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Functionality, performance and scalability are critical to Web-based information systems for publishing and
disseminating large-scale species distribution data. Existing systems do not support dynamic spatial window
queries on large-scale species range maps that are important to compute alpha and beta diversities for bio-
diversity analysis and modeling. In this study, we have developed a main-memory based novel quadtree
data structure to represent large-scale species range maps and support dynamic spatial window queries to
retrieve a list of species and their area sizes within a query window efficiently. Using the NatureServe's
4000+ bird species range maps, experiment results have shown that the memory footprint of the proposed
quadtree data structure representing the range maps of all the species is about 1/6 of the quadtree derived by
combining individual quadtrees each representing a species range map. The experiment results have also
demonstrated that the query response times of our main-memory spatial database are well below a fraction
of a second for query windows as large as 10×10°, which are 2–3 orders better than using a typical disk-
resident spatial database system.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

More than a million of species have been recorded in several
repositories, such as the repositories provided by the “Catalogue of
Life” project (COL, 2010) and the uBio project (uBio, 2010). The
range maps of more and more species are also becoming available
which allows researchers to explore the relationships among species
distributions and the environments. Synergizing geoinformatics and
bioinformatics technologies for species distributions and biodiver-
sities research will contribute to our understanding of the ecological
consequences of climate change and human impacts. Last decade
saw massive developments of biodiversity related information sys-
tems on the Internet and the available species distribution data has
been increased dramatically (Bisby, 2000). As an example, at the
time of writing, the Global Biodiversity Facility (GBIF) data portal
has hosted 322, 366, 001 species occurrence records (GBIF, 2012).

While the point locations of species occurrences themselves are use-
ful tomodel species distributions at individual species level (Guisan and
Zimmermann, 2000), range maps compiled from museum records and
scientific literature play an important role in global and regional biodi-
versity studies, especially when correlating biodiversities with environ-
mental variables (Field et al, 2009, Mittelbach et al, 2001; Qian, 2010;
Waide and Willig, 1999). USGS Digital Representations of Tree Species
Range Maps dataset from “Atlas of United States Trees” by Elbert L.

Little, Jr. consists of 679 tree species (USGS, 2006) and has played
important roles in USGS's vegetation-climate modeling. More recently,
NatureServe published Digital Distribution Maps of the Birds of the
Western Hemisphere Version 3.0 which covers 4,273 bird species
(NatureServe, 2010b). Similar range maps for 1737 mammal species
of the Western Hemisphere and more than 6000 world's amphibians
are also available from NatureServe's website (NatureServe, 2010b).
We envision that the availability of species range maps will be signifi-
cantly increased over the next few years, which will be important not
only to environmental modeling but also to phylogeography, phyloge-
netics and other branches of bioinformatics. It is imperative to develop
efficient data management techniques, including novel data structures,
query processing algorithms and information system architectures, to
effectively support global biodiversity research and subsequent species
conservation practices.

Web-based information systems provide an ideal means to publish
and disseminate species distribution data. Quite a few operational sys-
tems are available, such as the World Wild Fund (WWF) WildFinder
(WWF, 2010), the NatureServe Explorer (NatureServe, 2010a) and the
USDA PLANTS database Web interface (USDA, 2010). A few research
systems also have been developed, such as WebGRMS (Greene et al,
2007), GBIF-MAPA (Flemons et al, 2007), SFMN-GeoSearch (Gonzales
et al, 2009) and OBIS-SEAMAP (Halpin et al, 2009). However, most of
them only allow query/visualize the distributions of a single species at
a time and/or only support point locations or predefined administrative
or ecological regions. While the functions are well supported by the
state-of-the-art Web-GIS and database technologies, it is technically
challenging to support querying species range maps dynamically with
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arbitrarily defined spatial windows. Indeed, large-scale species range
maps in vector polygon format can have very large data volumes and
generally are computationally expensive to process. Our experiments
on building such a system for publishing the NatureServe bird range
maps (NatureServe, 2010b) that includes three quarters of a million
complex polygons have indicated that the performance is too poor to
be practically useful (Zhang, 2009).

Among many types of visual, analytical and modeling tasks on
species distribution data, a basic operation is to retrieve a list of
species in a spatial window so that alpha and beta diversities based
analysis can be further performed. As discussed in detail in the next
section, while quite a few species distribution datasets have already
associated a list of species with predefined ecological and administra-
tive regions which makes the query trivial, the availability of species
range maps allows using arbitrary spatial windows to query against
species distribution data for fine-grained studies. Currently all known
species range maps from USGS and NatureServe are distributed as
ESRI Shapefiles. While the Shapefile format is well accepted by a num-
ber of Geographical Information Systems (GIS), these range maps are
not readily usable for the purposes beyond simple display. The reason
behind is that species distribution analysis, especially biodiversity relat-
ed research, often requires cross-layer queries (see more details in the
next section)which is poorly supported by current GIS and spatial data-
bases (Samet, 2004). While sophisticated GIS and spatial databases,
such as ArcGIS, are empowered by spatial indexing techniques (such
as R-Tree or Quadtree, see Gaede and Gunther, 1998; Samet, 2005)
and are very efficient in performing intra-layer spatial queries on geo-
metric objects with no or have little overlap, they are usually not good
at querying thousands of layers in a single query. This is largely due to
the fundamental limitations of layer based vector data model in sup-
porting co-location type query as discussed by Samet (2004) and
Zhang and Gruenwald (2008). Co-location type queries need to be
transformed to N-way spatial joins before they can be processed in cur-
rent spatial databases. In GIS, a procedure language would be needed to
loop through all the layers and temporary tables would also be needed
to keep the intermediate results for processing a query. They are neither
convenient nor efficient. An alternative solutionmight be to combine all
layers into a single layer and then to query against the combined layer.
However, while the geometric objects within a single layer have no or
very little overlap, they can be highly overlapped in the combined
layer which makes spatial indexing much less effective. More impor-
tantly, queries to compute a list of species and their area sizes in an ar-
bitrarily defined region often require on-the-fly geometric clipping
between the complex polygons of the range maps and user defined
query regions. The computation is usually quite expensive which
makes the approach not scalable in applications that require fast
responses, for example, interactive visual explorations and online
modeling.

