
1 
 

 Speeding Up Geospatial Polygon Rasterization on GPGPUs  
 

Jianting Zhang 
Department of Computer Science 

 The City College of the City University of New York 
New York, NY, 10031 

jzhang@cs.ccny.cuny.edu 
 

ABSTRACT 
This study targets at speeding up polygon rasterization 

in large-scale geospatial datasets by utilizing massively parallel 
General Purpose Graphics Processing Units (GPGPU) computing 
for efficient spatial indexing and analysis based on a dynamically 
integrated vector-raster data model. As the first step, we have 
designed and implemented a parallelization schema for 
moderately large polygons using the Compute Unified Device 
Architecture (CUDA). Experiment results on 41,768 real world 
geospatial polygons with vertex numbers between 64 and 1024, 
which are selected among a total of 717,057 polygons with 
1,199,799 rings in the experiment dataset, show that our 
implementation can speed up the computation of intersection 
points among polygon edges and scan lines by more than 20 times 
on a Nvidia C2050 GPU card. Extending the design and 
implementation to support polygons with arbitrarily large 
numbers of vertices by extensively using efficient sorting is 
discussed. The paper also reports the design and implementation 
of a profile quadtree to better understand the data and the 
distributions of its parallel computing tasks, in addition to help 
select polygon groups for experiments.  
Keywords: Polygon Rasterization, Parallelization, GPGPU, 
Large-Scale 

1. INTRODUCTION 
Polygon rasterization is the process of converting vector 

polygonal data into gridded raster representation. While 
originating from computer graphics, rasterization has found its 
wide applications in geospatial data management and analysis. 
For example, rasterized polygons can be used for efficient spatial 
indexing in Spatial Databases [1] and fast geospatial analysis 
based on image/raster algebra [2]. It is a common practice to use 
hardware accelerations on GPUs to speed up rasterization and 
rendering in Computer Graphics. Despite the close relationships 
between Computer Graphics and GIS/Spatial Databases, the query 
driven geospatial applications are quite different from 
visualization driven computer graphics applications which makes 
it inconvenient, if not impossible, to use the fixed rasterization 
functionality of GPU hardware for geospatial data management 
and processing. Existing polygon rasterization modules 
implemented in open source GIS and spatial databases, e.g., 
GRASS [3] and GDAL [4], are based on the classic scan-line fill 
algorithms [5]. We have previously applied a modified GDAL 
rasterization implementation to build tree indices to facilitate 
managing a large collection of polygons representing the 
distributions of 4000+ bird species in the West Hemisphere [6]. 

Profiling the modules shows that calculating the intersection 
points between polygon edges and scan lines takes the majority of 
the processing time. It is thus desirable to speed up the polygon 
rasterization by efficiently utilizing parallel computing resources 
that are already available in commodity desktop computers.  

The recently emerging General Purpose Graphics 
Processing Units (GPGPUs) computing technologies have 
provided a different set of programmable interfaces to support 
general purpose computing on GPUs. GPGPU technologies have 
been successfully applied in many areas [7] including our 
previous work on constructing quadtrees from large-scale raster 
geospatial data [8]. We aim at developing a parallelization schema 
and an efficient implementation for GPGPU-based software 
rasterization and quadtree construction for large-scale polygonal 
geospatial data. As the first step, we have parallelized the most 
costly step in the scan line algorithm on calculating the 
intersection points between polygon edges and scan lines. Besides 
introducing design and implementation details, we have 
performed extensive experiments on a large number of real world 
geospatial polygons in the Birds species distribution dataset.  

The rest of this paper is arranged as follows. Section 2 
introduces background and related works. Section 3 introduces the 
serial scan line fill algorithm and our research and development 
motivations. Section 4 presents the design and implementations of 
a preprocessing module to help understand both datasets and the 
spatial distributions of parallel computing tasks. Section 5 
provides details on a preliminary design and implementation of 
GPGPU based parallel algorithm for computing intersection 
points along scan lines. Section 6 reports the experiment results 
and finally Section 7 is the conclusion and future works.  

2. BACKGROUND, MOTIVATIONS AND 
RELATED WORKS 

Rasterization is a vital step in computer graphics and 
numerous efforts have been put on developing efficient 
rasterization algorithms and implementations. While there are 
some previous works attempted to utilize graphics hardware to 
speed up spatial queries (e.g. [9]), unfortunately, a couple of 
issues prevent from using traditional fixed function graphics 
hardware interfaces for efficient and convenient geospatial data 
processing. First, rasterization algorithms on GPUs are usually 
proprietary and their hardware implementations largely remain 
black boxes. Some graphics hardware may be highly optimized 
for small triangles and do not support real world complex 
polygons, such as concave polygons or polygons with holes which 
are typical in real world geographical data. In fact, the 
GL_POLYGON primitive defined by OpenGL do not support 
concave polygons and is much slower than GL_TRIANGLES. 
While some tessellation and triangulation algorithms and 
packages are available to decompose complex polygons to simple 
polygons or triangles, they may not be supported by hardware and 
are left for serial software implementations. Second, to utilize 
GPU hardware acceleration before GPGPU technologies appear, 
researchers and developers in geospatial data processing are 
forced to transform geographical data, which are better presented 
as real numeric data types, into graphics-specific data types, such 
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as texture and colors, in order to get performance gains. 
Converting back and forth between geographical/projected 
coordinates and screen/view coordinates is not only cumbersome 
but also may lead to low accuracies. Third, many GPU APIs 
require a hardware context in runtimes. This makes the 
client/server architecture that is typically used in spatial databases 
impossible. While there are increasing graphics hardware supports 
for remote rendering, it is still not as convenient as in general 
purpose client/server computing. The GPGPU computing 
technologies have made massively parallel graphics hardware for 
general purpose computing possible which provides an exciting 
opportunity for software rasterization [10]. Compared with 
hardware rasterization, software rasterization is much more 
flexible and much easier to be tailored for geospatial applications.   

