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ABSTRACT 
Change detection techniques have been widely used in satellite 
based environmental monitoring. Multi-date classification is an 
important change detection technique in remote sensing. In this 
study, we propose a hybrid algorithm called HC-DT/SVM, that 
tightly couples a Decision Tree (DT) algorithm and a Support 
Vector Machine (SVM) algorithm for land cover change 
detections. We aim at improving the interpretability of the 
classification results and classification accuracies 
simultaneously. The hybrid algorithm first constructs a DT 
classifier using all the training samples and then sends the 
samples under the ill-classified decision tree branches to a SVM 
classifier for further training. The ill-classified decision tree 
branches are linked to the SVM classifier and testing samples 
are classified jointly by the linked DT and SVM classifiers. 
Experiments using a dataset that consists of two Landsat TM 
scenes of southern China region show that the hybrid algorithm 
can significantly improve the classification accuracies of the 
classic DT classifier and improve its interpretability at the same 
time.   

Categories and Subject Descriptors 
H.2.8 [Database Applications] Data Mining 

General Terms 
Algorithms, Experimentation, Performance 

Keywords  
Hybrid Classifier, Decision Tree, SVM, Remote Sensing, Land 
Cover, Change Detection 

1. INTRODUCTION 
Change detection from remotely sensed images is a 

useful technology for detecting changes in large and rapidly 
changing area and is an important source for environmental 
monitoring. Many digital change detection techniques have been 
developed during the past few decades (Singh 1989, Lu et al 
2004). The techniques can be grouped into three major 
categories: map algebra, direct multi-date classification and 

post-classification comparison. Image (band) differencing might 
be the most widely used method in the first category. While the 
techniques in the category are able to provide information on the 
possible existence of a change and the relative magnitude of the 
change, they do not identify the nature of the change (Im and 
Jensen 2005). In contrast, techniques in the later two categories 
have the capabilities of providing detailed information about the 
type of land cover change for every pixel and/or polygon under 
examination (Im and Jensen 2005). While the post-classification 
comparison based methods are straightforward, they were 
criticized for relying on the accuracy of the two individual 
classifications (Singh 1989). In this study, we propose a hybrid 
algorithm that tightly couples a Decision Tree (DT) algorithm 
and a Support Vector Machine (SVM) algorithm for land cover 
change detections that aims at improving the interpretability of 
the classification results and classification accuracies 
simultaneously. The proposed approach falls in the multi-date 
classification category. 

Comparisons of different classification algorithms in the 
multi-date classification category have been extensively studied. 
For example, Chan et al (2001) compared four classifiers, 
namely Multi-Layer Perceptron (MLP), Learning Vector 
Quantization (LVQ), Decision Tree (DT) and Maximum-
Likelihood Classifier (MLC). Seto and Liu (2003) compared 
ARTMAP neural network with MLC and observed that 
ARTMAP neural network classifiers were more accurate than 
MLC classifiers. Nemmour and Chibani (2006) has reported that 
Support SVM generally performed better than a two hidden-
layer Artificial Neural Network (ANN) classifier using the 
standard back propagation rule with respect to classification 
accuracies. While a certain classifier may have higher 
classification accuracy for a particular dataset, it is hard to make 
a conclusion that some classifiers are always better than the 
rests when multiple criteria are used to evaluate the suitability of 
algorithms (Chan et al, 2001). Although in reality no 
classification algorithm can satisfy all evaluation requirements 
nor be applicable to all studies due to different environmental 
settings and datasets used (Lu and Weng 2007), hybridizing two 
or more classifiers with careful design may improve the 
suitability of classification algorithms for land cover change 
detections.  

Hybrid classifier is a popular concept in classifying 
remotely sensed data. Various hybrid methods have been 
proposed since at least early 1990s (Kelly et al 2004). For 
example, the Iterative Guided Spectral Class Rejection (IGSCR) 
is a hybrid approach that combines unsupervised clustering and 
maximum likelihood (Wayman et al 2001) and have been 
successfully used in a few applications (Kelly et al 2004, Musy 
et al 2006, Wynne 2007). Techniques that hybridize clustering 
and classification algorithms for urban change analysis have 

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, to republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 

ACM SIGSPATIAL DMG Workshop, Nov 2, San Jose, CA, U.S.A. 

Copyright 2010 ACM 978-1-4503-0430-6/10/11...$10.00. 

