
3

Towards Personal High-Performance Geospatial Computing (HPC-G): Perspectives
and a Case Study

Jianting Zhang
Department of Computer Science

City College of New York
New York City, NY, 10031
jzhang@cs.ccny.cuny.edu

ABSTRACT
Cluster computing, Cloud computing and GPU computing play
overlapping and complementary roles in parallel processing of
geospatial data within the general HPC framework. The fast
increasing hardware capacities of modern personal computers
equipped with chip multiprocessor CPUs and massively parallel
GPUs have made high performance computing of large-scale
geospatial data in a personal computing environment possible.
We discuss the framework of Personal HPC-G and compare it
with traditional Cluster computing and the newly emerging Cloud
computing. We consider Personal HPC-G possesses many
favorable features: low initial and operational costs, good support
for data management and excellent support for both numeric
modeling and interactive visualization. A case study on
developing a parallel spatial statistics module for visual
explorations on top of Personal HPC-G is subsequently presented.

1. INTRODUCTION
 High-Performance Computing (HPC) is an important

component of Geospatial Cyberinfrastructure (GCI) and is critical
to large-scale geospatial data processing and problem solving
[1][2]. While traditionally HPC mostly refers to parallel numerical
calculations on supercomputers equipped with specially designed
hardware and software (such as vector processing, optimized
memory hierarchy and parallel file system), modern HPC
architectures increasingly rely on commodity hardware and
software to achieve a high cost-effectiveness ratio. As a result,
more and more cluster computers are appearing in the Top500’s
list of fastest computers [3]. Many institutions and departments
now own cluster computers of different sizes. Accessibility of
HPC resources to general researchers has been significantly
increased over the past few years. The recently emerging Cloud
Computing [4] makes HPC resources “rentable” which opens
tremendous opportunities for general users to speed up their
computing intensive tasks and enable solving large-scale
problems, including geospatial data processing.

While simultaneously accessing multiple Web-GIS
services can be viewed as a single-step parallel processing,
speeding up geospatial data processing on HPC facilities based on
fine-grained parallel computing paradigms is still a significant
research challenge. As discussed in [5], research on parallel
processing of geospatial data has very little impact on mainstream
geospatial data processing applications prior to 2003 despite
archived research efforts in designated journal special issues and
books [6][7]. Creating parallel GIS operations is non-trivial and
there is a lack of parallel GIS algorithms, application libraries and

toolkit [5]. Fortunately, in recent years, the increasingly available
computer clusters and Cloud computing resources have spawned
quite a few pioneering studies on HPC-G, such as spatial statistics
[8][9], hyperspectral image processing [10], LIDAR data
processing[11], extracting drainage networks [12] and agent-
based modeling [13][14], in addition to experimenting with
parallelized environmental models [15].

In parallel with the development of large-scale cluster-
based computing technologies (or Cluster computing for short),
Graphics Processing Unit (GPU) computing represents a quite
different type of parallel computing paradigm. Originally
designed as an accelerator to CPU, a modern GPU device has
multiple identical processors to speed up 2D and 3D graphics
rendering by adopting the Single-Instruction Multiple-Data
(SIMD) architecture and rendering screen pixels independently.
The concept of General Purpose GPU (GPGPU) turns the massive
floating-point computational power of a modern graphics
accelerator's graphics-specific pipeline into general-purpose
computing power [16]. GPU devices are becoming more powerful
yet affordable due to massive demands from game and
entertainment industries. As an example, an Nvidia Fermi-based
GeForce GTX480 GPU device has 480 cores with a peak
performance of 1.35T flops [17] and is now available from market
for $500. As many reasonably current desktop computers have
already equipped with GPGPU enabled graphics cards, GPGPU
based processing of geospatial data can improve system
performance significantly without additional costs. GPGPU have
gained considerable interests in many scientific research areas in
the past few years [18][19].

We believe that Cluster computing, Cloud computing
and GPU computing play overlapping and complementary roles in
parallel processing of geospatial data within the general HPC
framework. Different from traditional HPC applications that
mostly run in a batch mode on shared resources, GPU computing
provides a personal computing environment on desktop computers
which is attractive to certain types of applications and groups of
users. Parallel computing of geospatial data on GPGPU devices is
ideal for visual and interactive applications, in a way similar to
computer graphics applications. While Cloud computing is closely
related to Cluster computing and other traditional HPC from a
technological perspective, GPU computing is less familiar to the
geospatial community. In this paper, we provide an introduction
to GPU computing after discussing a few issues related to HPC on
geospatial data. We outline a few perspectives on integrating
GPGPU technologies with modern multiprocessor technologies
for parallel geospatial data processing in a personal computing
environment and term the new framework as Personal HPC-G.
We also present a case study on parallelizing Geographically
Weighted Regression (GWR) on GPUs at the conceptual level to
exemplify how the proposed Personal HPC-G framework can be
realized.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee.
ACM HPDGIS’10, November 2, 2010, San Jose, CA, USA.
Copyright 2010 ACM ISBN 978-1-4503-0432-0/10/11...$10.00.

4

2. GEOSPATIAL DATA, GIS, SPATIAL
DATABASES AND HPC

 2.1 Geospatial data: what’s special?
 The differences between geospatial data and relational

data from data modeling perspective are well understood. Our
focus in this subsection is to address how geospatial data partition
affects the throughputs of parallel geospatial data processing. It is
well known that the slowest processing unit determines the overall
performance in parallel computing and it is best to evenly
distribute workloads to multiple units as much as possible.
Unfortunately, real world data very often are skewed. As an
example, 70% of the Earth is covered by oceans and they are
often excluded from terrestrial pattern analysis and modeling. In
many geospatial computing, e.g., window query and spatial
interpolation, the number of data items within the neighborhood
of a focal data item can grow with the degree of data skewness
superlinearly. As such, the computing intensity can grow at least
quadratically with the skewness in the densest area when an even
space decomposition approach is adopted. Subsequently the
overall parallel performance degrades at least quadratically with
the skewness.