Among the numerous advantages of using GPGPU 
computing technologies for processing polygonal geospatial data, 
the most attractive one to us might be the opportunity to develop a 
high-performance, dynamic and bidirectional conversion  module 
between polygons and rasters through space-partitioning indexing 
trees (such as quadtrees) that support data compression and 
efficient query processing simultaneously. While conversion 
between vectors and rasters is a well-studied topic in GIS and 
Spatial Databases [11][12][2], to the best of our knowledge, most 
of the existing studies along the direction are based on serial 
computing framework. Massively parallel GPGPU computing 
technologies have made it possible to perform the conversion at 
the speed of rendering polygons to graphics displays and fast 
index polygonal data simultaneously. As the conversion and 
indexing, and, the subsequent raster-based analysis and 
visualization, can all be done in GPUs, expensive I/Os (including 
both data transfer between CPUs and GPUs and disk accesses) 
can be avoided. The combined parallel computing and I/O savings 
can potentially make quite some typical geospatial processing 
tasks orders faster. This in turn may enable turning traditionally 
offline geospatial modeling into interactive visual explorations. 
The uninterrupted visual explorations are likely to better facilitate 
scientific discoveries and decision making. 

Efficiently utilizing GPGPUs for geospatial data 
processing in general and rasterization/indexing in particular have 
also imposed some signficant research and development 
challenges in realizing the potentials. First of all, GPGPUs have 
quite different hardware architectures and computing frameworks 
than traditional serial computing on uniprocessors. As the number 
of computing cores goes up, efficiently using on-chip shared 
memory and/or caches becomes crucial in achieving high 
performance. In addition, as the number of threads per core goes 
up, it is also crucial to coordinate the threads effectively to 
achieve high performance. Second, while GPGPUs work best for 
regular data structures such as vectors and matrices, it is necessary 
to make use of irregular data structures for large-scale geospatial 
data, such as tree indices, for efficient storage and query space 
pruning which may be better processed on CPUs in certain cases. 
Task/data partitioning among CPUs and GPUs and choosing 
between regular and irregular representations of geospatial data 
require considerable engineering efforts, including performance 
tuning and try-and-error.  

While our ultimate goal is to develop an end-to-end 
high-performance system on modern commodity parallel 
hardware architectures for large-scale geospatial data processing, 
in this study, we will focus on speeding up computing intersection 
points between polygon edges and scan lines on GPGPUs using  
Nvidia’s  Compute Unified Device Architecture (CUDA) [13]. As 

detailed in Section 5, our current work is limited to rasterizing 
moderate sized polygons whose vertices can be fit into a 
GPGPU’s computing block based shared memory. We are 
working toward rasterizing polygons with arbitrarily large 
numbers of vertices by dividing the vertices into groups and 
assembling the partial results. In this preliminary work, we also 
represent the rasterization results in the form of intersection point 
sequences with auxiliary data so that rasterization and quadtree 
construction can be efficiently performed subsequently as that has 
been done on CPUs in our previous work [14]. Despite that the 
aimed end-to-end system is still not fully developed, we hope this 
work can demonstrate the feasibility and potentials of software 
rasterization of large-scale real-world polygons in geospatial data 
processing. We next introduce some of the related works from 
both Computer Graphics and Spatial Databases communities.   

Constructing spatial data structures and rasterizing 
triangles in computer graphics on GPGPUs have attracted 
considerable research interests in recent years. Zhou and his 
colleagues have implemented KD-Trees [15] [16] and octrees [17] 
on Nvidia GPUs using CUDA for large-scale triangles. The works 
are similar to indexing bounding boxes for primary filtering 
purposes in Spatial Databases [11] except these works are for 3D 
triangles in computer graphics applications instead of 2D 
polygons in geospatial applications. Our goal is more similar to 
the approach adopted by Microsoft SQL Server Spatial on 
rasterizing and indexing individual polygons [1] which provides 
finer level filtering capabilities.  In addition, we also target at fast 
materializing polygon level indices to full rasters to speed up 
spatial analysis based on raster algebra [2]. There are also recent 
works on software-based rasterization of triangles on GPGPUs 
based on CUDA [10][18][19]. Considerable optimization 
techniques have been applied in these works, such as efficient 
utilization of fast shared memory, load balancing among 
computing blocks and reducing inter computing block 
communications, to improve the performance of software 
rasterization. According to the experiment results on a wide 
variety of test cases reported in [10], performance of software 
rasterization of triangles is within a factor of 2-8X compared to 
the hardware-based graphics pipeline on Nvidia GTX 480 GPUs. 
While the results are encouraging, it is unclear how to efficiently 
rasterize large-scale complex polygons on GPGPUs. Although 
authors in [19] attempted to use octrees to efficiently represent 
sparse rasters after rasterization, they all target at 3D graphics 
applications such as view dependent ray casting and shading 
which can not be applied to 2D geospatial analysis. Furthermore, 
we note that some of the optimization techniques in graphics 
rendering, such as early pruning based on visibility and 3D depth 
tests, generally can not be applied to overlapped geospatial 
polygons (if we consider different polygon datasets as the third 
dimension) as information on all polygons are needed to provide 
accurate query results in geospatial data processing. We also note 
that these works do not handle conversions between complex 
polygons and triangles and thus it is impossible to apply the works 
in our application directly.  