9



been successfully applied to the Twin Cities (Minnesota) 
metropolitan area using multi-date Landsat data (Yuan et al 
2005). In addition, the ensemble based techniques, such as 
bagging or boosting, can also be broadly considered as hybrid 
classifiers where a same base classifier is applied multiple times 
and the classifications are combined to generate the final results. 
In this case, the base classifiers are “hybridized” to themselves.  
Land cover classifications using boosting (Friedl et al 1999, de 
Colstoun and Walthall 2006) and bagging (DeFries and Chan 
2000, Prasad et al 2006) on decision tree classifiers have been 
reported. More recently, Nemmour and Chibani (2006) applied 
multiple support vector machines for land cover change 
detection where multiple kernels were used to build multiple 
classifiers and the classification results were combined based on 
fuzzy integral and attractor dynamic rules. Most of existing 
hybrid classifiers require training and classifying the samples in 
a dataset multiple times independently and we term as loosely-
coupled hybrid classifiers. The problem with such loosely-
coupled hybrid classifiers are that the numbers of training and 
testing of the hybrid classifiers usually are proportional to the 
numbers of base classifiers that the hybrid classifiers are based 
on. Combining classification results from multiple independent 
classifiers beyond simple majority voting rule requires careful 
design of schemas of combination (e.g., Liu and Gopal 2004, 
Huang and Lees 2004) which is a non-trivial task.  In addition, 
while it may be possible to visualize individual base classifiers 
for better interpretation, it may not be feasible to visualize the 
hybrid classifiers due to the composition complexities of the 
base classifiers. 

In this study, we propose a new hybrid algorithm that 
adopts a tightly coupled strategy for base classifiers. The 
strategy first feeds all the training samples to a fast classifier 
that uses divide-and-conquer strategy (e.g. decision tree 
algorithms) and identifies ill-classified components in the 
divided classification space. The strategy then combines 
samples fall in the ill-classified components and sends them to a 
more sophisticated and computationally intensive classifier for 
further classification. A hybrid classifier that adopts the strategy 
actually is a chain of two types of base classifiers. One of the 
advantages of the new type of hybrid classifiers is the capacity 
to leverage fewer but more significant patterns resulting from 
the training samples and present them to users immediately in a 
compact form. For example, delivering decision rules from a 
resulting decision tree classifier that cover a larger number of 
training samples with high classification accuracies or few 
exceptions. In addition, the classifiers that adopt the divide-and-
conquer strategy usually can be represented as a tree and can be 
easily visualized.   

As a case study, we have developed a new hybrid 
algorithm that hybridizes a decision tree classifier and a SVM 
classifier. Different from previous hybrid techniques that mainly 
target at classification accuracies, the proposed hybrid algorithm 
also aims at interpretability of the trained classifier. We choose 
to hybridize the decision algorithm and the SVM algorithm for 
two main reasons. First, the decision tree algorithm has been 
widely used in land cover classification and its advantages, such 
as no presumption of data distribution and fast in training and 
execution, have been well recognized (Friedl and Brodley 1997, 
Friedl et al 2002). More importantly, it has the capabilities of 
generating human interpretable rules. The decision tree 
algorithm has been successfully applied to urban change 

detection as reported in (Chan et al 2001) and (Im and Jensen 
2005). Second, recent studies on classifying remote sensing data 
have consistently reported that SVM classifiers have better 
classification accuracies than conventional MLC classifiers and 
ANN based classifiers for both multi-spectral (Huang et al 2002, 
Pal and Mather 2005) and hyperspectral images (Pal and Mather 
2006) which suggests that SVM could be used as an accurate 
classifier for change detection that involves a large number of 
bands from multi-date images. Unfortunately, the resulting 
hyperplane in a SVM classifier is in a high-dimensional space, 
which makes visualizing SVM classifier for human 
interpretation very difficult if not impossible.  

Following the strategy discussed previously, the 
proposed hybrid algorithm first applies a decision tree algorithm 
to the training samples to construct a DT classifier. The samples 
in the ill-classified branches of the resulting decision tree are 
used to construct a SVM classifier. The two classifiers are 
chained together through pointers and used for classification. 
The proposed approach is motivated by our previous work on 
devising a successive decision tree algorithm for classifying 
remotely sensed data where the samples in the ill-classified 
branches of a previous resulting decision tree are used to 
construct a successive decision tree (Zhang et al 2007). The rest 
of the paper is organized as follows. Section 2 introduces the 
basics of the DT classifier and the SVM classifier and presents 
the proposed hybrid algorithm. Section 3 provides details of 
software implementations of the HCC-DT/SVM algorithm. 
Section 4 is the experiments on the land cover change detections 
using a pair of TM images at two times in a southern China 
region. Finally Section 5 is the summary and conclusions. 

2. The HC-DT/SVM Algorithm 
Before going to the details of the hybrid algorithm, we first 

briefly introduce the two base classifiers, namely the decision 
tree classifier and the support vector machines classifier. The 
hybrid algorithm is then presented as a set of linked procedures. 