Techniques to handle skewness can generally be
classified into two categories: data decomposition and task
scheduling. Data decomposition techniques partition the data
items into groups so that the computing workloads among all the
groups are balanced. For example, dividing a set of points or
raster cells into equal-sized groups will achieve workload
balancing easily when only local operations are involved, e.g.,
increasing the Z value of the points by a certain amount. However,
such simple decomposition may not work for focal, zonal or
global operations as discussed above and a more sophisticated
decomposition approach is needed to achieve workload balancing.
Task scheduling techniques find an optimal task execution
schedule to maximize parallel throughputs among a set of
submitted tasks. As an example, while the simple equal-sized
decomposition approach discussed above alone will not achieve
workload balancing, when the computing workloads for the
groups are submitted as individual tasks, it is possible to combine
long-run tasks with short-run tasks and achieve workload
balancing. In the simplest form, the computing task associated
with each data item can be treated as a task and let the scheduling
middleware (e.g., Condor [20]) to achieve workload balancing.
While task scheduling techniques seem attractive as finding a
good data decomposition scheme is usually difficult, we note that
the complexities of task scheduling grow fast with the number of
tasks and generic scheduling heuristics may not always produce
good results [21]. The tasks, when running in parallel but poorly
coordinated, can potentially compete intensively for shared
resources, such as network bandwidth, disk I/Os, memory
accesses, cache lines and registers, which can potentially
decreases the parallelism among the tasks. As a result, normalized
speedups usually decrease as the number of computing nodes
increases in many Cluster computing applications, as reported in
[8][13][14][15] among others.

2.2 GIS: impacts of hardware architectures
Traditionally geospatial data are managed and processed

by Geographical Information Systems (GIS). GIS have been
evolving along with mainstream information technologies.
Examples are major platform shift from Unix workstations to
Windows PCs in the early 1990s and the marriage with Web

technologies to create Web-GIS in the late 1990s. Both desktop
GIS and Web-GIS are now mature technologies and a large
number of commercial and open source GIS exist and are ready to
be applied to a variety of applications [22]. However, most of
them are based on uniprocessor computer architecture and their
performance is limited by the processing power of a uniprocessor
(although multithreading technologies may have been
incorporated in a few advanced products). While enterprise GIS
products support multi-tasking and load balancing at the process
level to a certain extent, usually they do not support fine-grained
parallel computing that can be scaled up to a large number of
processors for large-scale data and computing. As observed in [5],
lacking software and tool support in GIS may have played a key
role in discouraging geospatial applications to embrace HPC
technologies. As the computing power increase for uniprocessors
is coming to an end and modern computing architectures are
shifting towards multiprocessors [23], it becomes urgent for GIS
to integrate HPC technologies in order to efficiently process
increasingly large volumes of geospatial data.

We consider GIS have three major roles, i.e., data
management, information visualization and modeling support.
Among these roles, GIS-based spatial modeling, such as agent
based modeling, is naturally suitable for HPC for a couple of
reasons. First, spatial models usually are computational intensive
and require HPC resources to speed up computing. Second, many
spatially explicit models and remote sensing data processing
algorithms adopt a raster tessellation and mostly involve local
operations and/or focal operations with small constant numbers of
neighbors. These models are very parallelization-friendly or even
“Embarrassingly parallel” [24]. Third, spatial models are mostly
run in an offline mode and do not require significant user
interactions. The outputs can be downloaded to local storage and
be visualized in a desktop GIS environment. Loose integration of
HPC and GIS do not require fundamental architecture changes of
current GIS in this case. While outsourcing local and some focal
GIS operations to HPC is certainly valuable, we consider it
technically more challenging to parallelize complex raster and
vector operations in GIS.

2.3 Spatial Database: parallel DB or
MapReduce?

The data management functionality of GIS is
increasingly relying on spatial databases backend. For example,
the concept of Geodatabases plays a central role in ESRI’s
ArcGIS product line. PostGIS is essentially a plug-in module of
PostgreSQL database. In addition, some Web-GIS (such as
MapServer) connect with databases directly and use spatial
databases to perform certain spatial operations without requiring a
traditional GIS server. In the database community, while the
importance of managing geographical and other spatial data has
been recognized, it was not until the object-relational data model
was widely adopted in the mid to late 1990s that major database
systems began to support spatial data. Major commercial
databases, such as Oracle, DB2 and SQL Server, now have
modules to support spatial data. Indeed, Oracle claimed itself as
“a GIS without GUI” [25]. Unfortunately, compared with physics-
based numeric modeling communities, the database industry
seems to be slow in adopting parallel computing. Despite the
existence of commercially available parallel databases (see [26]
for a brief overview), they are highly-priced and are largely
inaccessible to general users. Furthermore, these parallel database
systems/extensions are mostly designed for relational data and

5

may not be applicable to geospatial data. Although some
databases have both spatial and parallel modules, it is unlikely
that they can be integrated to process large-scale geospatial data
easily.