Another category of closely related works is utilizing 
graphics hardware for data management in general and spatial 
databases and spatial analysis in particular. Since both vector and 
raster geospatial data has a spatial component, it is natural to 
perform certain spatial operations such as overlay and image 
convolution on GPUs. We refer to [9] for examples on spatial 
selections and joins using GPU hardware prior to GPGPUs. The 
GPGPU computing technologies have made geospatial data 
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processing on GPUs much easier and a detailed survey is beyond 
the scope of this paper. However, we refer to the works on 
multidimensional similarity joins [20] and density based spatial 
clustering [21] for examples that are relevant to spatial data 
processing. Our previous work on constructing min-max 
quadtrees from large-scale geospatial rasters has achieved a 23X 
speedup compared with serial CPU implementations [8]. Our 
recent work on decoding quadtree encoded bitplane bitmaps of 
large-scale geospatial rasters has achieved nearly 6X speedup 
when compared with a dual quadcore machine and 37X speedup 
compared with a single core [22]. This study is an expansion 
towards processing large-scale polygonal data on GPGPUs by 
incorporating our previous work on tree-based indexing of large-
scale overlapped polygons on CPUs [14].   
3 THE SERIAL SCAN-LINE FILL 
ALGORITHM AND MOTIVATIONS 

Our GPGPU implementation of the classic scan-line fill 
algorithm [5] is based on the open source GDAL codebase [4]. 
Before presenting the details of the design and implementation in 
Section 4 (preprocessing a collection of polygons) and Section 5 
(rasterizing a single polygon), we would like to introduce the scan 
line fill algorithm briefly. Given an enclosed polygon with n 
vertices where the 0th vertex is the same as the (n-1)th vertex, we 
can construct n-1 edges from the vertices. We use the minimum 
and maximum values of the y coordinates of the polygon in the 
targeted raster tessellation, i.e., ymin and ymax, respectively, as 
the starting and the ending scan lines to compute the intersection 
points between all edges and all scan lines. For an edge 
(x1,y1,x2,y2) and a scan line y between y1 and y2, the 
intersection point can be easily calculated as (x1+(y-y1)/(y2-
y1)*(x2-x1)).  

According to the scan line fill algorithm, the 
intersection points of each scan line are sorted to generate interval 
pairs for subsequent polygon filling along the scan lines. While 
special cases, such as extreme vertices along y axis and horizontal 
edges, need to be handled separately, a simple polygon along a 
scan line usually have a pair of intersection points that define an 
interval of raster cells that are inside the polygon along the scan 
line. Complex polygons, such as polygon with holes, may 
generate multiple intervals along a scan line that need to be filled 
separately for rasterization. In addition to actually perform 
rasterization by filling the polygon cells, the y coordinate of the 
scan line and the x coordinates of the intervals are needed to 
construct a quadtree for the polygon which has been left for future 
work.  For the example shown in Fig.1, there are 7 vertices and 6 
edges in the polygon. Given a raster tessellation of 8 by 8, there 
are 7 out of 8 scan lines that intersect with at least one of the 
edges. For scan line y=2, two intersection intervals along the scan 
line, i.e., cells marked by circles, can be derived. 

 
 
 
 
 
 
 
 
 
 

Fig. 1 An Example of the Scan Line Fill Algorithm 

Experiments on the serial scan line fill and quadtree 
construction algorithms in our previous implementation [14] have 
shown that computing the intersection points dominates the whole 
serial process. A further analysis shows that the complexity of 
calculating intersections points is in the order of (n-1)*(ymax-
ymin) where n is the number of polygon vertices. The 
computation is costly for large polygons with a large number of 
vertices and scan lines. It is thus desirable to parallelize the 
intersection computation process. While also refer to our previous 
work [14] on constructing quadtrees from pairs of intersection 
points derived from the scan-line algorithm. Parallelizing quadtree 
construction from intersection point pairs on GPGPUs are left for 
future work. 

Although it is generally easier to parallelize the 
intersection point computation process on CPUs based on a few 
mature parallel abstractions, such as OpenMP, Intel Thread 
Building Blocks (TBB) and Microsoft Parallel Pattern Library 
(PPL), we have chosen GPGPUs for two reasons. First, GPGPU 
represent a new parallel computing paradigm that is drastically 
different from existing multicore CPUs although more recent 
multicore architectures such as Intel Many Integrated Core (MIC) 
fill the gap in between to a certain extent. Exploring the parallel 
computing power of GPGPUs with hundreds of processing cores 
and tens of thousands of threads is both challenging and 
rewarding. Second, GPGPUs usually work as accelerators for 
CPUs and can work with multicore CPUs to provide higher 
parallelization levels on commodity desktop computers.  