2.1 The Decision Tree Algorithm 
The decision tree method recursively partitions the 

data space into disjoint sections using impurity measurements 
(such as information gain and gain ratio). For the sake of 
simplicity, binary partition of feature space is usually adopted in 
implementations. Let f(Ci) be the count of class i before the 
partition and f(Ci

1) and f(Ci
2) be the counts of class i in each of 

the two partitioned sections based on a partitioning value, 
respectively. Further let C be the total number of classes, 
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overall entropy after the partition is defined as the weighted 
average of e1 and e2, i.e.,  

 

 

The Information Gain then can be defined as:  
 

 
The Gain Ratio is defined as: 

 
 
 
 
Implementations may choose to use different criteria, 

such as information gain, gain ratio or their combinations. For 
example, the J48 module in the WEKA data mining package 
(Witten and Frank 2000) that implements the popular C4.5 
algorithm uses the following procedure to determine the best 
partitioning attribute (band in remote sensing classification case) 
and the best partitioning value. First, for each attribute, a set of 
partitioning values is determined based on the minimum and 
maximum values of the attribute. Second, each of the 
partitioning values is used to partition the training samples into 
two subsets and the information gain and gain ratio are 
calculated. The partitioning value with the largest gain ratio 
among the partitioning values whose info gains are above the 
average is used as the attribute’s partitioning value. Third, the 
process is repeated for all the attributes and the attribute with 
the largest gain ratio is chosen as the partitioning attribute.  

The decision tree classifier adopts a divide-and-
conquer strategy and is very fast in training and testing. More 
importantly, paths from the root to leaf nodes can easily be 
transformed into decision rules (such as if a>10 and b<20 then 
Class 3), which is suitable for human interpretation and 
evaluation. In addition, during the process of selecting 
partitioning attribute, the algorithm works on an attribute (band) 
at a time and do not need information from other attributes 
(bands). Thus band values come from multi-date images do not 
need rigid radiometric calibration before feeding to the decision 
tree algorithm. This is a significant advantage of using the 
algorithm for change detections that involve multi-date images 
when calibration is difficult.  
2.2 The SVM Algorithm 

For the sake of simplicity, we only introduce the basic 
SVM algorithm that handles two classes. For multi-class 
classification problem, either one against one or one against all 
strategy can be applied to decompose the multi-class 
classification problem into multiple two-class classification 
problems. The SVM classifier we use in this study is the Java 
version of the LIBSVM package (Chang and Lin 2001) which 
adopts the one against one class decomposition strategy. An n-
class classification problem is decomposed into n*(n-1)/2 two-
class classification problems. The results are merged through a 
majority vote.  

For a two-class classification problem, given a set of 

samples N 1{ , }N
i i ix y = , where n

ix ∈R  is the i-th sample and 

{ 1, 1}iy ∈ − +  is the label of the sample, the SVM algorithm 
aims at finding a linear hyperplane that separate the data in a 
transformed space, i.e.,  

 
 

where function φ(x) is a mapping from the original space to a 
high dimensional space. In case of such separating hyperplane 
does not exist, a so called slack variable iξ  is introduced such 
that 

  
 
 
SVM adopts the structural risk minimization principle 

and the risk bound is minimized by solving the following 
minimization problem: 
 
 
 

  subjected to (1). To minimize (2), a Lagrangian 
function can be constructed as 
 

 
 
 
  

where 0,  0 ( 1, , )i i i Nα β≥ ≥ = K are the Lagrangian 
multipliers of (2). Function (3) reaches its optimal value when 
the following conditions are met:  

 
 
 
 
 
 
 
 
Substitute (4) for (3) we get the following quadratic 

programming problem 
 
 
 

where )(,)(),( jiji xxxxK φφ=  is called the 

kernel function. Solving this quadratic programming (QP) 
problem subject to constrains in (4), a decision hyperplane in 
the high dimensional space can be obtained and will be used in 
the subsequent classifications.  
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2.3  The Hybrid Algorithm 
 The basic idea of the hybrid algorithm is to keep 

classification branches of a resulting decision tree that have high 
classification accuracy (corresponds to a significant decision 
rule) while combining samples that are classified under 
branches with low classification accuracy into a new training 
dataset to use the SVM classifier. The modified decision tree 
classifier is responsible for constructing significant and compact 
decision rules for human interpretation and the SVM classifier is 
responsible for training the samples that do not fit in the 
decision rules of the resulting decision tree. By giving the ill-
classified samples in the decision tree classifier a new chance in 
the SVM classifier, we expect the overall classification accuracy 
to be higher than using the decision tree classifier alone. The 
heuristics behind the expectation are as follows. In the decision 
tree classifier, there are samples in a multi-class training data 
set, although their patterns may be well perceived by human, 
they are small in sizes and are often assigned to various 
branches during the classification processes according to 
information entropy gain or gain ratio criteria. At some 
particular classification levels, the numbers of the samples may 
be below predefined thresholds in decision tree branches to be 
qualified as decision tree leaf nodes with high classification 
accuracies, thus the splitting processes stop and they are treated 
as noises. However, if we combine these samples into a new 
dataset and train a SVM classifier, since the distribution of the 
new dataset may be significantly different from the original one, 
new meaningful patterns may be discovered by the SVM 
classifier. The basic idea of the hybrid algorithm is illustrated in 
Fig. 1.  

