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Beta diversity represents a powerful indicator of ecological conditions because of its intrinsic relation with
environmental gradients. In this view, remote sensing may be profitably used to derive models characterizing
or estimating species turnover over an area. While several examples exist using spectral variability to
estimate species diversity at several spatial scales, most of these have relied on standard correlation or
regression approaches like the common Ordinary Least Square (OLS) regression which are problematic with
noisy data. Moreover, very few attempts were made to derive beta diversity characterization models at
different taxonomic ranks. In this paper, we performed quantile regression to test if spectral distance
represents a good proxy of beta diversity considering different data thresholds and taxonomic ranks. We used
plant distribution data from the North and South Carolina including 146 counties and covering a variety of
vegetation formations. The dissimilarity in species composition at different taxonomic ranks (using Sørensen
distance) among pairs of counties was compared with their distance in NDVI values derived from 23 yearly
MODIS images. Our results indicate that (i) spectral variability represents a good proxy of beta diversity
when appropriate statistics are applied and (ii) a lower taxonomic rank is important when changes in species
composition are examined spatially using remotely sensed data.

© 2009 Elsevier B.V. All rights reserved.
1. Introduction

Accounting for beta diversity, i.e., the amount of turnover in
composition (see Whittaker, 1960), of an area instead of simply
relying on its local species richness (alpha diversity) may result in
additional information for several ecological tasks allowing to: i)
improve species inventorying by firstly visiting areas with higher
environmental differences thus leading to a higher number of
inventoried species given the same sampling effort (Rocchini et al.,
2005); ii) relate the distribution of species diversity to geographical or
environmental gradients at regional instead of local scale (Davidar
et al., 2007; Buckley and Jetz, 2008); iii) improve conservation policies
and strategies for biodiversity network design by maximizing species
composition turnover (Chiarucci et al., 2008).

In this view, remote sensing may be profitably used to derive
models characterizing or estimating species diversity over an area (see
Gillespie et al., 2008 and references therein). As stressed by Nagendra
(2001), when dealing with the design of meaningful conservation
ientali “G. Sarfatti”, Università
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strategies, it is nearly impossible to acquire diversity information only
on the basis of field assessment. Hence, ancillary information may
become crucial. As an example, knowing a-priori areas with higher
diversity may help in minimizing time and costs in monitoring efforts
(e.g., Bacaro et al., 2008). In recent years, considerable amount of
research has been carried out to predict species rich sites by remotely
sensed data based on spectral variability as summarised by the
Spectral Variation Hypothesis, SVH (see Palmer et al., 2002)
considering different types of organisms, such as vascular plants
(see e.g., Gould, 2000; Foody and Cutler, 2003; Fairbanks and
McGwire, 2004, Gillespie, 2006; Levin et al., 2007; Rocchini, 2007a,
b), lichens (Waser et al., 2004), birds (Bino et al., 2008; Oindo, 2008),
mammals (Oindo and Skidmore, 2002). Some examples exist about
the investigation of alpha diversity with increasing local grain (Kumar
et al., 2006) or about local diversity in species composition versus
spectral variability (Schmidtlein and Sassin, 2004). However, most of
the tests were substantially based on predictive regression models of
species richness vs. spectral variability at local scale, considering only
alpha diversity.

To date few efforts have been made to relate ecological variability
measured by remote sensing to the other components of species
diversity, such as beta diversity taking into account the species
turnover over the whole extent of a study area (Tuomisto et al., 2003;
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Rocchini et al., 2005). The major assumption beyond the use of
spectral distance for predicting species beta diversity is that a higher
variability in the spectral response over a landscape derives from the
presence of several different habitats, which are expected to host
different species.

In a recent paper, He et al. (2009) firstly investigated the relation
between beta diversity and spectral distance by considering different
taxonomic ranks (plant species, genera and families) at the regional
scale. In that paper, a Pearson correlation obtained from a Mantel test
based on the whole set of data points was applied. While they provide
for the quantification of the general trend in the data, using standard
correlation or regression approaches, like the common Ordinary Least
Square (OLS) regression in these cases, may represent a potential
problem. In fact, when applying symmetric loss functions which
minimize the residual sum of square, the final model will only rely on
the mean of an over-dispersed cloud of points (Cade and Noon, 2003).
Applying other regression techniques can overcome the problem and
contribute with additional information which might be lost or
underestimated by classical regression analysis. As an example, one
may ask if, considering different part of the cloud of input data in a
scatterplot, the pattern achieved is consistent over different thresh-
olds (see Brown and Peet, 2003), e.g., if the slope of the regression
model is still significant across the whole turnover range, from lower
to upper threshold. In this view, quantile regressionmay represent the
most efficient method for solving the problem, fitting models to any
part (denominated τ) of a response distribution (Koenker and Bassett,
1978; Cade and Noon, 2003; Austin, 2007).