In this study, we aim at developing data structures, query proces-
sing algorithms and information systems to overcome the scalability
and efficiency related issues in publishing and disseminating large-
scale species range maps and supporting visual explorations, analysis
and modeling. Built on top of our previous works on rasterizing
species range maps to derive quadtrees (Zhang, 2009) and using an
extensible database to manage quadtrees (Zhang et al, 2009a), we
have developed a Main-Memory Spatial Database (MMSDB) based
solution to speed up spatial window queries on large-scale species
range maps. Two middleware modules also have been developed to
provide essential functionality for both interactive visual explorations
and biodiversity analysis/modeling through Web services. Our exper-
iments using NatureServer's 4000+ bird species data (NatureServe,
2010b) have shown that the main memory query processing engine
we have developed can be 2–3 orders faster than regular disk-resident
databases and can answer spatial window queries in a fraction of a sec-
ond even for large query windows. TheWeb-based information system
is efficient and effective in publishing large-scale species range maps.

The reset of the paper is arranged as the following. Section 2 intro-
duces the background and related works of the proposed research
and development efforts. Section 3 presents the system architecture
and the implementations of key components. Section 4 reports the
experiment results on 4000+ NatureServe bird species range maps.
Finally Section 5 is the summary and future work directions.

2. Background and related works

Exploring the relationships among species distributions and the
environment is central to basic ecology and biogeography research
and biological conservation practices. Several enabling technologies
have made biodiversity data available at much finer scales in the
past decade. First, progresses in molecular systematics have made
species identifications much easier. Second, GPS technology has
been widely used in modern field survey and geo-referring technolo-
gy has been successfully applied to transforming descriptive museum
records to geographical coordinates. Third, database technologies in
general and spatial databases in particular have been widely used to
effectively manage not only species presence locations, but also relat-
ed taxonomic and environmental data. Fourth, GIS have been exten-
sively used for visualization and spatial analysis of biodiversity data.
Some of the spatial analytical functions have directly contributed to
species distribution data modeling and analysis Finally, the newly
emerging Cyberinfrastructure technologies (e.g., metadata, ontology,
Web Services and scientific workflow) have made exchanging and
sharing species distribution data over the Web much easier. The in-
creasingly available species distribution data can potentially leverage
our understanding of global and regional biodiversity patterns to a new
level through interactive visual explorations, analysis and modeling
(Bisby, 2000; Guralnick and Hill, 2009; Soberon and Peterson, 2004).

A variety of biodiversity indices have been developed for analysis
and modeling purposes. We refer to Ricotta (2005) for a brief over-
view. Among them, alpha diversity, i.e., the number of species and
their abundances in a region, and beta diversity, i.e., the dissimilar-
ities of species compositions in assemblages, are two most frequently
used ones. Overviews of alpha diversity and beta diversity indices can
be found in (Moreno et al, 2006) and (Koleff et al, 2003), respectively.
Biodiversity indices can be computed based on either a vector or
a raster geographical tessellation (Zhang and Gruenwald, 2008). In
both cases, biodiversity indices are associated with a basic geograph-
ical unit, i.e., a polygon representing a predefined region in the vector
tessellation or a grid cell in the raster tessellation. When species dis-
tribution maps are provided as individual GIS layers, as shown in
Fig. 1, cross layer queries are needed to generate biodiversity indices.
Most of existing biodiversity studies use one or more predefined geo-
graphical regions (such as eco-regions or administrative regions) and
predefined groups of species (such as specific families or genus).
While this is a viable solution for individual-based and small-scale
research, considering the possible combinations of taxonomic groups,
ecosystem types and geographical configurations (as illustrated in
Fig. 1), it is highly desirable to allow users to define taxonomic, geo-
graphical and ecosystem scopes of interests and generate biodiversity
indices on the fly through a query interface. This is especially true for
the situations when domain-knowledge is lacking and visual explora-
tion is necessary as a first step. The query interface may significantly
reduce or even eliminate the computing skills (e.g., GIS) needed for
sophisticated data preprocessing. In the example shown in Fig. 1, it
is desirable to allow users to dynamically define a group of species
based on a taxonomic hierarchy or some phylogenetic criteria,
dynamically define a region of interests in a particular ecosystem
and compute the biodiversity indices accordingly.