We next present the hybrid algorithm as a set of 
linked procedures. The overall control flow of the hybrid 
algorithm is shown in Fig 2. The process of building the 
modified decision tree classifier is shown in Fig. 3. The process 
of classifying a sample by the hybrid algorithm is shown in Fig. 
4. Since we use a regular SVM classifier, the procedures for 
building a SVM classifier (Build_SVM) and classifying a 
sample using the SVM classifier (SVM_Classify) are omitted. 

The function Build_Tree (Fig. 3) recursively partitions 
a data set into two and builds a decision tree by finding a 
partition attribute and its partition value based on the 
information gain and the gain ratio criteria as discussed 
previously. There are several parameters used in function 
Build_Tree. Min_obj1 specifies the number of samples to 
determine whether the branches of a decision tree should stop or 
continue partitioning. min_obj2 specifies the minimum number 
of samples for a branch to be qualified as having high 
classification accuracy. Min_accuracy specifies the percentage 
of samples of the dominating classes. While the purposes of 
setting min_obj1 and min_accuracy are clear, the purpose of 
setting min_obj2 is to prevent generating small branches with 
high classification accuracies in hope that the samples that fall 
within the branches can be used to generate more meaningful 
patterns in the subsequent SVM classifier. 

 
 
 

 

 

 

 

 

 

 

Fig. 1 Illustration of the Basic Idea of the Hybrid 
Algorithm  

 

  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Overall Control Flow of the Hybrid Algorithm 
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Algorithm Hybrid (P, min_obj1, min_obj2, min_accuracy) 
 
Inputs:   

(1)A training sample dataset (P) with N samples, each sample has M attributes (number of bands of the multi-date images to 
classify) and a class label  
(2)Three thresholds for the modified decision tree algorithm: the number of samples to determine whether the branches of a DT 
should stop or continue partitioning (min_obj1), the minimum number of samples in a branch (min_obj2), and the percentage of the 
samples of classes in branches that can be considered as dominating (min_accuracy) 
 

Output:  
A hybrid classifier linking a decision tree classifier and a SVM classifier 
 
1. Set dataset D=P, dataset D’={} 
2. Call H.T=Build_Tree ( D, D’,min_obj1, min_obj2, min_accuracy) 
3. Call H.V=Build_SVM(D’) 
4. Return H 
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Fig.  3 Procedure Build_Tree 
 

If the min_accuracy value is set to a high percentage, 
many branches in the corresponding decision trees will not be 
able to be qualified as having high classification accuracy and 
samples that fall within these branches will need to be fed to the 
subsequent SVM classifier. On the other hand, using higher 
min_accuracy values generates decision branches that are higher 
in classification accuracies but smaller in numbers. For 
min_obj1 and min_obj2, it is clear that min_obj1 needs to be 
greater than min_obj2. The larger min_obj1, the earlier to check 
whether to further partition a decision tree branch. Once the 
number of samples is below min_obj1, the branch will be either 
marked as having high classification accuracy or marked as 
needing to be linked to the subsequent SVM classifier, 
depending on min_accuracy and min_obj2. A larger min_obj1, 
together with a higher min_accuracy makes the hybrid 
algorithm find larger but fewer decision branches that are high 
in classification accuracy (i.e., significant decision rules). The 
parameter min_obj2 is more related to determining the 
granularity of “noises” of the decision tree. A smaller min_obj2 
means that fewer branches, the samples of which are almost of 
the same class (>min_accuracy) but are small in sizes, will be 
considered as unclassifiable in the decision tree classifier and 
need to be sent to the SVM classifier. 

3. Software Implementation 
We implement HC-DT/SVM on top of two Java open 

source data mining packages. The WEKA (Witten and Frank 
1999) is a well-known general purpose data mining tool and has 
been successfully used in GESCONDA - an intelligent data 

analysis system for knowledge discovery and management in 
environmental databases (Gibert et al 2006). We use WEKA to 
provide input/output formatting and use its J48 implementation 
of the C4.5 algorithm as a skeleton for implementing the DT 
part of the HC-DT/SVM algorithm. LibSVM (Chang and Lin 
2001) is a popular Java library for building SVM classifiers and 
a wrapper called WLSVM (WEKA LibSVM) has been provided 
to interface between LibSVM and WEKA (El-Manzalawy and 
Honavar 2005).  

While these open source packages provide building blocks 
to implement HC-DT/SVM, the hybridization of the two 
algorithms and providing an integrated implementation is non-
trivial for three reasons. First, the J48 code in the WEKA needs 
to be significantly revised to make it be aware of ill-classified 
branches. Second, a controlling mechanism needs to be 
implemented to gather training samples in the ill-classified 
branches and send them to a SVM classifier. Finally, a new 
classifier needs to be implemented to dispatch a testing sample 
to either the modified DT classifier or the SVM classifier and 
output the combined classification result.   

