMMQ-Tree) construction algorithm for large-scale raster geospatial data that
have been proposed previously (Zhang and You 2010a, Zhang et al. 2010). We show that by
transforming a multi-dimensional geospatial computing problem into chaining a set of generic
parallel primitives that are designed for one dimensional arrays (Section 2.2), we are able to
reduce coding complexity and improve code efficiency at the same time. We believe that the new
approach on parallel primitives based high-performance geospatial computing on GPGPUs can
be interesting to geospatial computing researchers and developers who are seeking the parallel
computing power of new hardware architectures but do not wish to be overwhelmed by hardware
or programming model details. We hope the approach introduced in this paper can lower the
barriers of applying GPGPU computing to efficiently solve practical geospatial problems and the
example study reported in this paper can motivate similar research efforts. By generalizing the
common patterns of applying generic parallel primitives in geospatial computing, more efficient
geospatial-specific parallel primitives can be further developed. The rest of the paper is
organized as the following. Section 2 introduces background and related work. Section 3
provides the design of the tree construction algorithm after reviewing the data layout of BMMQ-
Trees. Section 4 presents the implementation details of BMMQ-Tree constructions on GPGPUs
using parallel primitives. Section 5 reports experiment results and provides comparisons with
alternative implementations. Finally Section 6 is the conclusion and future work directions.

3 http://www.goes-r.gov/

Published at http://www.tandfonline.com/doi/abs/10.1080/13658816.2013.828840

2 Background and Related Works

2.1 GPGPU Computing and CUDA Programming Model
A Graphics Processing Unit (GPU) is a hardware device that is originally designed to

work with a CPU to accelerate rendering of 3D or 2D graphics. The highly parallel structures of
modern GPU devices, such as AMD/ATI Radeon4 and Nvidia GeForce/Quadro series5, make
them more effective than general-purpose CPUs for a range of complex graphics-related
algorithms. The concept of General Purpose computing on GPU (GPGPU) turns the massive
floating-point computational power of a modern graphics accelerator's graphics-specific pipeline
into general-purpose computing power. GPGPU computing technologies provide a cost effective
alternative to cluster computing and have gained considerable interest in many research and
application domains in the past few years (Hwu 2011a, Hwu 2011b). According to the Nvidia
website, when compared with the latest quad-core CPU, Tesla 20-series GPU computing
processors deliver equivalent performance at 1/20th of power consumption and 1/10th of cost6.
As many reasonably current desktop computers have already been equipped with GPGPU
enabled graphics cards, GPGPU based geospatial data processing can improve system
performance significantly without additional costs. According to Garland and Kirk (2010),
NVIDIA alone has shipped almost 220 million GPGPU-enabled devices from 2006 to 2010.
Despite the differences among the GPGPU enabled devices and development platforms, a
GPGPU device can be viewed as a parallel Single Instruction Multiple Data (SIMD)7 machine.
Major GPU hardware vendors have released Software Development Kits (SDKs) to facilitate
application development using high-level programming languages. Among them, the Compute
Unified Device Architecture (CUDA)8 from Nvidia is arguably the most popular one which can
be viewed as a C/C++ extension. The Accelerated Parallel Processing (APP) technology from
AMD9 is based on OpenCL10 which is an open standard and is closely related to CUDA. We
next briefly introduce the Nvidia GPU architecture and its parallel programming abstraction
based on CUDA.

While different models of Nvidia GPU devices have different architectures, CUDA-
enabled GPU devices are organized into a set of Stream Multiprocessors (SMs). Each SM has a
certain number (e.g., 32) of computing cores. All the cores in a SM share a certain amount (e.g.,
16k or 48k) of fast memory called shared memory and all the SMs have access to a large pool of
global memory (e.g., 512MB or 4GB) on the device. According to CUDA, developers write
special C-like code segments called kernels. The kernels are invoked by the companioning CPU
code to run on GPU devices. CUDA based GPGPU programming makes it easier for task and
data decomposition and subsequent parallel computing. Basically a developer specifies the sizes
of the layout of the data to be processed in the units of data blocks and the number of threads to
be launched inside a data block. The GPU hardware is responsible for mapping the data blocks to
the SMs through space and time multiplexing which is transparent to developers/users. Since
each SM has limited hardware resources, such as the number of registers, shared memory and
thread scheduling slots, a SM can accommodate only a certain number of blocks subjected to the

4 http://en.wikipedia.org/wiki/Radeon
5 http://developer.nvidia.com/cuda-gpus
6 http://www.nvidia.com/object/io_1227008280995.html
7 http://en.wikipedia.org/wiki/SIMD
8 http://www.nvidia.com/object/cuda_home_new.html
9 http://developer.amd.com/sdks/AMDAPPSDK/
10 http://www.khronos.org/opencl/

Published at http://www.tandfonline.com/doi/abs/10.1080/13658816.2013.828840

combination of the constraints. Carefully selecting block sizes allows a SM to accommodate
more blocks simultaneously and, subsequently, improve parallel throughputs. While CUDA is
designed to make parallel programming on Nvidia GPUs easier, due to the complexity of the
massively data parallel hardware architectures, the learning curve of efficient CUDA
programming can be steep. The Thrust library11 that has been shipped with the latest CUDA
SDK is designed to balance between easiness to use and code efficiency by providing a set of
high-level APIs known as parallel primitives to be detailed next.

2.2 Parallel Primitives in the Thrust Library
Parallel primitives refer to a collection of fundamental algorithms that can be run on

parallel machines. The behaviors of popular parallel primitives on one dimensional (1D) arrays
or vectors are well-understood. We have opted to use 1D arrays in the context of geospatial
computing to avoid confusing with vector geospatial data types. Unless explicitly stated, we use
“arrays” to refer to “1D arrays”. Parallel primitives usually are implemented on top of native
parallel programming languages (such as CUDA) but provide a set of simple yet powerful
interfaces (or APIs) to end users. Technical details are hidden from end users and many
parameters that are required by native programming languages are fine-tuned for typical
applications in parallel libraries so that users do not need to specify such parameters explicitly.
On the other hand, such APIs usually use template or generic based programming12 techniques in
a way similar to the well known Standard Template Library (STL)13 so that the same set of APIs
can be used for many data types. Due to the nature of high-level abstractions, the APIs may not
be the most efficient ones when compared with handwritten programs using native programming
languages with fine-tuned parameters. However, the APIs usually provide good tradeoffs
between coding complexity and code efficiency. Indeed, most of the parallel primitives in the
Thrust library are very similar to their STL counterparts and are very appealing to experienced
STL users. The high level abstractions also bring signficant portability. In fact, while originally
designed for CUDA-enabled GPUs, the latest Thrust library can also run on multi-core CPUs.
This unique feature further makes parallel primitives based algorithm developments attractive
when compared with using CUDA directly. While it is beyond the scope of this paper to provide
a full introduction to parallel primitives and their implementations in the Thrust library (of which
we refer to Bell and Hoberock 2011 and Thrust website), we next briefly introduce a few popular
parallel primitives (McCool et al. 2012) that we will use in our quadtree construction design.

 (1) Scan. The Scan primitive computes the cumulative sum of an array. Both the
inclusive and exclusive scans are possible. For example, exclusive_scan([3,2,0,1])�([0,3,5,5])
while inclusive_scan ([3,2,0,1])�([3,5,5,6]). The Scan primitive can also take a user defined
associative binary function to replace the default plus/sum binary function. To better illustrate
the concept of the scan parallel primitive, a CUDA implementation of the scan primitive using
four threads are provided in Fig. 1. In general, to scan 2n data items, 2n+1 intermediate storage
units are required. After the initialization step, the n data items are copied to the right half of the
storage array while the first half of the storage array is cleared up. In step i of the process, data
items that are 2i elements away are added up in parallel and the whole scan process completes in
n+1 steps.

