
Dynamic Tiled Map Services: Supporting Query-Based
Visualization of Large-scale Raster Geospatial Data

Jianting Zhang
Department of Computer Science

City College of New York
138 Convent Avenue,New York, NY 10031

jzhang@cs.ccny.cuny.edu

Simin You
Department of Computer Science

City University of New York Graduate Center
365 Fifth Avenue, New York, NY, 10006

syou@gc.cuny.edu

ABSTRACT
Query based visual explorations of raster geospatial data plays an
important role in stimulating scientific hypothesis and subsequently
seeking casual relationships. While it is desirable to enable visual
explorations of large-scale raster geospatial data in a Web environ-
ment, improving the end-to-end performance between query back-
end and the client applications remains a challenging technical is-
sue. Techniques for providing tiled map services that are adopted
by major commercial Internet maps APIs have been successful in
handling static geospatial data. Motivated by the practical needs of
supporting query-based visual explorations in a Web environment,
we have proposed a dynamic tiled map services approach that inte-
grates and extends existing Web-based standards and best practices
in serving tiled images for static raster geospatial data. The ap-
proach includes quadtree-based indexing and query processing at
the server side and a middleware to efficiently convert quadrants
of dynamic query results into tiled images. A prototype system
has been developed to demonstrate the feasibility of the proposed
approach. Experimental results have showed that the prototype sys-
tem achieves an end-to-end performance in the order of sub-second
for 1024*1024 pixels display area consisting of multiple tiles.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Spatial Databases and GIS; H.2.4
[Systems]

General Terms
Design, Experimentation

Keywords
geospatial data, Visual Exploration, Tiled Map, Web Services

1. INTRODUCTION
Advances in geospatial technologies, especially space-borne satel-
lite remote sensing and large-scale environmental modeling out-
puts, have generated large amounts of raster geospatial data at the
ever increasing spatial, temporal and thematic resolutions. For ex-
ample, the next generation geostationary weather satellite GOES-R
(whose first lunch is scheduled in 2015) will improve the current

generation weather satellite by 3, 4 and 5 times with respect to
spectral, spatial and temporal resolutions [1]. At a spatial resolu-
tion of 2 km which is roughly 1 arc-minute at equator, the number
of raster cells for the global would amount to (360*60)*(180*60) =
233,280,000, i.e., nearly a quarter of a billion. The number of raster
cells is 16 times larger, i.e., 4 billions, for its 0.6ţm band where the
spatial resolution is 4 times finer. With a temporal resolution of 5
minutes, there are 288 coverages everyday for each of its 16 bands.
Numerous efforts have been carried out to store, access, dissem-
inate and visualize such large-scale geospatial raster datasets, in-
cluding NASA, NOAA and standardization organizations such as
Open Geospatial Consortium (OGC[2]). More specifically, OGC
Web services, such as Web Map Services (WMS[3]) and Web Cov-
erage Services (WCS[4]) have been widely adopted for accessing
and visualizing archived data. The recently approved OGC Web
Coverage Process Services (WCPS) standard [5][6] has provided a
comprehensive framework to process the data in a Web-based dis-
tributed computing environment. However, we argue that WMS
and WCS are mostly suitable for archived static data where no fur-
ther processing is needed except overlaying layers for WMS and
sub-setting for WCS. In this study, we are interested in visual ex-
plorations of large-scale raster geospatial data in the Web environ-
ment that involves query-driven visualization. Our goal is to inves-
tigate how OGC standards can be extended and integrated to facili-
tate visual explorations. Visual explorations are becoming increas-
ingly important in exploratory analysis of geo-referenced gridded
environmental data which is often the first step towards stimulating
sound scientific hypothesis and seeking causal relationships.

We observed that while WCS provides only limited query-related
capabilities other than subsetting, as a standard, WCPS is expres-
sive enough to allow virtually any processing of raster data, includ-
ing finding Region of Interests, or ROI-finding queries. While the
formal definition will be given in section 2, an example, such as
finding regions that have temperature between [t1,t2) and precip-
itation are between [p1,p2), would be sufficient to understand the
nature of the query. Since t1, t2 and p1, p2 are provided by users
dynamically, the query results are dynamic as well. While it is
not difficult to configure WCPS to handle such ROI-based queries,
how to return the query results in a format that can be visualized at
the client applications efficiently and effectively remains unspec-
ified in neither WCS nor WCPS. An intuitive solution would be
to output the query results for the whole spatial coverage as a bi-
nary image and then use WMS and its tiled extension [7] for the
purpose. While a viable solution, there are several inherent disad-
vantages. First, evaluating a large number of cells could incur sig-
nificant computation overheads and more importantly, writing out
a large binary image representing a query result could incur con-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

COM.Geo 2010, June 21-23, 2010 Washington, DC, USA

Copyright 2010 ACM 978-1-4503-0031-5...$10.00.

siderable disk I/Os. Both will contribute to a slow start in serving
WMS requests. Second, different from archived static data, storing
large amount of query results derived from different combinations
of query parameters may require considerable disk spaces while
the majority of the intermediate ad-hoc query results are useless to
users.