We follow the structure of the 
weka.classifiers.trees.j48 package and modify the relevant 
components to implement HC-DT/SVM. First, in addition to 
NoSplit class that represents the leaf node in a constructed 
decision tree, the NextSplit class represents the ill-classified tree 
branches is added, both extend the ClassifierSplitModel class in 
the J48 package. The C45ModelSelection module is extended to 
handle the new category of decision tree nodes.  The instances 
of the NextSplit class always return -1 when a sample is being 

Procedure Build_Tree (D, D’, min_obj1, min_obj2, min_accuracy) 
Inputs: 
D’: new data set combining ill-classified samples 
D, min_obj1, min_obj2, min_accuracy: same as in function Hybrid in Fig. 2  
Output: The modified decision tree 
1. Let num_corr be the number of samples of the dominating class in D 
2. if(|D|< min_obj1) 

a. If (num_corr>|D|* min_accuracy) and |D|> min_obj2) 
i. Mark this branch as high accuracy branch (no need for further partitioning) and assign the label of the dominating class 
to the branch 
ii. Return NULL 

b. Else 
i. Mark this branch as low accuracy branch with “use_svm” 
ii. Merge D into D’ 
iii. Return NULL 

3. else 
a. if (num_corr>|D|* min_accuracy) 

i. Mark this branch as high accuracy branch (no need for further partition) and assign the label of the dominating class to 
the branch 

ii. Return NULL 
//begin binary partition 
4. For each of the attributes of D, find partition value using entropy_gain or gain_ratio 
5. Find the partition attribute and its partition value that has largest entropy_gain or gain_ratio 
6. Divide D into two partitions according to the partition value of the attribute, D1 and D2 
7. Allocate the tree structure to T 
8. T.left_child= Build_Tree(D1, D’, min_obj1, min_obj2, min_accuracy) 
9. T.right_child= Build_Tree(D2, D’, min_obj1, min_obj2, min_accuracy) 
10. return T 
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classified and thus training samples fall under the ill-classified 
decision tree branches can be gathered and sent to the linked 
SVM classifier. Similarly, the DT part of the hybrid 
classification algorithm returns -1 to indicate that a testing 
sample falls under an ill-classified decision tree branch and 
should use the linked SVM for final classification.  Finally the 
hybrid classifier implements the buildClassifier, 
classifyInstance and distributionForInstance interface functions 
required by a WEKA classifier so that it can be used the same as 
other WEKA classifiers. By adding a simple component 
(NextSplit), and slightly revising two existing components 
(ClassifierSplitModel, C45ModelSelection), our implementation 
of HC-DT/SVM maintains high compatibility with the J48 
implementation of the C4.5 decision tree algorithm, which is 
desirable with respect to minimizing development cost, easy 
understanding and better usability.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4 Procedure Hybrid_Classify 

 
We note that, while our implementation of HC-

DT/SVM currently takes samples in WEKA’s data format only 
and cannot read data maintained by commercial remote sensing 
data processing systems, it is possible to use third party open 
source packages to generate training and testing samples from 

data managed by the commercial systems and feed the samples 
to HC-DT/SVM. For example, the StarSpan package developed 
at the Center for Spatial Technologies and Remote Sensing 
(CSTARS) at University of California at Davis (Rueda et al 
2005). Given a set of images and Regions of Interests (ROIs), 
StarSpan can extract values and its label of pixels fall within the 
ROIs and exported them in a variety of data formats which can 
be further converted to the WEKA’s ARFF format.  

4. Experiments 
To validate the proposed hybrid algorithm, we use a 

dataset consists of two Landsat TM scenes of southern China 
acquired on 10 December 1988 (T1) and 03 March 1996 (T2). 
Preprocessing including geometric and atmospheric corrections 
of the dataset has been described elsewhere (Seto and Liu 2003). 
A total of 12 bands, i.e., TM bands 1-5 and band 7 for the two 
scenes, are used in the classification. Class labels and the 
numbers of training and testing samples for the classes are listed 
in Table 1. The six bands in the T1 image are numbered b0 
through b5 and the six bands in the T2 image are numbered b7 
through b11, respectively. 

4.1 Tests of Accuracies 
We use the following parameters in the hybrid 

classifier: min_obj1=200, min_obj2=100 and 
min_accuracy=95%. For the SVM parameters used in the hybrid 
classifier, we use a Radial Base Function (RBF) kernel and set 
G=1 and C=39 after fine tuning. The default parameters in the 
J48 decision tree implementation are used without fine tuning. 
For fair comparison, we use the same fine-tuned SVM 
parameters in the original SVM classifier for the hybrid 
classifier. The overall accuracy of the hybrid classifier is 
89.87%. The classification accuracies for the original decision 
tree classifier and the SVM classifier are 81.25% and 90.31%, 
respectively. The error matrices for the three classifiers are 
listed in Table 2, Table 3 and Table 4, respectively. From the 
results we can see that the hybrid classifier has much higher 
accuracies than the classic DT classifier while slightly worse 
than the SVM classifier. 