To support load balancing and efficiently parallelize 
computations of intersection points, we have developed a 
preprocessing module that serves the following three purposes: (1) 
Assemble polygon vertices from disks and reside them in main-
memory in a cache-friendly manner. (2) Derive metadata from the 
polygons and spatially profile the polygons. (3) Group the 
polygons into subsets so that they can be processed in parallel 
with balanced workloads. We next introduce the preprocessing 
module before introducing the GPGPU design and 
implementation in Section 5. 
4 PREPROCESSING POLYGON 
COLLECTIONS 

We assume a polygon collection consists of N datasets 
and all datasets follow Open Geospatial Consortium (OGC) 
Simple Feature Specification [23]. According to the specification, 
a polygonal feature may have multiple rings and each ring 
consists of multiple vertices. As such, we can form a four level 
hierarchy from a data collection to vertices, i.e., dataset  feature 

 ring  vertex. Our first step in the preprocessing is to assemble 
polygon vertices residing on disks into continuous array data 
structures in main memory. Compared with using dynamic data 
structures that depends on pointer chasing, the array data 
structures are more cache friendly on CPUs. More importantly, as 
currently CPUs and GPUs use disparate memory spaces, array 
copying is the primary approach to efficiently transfer data in 
CPU memories to GPU memories.  

Five arrays are used for a large polygon collection. 
Besides the x and y coordinate arrays, three auxiliary arrays are 
used to maintain the position boundaries of the aforementioned 
hierarchy. As shown in Fig. 2, given a dataset ID (0..N-1), the 
starting position and the ending position of features in the dataset 
can be looked up in the feature index array. For a feature within a 
dataset, the starting position and the ending position of rings in the 
feature can be looked up in the ring index array. Similarly, for a 
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ring within a feature, the starting position and the ending position 
of vertices belong to the ring can be looked up in the vertex index 
array. Finally, the coordinates of the ring can be retrieved by 
accessing the x and y coordinate arrays. It is easy to see that 
retrieving coordinates of single or a range of datasets, features and 
rings can all be done by sequentially scanning the five arrays in a 
cache friendly manner. It is also clear that the number of features 
in a dataset, the number of rings in a feature and the number of 
vertices in a ring can be easily calculated by subtracting two 
neighboring positions in the respective index array. As such, the 
array representation is also space efficient. The implementation of 
polygon assembling is on top of the GDAL open source library 
that has provided convenient accesses to many types of vector 
data formats, such as ESRI Shapefile and PostgreSQL/PostGIS 
databases. The assembling step simply loops through all the 
datasets and collect features, rings and vertices. The position 
indices of features, rings and vertices are advanced while the 
vertices are copied onto the two coordinate arrays. 

The second step in our preprocessing procedure is to 
build a quadtree to spatially profile all polygons in a collection. 
We thus term the resulting tree index data structure as profile 
quadtree. While polygons in a single layer (dataset) are usually 
spatially disjoint, polygons across layers (datasets) can be 
significantly overlapped. This has made classic spatial indexing 
approaches, such as R-Trees or quadtrees [11][12], inappropriate 
for profiling purpose even if the index data structures are created 
for individual datasets (see [14] for more discussions). We have 
developed an enhanced quadtree to index multiple overlapped 
datasets by recording both spatial and thematic information of 
polygons (or features). Each leaf node of the quadtree contains a 
set of polygons whose MBRs (in the format of quadruples of 
(iminx, iminy, imaxx, imaxx)) are covered by the spatial extent of 
the node but are not covered by the spatial extent of any of its 
child node. In addition to the MBRs, dataset identifiers and 

feature identifiers of the polygons and the numbers of rings and 
vertices are also associated with the quadtree nodes. The 
procedure of constructing the profiling quadtree in pseudo C code 
is listed in Fig. 3. Note that all coordinates are integer values after 
snapping polygon vertices to the nearest raster cells based on a 
raster tessellation.  

Estimating the computing workload for rasterizing 
polygons under a quadtree node can be performed as follows by 
using the profile quadtree. First, the number of scan lines can be 
calculated as (imaxy-iminy+1). Second, computation cost to 
calculate the intersection points of polygon edges and scan lines 
can be calculated as npoints*(imaxy-iminy+1). The total 
computing workload for the node can be derived by summing 
npoints*(imaxy-iminy+1) over all polygons associated with the 
node. The upper bounds for the resulting intersection points for a 
polygon can be estimated as the number of rings multiplied by the 
number of scan lines, i.e., nrings*( imaxy-iminy+1)*2*K where K 
is a constant factor to prevent overflowing. While the bounds are 
not needed in serial implementation on CPUs as the intersection 
points can be sequentially added to the output storage location, it 
is crucial for each processing unit to know its position to output so 
that processing units can work in parallel. Using upper bounds of 
output sizes can significantly save required memory footprints in 
parallel processing as otherwise large memory chunks would have 
to be allocated to all processing units. 

Using the profile quadtree also make it possible to select 
subsets of polygons for further processing based on spatial and 
non-spatial criteria, such as number of vertices, number of rings, 
number of scan lines or their combinations. As detailed in Section 
5, when processing a polygon using a GPGPU’s computing block 
in our current implementation, the polygon’s vertices must be fit 
in the block’s shared memory. To select suitable polygons for 
GPGPU processing, we can traverse the profile quadtree to select 
polygons that satisfy the criteria. 

   
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Fig. 2 Illustration of the Array Representation of Vertex Coordinates and Auxiliary Position Data 

5 EFFICIENT POLYGON 
RASTERIZATION ON GPGPUS 

We assume the general familiarity with the two-level 
(i.e., block and thread) parallel computing schema and the 
memory model (global memory, shared memory and local 
memory/registers) in CUDA. We also refer to the textbook [24] 
for introductions and the CUDA manuals available at [13] for 
more in-depth knowledge on CUDA and its programming.  