Parallel processing of geospatial data to achieve high
performance is not a completely new concept and quite a few
early works on parallel spatial data structures [27][28], spatial join
[29][30], poylgonalization [31][32] and spatial clustering [33]
have been reported. Unfortunately, very few of these early works
have been incorporated into commercial or open source spatial
databases. On the other hand, the increasing availabilities of
Cluster and Cloud computing facilities and the MapReduce
parallel computing framework [34] have motivated considerable
research interests in applying MapReduce style computing
abstractions to large-scale data processing. Cary et al [35]
reported their experiences on processing spatial data with
MapReduce using Google and IBM cluster and Hadoop [36].
Their experiments include R-Tree construction on point data and
image tile quality computation. Another related work on
developing a parallel algorithm to identify clusters from spatial
data on shared-nothing Cloud computing resources is reported in
[37] and a related work on handling skewness is reported in [38].
Comparisons between parallel database based and MapReduce
based approaches to large scale data analysis have been reported
[26][39]. Hybrid approaches have also been proposed [40][41].
Given that neither parallel databases nor MapReduce has been
extensively applied to practical large-scale geospatial data
management, the community is free to adopt either approach. We
thus call for pilot studies in experimenting the two approaches to
provide insights for future synthesis.
2.4 HPC: many options

Compared with software, hardware changes are more
prominent with respect to high-performance computing in the past
few years. While the combination of architectural and
organizational enhancements lead to 16 years of sustained growth
in performance at an annual rate of 50% from 1986 to 2002, due
to the combined power, memory and instruction-level parallelism
problem, the growth rate has dropped to about 20% per year from
2002 to 2006 ([23], pp.3). Indeed, in 2004, Intel cancelled its
high-performance uniprocessor projects and joined IBM and Sun
to declare that the road to higher performance would be via
multiple processors per chip (or Chip Multiprocessors, CMP)
rather than via faster uniprocessors. Another prominent hardware
breakthrough is the proliferation of GPU devices and the
emergence of GPGPU computing [16].

While more details will be provided in the next section,
many GPU devices now have floating computing power ranges
from a few tens of GFlops to more than a TFlops, a level that only
reached by supercomputers not many years ago. The GPGPU
computing technologies allows utilizing GPU devices for general
computing purposes although neither translating serial code or
CPU-based parallel code nor developing GPGPU code from
scratch is trivial. The new CMP and GPU accelerator architectures
have significant impacts on Cluster computing (and possibly
Cloud computing in the near future) as well. Although traditional
computing nodes in a cluster computer are based on uniprocessor
architecture, it is now necessary to fully utilize the multiple-cores
on multiple CPUs available at individual computing nodes to
improve Cluster computing performance. Also, as more and more
GPU devices are attached to computing nodes, there are

significant technical challenges to coordinate CPU and GPU cores
to achieve maximum performance [43].

We next briefly compare four major existing parallel
computing frameworks: CPU multi-cores (CPU-MC), GPU many-
cores (GPU-MC), multiple CPU computing nodes (CPU-MN) and
multiple CPU+GPU computing nodes (CPU+GPU-MN). While
existing APIs and middleware packages, e.g., pthread/OpenMP
for CPU-MC and MPI/Condor for CPU-MN, have been
extensively tested, GPU-MC and CPU+GPU-MN based parallel
computing are still young. Despite the differences in mapping
analytical tasks and data blocks to computing units for parallel
processing, workload balancing plays a key role in achieving
high-throughputs. Compared with Cluster computing that usually
has dedicated high-speed interconnections (e.g., Infiniband)
among tightly coupled computing nodes (e.g., within a private
local area network), Cloud computing usually utilizes public
Internet to communicate among distributed nodes in different data
centers which can be significant slower. Also the Cloud
computing nodes may be less powerful than these of Cluster
computing with respect to processor clock rate, memory capacity
and disk I/O speed. According to [4], the bandwidth among
Amazon EC2 computing nodes is 50±2MB/s, which is
significantly lower than similar experiment results in a Cluster
computing environment [42]. It is interesting to observe that many
applications running on Cloud computing facilities adopt the
coarse-grained MapReduce parallel computing framework (e.g.,
Hadoop) while a large portion of applications running on Cluster
computing facilities adopt fine-grained message-passing parallel
computing frameworks (e.g., MPI), although technically it is
possible to run both Hadoop and MPI-based applications on
Cluster and Cloud computing facilities. In addition to historical
reasons, it is possible that the bursty nature of the Internet based
communications may make precise synchronizations that are often
required by MPI-based applications difficult and less efficient in
practice. While using distributed file system, such as HDFS in
Hadoop, provides excellent fault tolerance and improves
scalability, making intermediate results persistent on distributed
hard disks can be costly due to the expensive disk I/Os (typically
only 100-200MB/s). On the other hand, as users have full control
of rented Could computing facilities, it is much easier for them to
build specific software stacks for their applications which has
certain advantages over Cluster computing facilities that usually
have strict security and access control policies.

Since the current generation GPUs have hundreds of
cores and the numbers are comparable to the numbers of
computing nodes/processors used in Cluster/Cloud computing
applications, it is also interesting to compare Cluster/Cloud
computing with GPU computing. As a marketing strategy, Nvidia
calls a personal computer equipped with one or more of its high-
end GPGPU cards as a personal supercomputer. Nvidia claimed
that when compared to the latest quad-core CPU, Tesla 20-series
GPU computing processors deliver equivalent performance at
1/20th of power consumption and 1/10th of cost. While the
comparison made by Nvidia focused on floating point computing,
for data intensive applications, GPU computing also has some
attractive features. The most prominent one might be the high
bandwidth (in the order of tens to hundreds of GB/s) between
GPU device memory and processing cores when compared with
the speeds of networks connecting shared-nothing computing
nodes in a Cluster/Cloud computing environment (in the order of
tens to hundreds of MB/s as discussed above). Although the data
transfer rate between CPU and many GPU devices is currently

6

limited by PCI-Express (8GB/s), when fully utilized, GPU
computing can achieve high performance for data intensive
applications.