 
Table 1 Classes and the numbers of their training and 

testing samples 
Class ID Class Description # of 

Training 
Samples 

# of 
Testing 

Samples 
1 Water 250 59 
2 Natural vegetation  568 154 
3 Agriculture 962 246 
4 Urban 682 154 
5 Water to Urban 544 84 
6 Agriculture to 

Urban 1059 180 

7 Vegetation to 
Urban 775 259 

Total 4840 1136 

 

Procedure Hybrid_Classify(H, I) 
Input:  
• A Hybrid Classifier 
• A sample I with M attributes 
Output:  
• Class label of I  
1. Set label= DT_classify(H.DT,I) 
2. If label==”use_svm”  return SVM_Classify(H.SVM,I) 
3. Else Return label  

 
Algorithm DT_Classify (T, I) 
Input:  
• A decision tree resulting from the modified decision tree 
classifier 
• An instance I with M attributes 
Output:  
• Class label of I  
1. If T is a leaf node 

a. If T is marked as a high classification confidence node  
i. Assign the class label of T to I 

ii. Return 
b. Else if T is marked as a low classification 

confidence node 
Return “use_svm” 

2. Else 
a. Let A be the partitioning attribute and V be the 

partition value 
b. If(I[A]<=V) then 

Return DT_Classify (T.left_child, I) 
c. Else 

Return DT_Classify (T.right_child, I) 
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Table 2 Error Matrix of the Hybrid Classifier (Overall Accuracy= 89.88%, Kappa= 0.8784) 
 Reference Categories 
 1 2 3 4 5 6 7 

Σ UA 

Water  58 0 1 0 0 0 0 59 98.31% 
Natural vegetation 0 148 6 0 0 0 0 154 96.10% 

Agriculture 0 31 199 1 0 12 3 246 80.89% 
Urban  0 0 7 139 0 8 0 154 90.26% 

Water to Urban 0 0 0 0 84 0 0 84 100.00% 
Agriculture to Urban  0 0 12 3 1 154 10 180 85.56% 
Vegetation to Urban 0 0 3 0 0 17 239 259 92.28% 

Total  1136  
 
 

Table 3 Error Matrix of the Classic DT Classifier (Overall Accuracy=81.25%, Kappa=0.7750) 
 Reference Categories 
 1 2 3 4 5 6 7 

Σ UA 

Water  46 0 13 0 0 0 0 59 77.97% 
Natural vegetation  0 146 8 0 0 0 0 154 94.81% 
Agriculture 1 26 188 9 0 15 7 246 76.42% 
Urban  0 0 6 134 0 8 6 154 87.01% 
Water to Urban  0 0 0 0 84 0 0 84 100.00% 
Agriculture to Urban  0 0 9 9 2 136 24 180 75.56% 
Vegetation to Urban 0 4 8 0 0 58 189 259 72.97% 
Total  1136  

 
 
 

Table 4 Error Matrix of the Classic SVM Classifier (Overall Accuracy =90.32%, Kappa=0.8838) 
 Reference Categories 
 1 2 3 4 5 6 7 

Total UA 

Water 58 0 1 0 0 0 0 59 98.31% 
Natural vegetation  1 149 4 0 0 0 0 154 96.75% 
Agriculture 0 27 202 0 0 10 7 246 82.11% 
Urban  0 0 4 145 0 5 0 154 94.16% 
Water to Urban  0 0 0 0 84 0 0 84 100.00% 
Agriculture to Urban  0 0 12 7 1 153 7 180 85.00% 
Vegetation to Urban 0 0 2 0 0 22 235 259 90.73% 
Total  1136  

 
Table 5 Accuracy Comparisons of the Hybrid, the Classic DT and the SVM Classifiers 

 Accuracies Hybrid~DT  Test Hybrid~SVM Test 
 Hybrid DT SVM Z-Score Significance 

Level 
Z-Score Significance 

Level 
Water 98.31% 77.97% 98.31% 3.4162 P<0.001 / / 

Natural vegetation 96.10% 94.81% 96.75% 0.5471  -0.307  
Agriculture 80.89% 76.42% 82.11% 1.2104  -0.3483  

Urban 90.26% 87.01% 94.16% 0.8977  -1.2754  
Water to Urban 100.00% 100.00% 100.00% / / / / 

Agriculture to Urban 85.56% 75.56% 85.00% 2.397 P<0.01 0.1487  
Vegetation to Urban 92.28% 72.97% 90.73% 5.7982 P<0.001 0.6304  

