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ABSTRACT 
Cluster computing, Cloud computing and GPU computing play 
overlapping and complementary roles in parallel processing of 
geospatial data within the general HPC framework. The fast 
increasing hardware capacities of modern personal computers 
equipped with chip multiprocessor CPUs and massively parallel 
GPUs have made high performance computing of large-scale 
geospatial data in a personal computing environment possible.  
We discuss the framework of Personal HPC-G and compare it 
with traditional Cluster computing and the newly emerging Cloud 
computing. We consider Personal HPC-G possesses many 
favorable features: low initial and operational costs, good support 
for data management and excellent support for both numeric 
modeling and interactive visualization. A case study on 
developing a parallel spatial statistics module for visual 
explorations on top of Personal HPC-G is subsequently presented.  

1. INTRODUCTION 
 High-Performance Computing (HPC) is an important 

component of Geospatial Cyberinfrastructure (GCI) and is critical 
to large-scale geospatial data processing and problem solving 
[1][2]. While traditionally HPC mostly refers to parallel numerical 
calculations on supercomputers equipped with specially designed 
hardware and software (such as vector processing, optimized 
memory hierarchy and parallel file system), modern HPC 
architectures increasingly rely on commodity hardware and 
software to achieve a high cost-effectiveness ratio. As a result, 
more and more cluster computers are appearing in the Top500’s 
list of fastest computers [3]. Many institutions and departments 
now own cluster computers of different sizes. Accessibility of 
HPC resources to general researchers has been significantly 
increased over the past few years. The recently emerging Cloud 
Computing [4] makes HPC resources “rentable” which opens 
tremendous opportunities for general users to speed up their 
computing intensive tasks and enable solving large-scale 
problems, including geospatial data processing.  

While simultaneously accessing multiple Web-GIS 
services can be viewed as a single-step parallel processing, 
speeding up geospatial data processing on HPC facilities based on 
fine-grained parallel computing paradigms is still a significant 
research challenge. As discussed in [5], research on parallel 
processing of geospatial data has very little impact on mainstream 
geospatial data processing applications prior to 2003 despite 
archived research efforts in designated journal special issues and 
books [6][7]. Creating parallel GIS operations is non-trivial and 
there is a lack of parallel GIS algorithms, application libraries and 

toolkit [5]. Fortunately, in recent years, the increasingly available 
computer clusters and Cloud computing resources have spawned 
quite a few pioneering studies on HPC-G, such as spatial statistics 
[8][9], hyperspectral image processing [10], LIDAR data 
processing[11], extracting drainage networks [12] and agent-
based modeling [13][14], in addition to experimenting with 
parallelized environmental models [15].  

In parallel with the development of large-scale cluster-
based computing technologies (or Cluster computing for short), 
Graphics Processing Unit (GPU) computing represents a quite 
different type of parallel computing paradigm. Originally 
designed as an accelerator to CPU, a modern GPU device has 
multiple identical processors to speed up 2D and 3D graphics 
rendering by adopting the Single-Instruction Multiple-Data 
(SIMD) architecture and rendering screen pixels independently. 
The concept of General Purpose GPU (GPGPU) turns the massive 
floating-point computational power of a modern graphics 
accelerator's graphics-specific pipeline into general-purpose 
computing power [16]. GPU devices are becoming more powerful 
yet affordable due to massive demands from game and 
entertainment industries. As an example, an Nvidia Fermi-based 
GeForce GTX480 GPU device has 480 cores with a peak 
performance of 1.35T flops [17] and is now available from market 
for $500. As many reasonably current desktop computers have 
already equipped with GPGPU enabled graphics cards, GPGPU 
based processing of geospatial data can improve system 
performance significantly without additional costs. GPGPU have 
gained considerable interests in many scientific research areas in 
the past few years [18][19].  

We believe that Cluster computing, Cloud computing 
and GPU computing play overlapping and complementary roles in 
parallel processing of geospatial data within the general HPC 
framework. Different from traditional HPC applications that 
mostly run in a batch mode on shared resources, GPU computing 
provides a personal computing environment on desktop computers 
which is attractive to certain types of applications and groups of 
users. Parallel computing of geospatial data on GPGPU devices is 
ideal for visual and interactive applications, in a way similar to 
computer graphics applications. While Cloud computing is closely 
related to Cluster computing and other traditional HPC from a 
technological perspective, GPU computing is less familiar to the 
geospatial community. In this paper, we provide an introduction 
to GPU computing after discussing a few issues related to HPC on 
geospatial data. We outline a few perspectives on integrating 
GPGPU technologies with modern multiprocessor technologies 
for parallel geospatial data processing in a personal computing 
environment and term the new framework as Personal HPC-G. 
We also present a case study on parallelizing Geographically 
Weighted Regression (GWR) on GPUs at the conceptual level to 
exemplify how the proposed Personal HPC-G framework can be 
realized. 
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2.  GEOSPATIAL DATA, GIS, SPATIAL 
DATABASES AND HPC 