3 PERSONAL HPC-G: A NEW
FRAMEWORK

While some geospatial data processing tasks are
computationally intensive, many more are data intensive in nature.
In addition, some tasks may not have sufficient degrees of
parallelism that can be deployed into a large number of processors.
As discussed above, visualization and interaction are
indispensable in geospatial data processing which renders a pure
Cluster or Cloud computing approach inadequate in many cases,
in addition to ownership costs (Cluster computing) or operational
costs (Cloud computing) considerations. Given the fast increasing
computing power provided by multi-core CPUs and many-core
GPUs, we believe that the parallel computing power provided by
the combined CPU and GPU hardware capabilities and facilitated
by novel data structures and parallel algorithms have the potential
to improve computing performance by one or two orders or even
more, when compared to current GIS running on uniprocessors.
The improved performance will not only solve old problems faster
but also allow many traditionally offline data processing tasks run
online in an interactive manner. The uninterrupted exploration
processes are likely to facilitate novel scientific discoveries more
effectively.

3.1 Why Personal HPC for geospatial data?
Table 1 lists high-level comparisons among Cluster,

Cloud and Personal high-performance computing. Unlike
Cluster/Cloud computing that can use any number of processors
in theory, the maximum number of CPU cores that can be
attached to a personal computer and the number of GPU cores per
device/host are limited by manufacture product lines. This is the
primary reason that we give “high” for scalability to
Cluster/Cloud computing while give “medium” to Personal HPC
from a theoretical perspective. However, we note that the numbers
of CPU and GPU cores are growing fast every year [23][44]. On
the other hand, very few Cluster/Cloud computing applications
use more than a thousand computing nodes based on published
sources while GPU devices already have 500+ cores. In
Cluster/Cloud computing, normalized speedups can decrease
significantly when the numbers of processors go beyond a
threshold [8][13][14]15], possibly due to the combined factors of
communication/scheduling overheads, workload imbalances and
contention of shared resources. From a practical perspective,
Personal HPC can have better scalability with the help from
convenient debug and performance tuning tools. From an end-user
perspective, we rate the required new software development
efforts for Cloud computing as “Low” due to the wide availability
of commercial software supports while Cluster computing and
Personal HPC largely reply on individual and community
development efforts at present. Compared to Cluster computing,
personal HPC is fairly new and requires significant software
development efforts especially when considering that existing
CPU serial/parallel codebases need to be refactored for GPUs.

The combined advantages of low costs
(initial+operational), good support for data management and
excellent support for both numeric modeling and interactive
visualization make Personal HPC an ideal candidate for HPC-G
for a variety types of problems. As modern PCs have adopted
Chip Multiprocessor (CMP) architectures, there are increasing

supports from both industry and open source community. In
addition to pthread, OpenMP is also supported by Intel and
Microsoft compilers. Compared to parallel programming on CPUs
(e.g. pthread, OpenMP and MPI), GPGPU computing
technologies are less known to the geospatial community. As such,
we next provide a brief introduction to GPGPU computing.

Table 1 High-Level Comparisons among Cluster
Computing, Cloud Computing and Personal HPC

 Cluster
Computing

Cloud
Computing

Personal
HPC

Initial cost High Low Low
Operational cost High Medium Low
End user control Low High High

Theoretical scalability High High Medium
User code development Medium Low High

Data management Low Medium Medium
Numeric modeling High Medium High

Interaction & visualization Low Low High

3.2 GPGPU Computing: a brief introduction
As many reasonably current desktop computers have

already equipped with GPGPU enabled graphics cards, GPGPU
based processing of geospatial data can improve system
performance significantly without additional costs. Despite the
differences among the GPGPU enabled devices and development
platforms, a GPGPU device can be viewed as a parallel Single
Instruction Multiple Data (SIMD) machine [16]. Although we will
be mainly focusing on Nvidia’s Compute Unified Device
Architecture (CUDA, [16]) enabled GPUs due to its popularity,
we argue that the data structures and parallel algorithms
developed for CUDA-enabled GPUs can be adapted to other types
of GPUs, such as AMD/ATI Stream programming enabled ones.

While different models of Nvidia GPU cards have
different architectures, CUDA-enabled GPU devices are
organized into a set of Stream Multiprocessors (SMs). Each SM
has a certain number of computing cores. All the cores in a SM
share a certain amount of fast memory called shared memory and
all the SMs have access to a large pool of global memory on the
device. According to CUDA, developers write a special C-like
code segments called kernels. The kernels are invoked by the
companioning CPU code to run on GPU devices. The kernel code
does not allow dynamic memory allocation and recursion which
imposes significant technical challenges for many geospatial data
processing applications that rely on these techniques, including
tree indices constructions. CUDA based GPGPU programming
makes it easier for task and data decomposition and subsequent
parallel computing. Basically a developer specifies the sizes of the
layout of the data to be processed in the units of data blocks and
the number of threads to be launched inside a computing block.
The GPU device is responsible for mapping the data blocks to the
computing blocks through space and time multiplexing which is
transparent to developers/users. Since each SM has limited
hardware resources, such as the number of registers, shared
memory and thread scheduling slots, a SM can accommodate only
a certain number of computing blocks subjected to the
combination of the constraints. Carefully selecting block sizes
allows a SM to accommodate more blocks simultaneously and
improve parallel throughputs. The memory hierarchy and
processor layout is shown in the top-left part of Fig. 1.