11 http://thrust.github.com/
12 http://en.wikipedia.org/wiki/Generic_programming
13 http://www.sgi.com/tech/stl/

Published at http://www.tandfonline.com/doi/abs/10.1080/13658816.2013.828840

Fig. 1 Illustration of Scan Implementation Using Four Threads in CUDA

(2) Copy, copy_if, remove and remove_if. Copy moves groups of elements from one
location to another location, typically in two different arrays. The Copy_if primitive takes an
additional unary function as a parameter to tell whether the corresponding array element should
be copied to the output array or not. Similarly remove and remove_if remove groups of elements
within an array with or without an optional binary predict function. Remove and remove_if are
typically applied in-place which means that the input arrays can be the same as output arrays to
save memory. Note that compacted arrays after applying Remove and remove_if primitives can
be resized to reduce memory footprints.

(3) Transform. The basic form of Transform applies a unary function to each element of
an input array and stores the result in the corresponding position in an output array. Transform is
more general than Copy as it allows a user defined operation to be applied to array elements
rather than simply copying. Thrust has also provide several variants of the Transform primitive
to allow transform two arrays based on a binary function and/or using a separate stencil array to
evaluate the criteria for transformation.

(4) Scatter. Scatter copies elements from a source range of an input array into an output
array according to a map. For example, Scatter([3,0,2],[12,4,8],[*,*,*,*,*,*])�([4,*,8,*,12,*]).
Note * values are those unchanged in the third array. Clearly when there is a one-to-one map
between the inputs and outputs such as the Z-order transformation in our application, the output
array will have no * values.

The alert readers many have observed that these parallel primitives work on flat 1D

arrays only and we term them as generic primitives. From a geospatial computing perspective,
this is indeed insufficient to process geospatial data which is usually multi-dimensional.
However, as we shall show in Section 4, we can use these flat 1D arrays based generic parallel
primitives as the building blocks to construct parallel geospatial processing modules. We note
that the current generation of GPGPU devices work best with flat 1D arrays in many cases. The
transformation between multi-dimensional geospatial data and flat 1D arrays can potentially help
identifying parallelisms in geospatial computing and facilitate designing more efficient,
geospatial-specific data structures and algorithms on GPGPUs for geospatial computing which is
the key component in this paper.

0 0 0 0 3 2 0 1

__device__ inline ushort scan4(ushort num)
{
 __shared__ ushort ptr[2*Tn];
 ushort val=num;
 uint idx = threadIdx.x;
 ptr[idx] = 0;
 idx += Tn;
 ptr[idx] =num;
 __syncthreads();
 val += ptr[idx - 1]; __syncthreads(); ptr[idx] = val; __syncthreads();
 val += ptr[idx - 2]; __syncthreads(); ptr[idx] = val; __syncthreads();
 val += ptr[idx - 4]; __syncthreads(); ptr[idx] = val; __syncthreads();
 …
 val = ptr[idx - 1];
 return val;
}

3 2 0 1

0 0 0 0 3 5 2 1

0 0 0 0 3 5 5 6

0 0 0 0 3 5 5 6

Step 0

Step 1

Step 2

Step 3

Published at http://www.tandfonline.com/doi/abs/10.1080/13658816.2013.828840

2.3 Parallel Processing of Geospatial Data
Parallel processing of geospatial data is not a completely new concept. Quite a few works

on parallel spatial data structures (Kamel and Faloutsos 1992, Ali et al. 2005), spatial join (Zhou
et al. 1998, Patel and DeWitt 2000), spatial clustering (Xu 1999), spatial statistics (Armstrong et
al. 1994, Wang and Armstrong 2003) and polygonization (Hoel 2003, Mineter 2003) have been
reported. However, as discussed in (Clematis et al. 2003), research on parallel (and distributed)
processing of geospatial data prior to 2003 has very little impact on mainstream geospatial data
processing applications, possibly due to the accessibility of hardware and infrastructures in the
past. The situation has been significantly changed over the past few years due to the wide
availability of grid (Wang and Liu 2009) and cloud computing (Yang et al. 2011) resources and
the maturity of GPGPU technologies (Zhang 2010). Work reported in (Wang et al. 2008) has
demonstrated significant speedups by using grid computing for spatial statistics. Parallel
computing on LIDAR data using cluster computers (Han et al. 2009) is getting increasingly
popular due to its computation intensive nature. The development of a general-purpose parallel
raster processing programming library on top of the MPI (Message Passing Interface14) parallel
communication protocol is reported in (Guan 2010) and a test application using a geographical
cellular automata model has achieved a speedup of 24 using a 32-node cluster computer. We also
refer to (Yang et al. 2010) for a review on environmental modeling on cluster computers in a
cyberinfrastructure environment. Recently, there are considerable research interest in geospatial
data processing using the MapReduce parallel computing framework (Dean and Ghemawat
2010) and the open source Hadoop implementation15 on cluster computers, such as R-Tree
construction on point data and image tile quality computation (Cary et al. 2009), spatial join
(Zhang et al. 2009b), geostatistics (Liu et al. 2010) and nearest neighbor queries on voronoi
diagrams (Akdogan et al. 2010). Similar to MapReduce/Hadoop applications, there are also quite
a few recent works on GPGPU applications to geospatial computing, including environmental
modeling (Molna et al. 2010), flow accumulation (Ortega and Rueda 2010), drainage network
computation (Qin and Zhan et al. 2012), LIDAR data reduction (Oryspayev 2012) and raster
analysis (Steinbach and Hemmerling 2012). Most of these works are related to local or focal
geospatial operations which are relatively straightforward to parallelize on GPGPUs. In addition,
it seems that these works (except Molna et al. 2010) have focused on utilizing GPGPU’s large
number of threads to speed up computation but have not used GPGPU’s high memory bandwidth
and/or fast shared memory to speed up data accesses yet. As such, there are signficant potentials
to improve the efficiencies of the respective implementation although it is nontrivial to
understand data access patterns and make full use of GPGPU hardware capabilities. GPGPU
technologies have also been applied for coding raster bitplane bitmaps (Zhang et al. 2011),
polygon rasterization (Zhang 2011) and vector data indexing using R-Tree (Luo et al. 2011)
where zonal and global geospatial operations are involved and more sophisticated parallelization
schemes have been designed to optimize performance.

2.4 Indexing Raster Geospatial Data
There are relative fewer works on indexing raster geospatial data when compared with

indexing vector geospatial data. Interval trees (Cignoni et al. 1997), octrees (Wilhelms and
Vangelder 1992, Wang and Chiang 2009) and KD-trees (Gress and Klein 2004) have been
extensively used in 3D computer graphics such as iso-surface rendering and ray-tracing.

14 http://en.wikipedia.org/wiki/Message_Passing_Interface
15 http://hadoop.apache.org/

Published at http://www.tandfonline.com/doi/abs/10.1080/13658816.2013.828840

Quadtrees have been proposed to compress binary and gray scale 2D rasters (Samet 1985, Lin
1997, Chan and Chang 2004, Chung et al. 2006). However, we note that data structures and
algorithms designed for graphics rendering and image compression are not necessarily suitable
for database query processing. Pyramid and tiling techniques have also been used to speed up
image display but usually they do not allow queries on the underlying raster data. Oracle
GeoRaster16 allows storing the bounding boxes and derived attributes of tile images as vector
geospatial data, which subsequently can be indexed and queried so that only selected tile images
need to be retrieved for display. A few of existing works have addressed the issue of managing a
set of similar/related rasters for efficient query processing based on the concept of overlapping
quadtrees (Tzouramanis et al. 1998, Manolopoulos et al. 2001, Manouvrier et al. 2002). All the
above indices construction algorithms are serial. It is desirable to investigate how modern GPU
hardware devices and GPGPU parallel computing technologies can be effectively used to index
large-scale raster geospatial data to support efficient queries. Unfortunately, as GPGPU are
relatively new technologies to the spatial data management community, the performance is
largely unknown.