 2.1 Geospatial data: what’s special? 
 The differences between geospatial data and relational 

data from data modeling perspective are well understood. Our 
focus in this subsection is to address how geospatial data partition 
affects the throughputs of parallel geospatial data processing. It is 
well known that the slowest processing unit determines the overall 
performance in parallel computing and it is best to evenly 
distribute workloads to multiple units as much as possible. 
Unfortunately, real world data very often are skewed. As an 
example, 70% of the Earth is covered by oceans and they are 
often excluded from terrestrial pattern analysis and modeling. In 
many geospatial computing, e.g., window query and spatial 
interpolation, the number of data items within the neighborhood 
of a focal data item can grow with the degree of data skewness 
superlinearly. As such, the computing intensity can grow at least 
quadratically with the skewness in the densest area when an even 
space decomposition approach is adopted. Subsequently the 
overall parallel performance degrades at least quadratically with 
the skewness. 

Techniques to handle skewness can generally be 
classified into two categories: data decomposition and task 
scheduling. Data decomposition techniques partition the data 
items into groups so that the computing workloads among all the 
groups are balanced. For example, dividing a set of points or 
raster cells into equal-sized groups will achieve workload 
balancing easily when only local operations are involved, e.g., 
increasing the Z value of the points by a certain amount. However, 
such simple decomposition may not work for focal, zonal or 
global operations as discussed above and a more sophisticated 
decomposition approach is needed to achieve workload balancing. 
Task scheduling techniques find an optimal task execution 
schedule to maximize parallel throughputs among a set of 
submitted tasks. As an example, while the simple equal-sized 
decomposition approach discussed above alone will not achieve 
workload balancing, when the computing workloads for the 
groups are submitted as individual tasks, it is possible to combine 
long-run tasks with short-run tasks and achieve workload 
balancing. In the simplest form, the computing task associated 
with each data item can be treated as a task and let the scheduling 
middleware (e.g., Condor [20]) to achieve workload balancing. 
While task scheduling techniques seem attractive as finding a 
good data decomposition scheme is usually difficult, we note that 
the complexities of task scheduling grow fast with the number of 
tasks and generic scheduling heuristics may not always produce 
good results [21]. The tasks, when running in parallel but poorly 
coordinated, can potentially compete intensively for shared 
resources, such as network bandwidth, disk I/Os, memory 
accesses, cache lines and registers, which can potentially 
decreases the parallelism among the tasks. As a result, normalized 
speedups usually decrease as the number of computing nodes 
increases in many Cluster computing applications, as reported in 
[8][13][14][15] among others. 

2.2 GIS: impacts of hardware architectures  
Traditionally geospatial data are managed and processed 

by Geographical Information Systems (GIS). GIS have been 
evolving along with mainstream information technologies. 
Examples are major platform shift from Unix workstations to 
Windows PCs in the early 1990s and the marriage with Web 

technologies to create Web-GIS in the late 1990s. Both desktop 
GIS and Web-GIS are now mature technologies and a large 
number of commercial and open source GIS exist and are ready to 
be applied to a variety of applications [22]. However, most of 
them are based on uniprocessor computer architecture and their 
performance is limited by the processing power of a uniprocessor 
(although multithreading technologies may have been 
incorporated in a few advanced products). While enterprise GIS 
products support multi-tasking and load balancing at the process 
level to a certain extent, usually they do not support fine-grained 
parallel computing that can be scaled up to a large number of 
processors for large-scale data and computing. As observed in [5], 
lacking software and tool support in GIS may have played a key 
role in discouraging geospatial applications to embrace HPC 
technologies. As the computing power increase for uniprocessors 
is coming to an end and modern computing architectures are 
shifting towards multiprocessors [23], it becomes urgent for GIS 
to integrate HPC technologies in order to efficiently process 
increasingly large volumes of geospatial data.  

We consider GIS have three major roles, i.e., data 
management, information visualization and modeling support. 
Among these roles, GIS-based spatial modeling, such as agent 
based modeling, is naturally suitable for HPC for a couple of 
reasons. First, spatial models usually are computational intensive 
and require HPC resources to speed up computing. Second, many 
spatially explicit models and remote sensing data processing 
algorithms adopt a raster tessellation and mostly involve local 
operations and/or focal operations with small constant numbers of 
neighbors. These models are very parallelization-friendly or even 
“Embarrassingly parallel” [24]. Third, spatial models are mostly 
run in an offline mode and do not require significant user 
interactions. The outputs can be downloaded to local storage and 
be visualized in a desktop GIS environment. Loose integration of 
HPC and GIS do not require fundamental architecture changes of 
current GIS in this case. While outsourcing local and some focal 
GIS operations to HPC is certainly valuable, we consider it 
technically more challenging to parallelize complex raster and 
vector operations in GIS.  