7

3.3 Pipelining CPU and GPU workloads for
performance

Compared with Cluster and Cloud computing facilities,
the hardware capabilities of a personal computer are limited. To
achieve the desired high-performance, it is crucial to fully utilize
hardware capabilities of both CPU and GPU. We note that
multiple GPU devices can be attached to a computer through the
PCI-E interface to further enhance the theoretical peak computing
power when necessary. To facilitate discussions, the following
simplifications are assumed (1) CPU cores on different chipsets
are flatted and are treated as symmetric units. For example, a dual
quad-core machine will be considered as having eight identical
CPU cores. (2) Only a single Nvidia Fermi based GPU device is
attached to the machine.

Given a geospatial dataset D and a processing task T,
the following high-level steps are suggested to coordinate CPU
and GPU to achieve high performance. First, analyze the dataset
and the nature of the processing task. Second, decompose the task
into subtasks and identify data subsets that are associated with the
subtasks. A m:n relationship should be assumed between the
subtasks and sub datasets for generality. The subtasks can be
classified into each of the three categories: data management,
numeric modeling and interactive visualization as discussed
previously. Third, for each subtask, determines whether they are

suitable to be carried out on CPU, GPU or their combinations. An
important factor to consider is the parallelizability of relevant data
structures and algorithms. For those involve dynamic memory
allocations, recursive function calls or are mostly bit/integer
operations, they should be left for CPU executions. Similarly, for
those that mostly involve floating point computations, they are
ideal for GPU executions. For subtasks that do not exhibit
sufficient parallelism, they should be left for CPU executions in
principle.

It is beyond the scope of this paper to provide detailed
scheduling algorithms to assign tasks to CPU and GPU and
coordinate their executions. There are significant technical
challenges in the respective areas. Instead, we provide an example
to show the basic idea of pipelining CPUs and GPUs in Fig. 1.
Assuming the task is to build a quadtree for a global raster dataset.
As the 70% of the Earth surface is covered by ocean, many top
level quadrants will have small percentages of cells with valid
data. By assigning quadrants with dense valid cells to GPU and
quadrants with sparse valid cells to CPUs, a reasonable load
balancing may be achieved. While GPU cores and some of CPU
cores are generating statistics necessary for quadrants in
constructing the quadtree, some CPU cores can combine the
derived subtrees into the final quadtree. The subtree generation
and combination processes can be pipelined naturally.

Fig.1 Pipelining CPU and GPU for Indexing of Global Raster Geospatial Data

3.4 Parallel GIS prototype development
strategies

Most existing HPC-G applications on Cluster
computing facilities targeted at specific applications. We are not
aware of the existence of a comprehensive parallel GIS that is
functionally comparable with current GIS running on
uniprocessors. We envision that Personal HPC-G provides an
opportunity to evolve traditional GIS to parallel GIS gradually.
Community research and development efforts are needed to speed
up the evolution. We first propose to learn from existing parallel
geospatial data processing algorithms and adapt them to CMP
CPU and GPU architectures. Second, we suggest study existing
GIS modules (e.g., ArcGIS geoprocessing tools) carefully,
identify most frequently used ones and develop parallel code for
multicore CPUs and many-core GPUs, ideally in an interoperable

way. Open source GIS software [22] can play an important role
in the process. Third, while exiting database research on CMP
CPU [45][46] and GPU [47][48] architectures are still relatively
limited, they can be the starting point to investigate how
geospatial data management (e.g., indexing and query processing)
can be realized on the new architectures and their hybridization.
Finally, we note that the Computer Graphics community has
developed considerable spatial data structures (e.g., kd-tree and
octree) and algorithms (e.g., iso-surface generation and ray-
tracing) based on GPGPU computing technologies and they can
be incorporated into parallel GIS. Similarly, progresses in
image/signal processing and computer vision communities can
also be incorporated. We note that, as CMP CPU and GPGPU
based computing are fairly new, many source codes associated
with research publications are available from the research
communities, e.g., hundreds of modules published in Nvidia

CPU0 CPU1 CPU2 CPU3

Global memory

L1
L2
L3

SM1 SM2 … SMn
Shared/
L1

Device Memory

L2

32 Cores
per SM

GPU Accelerator

A A B B B B C C C C

R A B C A B B B C C C………………

CPU HOST

8

CUDA website [49]. They can be valuable for parallel GIS
development. We also note that a few companies, such as
Manifold [50] and Azavea [51], are exploring GPGPU
technologies for their products. Although they tend to target at the
parallelizing local and some focal operations that are relatively
easy to parallelize as discussed before, their experiences in
providing commercial products and services can be valuable in
eventually building a highly functional parallel GIS.

4 A CASE STUDY: GEOGRAPHICALLY
WEIGHTED REGRESSION

To demonstrate how Personal HPC-G can be utilized to
realize parallel GIS modules, we have chosen to develop a
popular GIS module called Geographically Weighted Regression
(GWR) on Nvidia CUDA enabled GPU device and use it as a case
study. We note that the techniques to be introduced in this case
study, such as group-based data decomposition and partial
computation, can be applied to many other geospatial data
processing tasks, including spatial window queries and a variety
types of local spatial statistics.

GWR extends the traditional regression framework by
allowing local parameters to be estimated [52]. Given a
neighborhood definition (or Bandwidth) of a data item, a
traditional regression can be applied to data items that fall into the
neighborhood or region. In the simplest form, when only one
independent variable is involved, each data item will obtain a
correlation coefficient between the dependent and independent
variables. The correlation coefficients for all the geo-referenced
data items (raster cells or points) form a scalar field that can be
visualized and interactively explored [53][54][55]. By
interactively changing some GWR parameters (e.g., bandwidth)
and visual exploring the changes of the corresponding scalar
fields, users can have better understanding of the distributions of
GWR statistics and the original dataset. Unfortunately, GWR is

usually very computationally intensive and is not suitable for
interactive visual explorations of large datasets on uniprocessors.