We have chosen to assign polygons to computing 
blocks. In our design, the block level parallelization is enhanced 
with thread level parallelization by assigning edges of a polygon 
to threads in a computing block. While it is straightforward to 
assign polygons to threads and mimic the CPU serial 
implementation, we argue that the naïve parallelization schema 
design is inefficient for two reasons. First, launching a large 
number of threads on GPGPUs (e.g., 256 or more) within a 
computing block to process the same number of polygons 

requires a lot of registers and local variables for intermediate 
results. Unfortunately, even the latest CUDA Computing 
Capability 2.0 supports only a maximum of 32,768 registers per 
computing block. The number of registers is far fewer than what 
are required for complex computations like calculating 
intersection points in the scan-line fill algorithms. While it is 
possible to spill the register variables to global memory either 
programmatically or automatically by the complier, access to 
global memory is about two orders slower than to registers on 
Nvidia GPUs and thus the performance is likely to be 
unacceptable. Second, when computing the intersection points 
for all scan lines with all polygon edges, the vertices of the 
polygon in global memory would have to be accessed separately 
by all threads. This is likely to further worsen the performance. 

In contrast, in our design, when a polygon is assigned 
to a computing block, the shared memory of the block can hold 
a polygon with reasonably sized vertices. For example, 8k 
shared memory can hold up to 1000 vertices whose x and y 

 … 50 60 … 

… 70 73 78 … 100 …

Feature Index 

Ring Index 

Features of dataset #12 starts at 51 and ends at 60 in the feature index array 
0 … 12  

Rings of feature #51 starts at 71 and ends at 73 in the ring index array 

… 885 913 959 989 …Vertex Index Vertices of ring #71 starts at 886 and ends at 913 in the vertex index array 

X/Y Coordinates Coordinates are stored at the positions 886 through 913 at the two coordinate arrays 
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coordinates are represented as integers or floats. By 
synchronized loading these coordinates to shared memory by all 
threads in a computing block, subsequent computing on 
intersection points does not need to access global memory any 
more which can significantly improve the overall performance. 
During the process of looping through all scan lines, we assign 
each polygon edge to a thread and compute intersection points 
independently. As only a few edges intersect with a scan line 
(c.f., the example in Fig. 1), the intersection result array is likely 
to be very sparse. It would take too much storage if the 

intersection result array is copied back to global memory 
directly for further processing. This could be very costly as well 
due to the slow accesses to global memory. Our solution is to 
perform a rank based compaction by moving the non-empty 
intersections to the front of the result array. Only the non-empty 
intersections are subsequently copied to the output array residing 
in global memory. The rank based compaction also utilizes 
shared memory and is very efficient. The pseudo CUDA kernel 
code based on the idea is illustrated in Fig. 4. We next further 
explain some technical details in the implementation.  
 

Fig. 2  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3 Data Structure and Procedures to Construct Profile Quadtree 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4 Pseudo CUDA Kernel Code for Parallel Computing of Intersection Points on GPGPUs 

 
 
 
 
 
 
 
 
 
 
 
void add_meta(metatree * root, int did, int fid, int iminx, int iminy, int imaxx, int imaxy, int nrings, int npoints){ 
 if (root->level==max_level) 
  push back did, fid, iminx, iminy, imaxx, imaxxy, nrings, npoints to root->rec and return;  
 call node2coord  to calculate the coordinates of the quadrant represented by root and store the values in nx1,ny1, nx2 and ny2 
 if (iminx, iminy, imaxx, imaxxy) is completely within (nx1,ny1,nx2,ny2)){ 

 quad -1; 
 if(iminx,iminy,imaxx,imaxy) is completely within (nx1,ny1,(nx1+nx2)/2,(ny1+ny2)/2)) quad 0; 

if(iminx,iminy,imaxx,imaxy) is completely within (nx1,(ny1+ny2)/2,(nx1+nx2)/2,ny2)) quad 1; 
if(iminx,iminy,imaxx,imaxy) is completely within (nx1+nx2)/2,ny1,nx2,(ny1+ny2)/2)) quad 2; 
if(iminx,iminy,imaxx,imaxy) is completely within ((nx1+nx2)/2,(ny1+ny2)/2,nx2,ny2)) quad 3; 
if(quad>=0) { 
 if(root->children==NULL) allocate memory for root->children and initialize.  
 if(root->children[quad]==NULL) allocate memory for root->children[quad] and initialize 

croot->children[quad]->xpos=quad/2;  croot->children[quad]->ypos=quad%2; 
 add_meta(croot->children[quad], did, fid, iminx, iminy, imaxx, imaxy, nrings, npints); 
 } 

} 
 else push back did, fid, iminx, iminy, imaxx, imaxxy, nrings, npoints to root->rec and return 

} 

void node2coord(const metatree * root, int& nx1,int& ny1,int& nx2,int& ny2) { 
const metatree * temp=root; 
nx1=ny1=nx2=ny2=0; 
while(temp!=root) { 

nx1+=temp->xpos *xnum [temp->level]; 
 ny1+=temp->ypos]*ynum [temp->level]; 
 temp=temp->parent; } 
nx2=nx1+xnum [croot->level]; 
ny2=ny1+ynum [croot->level]; 
} // d t b f ll t ll dt l l th l 2n 2n-1 1

typedef struct metatree 
{ 
 unsigned char level; 

unsigned char xpos; 
unsigned char ypos;  

 struct  metatree **children; 
 struct  metatree *parent; 
 std::vector<int> *rec; 
} metatree;