2.3 Spatial Database: parallel DB or 
MapReduce? 

The data management functionality of GIS is 
increasingly relying on spatial databases backend. For example, 
the concept of Geodatabases plays a central role in ESRI’s 
ArcGIS product line. PostGIS is essentially a plug-in module of 
PostgreSQL database. In addition, some Web-GIS (such as 
MapServer) connect with databases directly and use spatial 
databases to perform certain spatial operations without requiring a 
traditional GIS server. In the database community, while the 
importance of managing geographical and other spatial data has 
been recognized, it was not until the object-relational data model 
was widely adopted in the mid to late 1990s that major database 
systems began to support spatial data. Major commercial 
databases, such as Oracle, DB2 and SQL Server, now have 
modules to support spatial data. Indeed, Oracle claimed itself as 
“a GIS without GUI” [25]. Unfortunately, compared with physics-
based numeric modeling communities, the database industry 
seems to be slow in adopting parallel computing. Despite the 
existence of commercially available parallel databases (see [26] 
for a brief overview), they are highly-priced and are largely 
inaccessible to general users. Furthermore, these parallel database 
systems/extensions are mostly designed for relational data and 
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may not be applicable to geospatial data. Although some 
databases have both spatial and parallel modules, it is unlikely 
that they can be integrated to process large-scale geospatial data 
easily.  

Parallel processing of geospatial data to achieve high 
performance is not a completely new concept and quite a few 
early works on parallel spatial data structures [27][28], spatial join 
[29][30], poylgonalization [31][32] and spatial clustering [33] 
have been reported. Unfortunately, very few of these early works 
have been incorporated into commercial or open source spatial 
databases. On the other hand, the increasing availabilities of 
Cluster and Cloud computing facilities and the MapReduce 
parallel computing framework [34] have motivated considerable 
research interests in applying MapReduce style computing 
abstractions to large-scale data processing. Cary et al [35] 
reported their experiences on processing spatial data with 
MapReduce using Google and IBM cluster and Hadoop [36]. 
Their experiments include R-Tree construction on point data and 
image tile quality computation. Another related work on 
developing a parallel algorithm to identify clusters from spatial 
data on shared-nothing Cloud computing resources is reported in 
[37] and a related work on handling skewness is reported in [38]. 
Comparisons between parallel database based and MapReduce 
based approaches to large scale data analysis have been reported 
[26][39]. Hybrid approaches have also been proposed [40][41]. 
Given that neither parallel databases nor MapReduce has been 
extensively applied to practical large-scale geospatial data 
management, the community is free to adopt either approach. We 
thus call for pilot studies in experimenting the two approaches to 
provide insights for future synthesis. 
2.4 HPC: many options 

Compared with software, hardware changes are more 
prominent with respect to high-performance computing in the past 
few years. While the combination of architectural and 
organizational enhancements lead to 16 years of sustained growth 
in performance at an annual rate of 50% from 1986 to 2002, due 
to the combined power, memory and instruction-level parallelism 
problem, the growth rate has dropped to about 20% per year from 
2002 to 2006 ([23], pp.3). Indeed, in 2004, Intel cancelled its 
high-performance uniprocessor projects and joined IBM and Sun 
to declare that the road to higher performance would be via 
multiple processors per chip (or Chip Multiprocessors, CMP) 
rather than via faster uniprocessors. Another prominent hardware 
breakthrough is the proliferation of GPU devices and the 
emergence of GPGPU computing [16].  

While more details will be provided in the next section, 
many GPU devices now have floating computing power ranges 
from a few tens of GFlops to more than a TFlops, a level that only 
reached by supercomputers not many years ago. The GPGPU 
computing technologies allows utilizing GPU devices for general 
computing purposes although neither translating serial code or 
CPU-based parallel code nor developing GPGPU code from 
scratch is trivial. The new CMP and GPU accelerator architectures 
have significant impacts on Cluster computing (and possibly 
Cloud computing in the near future) as well. Although traditional 
computing nodes in a cluster computer are based on uniprocessor 
architecture, it is now necessary to fully utilize the multiple-cores 
on multiple CPUs available at individual computing nodes to 
improve Cluster computing performance. Also, as more and more 
GPU devices are attached to computing nodes, there are 

significant technical challenges to coordinate CPU and GPU cores 
to achieve maximum performance [43].  