Motivated by the practical needs to visualize query results in sup-
port of query-driven visualization in scientific explorations, we have
proposed a dynamic tiled map services (or dynamic tiling) approach
to address these issues. Instead of evaluating each individual cell,
a quadtree data structure [9][10] is first built to index the original
raster geospatial data. As tree data structures are good at the prun-
ing search space, the query efficiency can be greatly improved. In-
stead of pre-generating query results for the whole image, we only
query the quadtree on the tiles that are needed by client applica-
tions during the visual explorations. As detailed in Section 3, we
can coordinate the client tile hierarchy with the quadtree data struc-
ture so that the tile images can be generated efficiently. The derived
tiled images for a specific query result can be cached at the server
side for efficiency purposes and the dynamic tiled map services can
be used as normal tiled map services in a variety of client appli-
cations. To the best of our knowledge, we are the first to address
the challenges of providing dynamic tiled map services to facilitate
visualizing dynamic query results. Our specific technical contribu-
tions are as the following.

Our specific technical contributions can be summarized in three
aspects:

• We have identified the practical needs to support visualizing
dynamic query results of large-scale raster geospatial data
in a Web environment and propose a framework combining
OGC WMS and WCPS standards to provide a standard based
solution.

• Second, built on our previous works on using a quadtree
structure to index and query large-scale raster geospatial data,
we have developed efficient techniques to query data and
convert quadrants in query results into tiled images.

• Third, we have built an end-to-end system using a real dataset
to demonstrate the feasibility of the proposed framework and
the efficiency of the query and conversion algorithms.

The remainder of the paper is structured as follows. Section 2 in-
troduces background and related works. Section 3 presents the pro-
totype system architecture and the implementations of tile-based
query and conversion algorithms as well as other components. Sec-
tion 4 is the experiments to demonstrate the efficiency of the pro-
posed approach and effectiveness of the system implementation.
Finally, Section 5 concludes the paper and outlines future research
directions.

2. BACKGROUND AND RELATED WORK
As the spectral, spatial and temporal resolutions are getting increas-
ingly finer and the data volumes are getting increasingly larger, it
is unrealistic to ask scientists to manually examine these datasets
which is both time consuming and error-prone. It is necessary to
develop indexing and query processing techniques to find subsets of
the raster geospatial data efficiently based on certain query criteria
in a way similar to relational databases. Quite a few previous works

have been reported towards this direction [11][12][13][14][14][16].
However, most of existing works focus on data management and
dynamic query processing inside databases without considering how
the query results can be efficiently and effectively delivered to ap-
plications in distributed computing environments, especially in a
Web environment. Visualizing query results of raster geospatial
data in Web browsers is especially technical challenging since Web
browsers usually support a limited number of data types natively
and most of them are text and images.

Tiled map service techniques are gaining increasingly popular in
delivering large-scale geospatial data over the Web [17]. Leading
Internet based map providers, such as Google Map [18], Yahoo
Map [19] and Microsoft Bing Map [20], are providing tiled maps so
that they can be displayed in various client applications efficiently.
In the GIS community, major commercial and open source software
packages, such as ArcGIS Server [21] and MapServer[22]/TileCache[23]
have provided such techniques to publish geospatial data as tiled
maps. Existing tiled map service techniques require the underly-
ing maps and images drawn with a certain legend/style exist before
they are subdivided hierarchically into tiles. While generally this is
not a problem when the tiled maps serve mostly for providing back-
ground information (i.e., base map), the techniques are not suitable
for scientific explorations where scientists need to identify regions
of interests based on certain domain criteria and then subsequently
focus on identified regions for further investigations. Unlike con-
sumer electronic maps that use only a limited number of colors
to represent a limited number of land cover types, most scientific
raster geospatial data are numeric and can have a large number of
distinct values. Since human eyes can only effectively distinguish
a limited number of colors at a time, it is inappropriate to generate
static maps based on raster geospatial data using pre-defined color-
ing scales and mapping styles. Techniques that support tiled map
services for dynamic query results, or dynamic tiled map services,
are more suitable in applications such as query driven visual explo-
rations.
We next formally define the ROI-based query and discuss the works
on encoding/decoding bi-level images in the context of support-
ing Web-based scientific explorations of large-scale raster geospa-
tial data. Given a set of rasters representing environmental vari-
ables {Fi|0 ≤ i < n} over a spatial domain D whose value ranges
are
{
V H

i

}
and

{
V L

i

}
respectively, a ROI finding query Q iden-

tifies regions in D whose cells Cj satisfy the compound condition{
Cj |V1j ∈ [V QL