Techniques such as linear quadtrees (Samet 1984) have been developed to externalize
main-memory based quadtrees and make them disk-resident. Linear quadtrees can be used to
support certain types of queries on top of B+-Tree (Tzouramanis et al. 1998, Aboulnaga and Aref
2001, Manolopoulos et al. 2001). A recent work on managing large-scale species distribution
data (Zhang et al. 2009a) associates a set of species identifiers with linear quadtree nodes and
uses the PostgreSQL LTREE module17 to perform window queries by coordinating both the
query client and the database server. A main-memory implementation has improved query
performance by 2-3 orders as reported in (Zhang 2012, also see online demo at18). A Binned
Min-Max Quadtree (BMMQ-Tree) data structure that associates min/max statistics of raster cells
of a quadrant to the corresponding quadtree node to speed up processing of certain types of
queries in a Web environment has been developed (Zhang and You 2010a). BMMQ-Tree is a
CPU main-memory indexing structure constructed through a recursive procedure based on the
classic Depth First Search (DFS) traversal schema. More recently, the BMMQ-Tree construction
algorithm has been implemented on Nvidia GPUs using CUDA directly (Zhang et al. 2010).
Unfortunately, the implementation was heavily influenced by its corresponding serial algorithm
and the implementation did not fit GPU hardware architecture and GPGPU parallel programming
model very well. As a result, as shown in the experiment section, while the implementation was
significantly better than the serial CPU implementation (Zhang et al 2010), our new design and
implementation is able to achieve another 11X speedup which brings a total speedup of 90X
when compared with a new optimized serial CPU implementation. We next introduce the
BMMQ-Tree indexing structure and its high level design before we present our parallel
primitives based implementation in Section 4.

3 BMMQ-Tree: Data Layout and Parallel Construction Design
The Binned Min-Max Quadtree (BMMQ-Tree) (Zhang and You 2010a, Zhang et al.

2010) can be considered as a special type of quadtree where statistics (minimum and maximum
values in this case) are associated with quadtree nodes and the raster cell values are binned to
enhance spatial homogeneity and reduce tree complexity. The BMMQ-Tree node layout in the
original CPU-based design has been adapted to GPGPUs by replacing four pointers to four child

16 http://docs.oracle.com/html/B10827_01/geor_intro.htm
17 http://www.postgresql.org/docs/9.1/static/ltree.html
18 http://geoteci.engr.ccny.cuny.edu/geoteci/SPTestMap.html

Published at http://www.tandfonline.com/doi/abs/10.1080/13658816.2013.828840

nodes with an array index position to point to the first child node. The layout of the BMMQ-Tree
data structure is illustrated in Fig. 2 based on (Zhang et al. 2010). A BMMQ-Tree node has a
data field and a position field. The data field, while only the minimum (minB) and maximum
(maxB) values of the raster cells under the node is currently recorded for a BMMQ-Tree, in
principle, can store any statistical values, such as mean and deviation. The position field (fc_pos)
stores the starting position of the first child node in the data stream that holds all the tree nodes
linearly based on a Breadth First Search (BFS) tree traversal. For the example shown in Fig. 2,
the minB and maxB values of the root node are 0 and 4 and the first child node position is 1
which indicates that the four children of the root node can be located in the data stream at the
positions 1, 2, 3 and 4, respectively. This has been illustrated in the lower part of Fig. 2. As
discussed in (Zhang et al. 2010), the BMMQ-Tree structure is cache conscious since sibling
nodes are consecutive in the data stream and they are likely to be fetched together into hardware
cache lines. The quadtree data structure also has a small memory footprint as only the position of
the first child node, instead of the four pointers to all child nodes, is stored. More importantly,
the quadtree data structure is GPU-friendly as the data stream of quadtree nodes can be easily
held in a 1D array and transferred back and forth between CPU and GPU memories (as well as
between disks and CPU memories) without serialization.

Fig. 2 A BMMQ-Tree Example Illustrating Data Layout (Zhang et al 2010)

(0,4)(1)

(0,0)(0,-1)
(0,3)(5) (0,2)(9) (2,4)(13)

(0,0)
(-1)

(1,1)
(-1)

(3,3)
(-1)

(0,1)
(17)

(0,0)
(-1)

(1,1)
(-1)

(1,2)
(21)

(2,2)
(-1)

(2,2)
(-1)

(3,3)
(-1)

(4,4)
(-1)

(3,3)
(-1)

0 1 5

Node layout:
(minB: 16bits;maxB: 16bits) (fc_pos: 32bits)

9 13 17 21

34 35 36 35 34 32 49 50

33 32 33 35 35 33 48 51

36 35 34 36 42 43 47 46

34 36 34 35 48 49 48 47

34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34

34 35 36 38 48 51 53 90

33 36 42 44 49 50 80 91

39 44 76 80 88 90 100 109

38 43 77 79 89 91 107 104

34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 36

34 0 0 0 0 0 2 2

0 0 0 0 0 0 2 2
0 0 0 0 1 1 2 1

0 0 0 0 1 1 2 2

34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 0

34 0 0 1 2 2 3 3

0 0 1 1 2 2 3 3

1 1 3 3 3 3 4 4

1 1 3 3 3 3 4 4

34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 0

0 [32-37) 25
1 [37,47) 12
2 [47,52) 11
3 [52,92) 12
4 [92- 4

Binning

Published at http://www.tandfonline.com/doi/abs/10.1080/13658816.2013.828840

Once a BMMQ-Tree is constructed, it can be used to support quite a few types of
geospatial queries, such as spatial range queries and Region-of-Interest (ROI) type of queries, for
large-scale raster geospatial data. A spatial range query (or window query) returns all spatial
objects (including quadrants) that fall within a spatial query window. The properties or the
values of the spatial objects then can be retrieved based on the object identifiers. The ROI-type
query returns all spatial objects (including quadrants) that satisfy one or more value range
criteria, e.g., temperature between [t1,t2) and precipitation between [p1,p2). More generally,
given a set of rasters representing environmental variables {Fi|0<i<n} over a spatial domain D
whose value ranges are {Vi

h} and {V i
L}, respectively, a ROI-type query Q identifies regions in D

whose cells Cj satisfy the compound condition

)V ,[VV op ... op)V ,[VV op)V ,[VV|{C
HL

kkj

H

2

L

22j

H

1

L

11jj
Q

k
QQQQQ ∈∈∈ where op can be

either conjunctive and disjunctive and 0<=k<n.
L

iV Q and
H

iV Q represent the lower and high
bounds of query Q for variable i (Zhang and You 2010a). It can be seen that a spatial range query
maps spatial objects to values while a ROI-type query maps values to spatial objects and they are
complementary to each other. Cascading these two types of queries on multiple rasters allows
users to identify interesting patterns, such as patterns related to the spatial distributions of
geospatial phenomena with certain value thresholds, e.g., storms with precipitation greater than
10mm), and, potential casual relations between multiple rasters through co-location analysis e.g.,
biodiversity decrease and deforestation/climate changes across the globe (Zhang and You
2010a). A Web-based system has been developed to demonstrate the ROI-type query using the
BMMQ-Tree indexing (for single raster only) and can be accessed online19. More details on
system development are reported in (Zhang and You 2010b).

The high-level design of the parallel construction of a BMMQ-Tree is similar to that has
been proposed in (Zhang et al. 2010a) with one key difference. For the sake of clarity, we will
introduce the overall design before we discuss the new improvement. There are four steps in the
high-level design. The first step transforms a row-major ordered input raster grid (2D array) into
a Z-ordered (Morton 1966) 1D array after binning each grid cell in the 2D array. In the second
step, for every four consecutive Z-ordered raster cells, an entry is created by recording the
minimum and maximum values of the raster cells (i.e., minB and maxB in Fig. 2). Clearly the
resulting entries stored in an array (hereafter referred as the min-max table) also follow Z-order.
The third step is to derive higher levels of min-max tables from lower level ones by following
the similar procedure in Step 2. Conceptually all the min-max tables at all levels form a pyramid.
They can be concatenated into an array from top level to the bottom level with elements at each
level follow the Z-order for easy data manipulations. Similarly the numbers of child nodes in the
corresponding raster quadrants can also be counted and concatenated as a single array during the
two steps where 0 indicates a uniformly distributed quadrant (no child nodes) and 4 otherwise.
The fourth step actually calculates the positions of the first child nodes (fc_pos) and assembles
minB, maxB and fc_pos values into the corresponding quadtree nodes. Finally the quadtree nodes
are pruned and connected through fc_pos values, which are functionally equivalent to pointers in
tree structures on CPU, to complete the construction of a BMMQ-Tree.