Most existing biodiversity studies on a large number of species use
very coarse spatial resolutions. For example, the World Wild Fund
(WWF) WildFinder database (WWF, 2006) uses the world's top-
level ecoregion as the basic geographical units to associate ecoregions
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with species lists. The ecoregion can be as large as millions of square
kilometers which make it very hard for seeking possible relationships
between biodiversities and the environment variables. The GBIF data
portal (GBIF, 2012) utilized a pre-computing approach to improving
query performances by allowing only one predefined query window
size at a zoom level. While the technique may work well for overview
purposes over the Web, they are not suitable for precise queries that
involve arbitrary sizes of querywindows. For the studies based on raster
tessellation, at the global scale, very few studies use a grid cell finer than
1° and some studies use even 15° resolution (Proches, 2005) despite
both species distribution data and environmental data is available at
finer resolutions. Technical difficulties in handling large-scale datasets
might be one of the important factors in the mismatches between the
available and utilized high resolution data. The Social-Economic Data
and Application Center (SEDAC) at Columbia University has rasterized
the NatureServe bird species range maps into GEOTIFF images at
30 arc-seconds resolution and made them ready to be downloaded
through a Web-interface for individual species (SEDAC, 2010). SEDAC
has also derived a family richness grid dataset by counting the number
of species for all the species families. Unfortunately, no dynamic queries
are supported.

The Service-Oriented Architecture (SOA) has received consider-
able interests in environmental sciences, e.g., Jaeger et al., 2005,
Goodall et al, 2008; Berrick et al, 2009; Kooistra et al, 2009; Zhang
et al, 2009b; Yang et al, 2010, in general and biodiversity data proces-
sing in particular, e.g., Zhang et al., 2005; Frehner and Brandli, 2006;
Best et al, 2007; Fook et al, 2009, due to its potential in inter-linking
information systems in interoperable ways. The performance of SOA
applications heavily rely on the efficiency of the query operations
provided by the underlying GIS and/or databases. Tailoring data
structures and query processing algorithms for publishing large
scale species range maps is likely to improve the performance of
SOA-based applications significantly. We would like to note that GIS
tools have been extensively used in managing biodiversity and envi-
ronmental data and performing biodiversity analysis and modeling
in many aspects. We refer to (Foody, 2008), (Steiniger and Hay,
2009) and (Boyd and Foody, 2011) for overviews and more details.
However, to the best of our knowledge, we are not aware of previous
works aimed at supporting dynamic queries efficiently on large-scale
species range maps.

In our previous work (Zhang and Gruenwald, 2008), we have
developed the LEEASP (Linked Environment for Exploratory Analysis
of Large-Scale Species Distribution Data) prototype system to facilitate
users visually exploring integrated taxonomic, geographical and envi-
ronmental data. USGS Little tree species distribution data in ESRI's

shapefile format was rasterized at a half degree spatial resolution.
While the prototype system met its design goals, it uses a simple data
structure to associate taxonomic data with raster cells, i.e., a two-
dimensional array of bit vectors, which can be very sparse. The simple
data structure may require excessive memory for high-resolution ras-
ters and/or a large number of species and thus is not scalable from a
data management perspective. We have also built a specialized quad-
tree by rasterizing each species distribution polygons using a scan-line
fill algorithm (Zhang, 2009) and associate species identifies with differ-
ent levels of nodes of the quadtree. Using the classic linear quadtree
techniques (Samet, 2005), the quadtree nodes can be stored as tree
paths and the associated species identifiers can be stored as arrays in
the PostgreSQL database (PostgreSQL, 2010). The tree paths can then
be indexed by PostgreSQL to speed up query processing using a query
transformation technique as reported in (Zhang et al, 2009a). Both the
average and maximum query response times are in the order of a few
seconds for query window up to 10×10° for the 4000+ NatureServe
West Hemisphere bird species data using a 14 level quadtree spatial tes-
sellation (16,384*16,384 cells). However, it is desirable to further im-
prove query performances and reduce response times to sub-second
level for lager numbers of species at the finer spatial scales and allow
a variety of customer applications to utilize the database backend, e.g.,
our works reported in (He and Zhang, 2009; He et al, 2009; Zhang
and Gruenwald, 2008; Zhang et al, 2007).

Studies have shown that the differences between CPU, memory
and disk I/O speeds have increased significantly over the past decade
(Hennessy and Patterson, 2006). Currently the bandwidth of hard
drives of commodity servers is in the order of 100 megabytes per sec-
ond whereas the main-memory bandwidth of the same servers can
be tens of gigabytes per second, i.e., two orders higher. The significant
performance differences have motivated many in-memory applica-
tions that require high performance, including main-memory data-
bases (Grund et al., 2010). As memory capacities of typical
computer systems are getting larger while the price per gigabyte
have dropped to under $50, it is natural to explore the main-
memory option in managing large-scale species distribution data for
fast data processing. It is crucial to develop domain-specific novel
data structures, query processing algorithms and information system
architectures to realize the potential performance gains offered by
main-memory based information systems.

Alternative to the proposed approach that utilizes efficient and
main-memory-based data structures and algorithms to achieve high
performance, the Map of Life project (MOL 2012) utilize parallel
processing power of Cloud computing to achieve a similar purpose.
Indeed, the inherent parallelisms of the biodiversity data and targeted

Species A 

Species B 

Species C 

Species Area 
A 14 
B 10 
C 10 
… … 

Dynamic user defined
query window 

Cross-layer query result table

Taxonomic Tree 

Phylogenetic Tree 

Ecosystem hierarchy: Community – Ecosystem – Biomes – Biosphere 

Fig. 1. Illustration of generating biodiversity indices through cross-layer query.
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queries allow easy parallelization across geographical regions and
taxonomic groups. The state-of-the-art Cloud computing technolo-
gies and facilities have provided an economic means to address the
same technical challenges. However, we consider the two approaches
complementary rather than rival. The simple reason is that improving
the computing efficiency of a single computing node will immediately
improve the overall performance of a Cloud-based information sys-
tem. For information systems (including their sub-systems) that can
not scale up linearly, it becomes more important to increase the effi-
ciency of individual computing nodes in a parallel/distributed system.
Along the direction of parallel computing, we have also achieved 20×
speedups on polygon rasterization using an Nvidia General Purpose
Graphics Processing Unit (GPGPU) device with 448 GPGPU cores
(Zhang, 2011). We plan to implement the quadtree indexing pipeline
described in Section 3.1 on GPGPUs and integrate it with this system
to speed up data preprocessing.