1 , V QH
1j] op ... op Vkj ∈ [V QL

k , V QH
k]

}
where op

can be either conjunctive and disjunctive and 0 < k < n. V QL
i and

V QH
i represent the lower and high bounds of query Q for variable

i. It is clear that when all the cells are evaluated individually, the
results would be a bi-level image with each pixel being 1/0 to in-
dicate whether the corresponding raster cell satisfies the compound
query criteria or not. Quite some works have been reported on
encoding and decoding bi-level images [24][25][26][27][28][29].
While some of them achieve higher compression rates than popular
image formats such as JPEG and PNG, they are not supported by
mainstream Web browsers directly. Since it requires considerable
coding efforts to implement such encoders and decoders, we have
decided not to use such specialized algorithms in our applications.
In addition, we have observed that typically users can tolerant de-
lays up to a few seconds from the time a query is issued to the
server to the time query results are displayed in the Web browser.
A decent enoder and network transmit rate will provide a reason-
able performance in the whole process. That being said, developing
more efficient encoding algorithms specifically for resulting binary

images representing query results and decoding plug-ins for Web
browsers will certainly improve the system response times. They
are left for our future work.

In the past few years, there have been significant developments in
terms of architectures and standards that allow uniform accesses
to large-scale geospatial data. OGC WMS, WCS and WCPS stan-
dards have been designed to visualize, access and process raster
geospatial data. Fig. 1 provides an overview of OGC service stack
and operations for these three services. While OGC standards are
designed to handle geo-referenced data, the Open Source Project
for Network Data Access Protocol (OPeNDAP[30]) standards de-
scribe the management of multi-dimensional array data that are
not necessarily geo-referenced. OPeNDAP has been implemented
in UCAR Unidata Thematic Realtime Environmental Distributed
Data Services (THREDDS) Data Server (TDS [31]) and the Hyrax
server ([32]) and have gained increasing popularity in the oceano-
graphic and atmospheric communities[33][34]. In the recent re-
leases of TDS, a WMS component has been provided to visualize
remote OPeNDAP compliant data. Similar to WCS, while OPeN-
DAP support sub-setting multidimensional array through its DODS
request, it does not support ROI-finding queries. Our work in pro-
viding dynamic tilted map services for ROI-finding query results
extends static WMS services (including its tiled extension) and can
be beneficial to applications based on WCS, WCPS and OPeNDAP
DODS services for the following reason. It is common that users
are only interested in part of a dataset that satisfy certain criteria.
However, extensive query-based visual explorations are needed be-
fore the regions of interests can be identified. Our work helps users
to identify such regions and subsequently to use WCS, WCPS and
OPeNDAP DODS standards to retrieve data in these regions. In this
sense, our work integrates visual display based standard (WMS)
and raw data access based standard (WCS and OPeNDAP DODS)
by efficiently realizing the WCPS standard for visual exploration
based applications. The dynamic tiling approach avoids fully ma-
terializing query results and the system performances can thus be
improved.

3. THE PROPOSED SOLUTION
In this section, we first introduce the architecture of the prototype
system we have developed and we then introduce the implementa-
tion details of each individual component. The algorithm to convert
query results into tile images is presented in Section 3.3 when the
image generation middleware component is introduced.

3.1 System Architecture
The architecture of the prototype system is illustrated in Fig. 2
which includes three major components. The client module is re-
sponsible for interacting with users and formulating query strings
representing desired image tiles and send the request to the mid-
dleware. The client module also assembles returned tile images
and visualizes the base map and tiled images properly. The mid-
dleware forwards the query strings to the query processing server
and convert the query results into tiled images before returning the
images to the client. The middleware is also responsible for provid-
ing a caching mechanism so that the same tile image requests can
be answered immediately from its cache without performing query
and format conversion. We have used commercial ArcGIS server
from ESRI to provide base map services. We also use ArcGIS Flex
APIs to develop the client application. However, we note that we
can easily replace ArcGIS server with any other commercial and
open source software to provide dynamic (e.g. MapServer) and
tiled (e.g., TileCache) map services. Similarly we can use Google

Map API or OpenLayers [35] to visualize base maps and tiled im-
ages in Web browsers. We next introduce the implementation de-
tails of the components according to the order as numbered in Fig.
2.