Overall 89.88% 81.25% 90.32% 5.8499 P<0.001 -0.3512  
 
To further compare the classification accuracies at the 

individual class level, the accuracies for the hybrid, classic DT 
and SVM classifiers for each of the seven classes are listed in 
Tables 2-4 as well. Z-statistics between the accuracies of the 
hybrid classifier and the classic DT classifier and Z-statistics 
between the accuracies of the hybrid classifier and the SVM 

classifier for the classes are also calculated and listed in Table 5. 
For classifications using two classifiers and having the same 
accuracies, it is not possible to calculate Z-statistics and the 
correspondingly Z-scores and confidence levels are marked with 
“/”. From the results it is clear that the hybrid classifier 
outperforms the classic decision tree classifier for all classes 
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except Water to Urban where both classifiers achieve full (100%) 
classification accuracies. More specifically, the hybrid classifier 
outperforms the classic DT classifier for classes Agriculture to 
Urban at p<0.01 significance level and Water and Vegetation to 
Urban at p<0.001 significance level. Table 5 also shows that 
while the SVM classifier achieves slightly better with respect to 
the overall classification accuracy than the hybrid classifier, SVM 
is not always better than the hybrid classifier at the class level. In 
fact, the SVM classifier performs better only for four out of the 
seven classes and none of them are statistically significant at the 
significance level p<0.1. 

4.2 Test of Interpretability 
While the hybrid classifier achieves much higher 

classification accuracies than the classic DT classifier and 
comparable classification accuracies to the SVM classifier, the 
most significant advantage of the hybrid classifier is its capability 
to generate concise and human interpretable decision rules. 
Among the 4840 training samples, the hybrid classifier 
generalizes 2141 samples and creates a compact decision tree 
(Fig. 5). The resulting decision tree has eight leaves which can be 
easily translated into decision rules. In contrast, the decision tree 
resulting from the original decision classifier has 214 leaves and 
is too big to fit in a page for presentation. In addition, we find that 
the significant decision rules resulting from the classic DT 
classifier are mixed with insignificant decision rules and it is hard 
for users to interpret. Thus the hybrid classifier has the capacity to 
leverage the most significant decision rules with high 
classification accuracies and present them to users for immediate 
validations.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5 The Resulting Compact Decision Tree 
The resulting compact decision tree from the hybrid 

classifier is quite meaningful. The first decision rule, b4<=10 and 
b11<=8 and b9<=12 Water generalizes 165 out of the 250 

training samples of the class (66.0%). The second rule, b4<=10 
and b11>8 and b3<=17  Water to Urban generalizes 387 out of 
the 544 training samples (69.3%) with six exceptions. The 
exceptions are allowed because the min_accuracy is set to 95% 
and there could be up to 5% exceptions. By comparing the two 
rules, it is easy to derive the following interpretations. Class 
Water has low values in both band 5 at time T1 image (b4) and 
band 7 at time T2 image (b11). While class Water to Urban has 
low values in band 5 at time T1 image (b4), it has high values in 
band 7 at time T2 image (b11). The derived rules match domain 
knowledge very well - urban samples (pixels) have higher values 
than water samples. This can be further explained by the rule 
derived from the very bottom branch of the decision tree in Fig. 5 
related to class Urban: b4>10 and b8>40 and b2>51 Urban. 
The rule generalizes 337 out of the 682 samples (49.4%) with just 
five exceptions.  

Similarly, the following five rules can be derived for the 
rest four classes:  

1) B4>10 and b8<=40 and b0<=66 and 
b7<=29 Natural Vegetation. The rule generalizes 342 out of the 
568 samples (60.2%) with 9 exceptions.  

2) B4>10 and b8<=40 and b0>66 and b6>68 and 
b5<=17 Agriculture. The rule generalizes 342 out of the 962 
samples (40.2%) with 14 exceptions 

3) B4>10 and b8<=40 and b0>66 and b6>68 and 
b5>17 and b9>38 Agriculture. The rule generalizes 222 out of 
the 962 samples (23.1%) with 9 exceptions 

4) B4>10 and b8>40 and b2<=51 and b3>36 and 
b7>38 and b1<=30 and b1<=28 and b5<=18  Vegetation to 
Urban. The rule generalizes 185 out of the 775 samples (23.9%) 
with 5 exceptions.  

5) B4>10 and b8>40 and b2<=51 and b3>36 and 
b7>38 and b1>30 and b3<=40  Agriculture to Urban. The rule 
generalizes 116 out of the 1059 samples (11.0%) with 1 
exception.  