3. System architecture and components

We aim at developing an information system prototype that allow
users to efficiently query large-scale species range maps and retrieve
a list of species in an arbitrarily defined rectangular region, i.e., win-
dow queries in spatial databases. Although developing novel data
structure and query processing algorithms for species distribution
data is the key to high-performance, the system also includes compo-
nents that utilize existing Web technologies to deliver base maps
and visualize query results. The system architecture is illustrated in
Fig. 2. In the following, the two most important components of the
main-memory spatial database (represented by the dark gray box in
Fig. 2), i.e., indexing and query processing, are presented in Sections 3.1
and 3.2, respectively, and, Section 3.3 provides technical details on the
components that connect Web clients and Web services consumers
with the database backend (represented by the light gray boxes in Fig. 2).

3.1. Quadtree indexing of species range maps

Before presenting the quadtree indexing approach to managing
large-scale species range maps, we first explain why existing com-
mercial and open source spatial databases, such as Oracle Spatial,
Microsoft SQL Server Spatial and PostgreSQL/PostGIS, are inadequate
in managing large-scale range maps. Given that existing species
range maps are available in ESRI's Shapefile format and most of the
existing spatial databases have provided tools to import shapefiles,
it is straightforward to store the combined species range maps in
polygonal vector format in the databases, index the polygons (e.g.,
using R-Trees) and support spatial window queries. As an example,
the SQL syntax for querying all species in window (x1, y1, x2, y2)
against a PostgreSQL database is as follows.

SELECT sp_id, SUM (AREA (intersection_geom)) FROM
(SELECT sp_id, ST_INTERSECTION (bk_loc, 'BOX(x1 y1, x2 y2)'::

BOX2D) AS intersection_geom
FROM TB
WHERE geometry_column && 'BOX (x1 y1, x2 y2)'::BOX2D )

AS b
GROUP BY sp_id
HAVING SUM (AREA (intersection_geom))>0;

Here TB is the name of the table that stores the combined layers,
including geometric information (geometry_column) and its associ-
ated relational information, such as species identifiers (sp_id), scien-
tific names, taxonomic and phylogenetic hierarchies, etc. As we will
be focusing on spatial window queries, we assume non-spatial cri-
teria can be combined and integrated in the WHERE condition in the
query. The problem with this straightforward solution is that the
ST_INTERSECTION operation used in the query involves complex geo-
metrical computation on polygons and is usually very expensive.

Environmental
layers

Single Quadtrees 

Species Range Maps 

Web services consumers 

PostgreSQL 

MapServer Main Memory Spatial DB 

Light-weighted Middleware 

Web browsers 

Species Taxonomic Hierarchy 

Combined Quadtrees Richness Maps (image) 

WMS WFS

Regression Yi(numberic)~(e1,e2,…en)  

Data Sources: 
–Ubio 
-COL 
-WWF WildFinder 
-WWF Ecoregion 
-USDA PLANTS 
-GBIF 
-NatureServe 
-USGS  
-NASA MODIS 
-NOAA GOES-G  
-NEON in-situ 
-DataONE 
-… 

Species richness 
(Alpha Diversity) 

Environmental 
feature vectors  

Taxonomic Dissimilarity 
Matrix (Beta Diversity) 

Environmental 
Dissimilarity Matrix

Matrix Correlation Tests 

Identifying regions 
of interests to initiate 
queries to database 
backend 

(1)

(2) 

(3) 
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(5)
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(8)

Fig. 2. System architecture and components. (1) Species range maps and taxonomic hierarchy are derived from various data sources (2) Rasterizing species range maps and con-
struct individual quadtrees (3) Combining individual quadtrees to reduce memory footprint (Section 3.1) (4) The combined quadtrees in the main-memory database is used to
speed up query processing (Section 3.2) (5) Light-weighted middleware to communicate with the query processing engine and the Web-based applications (Section 3.3)
(6) Web services based applications for analytics and modeling (Section 3.3) (7) Web browser based applications for visualizations and visual explorations (Section 3.3) (8) Illus-
tration of two potential applications: regression and matrix correlation between alpha/beta diversities and environmental variables (e.g., Mantel tests).
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Unlike normal vector geospatial datasets whose polygons are usually
disjoint and spatial indexing is very effective in filtering out a large
portion of database records, polygons representing the distributions
of a large number of species are highly overlapped which makes spa-
tial indexing on the combined layer much less effective. As demon-
strated in the experiments section, these polygons representing the
distributions of bird species are very complex in the sense that
there might be multiple rings associated with a non-convex polygon
(e.g., due to holes) and each ring may have a large number of points.
For typical spatial windowqueries in the order of a fewdegrees on glob-
al datasets, the query response time can be minutes or even longer
which renders the solution inadequate for interactive applications.