//input: xx and yy are x and y coordinate array, respectively 
//input: para is the parameter array with the following info for each polygon: MBR, nring, npoints, starting and ending positions of the polygon vertices on xx and 
yy arrays (ps and pe, respectively).  
//output: triples is the array storing the resulting intersection points as the triples of (y coordinate of scan-line, number of intersection points, list of the x coordinate 
of intersection point) 
//output: nums is the array storing the numbers of output triples for all polygons; if nums[i] is greater than the size of triples for polygon I then not all intersection 
points are output and recalculation is needed 
__global__ void rasterize(double *xx, double *yy, int *para, int *triples, int *nums){ 
 __shared__  double padfX[MAX_PT]; //x coordinate array on shared memory 
 __shared__  double padfY[MAX_PT]; // y coordinate array on shared memory 
 __shared__  int polyInts[MAX_PT]; //temporary intersection result array  for one scan-line 
 __shared__ int iminx, imaxx, iminy, imaxy, ps, pe, npoints; //metadata for the polygon being processed 

__shared__ int  ni, nv; // temporary variables used by the last thread to copy intersection result to global memory 
int tidx = threadIdx.x; // thread id  

 int bidx = blockIdx.x; // block id   
Step1: copy values of iminx, imaxx, iminy, imaxy, ps, pe, npoints, from para[bidx] to the shared variables and set nv to 0, all by thread 0; 
Step2:  copy elements from ps to pe in the xx and yy arrays to padfX and padfY, respectively, by all threads 
Step 3: for (int y=iminy; y <=imaxy; y++) { 
 Step 3.1: calculate intersection points of scan line y and store the results at polyInts, by all threads 
 Step 3.2: compacting polyInts by moving non-empty values before the empty values (by calling scan4 in Fig. 5), by all threads  
 Step 3.3 sequentially copy y, number of intersections (ni) and the first ni elements in polyInts to triples and advance nv by (ni+2) if ni>0, all by the last 
thread in the computing block  

}  
Step 4: set nums[bidx] to nv by the last thread in the computing block.  
} 
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Among the steps shown in Fig. 4, Step 3.1 on 
computing all intersection points is the most computing 
intensive one which has motivated us to seek GPGPU 
accelerations. We note that while it is also possible to assign 
threads to scan lines and let each thread loops over polygon 
edges from a parallel computing perspective, we choose to 
assign threads to polygon edges and have threads loop over scan 
lines. The decision is mostly due to the fact that the latter choice 
is more convenient to output the intersection points to global 
memory for subsequent rasterization or quadtree constructions 
as discussed in Section 2 and 3. Among the steps, Step 3.2 is 
least straightforward which may require further illustration. 
Basically, for each scan line, the intermediate array to hold the x 
coordinates of intersection calculation, i.e., polyInts, is cleared 
up with -1 which indicates empty intersection. After executing 
step 3.1 in parallel by all threads, the x coordinates of the 
intersection points for the scan line will be stored in a per-thread 
local variable. The values of the variables of all threads are 
further used to calculate the positions that the values should be 
written to in the polyInts array. This can be done by setting 1s 
for non-empty intersections and 0s for empty intersections 
followed by an exclusive prefix sum (or scan) as shown in Fig. 5. 
The values of the prefix sum results are the positions that non-
empty intersection values should be output in the array holding 
the compaction results (which is polyInts in our case).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 5 An Example Illustrating Rank Based 

Compaction of Intersection Results on Shared Memory 
 
 Assuming the intersection result for the four threads 

in a computing block are (-1,4325, 4430,-1), as shown in Fig. 5, 
the initial values before the scan is thus (0,1,1,0) and the values 
after the scan would be (0,0,1,2). As such, 4325 and 4430 will 
be written to the index positions of 0 and 1 in polyInts by 
threads 1 and 2, respectively. The compaction process is 
essentially a type of sorting by assigning output positions to 
non-empty intersection points while skip empty intersection 
points. Prefix sum (or scan) can be efficiently performed on 
shared memory and the overhead is negligible. We note that, 
although the prefix sum implementation requires a temporary 
array of the size two times the size of maximum number of 

vertices (MAX_PT), it can be shared with the shared memory in 
the main kernel function (Fig. 4) which does not incur additional 
shared memory stress since scan4 is a device function.  

6 EXPERIMENTS AND RESULTS 

6.1 Data and Experiment Setup  
 We use the bird species distribution maps in the West 

Hemisphere from NatureServe [6] in our experiments. The 
dataset has also been used in our previous work on serial 
rasterization and quadtree construction on CPUs [14]. The 
dataset consists of ESRI Shapefiles for 4148 bird species with 
717,057 polygons and 78,929,697 vertices. We do not exclude 
polygons with areas that are less than a cell as our previous 
works did. As a result, both the number of polygons and the 
number of vertices are slightly larger than we have reported 
previously. We have chosen five groups of polygons for 
experiments based on the number of vertices, i.e., (32, 64], 
(64,128], (128, 256], (256, 512] and (512, 1024], respectively. 
Although our implementation is capable of handling polygons 
with small numbers of vertices (e.g., below 32), we have found 
that it took only very little time to rasterize small polygons on 
CPUs and may not worth the overheads of GPU processing.  