In this paper, extending on He et al. (2009), we aim at testing if
spectral distance represents a good proxy of beta diversity considering
different data thresholds (τs) and taxonomic ranks.

2. Methods

2.1. Ordinary least square and quantile regression fitting procedure

Let {y1, y2, …, yn} denote the vector of the yn values of a set of
points lying within a scatterplot of a response variable Y versus a
limiting factor X.

OLS regression symmetrically minimizes residuals by solving:

residual = min
X

yi− ŷi
� �2 ð1Þ

where ŷi=estimated value for each yi.
Quantile-based fitting gives different weights to positive and

negative residuals leading to an asymmetric minimization, solving:

residual = min
X jyi − ŷi jT with T =

τ for yi − ŷi
� �

N 0

1− τ for yi − ŷi
� �

b0

8<
:

ð2Þ

Notice that the multiplier T equals τ (the quantile value) for
positive deviations (yi− ŷi) and (1−τ) for negative deviations. This
asymmetric minimization fits a regression model through the upper
part of the response distribution for τN0.5 and through the lower part
of the distribution for τb0.5. Quantile regression with τ=0.5 is the
median regression, which can be used as a central regression line
similar to the mean regression estimated with OLS regression.

Notice that the quantile minimization of residuals shown in Eq. (2)
is based on absolute values rather than on squared deviations like in
OLS regression, thus reducing outlier effects.

We refer to Koenker and Hallock (2001) for a more detailed
dissertation on the matter and to Gotelli and Ellison (2004) for a brief
summary of quantile regressions applied to ecological data.
2.2. Empirical test on the prediction of beta diversity by spectral distance

2.2.1. Study area and input data
In order to test the beta diversity in relation with spectral distance

we used data from the North and South Carolina including 146
counties of the two states (Fig. 1). The vegetation patterns are quite
complex in the study area. The two states cover a range of habitats
including coastal lowlands, large river floodplain forests, rolling
plains, forested mountains, and wetlands. According to the EPA level
III ecoregion classification system (http://www.epa.gov/wed/pages/
ecoregions/level_iii.htm#Ecoregions), there are four Level III ecor-
egions in the two states, containing Blue Ridge, Piedmont, South-
eastern Plains, andMiddle Atlantic Coastal Plain (See Fig. 1 in He et al.,
2009 for the boundaries of these four ecoregions). More specific, the
Blue Ridge is covered by the Appalachian oak forests, northern
hardwoods, and southeastern spruce-fir forests at higher elevations.
The Piedmont, a nonmountainous portion of the old Appalachians
Highland, is dominated by successional pine and hardwood wood-
lands. The Southeastern Plains include a mosaic of forest woodland
(oak-hickory-pine and southern mixed forest) and pasture/cropland.
Lastly, the Middle Atlantic Coastal Plain contains mostly swamps and
salt marshes, and some forested areas including loblolly and some
shortleaf pine species, with patches of other trees such as oak, gum,
and cypress, etc. Given the diverse vegetation formations found in the
Carolinas, the variability in productivity is highly expected.

For species information, we used plant species data obtained from
USDA plant database (http://plants.usda.gov) with a total of 3157
species in 1001 genera and 189 families and a mean number of 687
(±171 sd) species, 375 (±66 sd) genera and 116 (±15 sd) families
per county. The USDA plant database represents a huge effort made to
provide species information across the United States (see Brown and
Peet, 2003). One county did not have species data, thus reducing the
set to 145 counties.

In order to calculate spectral distance we relied on Moderate
Resolution Imaging Spectroradiometer (MODIS) Normalized Differ-
ential Vegetation Index (NDVI) data (spatial resolution: 250 m,
temporal resolution: 16 days). Such data are freely available from
the University of Maryland's Global Land Cover Facility (GLCF)
project (http://glcf.umiacs.umd.edu/data/ndvi, see Tucker et al.,
2004). NDVI is derived from the ratio (λNIR−λR)/(λNIR+λR), where
λNIR=reflectance in the near infrared part of the spectrum and
λR=reflectance in the red part of the spectrum. NDVI is based on
(i) the high reflectance by vegetation in the NIR which is linked to
scattering processes at the leaf scale and (ii) the low reflectance in
the Red due to the absorption by chloroplasts for photosynthesis
(see Lillesand et al., 2004). NDVI varies from −1 to 1, but in this
case they were stretched to match a 8-bit radiometry (ranging from
0 to 255) in order to make comparable results with other studies on
the matter using Digital Numbers (DNs) in other bands (e.g.,
Rocchini and Cade, 2008).