The inherent parallelism of GWR has motivated
research in parallel implementations. The work reported in [9]
provides an implementation in a shared-nothing grid/cluster
computing environment by splitting the computing task to
multiple processors with each processor handles a single data item
at a time. One disadvantage of the approach is that each processor
requires a copy of the whole dataset to compute the distances
between the focal data item assigned to a processor and all the
other data items. While the approach can tolerate heterogeneity of
the computing processor configurations, it does not utilize search
window effectively in limiting unnecessary computation and
achieving high throughputs. We consider GWR suitable for
massively parallel GPU computing due to GPU floating point
computing power and the high memory bandwidth on GPU
devices compared with network bandwidths among cluster
computing nodes. Furthermore, Nvidia GPU devices have per-SM
fast memory that can be shard among all the threads in a thread
block. The shared per-SM fast memory and global memory can
significant improve throughputs by hiding memory access latency
while keeping floating point processing units fully utilized. While
no direct comparison results will be reported in this study due to
the early stage of the work and the focus of the paper, we next
explain how skewed /clustered geospatial data can be decomposed
to achieve workload balancing and compute GWR statistics
efficiently on GPUs. The approach has the following steps: (1)
Indexing geographical data using a proper quadtree data structure.
(2) For each data item, compute the data items that fall within a
search window definition (or bandwidth). (3) For a selected
independent and dependent variable pairs, compute the desired
statistic indicator (z) for each data item at (x, y). We have
designed and implemented a GPGUP-based quadtree construction
algorithm [56] and we will be focusing on Step 2 and Step 3 next.

Fig. 2 Illustration of Group-Based Data Decomposition and Computing Partial Statistics (Best viewed in color)
As shown in Fig. 2 (top), the number of descendents of

all the quadtree nodes can be computed by post-order traversal of
the tree. Assuming that each processing unit can accommodate K
data items, by recursively pre-order traversal of the tree, the
quadtree nodes that satisfy the following two conditions can be

identified: (1) the number of descendents of its parent node is
greater than K (2) the number of descendents of at least one of its
child nodes is less than K. For each of the identified node during
the traversal, determine an assignment scheme to divide its child
nodes whose numbers of descendents are less than K into groups

9

where each group has less than K descendents. The proposed tree
partition heuristic has a low computing overhead: only one full
traversal to compute number of decedents and a partial traversal to
locate suitable nodes for decomposition are required. For each
located node, there are only 15 possible combinations for four
quadrants. Some may not be desirable and can be discarded. The
low computing overhead makes it suitable for online data
decomposition.

Assuming the search window in GWR has a size of
(w,h), then each data item at location (x,y) needs to find data
items that fall within a window of (x-w,y-h,x+w,x+h) to compute
a GWR coefficient. An extended tile-based approach using the
data decomposition scheme discussed above is proposed to fully
utilize GPU computing power. The solution is to use the data item
groups identified above as the following (bottom-right part of Fig.
2 – best viewed in color). For each group, its bounding box (x1,
y1, x2, y2) can be easily computed. The groups whose bounding
boxes intersect with rectangle (x1-w, y1-h, x2+w, y2+h) can then
be retrieved by querying the quadtree. A pair list to record the
intersection spatial relationship among the groups will be
subsequently built. In the example shown in Fig. 2, the 22 data
items (cells) are decomposed into 7 groups. Among them, 6 are
sub-trees and one is a combination of two sub-trees. The focal
group (FG) (highlighted by a red square in the bottom-middle of
Fig. 2) has three data items. Its bounding box intersects with three
groups, G1, G2 and G3, as shown in the bottom-right part of Fig.
2. By the definition of the bounding box, we know that any data
items that are within the w*h neighborhood of an item in the focal
group must belong to one or more of the intersected groups, in
addition to the focal group itself. Four group pairs for the example,
i.e., (FG, G1), (FG, G2), (FG, G3), can be derived. During GPU
parallel execution, the four pairs can be loaded to different
computing blocks and each computing block will calculate partial
statistics for all the data items in the focal group. The partial
statistics can then be added to the total statistics of respective data
items as detailed below.

Assuming the focal item (in the focal group) is Dk and
the total statistics of Dk can be computed from its neighboring
data items D1

k, D2
k, …Dn

k as S(Dk)=f(D1
k, D2

k, …Dn
k). To

compute correlation coefficient for Dk, pairs of dependent and
independent variables for D1

k, D2
k, …Dn

k are required. Assuming
they are (x1,y1), (x2,y2)…(xn,yn), respectively, f can be defined as
the following based on [57]. Note that we have removed
superscript k for notation convenience as all the discussions below
are limited to the focal data item Dk.

Let S1=nΣxiyi, S2=Σxi, S3= Σyi, S4=nΣxi

2, S5=nΣyi
2, f can be

computed from n and S1 through S5. Assuming that data items D1,
D2, …Dn

 are divided into m groups and each group has computed
their partial statistics s1, s2, s3, s4, s5, then f can easily be computed
from nj, S1j, S2j, S3j, S4j and S5j as the follows (j=1,m): n= Σnj,
S1=nΣ (S1j/nj), S2=Σ S2j, S3=Σ S3j, S4=nΣ (S4j/nj), S5=nΣ (S5j/nj).