Our solution is to rasterize these polygons based on quadtree
representations (Samet, 2005). By converting polygons into tree-
represented quadrants through pre-computing, retrieving quadrants
that fall into a spatial query window involves only partial tree tra-
versal which is considerably faster. An example of representing a
polygon as a quadtree has been shown at the top of Fig. 3. A parent
quadtree tree node has four children. A leaf node can be either
black or white. A black node indicates the presence of the species in
the quadrant (as part of a polygon) and a white node is the opposite.
Correspondingly, the intermediate nodes are gray which can have
white, black or gray children. To save storage space, only black
nodes are stored and their identifiers are derived by concatenating
quadrant indices (numbered 0–3) for all the nodes from the root to
the black node. The identifiers are termed as quadtree paths for the
respective black nodes. It is not difficult to see that quadtree is an
efficient representation of large polygons (Samet, 2004). While many
GIS software packages provide modules for vector-raster conversions
(Theobald, 2005), usually no quadtree representations are explicitly
generated or accessible to application developers. As such, we reuse
the Variable-Fanout Space Partition (VF-SP) tree construction module
that we have developed previously (Zhang, 2009) and configure it as
a quadtree data structure. As polygons representing the distribution of
a single species do not overlap, it is straightforward to build a quadtree
to represent the range map of a single species. We next present the

proposed quadtree data structure for indexing a large number of species
to reduce memory footprint while facilitate efficient cross-layer query
processing.

The motivation to use a specialized quadtree for a set of species
rather than use a set of quadtrees each representing an individual
species is obvious: many species are collocated in quadrants of differ-
ent sizes and it is more efficient to associate a quadrant with a set of
species as illustrated in Fig. 3. Instead of using classic quadtree data
structures that stores the presence of quadrants only at the leaf
nodes for the combined quadtree (mid-right part of Fig. 3, termed
as classic combination), we associate a set of species identifiers with
both leaf and intermediate nodes of the combined quadtree if the spe-
cies distributions fully cover the respective quadrants (lower-right
part of Fig. 3, termed as proposed combination). Storing species iden-
tifiers at the upper level of quadtree nodes eliminates the need to
store the respective identifiers at the all of their descendent nodes.
For the example shown in Fig. 3, while we need to store 18 identifiers
in 9 quadtree nodes for the combined quadtree using the classic com-
bination, we only need 6 identifiers in 6 quadtree nodes for the com-
bined quadtree using the proposed combination. As the number of
species gets larger, the memory saving will be more significant if
the quadtree data structures are stored in main-memory. As we
shall show in the experiment section, for the 4000+ NatureServe
bird species data (NatureServe, 2010b), the average number of iden-
tifiers associated with a quadtree node is reduced from 110.7 to 4.8
using the proposed combination, a significant saving of memory
consumption.

3.2. Spatial window query processing

Given a query window w, starting from the root of the combined
quadtree t, the query processing algorithm is performed in a recursive
manner to retrieve all the species distributed in the query window,
including species identifiers and their area sizes measured as the
numbers of raster cells, as shown in Fig. 4. The algorithm first (Step
1) checks whether the query window intersects with the quadrant
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Fig. 3. Illustration of quadtree representation (top) and comparisons of representations of large-scale species range maps using individual quadtree (left), classic combination (mid-
right) and proposed combination (lower-right).
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of the node that is being examined represents (assuming node n). If
not, the algorithm skips n. The intersection area between n and
w will then be computed and species identifiers associated with n
and the intersection area will be added to the output in the form of
(identifier, area) pairs (Step 2). The algorithm further checks whether
the query window completely contains the quadrant that n repre-
sents. If so, the query algorithm recursively adds the (identifier,
area) pairs for all the descendants of node n after intersecting the
quadrants and the query window by using the helper procedure out-
put_within (Step 3.1). Otherwise, each of the four non-empty child
nodes of node n will be recursively processed by applying the query
processing algorithm to the child nodes (Step 3.2). The process is
also illustrated in Fig. 5 by using an example. The nodes (and the
quadrants they represent) in dashed squares in Fig. 5 partially inter-
sect with the query window and applying the query algorithm to all
its child nodes recursively is needed. Differently, the nodes (and the
quadrants they represent) inside the solid squares are completely
contained by the query window and the identifiers associated with
all its descendents need to be added to the output.

When a quadrant is completely contained in the query window,
the number of raster cells at the finest resolution covered by the
quadrant can be immediately computed based on the level of the
quadrant and no real intersection computation is needed. However,
when a quadrant partially overlaps with the query window, comput-
ing the intersection area is needed. Assuming the coordinates for the
quadrant and the query window are (nx1, ny1, nx2, ny2) and (wx1,
wy1, wx2, wy2), respectively, the intersection can be easily per-
formed in two steps. The first step is to find the larger of nx1 and
wx1 (i.e., maxx1), the larger of ny1 and wy1 (i.e., maxy1), the smaller
of nx2 and wx2 (i.e., minx2), and, the smaller of ny2 and wy2 (i.e.,
miny2). The second step is to compute the intersection area by
using the simple formula area=(minx2-maxx1)*(miny2-maxx2).
The performance of the main memory spatial database we have
developed will be reported in the experiment section.

3.3. Web Applications: Mapping and Querying

The main-memory database serves as an efficient query proces-
sing engine to support Web applications. As shown in Fig. 2, two
types of Web applications are supported, i.e., browser based Web
applications for visual explorations and Web services based ones for
analytics and modeling. The system has derived a richness map for
predefined taxonomic groups across the study area, e.g., Western

Hemisphere for the NatureServe bird dataset. The richness maps are
then published as OGC Web Map Services (WMS, OGC, 2010a) and
can be displayed in a variety of Web-mapping packages. The richness
map serves as a base map for further visual exploration. Currently we
use open source software MapServer (OSGeo, 2010) for serving base
maps but other software, such as ESRI ArcGIS Server (ESRI, 2010a),
can be used as well. It is relative easy to improve the response time
of visualizing the base map as an open source package called Tile-
Cache (MetaCarta, 2008) is readily available to use. TileCache can
convert arbitrary WMS requests to MapServer into tiled ones and
cache the tiled images derived from the tiled requests. The cached im-
ages can be returned to clients directly without furtherWMS requests
to MapServer (also see Fig. 2). This essentially transforms online
queries into offline lookups which is very efficient. ESRI ArcGIS Server
provides similar functionality (ESRI, 2010a).