There are 23MODIS NDVI images for awhole year.We downloaded
the 23 NDVI images for the year 2005 and imported them within the
ESRI ArcGIS software. Since several pixels occur within each county,
the mean value per county (per each image) was calculated.
Therefore, each county had 23 available NDVI values. Based on the
conclusions by He et al. (2009) we decided to use the whole yearly
mean NDVI data. Hence, each county was provided with a single
spectral value (i.e., the yearly mean NDVI) with which we calculated
spectral distance between pair-wise counties as described in the next
section.

2.2.2. Beta diversity versus spectral distance modeling by OLS and quantile
regression

Beta diversity was measured by generating semi-matrices of pair-
wise distance based on the Sørensen coefficient (Sørensen, 1948; but
see even Koleff et al., 2003) for the 145 counties at the three taxon
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Fig. 1. The study area: North and South Carolina. In this study 145 out of 146 counties of Carolina were considered. Species data were derived from the USDA plant database while
spectral data were based on MODIS imagery. In this example a MODIS NDVI image acquired in July 17th 2005 is shown. Brighter gray represents higher NDVI values. The pixels in the
sea have no data values and have been excluded from mapping. We refer to the main text for major explanations.
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ranks, including species, genus, and family. Sørensen coefficient (Cs) is
derived as:

Cs =
2j

a + b
ð3Þ

where j=number of species shared by plot A and plot B; a=total
number of species in the plot A; b=total number of species in the plot
B, the coefficient Cs accounting for the overlap between two species
lists and ranging from 0, indicating perfect dissimilarity, to 1,
indicating perfect similarity.

At the same time, spectral distance was achieved by calculating
NDVI distance matrices using Euclidean distance between pair-wise
counties.

As a rule of thumb in quantile regression the function to be fitted is
based on visual inspection of the scatterplot derived from the data
being modeled (e.g., Cade and Noon, 2003; Rocchini and Vannini, in
press). Thus, after visual inspection of the achieved pattern, linear
models were built to minimize residuals as in Eq. (1) (OLS regression)
and Eq. (2) (quantile regression). Concerning quantiles, we assessed
the continuous variation of the slope of the linear models from lower
(τ=0.10) to upper (τ=0.90) beta diversity values. A number of
statistical software packages exist which perform quantile regression
(see e.g., Blossom at USGS internet site, Cade and Richards, 2001).
Instead, we used the quantreg package of R-software (Koenker, 2007)
on the strength of its widespread use and simple replicability of
functions coded (R Development Core Team, 2008).

It has been realized that a false number of degrees of freedom can
be created by distance-based models (in this case df=10,438, see
Legendre and Legendre, 1998; Tuomisto et al., 2003; Legendre et al.,
2005; He et al., 2009). This may provoke an improper estimate of
confidence intervals. Therefore, we relied on Davidar et al. (2007) who
calculated confidence intervals using permutation procedures based
on a bootstrapping approach. We used the boot.rq function (quantreg
R-package, see Koenker, 2007) for quantile regression and the
bootpred function (bootstrap package, see Efron and Tibshirani,
1994, Leisch, 2007) for OLS.

3. Results

A high degree of noise was found within the scatterplot of beta
diversity versus spectral distance (Fig. 2). The slope of the relationwas
statistically different from zero considering all parts of the response
distribution (beta diversity) conditional on the constraining factor
(spectral distance, Fig. 3) despite the taxonomic rankbeing considered.
Instead, taxonomic ranks showed marked differences in the slopes
achieved by linear models, as described in the following paragraphs.

Considering the species taxonomic rank, higher quantiles showed
statistically higher slopes (pb0.01) than that achieved by OLS regression
(slopeOLS=18.4⁎10−4), with a peak in slope at τ≅0.7 (Fig. 3). This



Fig. 2. Regression models of taxonomic versus spectral turnover considering three different taxonomic ranks. Solid line: Ordinary Least Square model; dashed lines: examples of
quantile regressions linear models fitted at τ=0.90 (top curve) and τ=0.10 (bottom curve). Notice that taxonomic turnover measured by the Sørensen index was plotted with the
same range in the y axis (0–1) thus allowing a direct comparison among the taxonomic ranks.