In this particular example, there are three data items in
the focal group. While changing focal items in the focal group

will certainly change the data items that fall within the respective
focal item’s bandwidth, all these data items are completely
included in the three groups as well as the focal group itself. As
such, after loading (FG, G1), (FG, G2), (FG, G3) pairs into shared
memory from the GPU device global memory, the correlation
coefficients for the three data items in the focal group can be
computed simultaneously. In general, when N data items are
grouped into O(N/K) groups, assuming each group is paired with
mi groups, then the total number of pairs is M=Σmi. Depending on
the data distributions and search window sizes, M can vary from a
constant to O(N2). Our group based data decomposition approach
amortizes M to B computing blocks to achieve workload balance
and have a parallel computing time of O(M/B). Note that
computation within a block is in the order of K*K which is a
constant. The effective parallel throughput does not depend on N
directly. On the other hand, if we assign each data item to each
GPU core in a way similar to the grid/cluster computing approach
proposed in [9], the parallel computing time is in the order of
Σj(Max(Tij)) where j vary from 1 to N/B and Tij is the computing
time for data item i in round j. The problem is that even if there
are only a few data items in a dense area and have large numbers
of data items fall in their search windows, the parallel computing
time become worse, possibly in the order of O(N2) when each N/B
round has at least one bad case.

5 SUMMARY AND CONCLUSIONS
In this study, we aimed at introducing a new HPC

framework for processing geospatial data in a personal computing
environment, i.e., Personal HPC-G. Towards this end, we first
discussed different aspects of HPC that are related to geospatial
data processing, including data decomposition for workload
balancing, different roles of GIS and their respective HPC
requirements, recent progresses of processing large-scale data in
the context of database research, and, the characteristics of
different HPC frameworks and their implications to large-scale
data processing. We argue that the fast increasing hardware
capacities of modern personal computers equipped with chip
multiprocessor CPUs and massively parallel GPU devices have
low initial and operational costs, good support for data
management and excellent support for both numeric modeling and
interactive visualization. These desired features make Personal
HPC-G an attractive alternative to traditional Cluster computing
and newly emerging Cloud computing for geospatial data
processing. We used a parallel design of GWR on Nvidia CUDA
enabled GPU device as an example to discuss how Personal HPC-
G can be utilized to realize parallel GIS modules by synergistic
software and hardware co-programming.

REFERENCES
1. S. W. Wang and Y.Liu. TeraGrid GIScience Gateway: Bridging

cyberinfrastructure and GIScience. IJGIS 23(5) 631-656.
2. C. W. Yang, R. Raskin, and M. A. Goodchild. Geospatial

cyberinfrastructure: Past, present and future. Computers,
Environment and Urban Systems, 34(4):264–277, 2010.

3. TOP500 Supercomputing Sites. http://www.top500.org/
4. M. Armbrust, A. Fox, and R. A. Griffith. A view of cloud

computing. CACM, 53(4):50–58, 2010.
5. A. Clematis, M. Mineter, and R. Marciano. High performance

computing with geographical data. Parallel Computing,
29(10):1275–1279, 2003.

6. R. Healey, S. Dowers et al. Parallel Processing Algorithms for
GIS. CRC, 1997.

2

11

22

11

2

1 11

11

)()(

)1()1(

))((

∑∑∑∑

∑ ∑∑

∑∑

====

= ==

==

−−

−
=

−

−
=

−

−−
==

n

i
i

n

i
i

n

i
i

n

i
i

n

i

n

i
i

n

i
iii

yx

n

i

yx

n

i
xy

yynxxn

yxyxn

ssn

yxnxy

ssn

yyxx
rf

10

7. R. G. Healey. Special issue on parallel processing in GIS. IJGIS,
10(6):667–668, 1996.

8. S. W. Wang, M. K. Cowles and M. P. Armstrong. Grid
computing of spatial statistics: using the TeraGrid for g(i)*(d)
analysis. CC&PE, 20(14):1697–1720, 2008.

9. R. Harris, A. Singleton, et al. Grid-enabling geographically
weighted regression: A case study of participation in higher
education in England. Transactions in GIS, 14(1):43–61, 2010.

10. A. Plaza, D. Valencia et al. Commodity cluster-based parallel
processing of hyperspectral imagery. Journal of Parallel and
Distributed Computing, 66(3):345–358, 2006.

11. S. H. Han, J. Heo et al. Parallel processing method for airborne
laser scanning data using a pc cluster and a virtual grid. Sensors,
9(4):2555–2573, 2009.

12. J. Y. Gong and J. Xie. Extraction of drainage networks from
large terrain datasets using high throughput computing.
Computers Geosciences, 35(2):337–346, 2009.

13. Q. F. Guan and K. C. Clarke. A general-purpose parallel raster
processing programming library test application using a
geographic cellular automata model. IJGIS, 24(5):695–722,
2010.

14. X. Li, X. H. Zhang et al. Parallel cellular automata for large-
scale urban simulation using load-balancing techniques. IJGIS,
24(6):803–820, 2010.

15. J. B. Xie, C. W. Yang et al. High-performance computing for the
simulation of dust storms. Computers Environment and Urban
Systems, 34(4):278–290, 2010.

16. D. B. Kirk and W. Hwu. Programming Massively Parallel
Processors: A Hands-on Approach. Morgan Kaufmann, 2010.

17. Wikipedia. Nvidia GeForce 400 series specification.
http://en.wikipedia.org/wiki/GeForce_400_Series.

18. J. D. Owens, M. Houston et al. GPU computing. Proceedings of
the IEEE, 96(5):879–899, 2008.

19. J. D. Owens, D. Luebke et al. A survey of general-purpose
computation on graphics hardware. Computer Graphics Forum,
26(1):80–113, 2007.