All the experiments are performed on a SGI Octane III 
machine. While the machine comes with two identical and 
independent nodes and four Nvidia Fermi C2050 GPU devices, 
only one node and a single GPU device on the node is used for 
the experiments. The computing node is equipped with dual 
Intel Xeon E5520 quadcore CPUs running at a 2.26 GHz clock 
rate, 48 GB 1333MHz DDR3 memory and 4 TB SATA 7200 
RPM hard drives. The C2050 GPU card attached to the machine 
has 448 cores running at 1.15 GHz. The GPU device also has 
3GB GDDR5 graphics memory running at 1.5 GHz clock rate. 
The GPU device is attached to the motherboard through a PCI-E 
x16 slot that can provide a theoretical unidirectional data 
transmit speed of 4GB/s. 

Our primary measurement in this study is the wall-
clock running times measured in milliseconds. We do not 
include data transfer times between CPUs and GPUs in the 
comparisons among CPU running times and GPGPU running 
times for two reasons. First, transferring polygon vertices and 
their auxiliary data from CPU to GPU is one time cost and is 
relatively insignificant compared to rasterization and subsequent 
spatial analysis. Second, we assume subsequent spatial analysis 
and visualization are all performed on GPUs which eliminates 
the need to transfer the processed data back to CPUs.  

6.2 Results of Data Preprocessing 
Assembling polygon vertices and deriving auxiliary 

position data took 447.3 seconds with cold cache while it only 
took 34.8 seconds with warm cache. Profiling results further 
show that the CPU time needed by the program (not including 
third party libraries such as GDAL) is only about 1.58 seconds. 
Given that the total volume of the geometry data (.shp files 
and .shx files) is about 1.3G, assuming an achievable 100 MB/s 
disk I/O rate, it requires only 13 seconds if the disk I/O 
bandwidth is fully utilized. As such, we suspect that the GDAL 
library that is used to access the shapefiles may be a major 
bottleneck. In contrast, the total data volume of the x and y 
coordinate arrays as well as the three auxiliary position arrays 
(whose sizes are listed in Table 1) is only about 609 MB and is 
less than half of the raw geometry data. It only took 30.9 

__device__ inline ushort scan4(ushort num) { 
     __shared__  ushort ptr[2* MAX_PT]; 
    ushort val=num; 
    uint idx = threadIdx.x; 
    ptr[idx] = 0; 
    idx += Tn; 
    ptr[idx] =num; 
    SYNC 
    val += ptr[idx -   1]; SYNC ptr[idx] = val; SYNC 
    val += ptr[idx -   2]; SYNC ptr[idx] = val; SYNC 
    val += ptr[idx -   4]; SYNC ptr[idx] = val; SYNC 
     … 
    val = ptr[idx - 1];     return val; 
} 

0 0 0 0 0 1 1 00 1 1 0 

0 0 0 0 0 1 2 1

0 0 0 0 0 1 2 2

0 0 0 0 0 1 2 2

Step 0 

Step 1 

Step 2 

Step 3 

Result of 
exclusive scan 
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seconds to load these five arrays from disks to main memory 
with cold cache (0.734 seconds with warm cache) and achieved 
a 14.4X speedup with cold cache. The signficant data loading 
speedup reflects a combined data volume reduction and using a 
simple linear data structure (array). 

Table 1 Array Lengths of the Coordinate Arrays (1-2) 
and Auxiliary Position Arrays (3-5) 
 Array name Array Length 
1 X coordinates 78,929,697 
2 Y coordinates 78,929,697 
3 Feature Index 4,148 
4 Ring Index 717,057 
5 Vertex Index 1,199,799 

 
With respect to deriving the profile quadtree, we have 

used a 30 arc-seconds global raster tessellation which translates 
to a 21600*21600 grid for West Hemisphere. Our profile 
quadtree has 16 levels with a raster tessellation of 65536*65536 
which is sufficient to cover the global extent. By traversing the 
profile quadtree, we can derive a few statistics to characterize 
non-empty quadrants such as number of polygons (ΣNP), 
number of vertices (ΣNV), number of scan lines (ΣNS) and 
number of  intersections (ΣNI=Σ((NV-1)*NS). These statistics 
are then further aggregated based on profile quadtree levels. The 
results show that total number of edge-scan line intersection 
tests (ΣNI) is close to 200 billions which make it desirable to use 
GPU acceleration.  The results also show that the majority of the 
tests are incurred by the large polygons associated with the top 
levels of the profile quadtree. Using the profile quadtree, by 
symbolizing the number of intersection tests in each quadrant, 
we can map the computing intensity spatially and understand 
both the dataset and its parallel computing tasks better. Fig. 6 
shows the computing intensity map for level 6 with 99 quadrants 
using a rainbow coloring schema, i.e., red, blue and green 
indicate higher intensity while yellow and gray indicate lower 
intensity. The map is overlaid with the continental boundaries in 
the area for clarity.    

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6 Map of Spatial Distributions of Computing 
Intensities of the 99 Level 6 Quadrants in the Profile Quadtree 

6.3 Comparison with Serial CPU 
Implementation  

Table 2 lists the experimental results for the five 
polygon groups. From the results we can see that the GPGPU 
approach accelerates the processing times by about 20X for the 
four polygon groups with vertices between 64 and 1024 (41,768 
polygons in total) when compared with the serial CPU 
implementation. The results are considerably signficant. On the 

other hand, the speedup for the polygon group with 32-64 
vertices is only about 6X. Furthermore, it takes only half a 
second to compute the intersections of 46509 polygons in the 
group by the serial implementation. Considering the overhead of 
using GPGUP accelerations, the result may suggest that the 
advantages of GPGPU based rasterization may not be signficant 
for polygons with small numbers of vertices. 