Fig. 3. Variation (solid black line) of the slope coefficient of the considered linear models. The gray area represents 99% confidence intervals; thus when they include zero (solid gray
line) the coefficient is not significant at pb0.01. Notice that slopes are always significant at pb0.01. The horizontal solid black line represents the slope value with 99% confidence
intervals (dashed black lines) obtained by OLS regression. Notice that slopes were plotted with the same range in the y axis thus allowing a direct comparison among the taxonomic
ranks. A similar representation of quantile and OLS parameters is provided by Koenker and Hallock (2001), Cade and Noon (2003) and Austin (2007).
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phenomenonflattenedwhile increasing the taxonomic ranks, i.e., passing
fromplant species to families (Figs. 2 and3). Passing fromhigher to lower
taxonomic ranks, families showed lower slopes (slopeOLS=6.9⁎10−4)
than those achieved for genera (slopeOLS=12.3⁎10−4) and species
(slopeOLS=18.4⁎10−4).

This is true even considering slopes achieved by quantile regression.
As an example, at τ=0.90 (Figs. 2 and 3), slope increased at a rate up to
13.9⁎10−4 passing from families (slopeτ=0.90=7.9⁎10−4) to genera
(slopeτ=0.90=16.0⁎10−4) to species (slopeτ=0.90=21.8⁎10−4).

This difference among taxonomic ranks flattened at lower
quantiles (lower taxonomic diversity values). For instance, at
τ=0.10 (Figs. 2 and 3), slope increased at a rate up to 7.7⁎10−4

(i.e., halving that achieved at τ=0.90) passing from families (slopeτ=
0.10=5.4⁎10−4) to genera (slopeτ=0.10=8.5⁎10−4) to species
(slopeτ=0.10=13.1⁎10−4).

Hence, the range in variability in the similarity values flattened
passing from species to families. As an example, concerning the
difference between slopes at τ=0.90 and τ=0.10 given the same
taxonomic rank this turned out to be 8.7⁎10−4 for species until
2.5⁎10−4 for families.

Since the difference between species and families was lower at
lower quantiles, this range flattening effect seems to be regulated by
data points situated at higher quantiles, i.e., by higher diversity values.
In other words, once families instead of species were taken into
account, they would not reach diversity values higher than 0.5 (Fig. 2).

4. Discussion

Very different methods have been used explicitly for modeling
beta diversity by (environmental) ancillary information like the
generalised dissimilaritymodels (GDM, e.g., Ferrier et al., 2002, 2007),
boundary line regression (Rocchini, 2007a), Mantel tests (Tuomisto et
al., 2003; He and Zhang, 2009), It is far beyond the aim of this paper to
prove quantile regression being better than other methods. However,
we claim that it directly takes into account the noise frequently found
when plotting beta diversity – as measured by dissimilarity between
pair-wise local or regional sites – versus spectral distance. Such noise
is expected since other factors are expected to act on species
variability structuring as well, such as (i) phenological variations or
(ii) abiotic factors like elevation, soil, climate gradients,

Further, practical problems can arise when linking field data with
satellite images, e.g., (i) the mismatch between the grain of the
satellite imagery and the field data used, (ii) the difference between
the time of satellite image acquisition and the field survey period, etc.
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(see Gillespie et al., 2008), (iii) the distance measurement used (e.g.,
in this case we used the Euclidean distance among averaged NDVI
which does not differentiate the spectral response of communities),
(iv) the completeness of the input dataset (e.g., Palmer et al., 2002).

Concerning the last point, finding complete sets at regional to
global scales is a hard issue to be solved. Plant species inventorying in
a relatively large area has always been an important task for plant
ecologists, given the lack of common standards in measuring the
completeness of the resulting species lists and in quantifying the
sampling effort (see e.g., Palmer et al., 2002; Rocchini et al., 2005). In
this paper the USDA plant database was used since it has been proven
to be an informative data source for testing general ecological patterns
like diversity of Appalachian (East US) plant communities (Brown and
Peet, 2003), exotic species invasions (Frappier and Eckert, 2003), and
variability in species composition (He et al., 2009).

Of course, this dataset is not free from bias, and we suspect that no
dataset is definitively free from input uncertainty. As a couple of
examples, (i) one county contained no data and (ii) the outliers in the
upper set of Fig. 2 may be explained if some counties had a lower
number of available data thus increasing beta diversity values.