While Steps 1-3 are relatively straightforward with the help of the illustrative example in
Fig. 3, Step 4 needs more detailed explanation and it is divided into two sub-steps (4.1 and 4.2)
as illustrated in Fig. 4 for this purpose. Step 4.1 takes the numbers of child nodes for all
quadrants at all levels as the input array (NumChildren) and apply an exclusive scan parallel
primitive (c.f. Section 2.2) to compute the positions of the first child nodes of the respective

19 http://geoteci.engr.ccny.cuny.edu/rasterexplorer/comgeotiling/TestOverlay.html

Published at http://www.tandfonline.com/doi/abs/10.1080/13658816.2013.828840

quadrants (stored in FC_Pos array). The first child position of the root node (at the position 0) is
always 1. As such, the scan should start at the second element of the input array and takes 1 as
the initial value. The computed positions (FC_Pos array) and the min-max values (MinmaxTable
array) are assembled to generate the intermediate quadtree nodes (QuadTree array) by using the
NumChildren vector as a stencil to determine how to modify the fc_pos values. The rule is that if
the element value in the NumChildren array is 0, then the corresponding fc_pos value of the
quadtree node in the QuadTree array will be set to -1 to indicate that the quadrant that the
quadtree node represents is uniform and no subdivision is needed. In this case, no children nodes
exist for the node. In step 4.2, the following approach is used to prune quadtree nodes that
represent uniformly distributed quadrants. For each quadtree node (except the root node), in
parallel, we extract the number of children nodes of its parent node in the NumChildren array.
For the ith quadtree node, the position of its parent node in the NumChildren array can be simply
calculated as (i-1)/4 as the intermediate quadtree node array is a full quadtree (pyramid). If both
the parent node and the node being examined itself have 0 children, then the node being
examined should be pruned. This is because the quadrant that the node being examined
represents is part of a larger uniformly distributed quadrant that the parent node represents. We
note that if the parent node has 0 children then the node being examined must also have 0
children based on the procedures described in Steps 2 and 3. On the other hand, when the parent
node has four children but the node being examined is a leaf quadtree node, i.e., the
corresponding value in the NumChildren is 0, the node being examined should not be pruned.

Fig. 3 Illustration of the First Three Steps in BMMQ-Tree Construction

The correctness of the new BMMQ-Tree construction approach can be verified by
examining the parent-child relationships of the quadrants in the example dataset in Fig. 4 and the
values of the fc_pos field of the quadtree nodes in the QuadTree array. For example, the value of
the fc_pos field of the root node is 1 which indicates that the first child node of the root node
should be the 1st element in the QuadTree array, which is true. As another example, fc_pos of the
4th quadtree node in the QuadTree array (base 0) is 13 and it is easy to verify that the 13th
quadtree node in the QuadTree array is indeed the first child node of the 4th quadtree node in the
array. We note that for the two elements in the QuadTree array that are bolded (the 7th and the
12th element, respectively), they represent the 3rd level quadrants and correspond to the non-
shaded quadrants illustrated in the bottom part of Fig. 4. Clearly the 17th-20th elements in the
array are the child nodes of the 7th element and the 21st-24th elements are the child nodes of the
12th element, respectively. The data layouts of the 17th-24th elements are not shown in Fig. 4 due

34 0 0 0 0 0 2 2
0 0 0 0 0 0 2 2
0 0 0 0 1 1 2 1
0 0 0 0 1 1 2 2

34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 0

34 0 0 1 2 2 3 3
0 0 1 1 2 2 3 3
1 1 3 3 3 3 4 4
1 1 3 3 3 3 4 4

34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 0

34 0 0 0 0 0 0 0 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 0 34 0 0 0 0 0 0 0 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 0

34 0 0 0 1 1 1 1 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 0 34 1 1 1 3 3 3 3 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 0

34 0 0 0 2 2 2 2 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 0 34 1 1 1 2 2 1 2 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 1

34 2 2 2 3 3 3 3 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 2 34 3 3 3 4 4 4 4 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 3

0,0 0,0 0,0 0,0

0,0 1,1 0,1 3,3

0,0 2,2 1,1 1,2

2,2 3,3 3,3 4,4

0,0 0,3 0,2 2,4

0,4
34 0 0 0 0 0 4 0 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 0 34 0 0 4 0 0 0 4 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 0 34 4 4 4 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 0 4 1

1 2

3
2 3

Published at http://www.tandfonline.com/doi/abs/10.1080/13658816.2013.828840

to space limit. We also would like to draw attention on how the four uniformly distributed
quadrants in the shaded rectangle (with relevant values in the MinmaxTable, NumChildren and
FC_Pos arrays) at the top part of Fig. 4 are consolidated into one quadtree node which is the first
element (base 0) in the QuadTree array. After the NumChildren array is derived in Steps 2 and 3,
the values of the relevant elements at L2 (Level 2) and L3 (Level 3) are all 0s and they do not
contribute to computing fc_pos values of the FC_Pos array. During the quadtree node pruning
process, except for the highest level node (L2) which is kept as a leaf node, all the nodes below
L2 that have 0 child nodes are pruned. As we can see from the example, by keeping the
correspondences among the numbers of child nodes, the positions of the first child node and the
positions of the quadtree nodes, the parent-(first) child relationship is correctly maintained in the
resulting quadtree node array. While the design can be implemented on both serial and parallel
machines, it is particularly suitable for parallel implementation using parallel primitives as all the
required operations are on 1D arrays and no inter-elements communication are needed.

Fig. 4 Illustration of Last Step in BMMQ-Tree Construction

A key difference between the proposed design in this paper and the design reported in

(Zhang et al 2010) is that, rather than accessing grid cell values along both row and column
dimensions simultaneously as in (Zhang et al 2010), a Z-order transformation is applied right
after the binning step and before all the rest of the steps. After the Z-order transformation, the 2D
geospatial computing problem is converted into a 1D data processing problem with geospatial
semantics embedded. The converted problem is suitable to be solved by chaining a set of parallel
primitives that are well understood and efficiently implemented in quite a few parallel libraries.
As shown in Section 5, a higher speedup can be achieved by using the optimized
implementations of the parallel primitives without requiring deep knowledge of GPU hardware
details and outstanding parallel programming skills. Despite the fact that it is still non-trivial to

4 34 4 4 4 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 0 34 0 0 0 0 0 4 0 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 0 34 0 0 4 0 0 0 0 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 0

1 34 5 9 13 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 5 34 17 17 17 17 17 17 21 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 17 34 21 21 21 25 25 25 25 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 21

0,4 0,0 0,3 0,2 0,2 0,0 0,0 0,0 0,0 0,0 2,2 1,1 1,2 2,2 3,3 3,3 4,4 0,0 1,1 0,1 3,3

1

0,4,1 0,0,-1 0,3,5 0,2,9 0,2, 13 0,0,-1 1,1,-1 0,1,17 3,3,-1 0,0,-1 2,2,-1 1,1,-1 1,2,21 0,0,-1 2,2,-1 3,3,-1 4,4,-1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

4.1

4.2

34 0 0 0 0 0 2 2

0 0 0 0 0 0 2 2

0 0 0 0 1 1 2 1
0 0 0 0 1 1 2 2

34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 0

34 0 0 1 2 2 3 3

0 0 1 1 2 2 3 3

1 1 3 3 3 3 4 4

1 1 3 3 3 3 4 4

34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 0

MinmaxTable

NumChildren

FC_Pos

QuadTree

L1 L2
L3

Published at http://www.tandfonline.com/doi/abs/10.1080/13658816.2013.828840

implement the conceptual design using existing parallel primitives, based on our experiences, the
technical barriers are significantly lowered.

Fig. 5 BMMQ Tree Construction Procedure and Key Data Structures

With respect to the time complexity of the proposed BMMQ-tree construction approach,

as all steps are linear with respect to the number of grid cells (assuming n) in the relevant arrays,
the overall time complexity is thus O(n). For rasters that have a same dimension, the runtimes are
largely input independent on a same hardware configuration. The major workloads to construct
the min/max table, computing first child node positions and assembling quadtree nodes remain
the same for any input rasters that have a same raster grid dimension. The differences for the
pruning step are relatively insignificant. In other words, the performance of the design and
implementation is largely data independent, a feature that is desirable in many practical
applications.