Rule 2 and rule 3 are related to the same class 
(Agriculture). If we group the two rules then 564 out of the 962 
samples (58.6%) can be generalized with 23 exceptions. The two 
rules for the Agriculture class are pretty similar and fall in the 
same decision tree branch (B4>10 and b8<=40 and b0>66). The 
breaching point for class Agriculture and class Natural Vegetation 
is b0=66 which indicates that natural vegetation has lower pixel 
values than agriculture at band 1 in time T1 image (b0). 
Compared with the rules of the other five classes, rules 
representing the two change classes Vegetation to Urban and 
Agriculture to Urban (Rule 4 and Rule 5) are less well 
represented since lower percentages of the samples of the classes 
can be generalized by the rules. This might indicate that these two 
classes are more complex and their sample values may not fit 
linear classifiers (such as decision tree) very well. Similar to 
characterizing the differences between class Water and class 
Water to Urban (and class Natural Vegetation and class 
Agriculture as well), from the resulting decision tree it is clear 
that, the difference between the samples that are generalized by 
Rule 4 (Vegetation to Urban) and Rule 5 (Agriculture to Urban) 
is that Vegetation to Urban has smaller values at band 2 of time 1 
image (b1) than these of class Agriculture to Urban. The 
breaching point is b1=30. However, since the samples generalized 
by the two decision rules are only a fraction of the total samples 

b4 <= 10 
|   b11 <= 8 
|   |   b9 <= 12: Water (165.0) 
|   b11 > 8 
|   |   b3 <= 17: Water to Urban (387.0/6.0) 
b4 > 10 
|   b8 <= 40 
|   |   b0 <= 66 
|   |   |   b7 <= 29: Natural vegetation (342.0/9.0) 
|   |   b0 > 66 
|   |   |   b6 > 68 
|   |   |   |   b5 <= 17: Agriculture (387.0/14.0) 
|   |   |   |   b5 > 17 
|   |   |   |   |   b9 > 38: Agriculture (222.0/9.0) 
|   b8 > 40 
|   |   b2 <= 51 
|   |   |   b3 > 36 
|   |   |   |   b7 > 38 
|   |   |   |   |   b1 <= 30 
|   |   |   |   |   |   b10 > 111 
|   |   |   |   |   |   |   b1 <= 28 
|   |   |   |   |   |   |   |   b5 <= 18: Vegetation to Urban (185.0/5.0) 
|   |   |   |   |   b1 > 30 
|   |   |   |   |   |   b3 <= 43 
|   |   |   |   |   |   |   b3 <= 40: Agriculture to Urban (116.0/1.0) 
|   |   b2 > 51: Urban (337.0/5.0) 
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of the two classes, cautions are needed to validate this 
interpretation.  

The resulting decision tree also naturally generates a 
hierarchy of the seven classes in the change detection dataset. 
From Fig. 5 we can see that water related classes (Water and 
Water to Urban) are first separated from the rest. The clustering 
process is followed by grouping urban related classes (Vegetation 
to Urban, Agriculture to Urban and Urban) as one cluster and 
Natural Vegetation/Agriculture as another cluster. Among the 
cluster for urban related classes, the two changing classes 
(Vegetation to Urban and Agriculture to Urban) are naturally 
grouped again. The class hierarchy can be used for knowledge 
transfer (Rajan and Ghosh 2006) and to refine the classification 
process. For example, decomposing a multi-class problem into 
multiple binary classifications based on the class hierarchy. 

5.  Conclusions and Future Work 
In this study, we have proposed a hybrid algorithm that 

tightly integrates a decision tree algorithm and a SVM algorithm 
to classify multi-date images for land cover change detections. 
Experimental results show that the hybrid algorithm significantly 
improves the accuracies of the classic decision tree based 
classifier and achieves comparable classification accuracy to 
classic SVM based classifier. In addition, the hybrid algorithm 
leverages the most significant decision rules with high 
classification confidences and presents them to user for immediate 
evaluations.   

The proposed hybrid algorithm represents a framework 
of hybridizing existing classification algorithms for classifying 
remotely sensed images. Due to the fuzzy and vague nature of 
classes defined by human and the inaccuracy introduced by the 
sampling process, the existence of samples that are difficult to 
classify is inevitable. Instead of using a single complex classifier 
for all the samples, it is more beneficial to use simple classifiers 
for “easy” samples and generate human interpretable knowledge 
from the classifiers through visualization (Zhang et al 2009) while 
leave the “difficult” samples for more sophisticated classifiers 
where visualization is usually not available. We also would like to 
point out that, while this work originates from the multi-date land 
cover change detection research, HC-DT/SVM is generic enough 
to be applied to a variety of types of environmental data analysis 
where supervised classifications are involved.   

For future work, first, we would like to incorporate the 
hybrid classification algorithm into our VDM-RS (Visual Data 
Mining for Remote Sensing) prototype system (Zhang et al 2009) 
and help users gain more insights into the data, classification 
algorithm and results through visualization, interaction and 
exploration. Second, we would like to compare the HC-DT/SVM 
algorithm with other approaches discussed in the introduction 
section and test them on additional datasets. Finally, we plan to 
release the implementation as an open source package after proper 
documentation.  
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