However, in this paper we were interested in testing a general
pattern (i.e., the variability in species versus spectral distance) at
different taxonomic ranks given the same input dataset, which is
expected to contain some sort of noise in its very nature and is thus
modeled using quantile coupled with OLS regression. In this view, we
proved quantile regression to be a straightforward method for
describing the whole pattern of beta diversity versus spectral (environ-
mental) distance. Inparticular, higherquantiles, representingmaximum
beta diversity, seemed to rule out the differences among taxonomic
ranks. In other words, the slopes of species, genera and families differed
mostly in the higher part of the scatterplot. This suggests that using
higher taxonomic ranks (like “families” in this case) would lead to a
dramatic loss of information, in particular that related to the maximum
beta diversity over an area. Our results indicate that a lower taxonomic
rank is important when changes in the taxonomic composition are
examined spatially using remotely sensed data.

Moreover, our findings are in line with previous studies that
taxonomic rank or resolution might affect our ability to detect useful
patterns in biodiversity study (Anderson et al., 2005 and references
therein). Of coursewe agreewith the issues in taxonomydemonstrating
that the species taxonomic rank is more prone to taxonomic inflation
which is expected to increase error variance instead of enhancing the
information content (see Bacaro et al., 2009; but refer even to Knapp et
al., 2005). Using higher taxonomic ranks such as families or even phyla
could be effective and efficient, but critical informationmight be lost, as
suggested by the quantile regression presented in this paper. This
hampers our effort in seeking for the structure and spatial pattern of
biological communities from the taxonomic data. We postulate that a
lower taxonomic rank, such as species, can be sufficiently informative in
local or regional studies to examine biotic interactions, facilitation, and
dispersal. In contrast, higher taxonomic ranks might be useful in large-
scale spatial studies relating to biogeographical and evolutionary
processes (He and Zhang, 2009).

As far as we know, the only example using quantile regression in
beta diversity versus spectral distance models is done by Rocchini and
Cade (2008). In their test, only the species taxonomic rank was
considered and at a local scale in terms of both extent (60 km) and
grain of sampling units (10×10 m). As a result, a different patternwas
found with lower quantiles showing higher slopes. If the grain of
sampling units is small enough, a lower (than expected) number of
species will be shared by two plots even if their environmental
properties are the same (Nekola and White, 1999). This inevitably
leads to maintain practically constant the maximum values of
diversity, thus provoking a decrease in maximum slopes.

Spectral variability has proven to represent a powerful indicator of
environmental heterogeneity (Palmer et al., 2002; Foody and Cutler,
2006; Rocchini, 2007b). As hypothesized by several authors (Kerr and
Ostrovsky, 2003; Rocchini et al., 2005; Foody and Cutler, 2006), spectral
distance represents a direct effect of environmental properties thus
representing a powerful tool for gradient analysis and species diversity
comparisons. As an example, Rocchini et al. (2005) demonstrated that
ordering samples by their maximum spectral distancewill account for a
higher number of accumulated species. In other words, sites being
spectrally more different might show a higher species turnover. We
consider that the compositional differences of vegetation types are
caused by spatial heterogeneity linked to regional climatic constraints,
latitude, elevation, and historical processes. Our results suggest that
remotely sensed spectral distance can be viable for detecting species
compositional changes at the regional scale.

Of course, we are aware that there are costs associated with the use
of remotely sensed imagery. There is still a gap in the easy availability
of such data across the world (Goetz, 2007). As recently stressed by
Kark et al. (2008) and by Nagendra and Rocchini (2008), this is
particularly true considering developing countries. It is far beyond our
aim to explore this issue and we remind to the debate made by Loarie
et al. (2007) and the replies of Kark et al. (2008) and Loveland et al.
(2008). However, as reported in this paper, spectral data such as
MODIS NDVI are available freely on the internet and represent an
undoubted source for the maximization of biodiversity monitoring.
Further, the utility of such data source could facilitate biodiversity
studies at the regional and even global scales, thus leading to new
information for conservation planning and resource management.

5. Conclusion

In this paper, we tested the potential of using spectral distance to
predict beta diversity at the regional scale. In particular, we
demonstrated that: i) beta diversity has a statistically significant
relation with spectral variability, since plant compositional turnover
monotonically increases with increasing spectral distance among
sites, and ii) the taxonomic rank being considered when performing
beta diversity-basedmodeling is a crucial point which should be taken
into account when aiming at monitoring biodiversity change over
time.

These findings were attained by coupling Ordinary Least Square
and quantile regression which provided a more comprehensive
characterization of the process being considered than provided by
estimates of the conditional mean with OLS regression. We perceive
the utility in quantile regression as stated by Cade et al. (1999):
‘estimating a range of regression quantiles […] provides a compre-
hensive description of biological response patterns for exploratory
and inferential analyses in observational studies of limiting factors,
especially when sampling large spatial and temporal scales’.
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