Table 2 Comparisons of Serial CPU and GPGPU 
Implements for Five Polygon Groups 

Group # 1 2 3 4 5 
Min # vertices 32 64 128 256 512 
Max # vertices 64 128 256 512 1024 
# Threads 64 128 256 512 1024 
# Polygons 46509 23880 9666 5076 3146 
CPU time (ms) 526 995 1803 4490 9387 
GPU time (ms) 88 49 88 224 528 
Speedup 6.0X 20.1X 20.5X 20.0X 17.8X 

 
Based on our profile quadtree, there are 6960 

polygons whose numbers of vertices are larger than 1024 and 
can not be processed by our current GPGPU implementation. 
While these polygons only count for less than 1% of the total 
number of polygons, our profile quadtree shows that they 
account for the majority of the intersection calculation workload 
where GPU acceleration could be most signficant. While our 
current GPGPU implementation does not have the capability of 
handling polygons whose numbers of vertices that are larger 
than the maximum number of GPU threads (1024), we next 
provide some discussions on how to extend the current 
implementation to handle polygons with arbitrary large numbers 
of vertices. 

6.4 Discussions 
The limiting factor of efficiently using GPGPUs to 

rasterize large polygons is the shortage of shared memory. The 
shared memory capacity is currently limited to 48K for the 
largest computing block with 1024 threads (i.e., a whole Stream 
Multiprocessor with 32 cores) on Fermi GPUs with Computing 
Compatibility 2.0. As the numbers of GPU cores and 
multiprocessors will grow significantly in the next few GPGPU 
hardware generations, instead of increasing, the shared memory 
capacity per-multiprocessor (and hence computing block) may 
actually decrease, in a way similar to multicore CPUs. As such, 
hardware advances will not solve the problem.  

Our solution is to break the large numbers of vertices 
in large polygons into chunks and store the partial intersection 
results back to global memory so that the chunks of vertices can 
be processed independently. While the data decomposition 
strategy is common in parallel data processing for decades, the 
difficulty is how to combine the partial results into correct final 
results. Our idea is to expand the triple data structure in the form 
of (y coordinate of scan-line, number of intersection points, list 
of the x coordinate of intersection point) used in this study (see 
Section 5) to a set of triples in the form of (polygon identifier, y 
coordinate of scan-line, x coordinate of intersection point). 
These triples of computing block level results can be written to 
global memory in arbitrary order, including triples generated by 
different computing blocks for different vertices chunks. To 
assemble these triples and generate the interval pairs that are 
required for rasterization and quadtree constructions, a sort can 
be applied by using the combination of polygon identifier and y 
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coordinate of scan-line as the key and x coordinate of 
intersection point as the value. While any sorting algorithms that 
are available to GPGPUs can be used, a combined radix and 
merge sort is suggested as the triples are already partially sorted 
within blocks due to the vertex sequences. After sorting, all x 
coordinates of intersection points are contiguous for a particular 
scan line within a particular polygon which is exactly what we 
want as the starting point for subsequent rasterization and 
quadtree construction. We note that a few efficient sorting 
implementations are already available in CUDA [25][26].  
7 CONCLUSION AND FUTURE WORK 

 In this paper, we have discussed a GPGPU 
accelerated software rasterization framework to rasterize and 
index large scale polygons. We have provided a GPGPU based 
design and implementation of computing intersection points 
which is the most expensive part of the classic scan-line fill 
algorithms. Experiments show that our implementation can 
achieve about 20X speedup for groups of polygons with vertices 
between 64 and 1024 using the birds species distribution data in 
the West Hemisphere that has about 3/4 million of polygons and 
more than 78 millions of vertices.  We also have provided some 
design discussions on extending the current implementation to 
support polygons with arbitrarily large numbers of vertices by 
extensively using efficient sorting under different scenarios. 
Besides the preliminary GPGPU implementation of the scan line 
fill algorithms for real world geospatial polygons, we have also 
developed a profile quadtree that can be used to analyze and 
visualize spatial distributions of computation intensities in the 
context of computing the intersections of polygon edges and 
scan lines. The profile quadtree has also been used to guide 
select different polygon groups for experimenting the GPGPU 
software rasterization implementation.  

The work reported in this paper is preliminary in 
nature as several important components in realizing a 
dynamically integrated vector-raster data model for high-
performance geospatial analysis on GPGPUs are still currently 
under development. They certainly are the priorities on our 
future work list. First, as discussed in Section 6.4, we would like 
to extend our current implementation to support large polygons 
with arbitrary numbers of vertices. Second, we plan to 
implement the rasterization and quadtree construction based on 
the GPGPU derived triples. We keep it open on whether the 
final rasterization and quadtree construction step should be done 
on CPUs or GPUs. Third, once the fist two steps are completed, 
we plan to perform a comprehensive performance comparison 
with that of commercial spatial database indexing, such as 
Microsoft SQL Server Spatial [1], to demonstrate the benefits of 
parallel computing of large-scale polygonal geospatial data. 
Finally, we plan to develop indexing, query processing and 
spatial analysis engines based on the GPGPU codebase and 
integrate these backend engines with existing front modules in 
spatial databases, such as SQL parser and query optimizer, to 
provide an end-to-end, GPU accelerated, high-performance 
spatial database system.    
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