4 Constructing BMMQ-Trees Using Parallel Primitives
The definitions of major data structures and the overall procedure of the implementation

are listed in Fig. 5. The data structures are straightforward translations of the conceptual design
in Fig. 2. For the tree construction procedure, roughly speaking, Steps 1-3 in Fig. 5 correspond to
Steps 1-3 in the conceptual design (Fig. 3). Similarly Steps 4, 5 and 6 in Fig. 5 correspond to
Step 4.1 in Fig. 4, and, Steps 7 in Fig. 5 corresponds to Step 4.2 in Fig. 4, respectively. All the
eight steps (including Step 0 for binning) listed in Fig. 5 can be implemented by a call to a

Step 0: Bin the raw grid cell values in r_data using transform and store the results as b_data .
Step 1: Convert b_data from row-major order to Z-order using scatter and store the results in d_data
Step 2: Extract the min/max values and number of child quadrant from d_data using transform and store
the results in minmax_table and NumChildren starting at position l_p=(pow(4.0, M-1)-1)/3. Note that 4M-1
min-max pairs are generated out of the 4M grid cells at the level M-1.
Step 3: For k from M-2 down to 0 (inclusive)

3.1 Calculate the starting position and size of the level k min-max table: k_p=pow((4.0, k)-1)/3 and
k_s=pow(4.0,k)
3.2 Extract min/max values and number of child quadrants from minmax_table using transform
and store the results in minmax_table and NumChildren starting at position k_p. Note that k_s min-
max pairs at the level k are generated from 4*k_s min-max pairs at the level k+1.

Step 4: Extract the numbers of child quadrants from minmax_table using transform and store it in
NumChildren.
Step 5: Exclusive scan on NumChildren with initial value of 1 and store the results in FC_Pos.
Step 6: Assemble minmax_table, NumChildren and FC_Pos into QuadTree by using transform and store
the results in QuadTree. The fc_pos field is set to -1 if the corresponding value in NumChildren is 0.
Step 7 Prune QuadTree using remove_if by setting the pruning criteria to that both the node being
examined and its parent node should have 0 child nodes.

template <typename T>
struct minmax_pair
{
 T min_val;
 T max_val;
 uchar num_children;
};

template <typename T>
struct quad_node
{
 T min_val,max_val;
 int fc_pos;
};

XTOT=4096, YTOT=4096, M=12
blen=pow(4.0f,M)-1)/3)
1) thrust::device_vector<uchar> d_data;
2) device_vector<minmax_pair<uchar> >
minmax_table (blen);
3) device_vector<quad_node<uchar> >
quadtree(blen);

Published at http://www.tandfonline.com/doi/abs/10.1080/13658816.2013.828840

parallel primitive including transform, scatter, exclusive_scan and remove_if introduced in
Section 2.2.

From Fig. 5 we can see that the implementation and the conceptual design match each
other very well except that a single step in the conceptual design may require multiple primitives.
The overall procedure is pretty straightforward, especially for those who have Thrust and/or STL
programming experiences. In general, we consider using parallel primitives (instead of native
programming languages) allow us to focus more on high-level designs (e.g., transforming multi-
dimensional geospatial computing problems into one-dimensional ones) rather than being buried
in details of hardware architectures and programming models. The tradeoffs between coding
complexity and code efficiency (Bell and Hoberock 2011) will be further discussed.

Although the implementation is based on the parallel primitives provided by the Thrust
library that comes with CUDA SDKs, we believe it is portable to other parallel libraries on both
GPUs and multicore CPUs which is left for our future work. While it is beyond the scope of this
paper to go through the details of all the parallel primitive invocations in the implementation, we
would like to take a few steps as examples to illustrate how the quadtree construction is being
implemented using GPU parallel primitives. We also refer to the companying source code
package 20 for the details on the rest of the steps in the implementation, including both invocation
syntax and the associated functors (C++ function objects).

Fig. 6 Code Segment to Illustrate the Binning and Z-order Based Transformation Steps

20 http://geoteci.engr.ccny.cuny.edu/primquad/primquad.htm

//assuming that the original data are stored in r_data in row-major order
//step 0: binning
thrust::device_vector<uchar> b_data(XTOT*YTOT);
thrust::transform(r_data.begin(),r_data.end(),b_data.begin(),binning<uchar>());

//step 1: z-order transformation
thrust::counting_iterator<size_t> indices(0);
thrust::device_vector<uchar> d_data(XTOT*YTOT);
thrust::scatter(

b_data.begin(),b_data.end(),
 thrust::make_transform_iterator(indices, zorder_index()),

d_data.begin()
);

struct zorder_index : public
thrust::unary_function<size_t,size_t>
{
 __host__ __device__
 size_t operator()(size_t index)
 {
 ushort i = index * XTOT;
 size_t j = index / YTOT;
 return z_order(i,j);
 }

#define XTOT 4096
#define YTOT 4096

template <typename T>
struct binning : public thrust::unary_function<ushort,T>
{
 __host__ __device__
 T operator()(ushort x)
 {
 if(x<4) return 1; if(x<11) return 2;
 if(x<18) return 3; if(x<27) return 4;
 if(x<40) return 5; if(x<77) return 6;
 if(x<190) return 7; if(x<1004) return 8;
 else return 9;
 }
};

Published at http://www.tandfonline.com/doi/abs/10.1080/13658816.2013.828840

The syntax of invoking the transform and the scatter primitives and the implementations
of the binning and the Z-order transformation functors for Step 1 and Step 2 are illustrated in Fig.
6. We can see that, invoking parallel primitives on GPUs is very similar to calling STL functions
which can significantly flatten the learning curve of GPU programming. We also note that
iterators and functors are extensively used in the primitives. The transform and the scatter
primitives that are used in these two steps apply the respective functor (binning and
zorder_index) to each element in the input array(s) to produce output arrays, in parallel. In
general, the generic parallel primitives that are designed for 1D arrays have excellent scalability
and can be realized in multiple parallel hardware architectures, including GPUs. By separating
application logic (which is implemented in the binning and zorder_index functors in the
examples) and hardware specific parallel invocations (CUDA kernels to implement the generic
parallel primitives), a high level abstraction can be achieved which facilitates productivity of
development and portability among different hardware platforms significantly. The binning
functor takes a 16-bit grid cell value as the input from the r_data array and generates an 8-bit bin
value to output to the b_data array. Each processing unit (e.g. a thread) invokes the binning
functor independently without communicating with other processing units which is a
fundamental requirement of using parallel primitives. The zorder_index functor, which
transforms a grid from the row-major order to the Z-order within a scatter primitive, follows the
same schema although it looks a little more complex. Basically the functor takes a row-majored
1D array sequence of a 2D raster grid cell array as the input, calculate the row and column
numbers and invoke a function to compute a Morton code (see details in Raman and Wise 2008).
The scatter primitive embeds the functor into an iterator to generate a Morton code of a position
p in the sequence of 0..XTOT*YTOT-1 (dynamically generated by a counting_iterator) and uses
the Morton code as the destination position in the output d_data array for the element at position
p of the input array b_data. Essentially the line of code is a combination of a scatter primitive
and a transform primitive. The combination successfully avoids outputting the computed Morton
codes to an array in GPU device memory and reading them back to registers later, an
optimization technique that is desirable.

Similarly the syntax of invoking the transform and the remove_if primitives and the
implementations of assembling quadtree nodes and pruning the quadtree functors for Step 6 and
Step 7 are illustrated in Fig. 7. Note that indices is a counting_iterator variable that has been
defined previously which can serve as array subscripts in many applications. Also note that
minmax_table and chidposition arrays are filled in Steps 2/3 and 4/5, respectively (they are
omitted here due to space limit). We would like to draw attention on the constructors of the
trans_quad and isnot_treenode functors where the pointer pointing to the first element of the
minmax_table is passed to the two functors so that the functors can access any elements in the
minmax_table array when they are invoked. The position of the element that is being processed
by a processing unit is passed to the operator function of both of the functors (n for trans_quad
and p for isnot_treenode, respectively) so that the respective operator function can decide what
to return based on the elements in minmax_table that are relative to the position value and
arguments that are being passed to the operator function. For example, in isnot_treenode, the
number of child nodes of both the parent node and the node being examined, i.e., nodes at (p-
1)/4 and p, are taken into consideration. The implementations of the two functors follow the
design in Section 3 very well and we left the verification to readers. Note that the transform
primitive used in Step 6 has a more complex form than the one used in Step 2 of Fig. 6. Here two
input arrays (indices and chidposition) are used. As a consequence, the trans_quad functor takes
two parameters in its operator function with each extracted from the respective input array. In
contrast, the binning functor in Fig. 6 takes only one parameter in its operator function. In

Published at http://www.tandfonline.com/doi/abs/10.1080/13658816.2013.828840

general, our implementation aims at making full use of the powerful yet flexible primitives based
programming framework that the Thrust library has provided. We believe a similar architecture
design can be adopted for developing a geospatial specific parallel primitive library which is one
of our long term goals.