We next briefly compare four major existing parallel 
computing frameworks: CPU multi-cores (CPU-MC), GPU many-
cores (GPU-MC), multiple CPU computing nodes (CPU-MN) and 
multiple CPU+GPU computing nodes (CPU+GPU-MN). While 
existing APIs and middleware packages, e.g., pthread/OpenMP 
for CPU-MC and MPI/Condor for CPU-MN, have been 
extensively tested, GPU-MC and CPU+GPU-MN based parallel 
computing are still young. Despite the differences in mapping 
analytical tasks and data blocks to computing units for parallel 
processing, workload balancing plays a key role in achieving 
high-throughputs. Compared with Cluster computing that usually 
has dedicated high-speed interconnections (e.g., Infiniband) 
among tightly coupled computing nodes (e.g., within a private 
local area network), Cloud computing usually utilizes public 
Internet to communicate among distributed nodes in different data 
centers which can be significant slower. Also the Cloud 
computing nodes may be less powerful than these of Cluster 
computing with respect to processor clock rate, memory capacity 
and disk I/O speed. According to [4], the bandwidth among 
Amazon EC2 computing nodes is 50±2MB/s, which is 
significantly lower than similar experiment results in a Cluster 
computing environment [42]. It is interesting to observe that many 
applications running on Cloud computing facilities adopt the 
coarse-grained MapReduce parallel computing framework (e.g., 
Hadoop) while a large portion of applications running on Cluster 
computing facilities adopt fine-grained message-passing parallel 
computing frameworks (e.g., MPI), although technically it is 
possible to run both Hadoop and MPI-based applications on 
Cluster and Cloud computing facilities. In addition to historical 
reasons, it is possible that the bursty nature of the Internet based 
communications may make precise synchronizations that are often 
required by MPI-based applications difficult and less efficient in 
practice. While using distributed file system, such as HDFS in 
Hadoop, provides excellent fault tolerance and improves 
scalability, making intermediate results persistent on distributed 
hard disks can be costly due to the expensive disk I/Os (typically 
only 100-200MB/s). On the other hand, as users have full control 
of rented Could computing facilities, it is much easier for them to 
build specific software stacks for their applications which has 
certain advantages over Cluster computing facilities that usually 
have strict security and access control policies.  

Since the current generation GPUs have hundreds of 
cores and the numbers are comparable to the numbers of 
computing nodes/processors used in Cluster/Cloud computing 
applications, it is also interesting to compare Cluster/Cloud 
computing with GPU computing. As a marketing strategy, Nvidia 
calls a personal computer equipped with one or more of its high-
end GPGPU cards as a personal supercomputer. Nvidia claimed 
that when compared to the latest quad-core CPU, Tesla 20-series 
GPU computing processors deliver equivalent performance at 
1/20th of  power consumption and 1/10th of cost. While the 
comparison made by Nvidia focused on floating point computing, 
for data intensive applications, GPU computing also has some 
attractive features. The most prominent one might be the high 
bandwidth (in the order of tens to hundreds of GB/s) between 
GPU device memory and processing cores when compared with 
the speeds of networks connecting shared-nothing computing 
nodes in a Cluster/Cloud computing environment (in the order of 
tens to hundreds of MB/s as discussed above). Although the data 
transfer rate between CPU and many GPU devices is currently 
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limited by PCI-Express (8GB/s), when fully utilized, GPU 
computing can achieve high performance for data intensive 
applications.  

3 PERSONAL HPC-G: A NEW 
FRAMEWORK 

While some geospatial data processing tasks are 
computationally intensive, many more are data intensive in nature. 
In addition, some tasks may not have sufficient degrees of 
parallelism that can be deployed into a large number of processors. 
As discussed above, visualization and interaction are 
indispensable in geospatial data processing which renders a pure 
Cluster or Cloud computing approach inadequate in many cases, 
in addition to ownership costs (Cluster computing) or operational 
costs (Cloud computing) considerations. Given the fast increasing 
computing power provided by multi-core CPUs and many-core 
GPUs, we believe that the parallel computing power provided by 
the combined CPU and GPU hardware capabilities and facilitated 
by novel data structures and parallel algorithms have the potential 
to improve computing performance by one or two orders or even 
more, when compared to current GIS running on uniprocessors. 
The improved performance will not only solve old problems faster 
but also allow many traditionally offline data processing tasks run 
online in an interactive manner. The uninterrupted exploration 
processes are likely to facilitate novel scientific discoveries more 
effectively.  