20. Condor project. http://www.cs.wisc.edu/condor/
21. M. J. Fischer, X. Su, and Y. Yin. Assigning tasks for efficiency

in Hadoop. ACM SPAA ’10. 30–39, 2010.
22. B. Hall and M. G. Leahy. Open Source Approaches in Spatial

Data Handling. Springer, 2008.
23. J. L. Hennessy and D. A. Patterson. Computer Architecture: A

Quantitative Approach, 4th Edition. Morgan Kaufmann, 2006.
24. Wikipedia, Embarrassingly parallel.

http://en.wikipedia.org/wiki/Embarrassingly_parallel
25. R. Kothuri, A. Godfrind, and E. Beinat. Pro Oracle Spatial.

Apress, 2004.
26. A.Pavlo, E. Paulson et al. A comparison of approaches to large-

scale data analysis. SIGMOD ’09, 165–178, 2009.
27. I.Kamel and C. Faloutsos. Parallel R-trees. SIGMOD’92, 195–

204, 1992.
28. M. H. Ali, A. A. Saad, and M. A. Ismail. The PN-tree: A parallel

and distributed multidimensional index. Distributed and Parallel
Databases, 17(2):111–133, 2005.

29. X. Zhou, D. J. Abel, and D. Truffet. Data partitioning for parallel
spatial join processing. GeoInformatica, 2(2):175–204, 1998.

30. J. M. Patel and D. J. DeWitt. Clone join and shadow join: two
parallel spatial join algorithms. In ACM-GIS ’00, 54–61, 2000.

31. E. G. Hoel and H. Samet. Data-parallel polygonization. Parallel
Computing, 29(10):1381–1401, 2003.

32. M. J. Mineter. A software framework to create vector-topology
in parallel GIS operations. IJGIS, 17(3):203–222, 2003.

33. X. W. Xu, J. Jager, and H. P. Kriegel. A fast parallel clustering
algorithm for large spatial databases. Data Mining and
Knowledge Discovery, 3(3):263–290, 1999.

34. J. Dean and S. Ghemawat. MapReduce: simplified data
processing on large clusters. OSDI’04: 10–10, 2004.

35. A.Cary, Z. Sun et al. Experiences on processing spatial data with
MapReduce. SSDBM’09, 302–319, 2009.

36. Apache Hadoop http://hadoop.apache.org/.
37. Y. Kwon, D. Nunley et al. Scalable Clustering Algorithm for N-

Body Simulations in a Shared-Nothing Cluster. SSDBM’10:
132-150, 2010.

38. Y. Kwon, M. Balazinska et al. Skew-resistant parallel processing
of feature-extracting scientific user-defined functions.SoCC’10,
75–86, 2010.

39. M. Stonebraker, D. Abadi et al. MapReduce and parallel
DBMSs: friends or foes? CACM, 53(1):64–71, 2010.

40. A.Abouzied, K. Bajda et al. HadoopDB in action: building real
world applications. SIGMOD ’10, 1111–1114, 2010.

41. Y. Xu, P. Kostamaa, and L. Gao. Integrating Hadoop and
parallel DBMS. SIGMOD ’10: 969–974, 2010.

42. J. Duato, A.J. Pena et al. Modeling the CUDA Remoting
Virtualization Behaviour in High Performance Networks.
Workshop on Language, Compiler, and Architecture Support for
GPGPU, Bangalore, Jan. 2010.

43. L. Chen, O. Villa et al. Dynamic load balancing on single- and
multi-GPU systems. IEEE IPDPS’10, 2010.

44. B.Dally. The future of GPU computing.
http://www.nvidia.com/content/GTC/documents/SC09_Dally.pd
f.

45. A.Ailamaki, D. J. DeWitt et al, 1999. DBMSs on a Modern
Processor: Where Does Time Go? VLDB Conference’99, 266--
277

46. S. Manegold, M. L. Kersten, and P. Boncz. Database
architecture evolution: mammals flourished long before
dinosaurs became extinct. Proc. VLDB Endow 2(2):1648–1653,
2009.

47. B. S. He, M. Lu et al. Relational query coprocessing on graphics
processors. ACM TODS 34(4), 2009.

48. P. Bakkum and K. Skadron. Accelerating sql database operations
on a GPU with CUDA. GPGPU 2010, 94-103.

49. CUDA Community Showcase
http://www.nvidia.com/object/cuda_apps_flash_new.html

50. Manifold GIS. http://www.manifold.net
51. Azavea Labs. http://www.azavea.com/blogs/labs/
52. A.S. Fotheringham, M. E. Charlton, and C. Brunsdon.

Geographically weighted regression: a natural evolution of the
expansion method for spatial data analysis. Environment and
Planning A, 30(11):1905–1927, 1998.

53. J. Mennis. Mapping the results of geographically weighted
regression. Cartographic Journal, 43(2):171–179, 2006.

54. U. Demsar, A. S. Fotheringham, and M. Charlton. Combining
geovisual analytics with spatial statistics: the example of
geographically weighted regression. Cartographic Journal,
45(3):182–192, 2008.

55. U. Demsar, A. S. Fotheringham, and M. Charlton. Exploring the
spatio-temporal dynamics of geographical processes with
geographically weighted regression and geovisual analytics.
Information Visualization, 7(3-4):181–197, 2008.

56. J. Zhang, S. You and G. Gruenwald. Indexing Large-Scale
Raster Geospatial Data Using Massively Parallel GPGPU
Computing. To appear in ACMGIS’10.

57. Wikipedia, Correlation and dependence.
http://en.wikipedia.org/wiki/Correlation_and_dependence