Fig. 7 Code Segment to Illustrate Assembling Quadtree Nodes and Pruning Quadtree
Using Parallel Primitives

5 Experiments and Results
We use the same global 30-arcsecond January Precipitation dataset from WolrdClim

website21 that has been used in (Zhang and You 2010a, Zhang and You 2010b and Zhang et al
2010) for CPU and GPU based implementations. Since the dataset was divided into 4096*4096
tiles in (Zhang et al 2010), we apply the same tiling schema in this study. As the valid values for
raster cells range from 0 to 1004, we have used 8 bines with bin boundaries at (0, 4, 11, 18, 27,
40, 77, 190, 1004). All experiments are performed on a Dell T5400 machine with dual quad-core
Intel Xeon E5405 CPUs (2.00 GHz, only one core is used for the experiments) and an Nvidia
Quadro 6000 GPU card22 with 448 cores and 6 gigabytes global memory. CUDA SDK 4.1 and
Thrust 1.6 are used. We have experimented on multiple 4096*4096 tiles (32 MB chunks for 16-
bits rasters) from the global 30-arcsecond January Precipitation dataset. As discussed in Section
3, the performance is largely data independent for rasters with a same dimension and the

21 http://biogeo.ucdavis.edu/data/climate/worldclim/1_4/grid/cur/prec_30s_bil.zip
22 http://www.nvidia.com/object/product-quadro-6000-us.html

// definition of minmax_table : thrust::device_vector<minmax_pair<uchar> > minmax_table(blen);
// definition of chidposition : thrust::device_vector<uint> chidposition(blen);
//definition of indices: thrust::counting_iterator<size_t> indices(0);

minmax_pair<uchar> *pyra_ptr=thrust::raw_pointer_cast(minmax_table.data());
thrust::device_vector<quad_node<uchar> > quadtree(blen);

//step 6: assembling quad-tree
thrust::transform(indices, indices+blen, chidposition.begin(),quadtree.begin(), trans_quad<uchar>(pyra_ptr));

//step 7: pruning quadtree
thrust::remove_if(quadtree.begin(), quadtree.end(),indices, isnot_treenode<uchar>(pyra_ptr))

template <typename T>
struct trans_quad
{
 const minmax_pair<T>* a;
 trans_quad(minmax_pair<T>* _a) : a(_a) { }

 __host__ __device__
 quad_node<T> operator()(uint n,uint v)
 {
 quad_node<T> result;
 minmax_pair<T> p=a[n];
 result.min_val=p.min_val;
 result.max_val=p.max_val;
 result.first_child_pos=((p.num_children<=0)?-1:(int)v);
 return result;
 }
};

template <typename T>
struct isnot_treenode
{
 const minmax_pair<T>* a;
 isnot_treenode(minmax_pair<T>* _a) : a(_a) { }

 __host__ __device__
 bool operator()(uint p)
 {
 int pc=(p==0)?4:a[(p-1)/4].num_children;
 int nc=((pc==0)||(a[p].num_children==0))?0:4;
 return(pc==0&&nc==0);
 }
};

Published at http://www.tandfonline.com/doi/abs/10.1080/13658816.2013.828840

runtimes increase linearly with respect to the numbers of grid cells in rasters. This has been
verified by experimenting on a 16384*16384 raster which requires almost exactly 16 times
runtime. As such, we will restrict our discussions of experiment results on 4096*4096 tiles.

We believe the title size with a dimension of 4096*4096 is suitable for most GPU devices
that have 256 MB or above graphics memory. By optimizing memory utilization in our current
primitives based implementation, it is possible to accommodate for GPU devices with smaller
memory capacities and we leave it for future work. In this section, we focus on the comparisons
among GPU and CPU based implementations with different strategies to understand the realized
and potential performance gains from GPU hardware and GPGPU technologies. We encourage
readers to download our source code package and test the performance of the implementations
(the URL has been provided previously). Instructions on using tools to extract raw data from
arbitrary rasters or images, programs for chunking the raw data into tiles with widths and heights
(2’s powers, required by the implementations) and suggestions on defining bin boundaries have
also been provided.

The runtime of our primitives based GPU implementation (hereafter referred as GPU-
Primitive) is 13.33 milliseconds and we use it as the baseline for comparison purposes. We have
re-implemented the classic recursive Deepest-First Search (DFS) based serial CPU
implementation by adopting a few performance optimization techniques for fair comparisons.
The implementation is referred as CPU-DFS. Additionally, we have implemented the new design
proposed in this paper on CPUs using a single processor to loop through all the elements in the
respective array to simulate the parallel execution. We refer the implementation as CPU-SIM.
The CUDA based implementation reported in (Zhang et al 2010) is tested without any changes
and is referred as GPU-OLD. The two CPU implementations are complied with -O2 flag for
optimizations to ensure fair comparisons. The experiment results show that the runtimes of CPU-
DFS, CPU-SIM and GPU-OLD are 1191.87 milliseconds, 1044.36 milliseconds and 147.23
milliseconds, respectively, for multiple 4096*4096 raster tiles on average.

When compared the GPU-Primitive implementation against the rest three
implementations, a speedup of 89.4X over CPU-DFS, 78.34X over CPU-SIM and 11.0X over
GPU-OLD has been achieved. We attribute the 11.0X speedup over GPU-OLD to better
coalesced memory accesses due to Z-order transformation and implicitly use of shared memory
for scan. The signficant 89.4X speedup over CPU-DFS is due to the excessive dynamic memory
allocation and de-allocation and cache unfriendly data accesses in the CPU-DFS implementation.
It is a little surprising that CPU-SIM does not significantly outperform CPU-DFS. We had
expected that CPU-SIM would be significantly better than CPU-DFS because the dynamic
memory management overheads in CPU-DFS were largely removed and arrays are cache
friendly in most of the steps (except the Z-order transformation step) in the CPU-SIM
implementation. Unfortunately this is not true. Further analysis has revealed that the binning and
the Z-order transformation (combined in CPU-SIM) took the majority of the runtime (974.92
milliseconds) while all the rest steps combined took only 69.44 milliseconds. In contrast to the
combined runtime of the same binning and Z-order transformation steps in GPU-primitive which
is only 4.40 milliseconds, an impressive 260X speedup has been observed. We suspect that the
cache unfriendly nature of Z-order transformation process on CPUs can be the performance
bottleneck which requires further investigation. GPU-Primitive still gains about 7.8X speedup,
which is calculated as 69.44/(13.33-4.40), for the rest of the steps. Both results have
demonstrated the advantages of GPGPU technologies for geospatial computing, which is often
both data and computing intensive, by leveraging the large numbers of processing cores and high
memory bandwidths available on GPU devices when compared with CPUs.