3.1 Why Personal HPC for geospatial data?  
Table 1 lists high-level comparisons among Cluster, 

Cloud and Personal high-performance computing. Unlike 
Cluster/Cloud computing that can use any number of processors 
in theory, the maximum number of CPU cores that can be 
attached to a personal computer and the number of GPU cores per 
device/host are limited by manufacture product lines. This is the 
primary reason that we give “high” for scalability to 
Cluster/Cloud computing while give “medium” to Personal HPC 
from a theoretical perspective. However, we note that the numbers 
of CPU and GPU cores are growing fast every year [23][44]. On 
the other hand, very few Cluster/Cloud computing applications 
use more than a thousand computing nodes based on published 
sources while GPU devices already have 500+ cores. In 
Cluster/Cloud computing, normalized speedups can decrease 
significantly when the numbers of processors go beyond a 
threshold [8][13][14]15], possibly due to the combined factors of 
communication/scheduling overheads, workload imbalances and 
contention of shared resources. From a practical perspective, 
Personal HPC can have better scalability with the help from 
convenient debug and performance tuning tools. From an end-user 
perspective, we rate the required new software development 
efforts for Cloud computing as “Low” due to the wide availability 
of commercial software supports while Cluster computing and 
Personal HPC largely reply on individual and community 
development efforts at present. Compared to Cluster computing, 
personal HPC is fairly new and requires significant software 
development efforts especially when considering that existing 
CPU serial/parallel codebases need to be refactored for GPUs.  

The combined advantages of low costs 
(initial+operational), good support for data management and 
excellent support for both numeric modeling and interactive 
visualization make Personal HPC an ideal candidate for HPC-G 
for a variety types of problems. As modern PCs have adopted 
Chip Multiprocessor (CMP) architectures, there are increasing 

supports from both industry and open source community. In 
addition to pthread, OpenMP is also supported by Intel and 
Microsoft compilers. Compared to parallel programming on CPUs 
(e.g. pthread, OpenMP and MPI), GPGPU computing 
technologies are less known to the geospatial community. As such, 
we next provide a brief introduction to GPGPU computing. 

Table 1 High-Level Comparisons among Cluster 
Computing, Cloud Computing and Personal HPC 

 Cluster 
Computing 

Cloud 
Computing 

Personal 
HPC 

Initial cost High Low Low 
Operational cost High Medium Low 
End user control Low High High 

Theoretical scalability High High Medium 
User code development  Medium Low High 

Data management Low Medium Medium 
Numeric modeling High Medium High 

Interaction & visualization Low Low High 
 

3.2 GPGPU Computing: a brief introduction 
As many reasonably current desktop computers have 

already equipped with GPGPU enabled graphics cards, GPGPU 
based processing of geospatial data can improve system 
performance significantly without additional costs. Despite the 
differences among the GPGPU enabled devices and development 
platforms, a GPGPU device can be viewed as a parallel Single 
Instruction Multiple Data (SIMD) machine [16]. Although we will 
be mainly focusing on Nvidia’s Compute Unified Device 
Architecture (CUDA, [16]) enabled GPUs due to its popularity, 
we argue that the data structures and parallel algorithms 
developed for CUDA-enabled GPUs can be adapted to other types 
of GPUs, such as AMD/ATI Stream programming enabled ones.  

While different models of Nvidia GPU cards have 
different architectures, CUDA-enabled GPU devices are 
organized into a set of Stream Multiprocessors (SMs). Each SM 
has a certain number of computing cores. All the cores in a SM 
share a certain amount of fast memory called shared memory and 
all the SMs have access to a large pool of global memory on the 
device. According to CUDA, developers write a special C-like 
code segments called kernels. The kernels are invoked by the 
companioning CPU code to run on GPU devices. The kernel code 
does not allow dynamic memory allocation and recursion which 
imposes significant technical challenges for many geospatial data 
processing applications that rely on these techniques, including 
tree indices constructions. CUDA based GPGPU programming 
makes it easier for task and data decomposition and subsequent 
parallel computing. Basically a developer specifies the sizes of the 
layout of the data to be processed in the units of data blocks and 
the number of threads to be launched inside a computing block. 
The GPU device is responsible for mapping the data blocks to the 
computing blocks through space and time multiplexing which is 
transparent to developers/users. Since each SM has limited 
hardware resources, such as the number of registers, shared 
memory and thread scheduling slots, a SM can accommodate only 
a certain number of computing blocks subjected to the 
combination of the constraints. Carefully selecting block sizes 
allows a SM to accommodate more blocks simultaneously and 
improve parallel throughputs. The memory hierarchy and 
processor layout is shown in the top-left part of Fig. 1. 
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3.3 Pipelining CPU and GPU workloads for 
performance 