To support interactive Web-based visual explorations, e.g., draw a
rectangle on the richness base map interactively and returns a list of
species fall within the rectangle, two addition components have
been developed. The first component, as shown in Fig. 2, is a PHP-
based light-weighted middleware to receive queries from Web cli-
ents, format them properly before sending the queries to the main
memory spatial database that we have developed. The middleware
is also responsible for converting database query results into proper
formats that can be easily parsed by Web clients. The practical reason
to have a middleware sitting between the Web clients and the main-
memory spatial database backend is to reconcile two different types
of communication protocols (TCP/IP for main-memory spatial data-
base backend and HTTP for Web clients), and, to enable the commu-
nications between the Web clients and the database backend that
usually sits behind a firewall. The second component is a customer
module inside the Web client to capture user interactions, forward
the query requests to the middleware in proper format and visualize
the query results in a Web browser. In our system, the Ajax frame-
work is used to communicate between Web clients and the middle-
ware. The module is also responsible for visualizing interactively
drawn query windows as well as caching query results.

While the database backend and the middleware can work with
quite a few Web mapping APIs (Chow, 2008), including Google Map
(Google, 2010) and ESRI ArcGIS Flex/Silverlight (ESRI, 2010b; ESRI,
2010c), we choose an open source package called OpenLayers
(OpenLayers, 2010) as an example. A snapshot of the Web client
user interface is presented in Fig. 6. When users interactively draw
an arbitrary rectangle, all the species that are distributed in the
query window will be retrieved by querying the main-memory spa-
tial database through the middleware. By mapping the species iden-
tifies with the URLs of NatureServe InfoNatura Web information
system (NatureServe, 2010c), users can obtain more species specific
information at the NatureServe Web sites. The system also allows
users to keep previous query results with respect to geographical
extent, species and their areas (within the query window) for each
of the query results. Users can go back to any of the previous query
results by selecting the respective box. This not only improves system
performance by caching previous query results at the Web browser
side but also provides context of query histories. Internally this is
implemented by treating a query result (point location query and
spatial window query) as a feature in a temporary OGC Web Feature
Service (WFS) (OGC, 2010b) layer that is supported by OpenLayers.

Our system also supports Web services by extending the middle-
ware to support OGC WFS standard or W3C WSDL (Web Service
Definition Language) standard (W3C, 2001). The query result of a
Web service request can be parsed by software packages that support
the respective standards and used in a variety of traditional biodiversity
analysis andmodelingmodules.We are also in theprocess of integrating
some of the analytics and modeling modules into browser-based Web
applications to enhance the functionality of visual explorations andvisu-
al analytics (Keim and Mansmann, 2006, Thomas and Cook, 2005).

Procedure WindowQuery(t, w, v)  
Input:  

t: a combined quadtree 
w: a query window 

Output:  
v:  a vector of (species identifier, area size) pairs 

Step 0: set n to t  
Step 1: if w intersects the spatial extent of n 
Step 2.1:     compute the intersection of w and the spatial extent of n and calculate area size s.
Step 2.2      for ach of the species identifies associated with n (id) 

 add (id, s) pair to v and update the total area of the species. 
Step 3:       if w completely contains if the spatial extent of n  
Step 3.1 call procedure  output_within(n,w,v) 

       else 
Step 3.2 for each child node of n (n[i]) 

       call procedure WindowQuery(n[i],w,v) 
Step 4: output the (id, s) pairs in v 

Procedure output_within (t, w, v) 
Input and output: the same as WindowQuery 

Step 0: compute the area size of the quadrant that t represent (s) 
Step 1: for ach of the species identifies associated with n (id) 

 add (id, s) to v and update the total area of the species 
Step 2: for each child node of n (n[i]) 
  call procedure  output_within(n[i],w,v);  

Fig. 4. Spatial window query processing algorithm.
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Final outputs: A-14, B-10, C-10 

A,B C

0.1.2 A,B  
0.1.3 A,B *(1) 
0.2.1 A,B  
0.2.2 C  
0.2.3 A,B,C  
0.3 A,B X(2) 
0.3.2 C  
0.3.3 C X(1) 

1.0.2 A,C *(1) 
1.0.3 A,C *(1) 
1.1.2 C *(1) 
1.1.3 C  
1.2 A,B *(4) 
1.2.0 C *(1) 
1.2.1 C *(1) 
1.3 C X(2) 
1.3.2 A *(1) 

2.0 C  
2.1 A,C X(1) 
2.1.0 B  
2.1.1 B *(1) 
2.1.3 B  
2.2.0 C  
2.2.1 C  
2.3 C  
2.3.0 A
2.3.1 A  

3 A X(3) 
3.0 B X(2) 
3.0.0 C *(1) 
3.0.2 C  
3.2.0 C  
3.2.2 C  

A,B CA,B 

A 

B A,C C

A,B,C

A,C

C

B A

Combined quadtree, 33 nodes 

+ + = 

Species A Species B Species C Combined 

Fig. 5. Example of spatial window query processing on a combined quadtree. Quadrants marked with solid squares denote they are completely within the query window and quad-
rants marked with dashed squares denote they partially intersect with the query window. Additional information of the quadrants in the combined quadtree that intersect with the
query window is provided in the third columns of the quadrant tables. Quadrants that partially intersect with the query window are prefixed with X in the third columns of the
quadrant tables. Similarly, quadrants that are completely within the query window (including leaf nodes) are prefixed with *. Numbers inside the parentheses in the third columns
of the quadrant tables indicate the numbers of cells of the quadrants that are within the query window.