Published at http://www.tandfonline.com/doi/abs/10.1080/13658816.2013.828840

The experiment results have positive implications for indexing and querying large-scale
rasters. Experiments for 16-bit rasters using both 4096*4096 tiles (13.33 milliseconds) and
16384*16384 (230.75 milliseconds) tiles have suggested an indexing rate of more than 1.25
billion cell/pixel per second (230/s). The processing rate is lower but comparable to PCI-
Express23 data transfer rate between the CPU and GPU memories on our machine which means
that the sustainable processing rate is achievable when interleaving data transfer and processing.
The processing rate suggests that the data generated by GOES-R satellites at the global scale
each day, i.e., 288 coverages and 16 bands with each coverage having approximate 1/4 billion
pixels can be indexed in less than 20 minutes24 on a single GPU device. Although many
applications require more sophisticated computations than constructing BMMQ-Trees, GPGPU
computing seems to be a cost-effective way for large-scale geospatial computing. Furthermore,
as Nvidia Kepler GPUs25 that are currently available on the market have more than 3000 cores
and PCI-Express 3 standard allows up to 16 GB/s data transfer among CPUs and GPUs, we
expect that the achievable data processing rate can be further improved on commodity GPU
devices. Although it is unlikely that disk I/O speed can reach a 2 GB/s rate any time sooner to
match the 1 billion raster cells per second GPU processing rate on a personal workstation, we
argue that this is quite possible in a cluster computing environment where parallel file systems
are available. Efficiently streaming large-scale raster data from disks to CPU memoires and to
GPU memories as well as utilizing parallel file system to further speed up realizable processing
rate are left for our future work.

Conclusion and Future Works
In this study, we have adopted a transformation based approach to effectively and

efficiently utilizing massively data parallel GPGPU technologies for geospatial computing. By
ordering grid cells of geospatial rasters based on Z-order, we transform a multi-dimensional
geospatial indexing (BMMQ-Tree construction) problem into a set of smaller problems with
each can be solved by using a generic parallel primitive optimized for one-dimensional arrays on
GPGPUs. Our experiments have shown that the primitive based GPU implementation on an
Nvidia Quadro 6000 GPU device has achieved nearly 90X speedup over an optimized serial
CPU implementation and is 11X faster than a previous GPU implementation. We believe the
approach can be extended to a large family of geospatial computing problems by designing
proper transformation schemas. Our additional research efforts along the direction, such as
constructing DEMs from large-scale point datasets (You and Zhang, 2012) and several spatial
join processing on vector geospatial data (Zhang and You 2012, Zhang et al. 2012a, Zhang et al.
2012b), seem to be encouraging. These research and development efforts can also serve as case
studies towards developing high performance parallel geospatial computing primitives to bridge
between conceptual deigns of geospatial computing models, software developments and
hardware parallel executions.

There is plenty of room for future work. First of all, we would like to extend the quadtree
based indexing to include query processing on GPGPUs, e.g., spatial range queries, ROI-type
queries and spatial joins on both raster and vector geospatial data. Second, although we have
been using a single GPU device for our data structure and algorithm development in a personal
computing environment, we plan to extend the approach to a cluster computing environment

23 http://en.wikipedia.org/wiki/PCI_Express
24 Approximately calculated as |W|*|H|*|T|*|B|/R=(360*60)*(180*60)*(12*24)*16/(2^30)=1001sec =16.7min
25http://www.nvidia.com/object/nvidia-kepler.html

Published at http://www.tandfonline.com/doi/abs/10.1080/13658816.2013.828840

using grid/cloud computing resources to further test the scalability of the proposed approach.
Finally, we have strong interest in developing geospatial specific parallel primitives to support
large-scale geospatial computing in a cyberinfrastructure framework with respect to open source
software development and providing services to the user community over the Web.

Acknowledgement
This work is supported in part by PSC-CUNY Grants #65692-00 43 and #66724-00 44 an NSF
Grant IIS-1302423.

References

1. Aboulnaga, A. and Aref, W. G., 2001. Window query processing in linear quadtrees.

Distributed and Parallel Databases, 10(2), 111-126.
2. Ali, M.H., Saad, A.A. and Ismail, M.A., 2005. The PN-tree: A parallel and distributed

multidimensional index. Distributed and Parallel Databases, 17(2), 111–133.
3. Akdogan, A., Demiryurek, U., et al., 2010. Voronoi-Based Geospatial Query Processing with

MapReduce. Proceedings of the IEEE Second International Conference on Cloud Computing
Technology and Science (CloudCom’10), 9-16.

4. Armstrong, M.P., Pavlik, C.E. and Marciano, R., 1994. Parallel-processing of spatial
statistics. Computers and Geosciences, 20(2), 91–104.

5. Bell, N. and Hoberock, J., 2011. Thrust: A Productivity-Oriented Library for CUDA. In
Hwu, W.-M. W (eds.) GPU Computing Gems: Jade Edition. Morgan Kaufmann.

6. Clematis, A., Mineter M. and Marciano, R., 2003. High performance computing with
geographical data. Parallel Computing, 29(10), 1275–1279.

7. Cary, A., Sun, Z., Hristidis, V. and Rishe, N., 2009. Experiences on processing spatial data
with MapReduce. Proceedings of the 21st International Conference on Scientific and
Statistical Database Management(SSDBM’09), 302-319.

8. Chan, Y. K. and Chang, C. C., 2004. Block image retrieval based on a compressed linear
quadtree. Image and Vision Computing, 22(5), 391-397.

9. Chung, K. L., Liu, Y. W., et al., 2006. A hybrid gray image representation using spatial- and
DCT-based approach with application to moment computation. Journal of Visual
Communication and Image Representation, 17(6), 1209-1226.

10. Cignoni, P., Marino, P., et al., 1997. Speeding up isosurface extraction using interval trees.
IEEE Transactions on Computer Graphics, 3(2), 158-170.

11. Dean, J. and Ghemawat S., 2010. MapReduce: a flexible data processing tool.
Communications of the ACM 53(1), 72-77.

12. Gaede V. and Gunther O., 1998. Multidimensional access methods. ACM Computing
Surveys, 30(2), 170-231.

13. Garland M. and Kirk, D. B., 2010. Understanding throughput-oriented architectures.
Communications of the ACM, 53(11), 58-66.

14. Gress, A. and Klein, R., 2004. Efficient representation and extraction of 2-manifold
isosurfaces using kd-trees. Graphical Models, 66(6), 370-397.

15. Guan, Q. and Clarke K., 2010. A general-purpose parallel raster processing programming
library test application using a geographic cellular automata model. International Journal of
Geographical Information Science, 24(5), 695-722.

16. Han, S. H., Heo J., et al., 2009. Parallel processing method for airborne laser scanning data
using a PC cluster and a virtual grid. Sensors, 9(4), 2555–2573.

Published at http://www.tandfonline.com/doi/abs/10.1080/13658816.2013.828840

17. Hennessy, J.L. and Patterson, D. A, 2011. Computer Architecture: A Quantitative Approach
(5th ed.). Morgan Kaufmann.

18. Hoel, E.G. and Samet, H., 2003. Data-parallel polygonization. Parallel Computing, 29(10),
1381–1401.

19. Hong, S., Kim, S. K., et al., 2011. Accelerating CUDA graph algorithms at maximum warp.
Proceedings of the 16th ACM symposium on Principles and practice of parallel programming
(PPoPP '11), 267-276.

20. Hwu, W.-M. W (eds.), 2011a. GPU Computing Gems: Emerald Edition. Morgan Kaufmann
21. Hwu, W.-M. W (eds.), 2011b. GPU Computing Gems: Jade Edition. Morgan Kaufmann
22. Kamel, I. and Faloutsos, C., 1992. Parallel r-trees. Proceedings of the ACM SIGMOD

International conference on Management of data (SIGMOD’92), 195–204.
23. Kirk, D. B. and Hwu, W.-M., 2010. Programming Massively Parallel Processors: A Hands-

on Approach. Morgan Kaufmann.
24. Lin, T. W., 1997. Compressed quadtree representations for storing similar images. Image and

Vision Computing 15(11), 833-843.
25. Liu, Y., Wu, K., Wang, S. et al., 2010. A MapReduce approach to Gi*(d) spatial statistic.

Proceedings of the ACM SIGSPATIAL International Workshop on High Performance and
Distributed Geographic Information Systems (HPDGIS’10), 11-18.

26. Luo, L., Wong, M. D. F., et al., 2011. Parallel implementation of R-trees on the GPU.
Proceedings of the 17th Asia and South Pacific Design Automation Conference (ASP-DAC),
353-358.

27. Manolopoulos Y., Nardelli, Y., E., et al., 2001. A generalized comparison of linear
representations of thematic layers. Data & Knowledge Engineering, 37(1), 1-23.

28. Manouvrier, M., Rukoz, M., et al., 2002. Quadtree representations for storage and
manipulation of clusters of images. Image and Vision Computing, 20(7), 513-527.