Compared with Cluster and Cloud computing facilities, 
the hardware capabilities of a personal computer are limited. To 
achieve the desired high-performance, it is crucial to fully utilize 
hardware capabilities of both CPU and GPU. We note that 
multiple GPU devices can be attached to a computer through the 
PCI-E interface to further enhance the theoretical peak computing 
power when necessary. To facilitate discussions, the following 
simplifications are assumed (1) CPU cores on different chipsets 
are flatted and are treated as symmetric units. For example, a dual 
quad-core machine will be considered as having eight identical 
CPU cores. (2) Only a single Nvidia Fermi based GPU device is 
attached to the machine.   

Given a geospatial dataset D and a processing task T, 
the following high-level steps are suggested to coordinate CPU 
and GPU to achieve high performance. First, analyze the dataset 
and the nature of the processing task. Second, decompose the task 
into subtasks and identify data subsets that are associated with the 
subtasks. A m:n relationship should be assumed between the 
subtasks and sub datasets for generality. The subtasks can be 
classified into each of the three categories: data management, 
numeric modeling and interactive visualization as discussed 
previously. Third, for each subtask, determines whether they are 

suitable to be carried out on CPU, GPU or their combinations. An 
important factor to consider is the parallelizability of relevant data 
structures and algorithms. For those involve dynamic memory 
allocations, recursive function calls or are mostly bit/integer 
operations, they should be left for CPU executions. Similarly, for 
those that mostly involve floating point computations, they are 
ideal for GPU executions. For subtasks that do not exhibit 
sufficient parallelism, they should be left for CPU executions in 
principle.  

It is beyond the scope of this paper to provide detailed 
scheduling algorithms to assign tasks to CPU and GPU and 
coordinate their executions. There are significant technical 
challenges in the respective areas. Instead, we provide an example 
to show the basic idea of pipelining CPUs and GPUs in Fig. 1. 
Assuming the task is to build a quadtree for a global raster dataset. 
As the 70% of the Earth surface is covered by ocean, many top 
level quadrants will have small percentages of cells with valid 
data. By assigning quadrants with dense valid cells to GPU and 
quadrants with sparse valid cells to CPUs, a reasonable load 
balancing may be achieved. While GPU cores and some of CPU 
cores are generating statistics necessary for quadrants in 
constructing the quadtree, some CPU cores can combine the 
derived subtrees into the final quadtree. The subtree generation 
and combination processes can be pipelined naturally.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

Fig.1 Pipelining CPU and GPU for Indexing of Global Raster Geospatial Data
 

3.4 Parallel GIS prototype development 
strategies  

Most existing HPC-G applications on Cluster 
computing facilities targeted at specific applications. We are not 
aware of the existence of a comprehensive parallel GIS that is 
functionally comparable with current GIS running on 
uniprocessors. We envision that Personal HPC-G provides an 
opportunity to evolve traditional GIS to parallel GIS gradually. 
Community research and development efforts are needed to speed 
up the evolution. We first propose to learn from existing parallel 
geospatial data processing algorithms and adapt them to CMP 
CPU and GPU architectures. Second, we suggest study existing 
GIS modules (e.g., ArcGIS geoprocessing tools) carefully, 
identify most frequently used ones and develop parallel code for 
multicore CPUs and many-core GPUs, ideally in an interoperable 

way.  Open source GIS software [22] can play an important role 
in the process. Third, while exiting database research on CMP 
CPU [45][46] and GPU [47][48] architectures are still relatively 
limited, they can be the starting point to investigate how 
geospatial data management (e.g., indexing and query processing) 
can be realized on the new architectures and their hybridization. 
Finally, we note that the Computer Graphics community has 
developed considerable spatial data structures (e.g., kd-tree and 
octree) and algorithms (e.g., iso-surface generation and ray-
tracing) based on GPGPU computing technologies and they can 
be incorporated into parallel GIS. Similarly, progresses in 
image/signal processing and computer vision communities can 
also be incorporated. We note that, as CMP CPU and GPGPU 
based computing are fairly new, many source codes associated 
with research publications are available from the research 
communities, e.g., hundreds of modules published in Nvidia 
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CUDA website [49]. They can be valuable for parallel GIS 
development. We also note that a few companies, such as 
Manifold [50] and Azavea [51], are exploring GPGPU 
technologies for their products. Although they tend to target at the 
parallelizing local and some focal operations that are relatively 
easy to parallelize as discussed before, their experiences in 
providing commercial products and services can be valuable in 
eventually building a highly functional parallel GIS.  