Fig. 6. Graphic user interface of the system: supporting arbitrary spatial window query and linking query results with NatureServe InfoNatura.
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4. Experiments

Among the species distribution data published by NatureServe, we
choose the bird dataset for our experiments as it is more complex
than mammal and reptile datasets. Results of two groups of experi-
ments will be reported. The first group of experiments examines
memory requirements for the main memory spatial database and
the second group of experiments reports query response times for
using different query window sizes.

4.1. Datasets and experiments setup

We have downloaded the bird species distribution shapefiles from
NatureServe's website (NatureServe, 2010b). The geographical range
of the bird species in the datasets are limited to the Western
Hemisphere, i.e., (−180, −90, 0, 90). Thus the number of cells along
both latitude and longitude at 1 min resolution is 180*60=10,800.
We set the depth for the quadtree for the experiments to d=14 as
214=16384, which is already greater than 10,800. As such, the effective
resolution of cells at the finest scale is 180/214°, i.e., nearly 40 arc-
seconds. We note that the system allows use arbitrary grid resolutions
(r) as long as r*2d is less than the width and height of the gird of the
study area. However, practically the highest resolution of the derived
raster tessellation should be limited by the original vector data and
should be carefully chosen. We discard species that have only point
data and species whose ranges are less than the size of a single cell at
the finest resolution. The final number of datasets for the bird species
tested is 4062. All experiments are performed on a Dell Precision
T5400 workstation with 16 G memory. To better understand the data-
sets used in the experiments, we have derived a set of statistics of the
bird range maps which are listed in Table. 1. The statistics may help un-
derstand the sizes of the polygonal datasets and the derived quadtree.

4.2. Experiments on Quadtree Indexing

Combining all the 4062 rasterized bird species ranges maps gener-
ates 46,139,247 raster cells and 1,318,136,140 pairs of (cell, identifi-
er) combinations at the finest resolution, i.e., about 28.7 species per
cell. The classic combination associates a total of 831,903,250 identi-
fiers with 7,511,823 leaf quadtree nodes, an average of 110.7. The
proposed combination associates a total of 23,865,343 identifiers
with 4,957,050 quadtree nodes (leaf and non-leaf), an average of
4.8. From these numbers we can see that, quadtree representations,
including both the classic combination and the proposed combina-
tion, are very effective in representing species distribution data. The
46,139,247 non-empty cells (out of the 10,800*10,800 total number
of cells) at the finest resolution are represented by 10,363,457 quad-
tree nodes (including both non-empty and empty nodes). The repre-
sentation achieves a compression rate of 4.57 for non-empty cells and
a compression rate of 11.25 for all cells. The number of leaf nodes of
the combined quadtree using the proposed combination (6,261,549)
is about 20% fewer than that of the combined quadtree using the clas-
sic combination (7,511,823) due to different tree construction policy
applied. The total number of identifiers to store in the classic combi-
nation is 34.9 times larger than that of the modified combination

(831,903,250 versus 23,865,343). The average number of identifiers
to associate with quadtree node for the classic combination is 23.0
times larger than that of the modified combination (110.7 versus
4.8). The proposed combination significantly lowers the memory con-
sumption as detailed next.

In our implementation of the main memory spatial database, a
quadtree node has a pointer to its parent (parent), a pointer to the
array of its four child nodes (children), a short integer value indicates
the number of species associated with the node (id_size), a pointer to
the array of the species identifiers (ids), a short integer to indicate the
level of the node (level), and, finally two short integers (index[0] and
index[1]) to indicate the quadrant that the node is located relative to
its parent quadrant along both the x and y directions. Since our exper-
iments are performed on a 32-bit machine, a pointer variable takes
4 bytes (lp=4) and a short integer takes 2 bytes (ls=2). For leaf
nodes, children will be set to NULL and thus the memory footprint
for a single quadtree node is 20 bytes (sl=4*ls+3*lp=20). On the
other hand, for the non-leaf nodes, we will need to allocate additional
four pointers to point to a node's four chidren and assign the start
postion of the meory block to children. As such, the memory footprint
for a non-leaf node is snl=sl+4*lp=20+4*4=36 bytes. Assuming
that there are nl leaf quadtree nodes and nnl non-leaf nodes, then the
memory footprint for the quadtree nodes are snl *nnl+sl*nl. Further
assuming that there are ni species that are associated with each of
the nt=nnl+nl quadtree nodes and each species identifiers takes ld
bytes, then the memory footprint for storing all the identifiers will

be
Pn
i¼1

ni

 !
� ld. Thus the total memory footprint for the main memory

spatial database is m ¼ snl � nnl þ snl � nnl þ
Pn
i¼1

ni

 !
� ld. Since ld is

proportional to the logarithmic of the number of species identifiers,
we use short integer (ld=2) to represent species identifiers as the
number of species used in the experiments is 4062 which is far less
than 216=65,536. In general, we expect ld to be between 2 and
4 bytes as 224 (ld=3) can already represent more than 4 million spe-
cies identifiers. For comparison purpose, the calculations of memory
consumptions for both the classic combination and the proposed
combination are listed in Table 2.