29. McCool, M., Reinders, J. and Reinders, J., 2012. Structured Parallel Programming: Patterns
for Efficient Computation, Morgan Kaufmann.

30. Mineter, M., 2003. A software framework to create vector-topology in parallel GIS
operations. International Journal of Geographical Information Science, 17(3), 203-222.

31. Molnár, F., T. Szakály, et al., 2010. Air pollution modelling using a Graphics Processing
Unit with CUDA. Computer Physics Communications 181(1), 105-112.

32. Morton, G.M., 1966. A computer oriented geodetic data base and a new technique in file
sequencing. IBM Technical report.

33. Ortega, L. and Rueda, A., 2010. Parallel drainage network computation on CUDA.
Computers and Geosciences, 36(2), 171-178.

34. Oryspayev, D., Sugumaran, R., et al., 2012. LiDAR data reduction using vertex decimation
and processing with GPGPU and multicore CPU technology. Computers and Geosciences,
43, 118-125.

35. Patel, J.M. and DeWitt, D.J., 2000. Clone join and shadow join: two parallel spatial join
algorithms. Proceedings of the 8th ACM international symposium on Advances in
Geographic Information Systems (GIS’00) ,54–61.

36. Qin C.-Z. and Zhan, L., 2012. Parallelizing flow-accumulation calculations on graphics
processing units - From iterative DEM preprocessing algorithm to recursive multiple-flow-
direction algorithm, Computers & Geosciences, 43, 7-16.

37. Raman, R. and Wise, D.S., 2008. Converting to and from Dilated Integers. IEEE
Transactions on Computers, 57(4), 567-573.

38. Samet, H., 2005. Foundations of Multidimensional and Metric Data Structures Morgan
Kaufmann Publishers Inc.

Published at http://www.tandfonline.com/doi/abs/10.1080/13658816.2013.828840

39. Samet, H. 1985. Data-Structures for Quadtree Approximation and Compression.
Communications of the ACM, 28(9), 973-993.

40. Samet, H., 1984. The Quadtree and Related Hierarchical Data Structures. ACM Computing
Surveys, 16(2), 187-260.

41. Schmit, T.J., Li, J., et al., 2009. High-spectral- and high-temporal resolution infrared
measurements from geostationary orbit. Journal of Atmospheric and Oceanic Technology,
26(11), 2273-2292

42. Steinbach, M. and Hemmerling, R., 2012. Accelerating batch processing of spatial raster
analysis using GPU. Computers and Geosciences, 45, 212-220.

43. Theobald, D. M., 2005. GIS Concepts and ArcGIS Methods, 2nd Ed., Conservation Planning
Technologies, Inc.

44. Tzouramanis, T., Vassilakopoulos, M,. et al., 1998. Overlapping linear quadtrees: a spatio-
temporal access method. Proceedings of the 6th ACM international symposium on Advances
in Geographic Information Systems (GIS’98), 1-7.

45. You, S. and Zhang, J., 2012. Constructing natural neighbor interpolation based grid DEM
using CUDA. Proceedings of the 3rd International Conference on Computing for Geospatial
Research and Applications (COM.Geo '12), Article#28, 6 pages.

46. Wang, C. and Chiang Y. J., 2009. Isosurface Extraction and View-Dependent Filtering from
Time-Varying Fields Using Persistent Time-Octree (PTOT). IEEE Transaction on Computer
Graphics, 5(6), 1367-1374.

47. Wang, S. W. and Liu, Y., 2009. TeraGrid GIScience Gateway: Bridging cyberinfrastructure
and GIScience. International Journal of Geographical Information Sciences, 23(5) 631-656.

48. Wang, S. W., Cowles, M. K., et al., 2008. Grid computing of spatial statistics, using the
TeraGrid for Gi*(d) analysis. Concurrency and Computation: Practice and Experience,
20(14), 1697-1720.

49. Wang, S.W. and Armstrong, M.P., 2003. A quadtree approach to domain decomposition for
spatial interpolation in grid computing environments. Parallel Computing 29(10), 1481–1504

50. Wilhelms, J. and Vangelder, A., 1992. Octrees for Faster Isosurface Generation. ACM
Transactions on Graphics, 11(3), 201-227.

51. Xu, X.W., Jager, J. and Kriegel, H.P, 1999. A fast parallel clustering algorithm for large
spatial databases. Data Mining and Knowledge Discovery, 3(3), 263–290.

52. Yang, C. W., Goodchild, M. A, et al., 2011. Spatial cloud computing: how can the geospatial
sciences use and help shape cloud computing. International Journal of Digital Earth, 4(4),
305-329.

53. Yang, C. W., Raskin, R. and Goodchild, M. A., 2010. Geospatial cyberinfrastructure: Past,
present and future. Computers, Environment and Urban Systems, 34(4), 264–277.

54. Zhang, J., 2012. A high-performance web-based information system for publishing large-
scale species range maps in support of biodiversity studies. Ecological Informatics, 8, 68-77.

55. Zhang, J. and You, S., 2012. Speeding up Large-Scale Point-in-Polygon Test Based Spatial
Join on GPUs. Proceedings of the 1st ACM SIGSPATIAL International Workshop on
Analytics for Big Geospatial Data (BigSpatial’12), 23-32.

56. Zhang, J., You, S. and Gruenwald, L., 2012a. U2STRA: high-performance data management
of ubiquitous urban sensing trajectories on GPGPUs. Proceedings of the 2012 ACM
workshop on City data management workshop (CDMW’12), 5-12.

57. Zhang, J., You, S. and Gruenwald, L., 2012b. High-Performance Online Spatial and
Temporal Aggregations on Multi-core CPUs and Many-Core GPUs. Proceedings of the
fifteenth international workshop on Data warehousing and OLAP (DOLAP'12), 89-96.

Published at http://www.tandfonline.com/doi/abs/10.1080/13658816.2013.828840

58. Zhang, J., 2011. Speeding Up Large-Scale Geospatial Polygon Rasterization on GPGPUs.
Proceedings of the ACM SIGSPATIAL International Workshop on High Performance and
Distributed Geographic Information Systems (HPDGIS’11), 10-17.

59. Zhang, J., You, S. and Gruenwald, L., 2011. Parallel Quadtree Coding of Large-Scale Raster
Geospatial Data on GPGPUs. Proceedings of the 19th ACM international symposium on
Advances in Geographic Information Systems (GIS’11), 457-460.

60. Zhang, J., 2010. Towards personal high-performance geospatial computing (HPC-G):
perspectives and a case study. Proceedings of the ACM SIGSPATIAL International
Workshop on High Performance and Distributed Geographic Information Systems
(HPDGIS’10), 3-10.

61. Zhang, J. and You, S., 2010a. Supporting Web-based Visual Exploration of Large-Scale
Raster Geospatial Data Using Binned Min-Max Quadtree. Proceedings of the 22nd
International Conference on Scientific and Statistical Database Management Conference
(SSDBM’10), 379-396.

62. Zhang, J. and You, S., 2010b. Dynamic Tiled Map Services: Supporting Query-Based
Visualization of Large-Scale Raster Geospatial Data. Proceedings of the 1st International
Conference on Computing for Geospatial Research & Application (COM.Geo’10), Article
#19, 8 pages.

63. Zhang, J., You, S. and Gruenwald, L., 2010. Indexing large-scale raster geospatial data using
massively parallel GPGPU computing. Proceedings of the 18th ACM international
symposium on Advances in Geographic Information Systems (GIS’10), 450-453.

64. Zhang, J,, Gertz, M. and Gruenwald, 2009a. Efficiently managing large-scale raster species
distribution data in PostgreSQL. Proceedings of the 17th ACM international symposium on
Advances in Geographic Information Systems (GIS’09), 316-325.

65. Zhang, S., Han, J., et al., 2009b. SJMR: Parallelizing spatial join with MapReduce on
clusters. Proceedings of the IEEE International Conference on Cluster Computing
Workshops (CLUSTER '09), 1-8.

66. Zhou, X., Abel, D. J., and Truffet, D., 1998. Data partitioning for parallel spatial join
processing. GeoInformatica, 2(2), 175–204.