4 A CASE STUDY: GEOGRAPHICALLY 
WEIGHTED REGRESSION 

To demonstrate how Personal HPC-G can be utilized to 
realize parallel GIS modules, we have chosen to develop a 
popular GIS module called Geographically Weighted Regression 
(GWR) on Nvidia CUDA enabled GPU device and use it as a case 
study. We note that the techniques to be introduced in this case 
study, such as group-based data decomposition and partial 
computation, can be applied to many other geospatial data 
processing tasks, including spatial window queries and a variety 
types of local spatial statistics.   

GWR extends the traditional regression framework by 
allowing local parameters to be estimated [52]. Given a 
neighborhood definition (or Bandwidth) of a data item, a 
traditional regression can be applied to data items that fall into the 
neighborhood or region. In the simplest form, when only one 
independent variable is involved, each data item will obtain a 
correlation coefficient between the dependent and independent 
variables. The correlation coefficients for all the geo-referenced 
data items (raster cells or points) form a scalar field that can be 
visualized and interactively explored [53][54][55]. By 
interactively changing some GWR parameters (e.g., bandwidth) 
and visual exploring the changes of the corresponding scalar 
fields, users can have better understanding of the distributions of 
GWR statistics and the original dataset. Unfortunately, GWR is 

usually very computationally intensive and is not suitable for 
interactive visual explorations of large datasets on uniprocessors.  

The inherent parallelism of GWR has motivated 
research in parallel implementations. The work reported in [9] 
provides an implementation in a shared-nothing grid/cluster 
computing environment by splitting the computing task to 
multiple processors with each processor handles a single data item 
at a time. One disadvantage of the approach is that each processor 
requires a copy of the whole dataset to compute the distances 
between the focal data item assigned to a processor and all the 
other data items. While the approach can tolerate heterogeneity of 
the computing processor configurations, it does not utilize search 
window effectively in limiting unnecessary computation and 
achieving high throughputs. We consider GWR suitable for 
massively parallel GPU computing due to GPU floating point 
computing power and the high memory bandwidth on GPU 
devices compared with network bandwidths among cluster 
computing nodes. Furthermore, Nvidia GPU devices have per-SM 
fast memory that can be shard among all the threads in a thread 
block. The shared per-SM fast memory and global memory can 
significant improve throughputs by hiding memory access latency 
while keeping floating point processing units fully utilized. While 
no direct comparison results will be reported in this study due to 
the early stage of the work and the focus of the paper, we next 
explain how skewed /clustered geospatial data can be decomposed 
to achieve workload balancing and compute GWR statistics 
efficiently on GPUs. The approach has the following steps: (1) 
Indexing geographical data using a proper quadtree data structure. 
(2) For each data item, compute the data items that fall within a 
search window definition (or bandwidth). (3) For a selected 
independent and dependent variable pairs, compute the desired 
statistic indicator (z) for each data item at (x, y). We have 
designed and implemented a GPGUP-based quadtree construction 
algorithm [56] and we will be focusing on Step 2 and Step 3 next.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 Illustration of Group-Based Data Decomposition and Computing Partial Statistics (Best viewed in color) 
As shown in Fig. 2 (top), the number of descendents of 

all the quadtree nodes can be computed by post-order traversal of 
the tree. Assuming that each processing unit can accommodate K 
data items, by recursively pre-order traversal of the tree, the 
quadtree nodes that satisfy the following two conditions can be 

identified: (1) the number of descendents of its parent node is 
greater than K (2) the number of descendents of at least one of its 
child nodes is less than K. For each of the identified node during 
the traversal, determine an assignment scheme to divide its child 
nodes whose numbers of descendents are less than K into groups 
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where each group has less than K descendents. The proposed tree 
partition heuristic has a low computing overhead: only one full 
traversal to compute number of decedents and a partial traversal to 
locate suitable nodes for decomposition are required. For each 
located node, there are only 15 possible combinations for four 
quadrants. Some may not be desirable and can be discarded. The 
low computing overhead makes it suitable for online data 
decomposition.  