From Table 2 we can see that the memory footprint is dropped
from 1827.9 MB to 305.8 MB which is about six times saving. Note
that the majority of the memory is used for storing species identifiers
in the classic combination (86.8%) while the percentage drops to only
14.9% in the proposed combination. Since the data volume of species
identifiers dominates, the total memory footprint has dropped to 1/6
for the proposed combination. The results clearly show the memory
efficiency of the proposed quadtree indexing approach. While it is dif-
ficult to accurately estimate how the average numbers of species
identifiers associated with quadtree nodes scale with the numbers
of species (in a way similar to, but not the same as, the species–area
relationships) based on the proposed combination, we believe that
a typical desktop computer equipped with 8–16 G memory may
hold global range maps of tens to hundreds of thousands of species

Table 1
Statistics of the bird dataset.

#of species 4062
Volume of geometrical data (.shp files in the original data files) 1.3 G
#of polygons 708,509
#of points 77,699,991
Average # of polygons per species 174.4
Average # of points per polygon 109.7
Average # of points per species 19,128.5
Average # of cells (finest resolution) per species 4,131,931.1

Table 2
Memory footprints for the classic and the proposed combinations.

Unit size Classic
combination

Proposed
combination

Total number of quadtree nodes 10,363,457 10,363,457
Leaf nodes sl=20 bytes nl=7,511,823 nl=6,261,549
Non-leaf nodes snl=36 bytes nnl=2,851,634 nnl=4,101,908
Species identifier ld=2 bytes (Σni)=831,903,250 (Σni)=23,865,343
Memory footprint

m ¼ snl � nnl þ sl � n1 þ
Pn
i¼1

ni

 !
� ld

1,916,701,784
(1827.9 MB)

320,630,354
(305.8 MB)

75J. Zhang / Ecological Informatics 8 (2012) 68–77



Author's personal copy

based on our quadtree data structure. Given that the memory capac-
ities for typical commodity computers have increased 100–1000
times over the past ten years (Hennessy and Patterson, 2006), we
are quite optimistic that our main-memory spatial database can
hold the global range maps of all known species on a typical personal
computer when the data becomes available.

4.3. Experiments on query processing

We have performed 100 tests for each of the four window sizes,
i.e., 0.2, 1.0, 2 and 10° with randomly generated query window cen-
ters. Among the 400 tests, only 36 of them have response times great-
er than 10 ms. We record the 158 tests that have resulted in at least
one species in the queries (note that 70% of the Earth surface is cov-
ered by oceans and usually no birds are recorded in oceans unless
there are islands). The average query response time is 10.06 ms and
the largest one is 290 ms. The excellent query processing perfor-
mance leaves quite some rooms for achieving end-to-end perfor-
mance below the level of 1 s for even larger numbers of species
range maps on the hardware configurations that similar to the one
used in our experiments.

For comparison purposes, we have put the bounding boxes of the
quadrants in the combined quadtree into a PostgreSQL database
(PostgreSQL, 2010), indexed the boxes and performed the same set
of queries (also see Section 3.1 for the exact SQL syntax). The average
query response time for the disk-resident PostgreSQL database is
4786 ms and the largest one is 134,960 ms. It is clear that the perfor-
mance of our main-memory spatial database is about 2–3 orders bet-
ter than using the disk-resident PostgreSQL database.

5. Summary and conclusion

We have developed a high performance Web-based information
system for efficiently publishing and disseminating large scale species
range maps based on a novel quadtree data structure. Using the
NatureServe's 4000+ bird species range map dataset, experiment
results have shown that thememory footprint of the proposed quadtree
data structure representing the rangemaps of all the species is a fraction
of the classic combination of individual quadtrees each representing a
species range map. The experiment results have also demonstrated
that the query response times of our main-memory spatial database
are 2–3 orders better than using a disk-resident PostgreSQL database
based on the 400 randomly generated spatial query windows. The
response times are well beyond a second for query windows as large
as 10×10°.

We envision that more and more large-scale scientific datasets at
global scale will become available with increasing spatial resolutions.
These datasets need to be published over the Web for easy Web-
based visualization and exploration as well as data integration, analysis
and modeling. Developing specialized data structures and query pro-
cessing algorithms for certain domain-specific applications to improve
system performances might provide preferable alternatives to utilizing
generic software packages when overall cost-effectiveness factors are
taken into considerations. This work represents the first step towards
the direction.

For future work, we plan to support Region of Interests (ROIs)
queries that extend rectangles in window queries to arbitrarily
shaped polygons. This can be achieved by constructing a quadtree
on an ROI polygon using the same raster tessellation that has been
used to construct the combined quadtree for all species range maps.
The query procedure discussed in Section 3.2 subsequently needs to
be modified to efficiently support synchronized traversal of both the
ROI quadtree and the species range map quadtree and derive the
list of species that are distributed in the ROI. Second, we plan to fur-
ther investigate the scalability of our prototype system. There are
more than a million known species and their distribution maps are

becoming increasingly available. This number is about two to three
orders larger than that have been experimented in this study. More
experiments are needed to research on memory consumption and
query response times as the number of species scales up. Finally, we
plan to explore the Rich Internet Application (RIA) frameworks such
as Adobe Flex and Microsoft Silverlight as well as HTML 5 to enrich
the information visualization and visual exploration functionality of
browser based Web applications. For example, automatically compute
and visualize top K quadrants that are most different from a focal cell/
quadrant based on different types of beta diversity measurements.
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