Assuming the search window in GWR has a size of 
(w,h), then each data item at location (x,y) needs to find data 
items that fall within a window of (x-w,y-h,x+w,x+h) to compute 
a GWR coefficient. An extended tile-based approach using the 
data decomposition scheme discussed above is proposed to fully 
utilize GPU computing power. The solution is to use the data item 
groups identified above as the following (bottom-right part of Fig. 
2 – best viewed in color). For each group, its bounding box (x1, 
y1, x2, y2) can be easily computed. The groups whose bounding 
boxes intersect with rectangle (x1-w, y1-h, x2+w, y2+h) can then 
be retrieved by querying the quadtree. A pair list to record the 
intersection spatial relationship among the groups will be 
subsequently built. In the example shown in Fig. 2, the 22 data 
items (cells) are decomposed into 7 groups. Among them, 6 are 
sub-trees and one is a combination of two sub-trees. The focal 
group (FG) (highlighted by a red square in the bottom-middle of 
Fig. 2) has three data items. Its bounding box intersects with three 
groups, G1, G2 and G3, as shown in the bottom-right part of Fig. 
2.  By the definition of the bounding box, we know that any data 
items that are within the w*h neighborhood of an item in the focal 
group must belong to one or more of the intersected groups, in 
addition to the focal group itself. Four group pairs for the example, 
i.e., (FG, G1), (FG, G2), (FG, G3), can be derived. During GPU 
parallel execution, the four pairs can be loaded to different 
computing blocks and each computing block will calculate partial 
statistics for all the data items in the focal group. The partial 
statistics can then be added to the total statistics of respective data 
items as detailed below.  

Assuming the focal item (in the focal group) is Dk and 
the total statistics of Dk can be computed from its neighboring 
data items D1

k, D2
k, …Dn

k as S(Dk)=f(D1
k, D2

k, …Dn
k). To 

compute correlation coefficient for Dk, pairs of dependent and 
independent variables for D1

k, D2
k, …Dn

k are required. Assuming 
they are (x1,y1), (x2,y2)…(xn,yn), respectively, f can be defined as 
the following based on [57]. Note that we have removed 
superscript k for notation convenience as all the discussions below 
are limited to the focal data item Dk. 

 
 
 
 

 
 
 
Let S1=nΣxiyi, S2=Σxi, S3= Σyi, S4=nΣxi

2, S5=nΣyi
2, f can be 

computed from n and S1 through S5. Assuming that data items D1, 
D2, …Dn

 are divided into m groups and each group has computed 
their partial statistics s1, s2, s3, s4, s5, then f can easily be computed 
from nj, S1j, S2j, S3j, S4j and S5j  as the follows (j=1,m): n= Σnj, 
S1=nΣ (S1j/nj), S2=Σ S2j, S3=Σ S3j, S4=nΣ (S4j/nj), S5=nΣ (S5j/nj). 

In this particular example, there are three data items in 
the focal group. While changing focal items in the focal group 

will certainly change the data items that fall within the respective 
focal item’s bandwidth, all these data items are completely 
included in the three groups as well as the focal group itself. As 
such, after loading (FG, G1), (FG, G2), (FG, G3) pairs into shared 
memory from the GPU device global memory, the correlation 
coefficients for the three data items in the focal group can be 
computed simultaneously. In general, when N data items are 
grouped into O(N/K) groups, assuming each  group is paired with 
mi groups, then the total number of pairs is M=Σmi. Depending on 
the data distributions and search window sizes, M can vary from a 
constant to O(N2).  Our group based data decomposition approach 
amortizes M to B computing blocks to achieve workload balance 
and have a parallel computing time of O(M/B). Note that 
computation within a block is in the order of K*K which is a 
constant. The effective parallel throughput does not depend on N 
directly. On the other hand, if we assign each data item to each 
GPU core in a way similar to the grid/cluster computing approach 
proposed in [9], the parallel computing time is in the order of 
Σj(Max(Tij))  where j vary from 1 to N/B and Tij is the computing 
time for data item i in round j. The problem is that even if there 
are only a few data items in a dense area and have large numbers 
of data items fall in their search windows, the parallel computing 
time become worse, possibly in the order of O(N2) when each N/B  
round has at least one bad case.  

5 SUMMARY AND CONCLUSIONS 
In this study, we aimed at introducing a new HPC 

framework for processing geospatial data in a personal computing 
environment, i.e., Personal HPC-G. Towards this end, we first 
discussed different aspects of HPC that are related to geospatial 
data processing, including data decomposition for workload 
balancing, different roles of GIS and their respective HPC 
requirements, recent progresses of processing large-scale data in 
the context of database research, and, the characteristics of 
different HPC frameworks and their implications to large-scale 
data processing. We argue that the fast increasing hardware 
capacities of modern personal computers equipped with chip 
multiprocessor CPUs and massively parallel GPU devices have 
low initial and operational costs, good support for data 
management and excellent support for both numeric modeling and 
interactive visualization. These desired features make Personal 
HPC-G an attractive alternative to traditional Cluster computing 
and newly emerging Cloud computing for geospatial data 
processing. We used a parallel design of GWR on Nvidia CUDA 
enabled GPU device as an example to discuss how Personal HPC-
G can be utilized to realize parallel GIS modules by synergistic 
software and hardware co-programming.  
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