3.2 Query Processing Server
We build a quadtree based index for each dataset offline. For the
Binned Min-Max Quadtree (BMMQ-Tree) discussed in [8], we first
re-scale the raw data into a certain number of bins. Each node
of a BMMQ-Tree is associated with the minimum and maximum
value of the pixels under the quadrant corresponding to the quadtree
node. The purpose of binning is to reduce the index size so that
it can fit into the main memory of the server for fast query pro-
cessing. Binning is not necessary for server machines with large
memory or if datasets are relatively small. The query processing
server is implemented in C with socket programming. The pro-
cedure of processing a ROI query on a BMMQ-Tree for arbitrary
spatial and value ranges are discussed in [8]. We next introduce the
query processing algorithm for tile-based requests using the exam-
ple illustrated in Fig. 3.

The algorithm consists of two consecutive steps. The first step is to
locate the quadtree node representing the tile being requested based
on the common spatial tessellation of both the quadtree and the tile
hierarchy. For tile (x,y) at level L, we repetitively divide x and y by
2 for L times. The remainders of the divisions in the reverse orders
tell which child node to follow. Assuming the size of the tile (typi-
cally the same across different levels) is s = 2k, then starting from
the quadtree node we just locate, we go down the quadtree up to k
level to examine whether each leaf node under the located quadtree
node satisfy the query value range. Note that the min/max val-
ues associated with the intermediate quadtree nodes can be used to
prune the search space, i.e., if the query value range does not inter-
sect with the range of the minimum/maximum value pair, then all
the leaf nodes under the node can be safely pruned. The informa-
tion associated with the resulting leaf quadtree nodes can be used
to generate tile images in the middleware component to be detailed
in the next subsection. Note that we could have combined the mid-
dleware and the query processing server and generate tile images
directly. We choose to separate the two parts so that we can reuse
the caching system available in the open source THREDDS Data
Server (TDS) package [31] that is written in a different language
(Java). In addition, the separation may also improve the scalability
of the prototype system by allowing middleware to query multi-
ple query processing servers if multiple copies of such servers are
deployed on multiple machines.

3.3 Image Generation and Caching Middle-
ware

The middleware component accepts client tile-based requests, for-
mulate proper queries, send them to the query processing server
and convert the resulting quadtree nodes into tiled images. Assum-
ing the tile request (x,y,L) and the length of a tile image is s = 2k,
then the query processing should stop at level L+k as the quad-
rants at the level represent a single pixel in the tile image. In our
implementation, k is passed to the query processing server as a pa-
rameter. The Java ImageIO package available in its development kit
provides a convenient way to draw quadrants on a tile image. While
both JPEG and PNG are supported by the Java ImageIO package,
we choose to use PNG as it supports transparency.

Assuming that the quadtree nodes are given in the form of (r,c,l)

Data representation and
encoding (e.g., XML)

Data format, schema and
semantics (e.g., GML)

…
WMS
WCS
WPCS

Services

…

Service description,
discovery and
integration

Operations

GetCapabilities GetMap

GetCapabilities DescribeCoverage GetCoverage

 ProcessCoverages

Example:
http://host/service/SERVICE=WMS&REQUEST=GetCapabilities

Example: http://
host/service?LAYERS=spquad&FORMAT=image%2Fpng&S
ERVICE=WMS&REQUEST=GetMap&STYLES=&EXCEPTI
ONS=application%2Fvnd.ogc.se_inimage&SRS=EPSG%3A43
26&BBOX=-180,0,-90,90&WIDTH=256&HEIGHT=256

Example:

http://host/service/SERVICE=WFS&REQUEST
=DesribeCoverage&Coverage=ET0

Figure 1: OGC Service Stack and Operations for WMS, WCS, and WCPS.

Web Browser (with Flash Plugin)

ArcGIS Server

Web Server

HTTP

HTTP

HTTP

Cached and
Tiled Base Map

Raw Data Index

Query processing
Server

Middleware

Cache

TCP/HTTP

Visualization

Query Inputs

Tile
Formulation

1

2
3

Figure 2: Prototype System Architecture.

triples, we can simply draw a square starting at (r,c) with length
2k−(l−L) on the tile image. Since l<=k+L, the length is guaran-
teed to be equal or larger than 1. On the other hand, when k+L
is larger than the maximum level of the quadtree, i.e., k + L >
max_quad_lev, the resulting tile images with larger L values do
not convey additional information. Instead, it is simply digital
magnifications. As such, the largest tile level should be less than
max_quad_lev−k+c where c is a small number for digital mag-
nification and can be as small as 0.

The generated tile images can be written to a file cache system be-
fore sending the byte stream to the client. In our implementation,
we have extracted relevant code from TDS source tree and use it
to cache the generated tile images. While the part of code in TDS
was originally designed to cache WCS and OPeNDAP requests,
we have successfully modified the code to make it cache tile im-
ages. By reusing the code, we are able to log quite a few types of
events that are relevant to generating and serving tile images. The
code also allows automatically clean up the outdated files in the
cache system. The well designed, implemented and tested code has
been proven to be efficient and effective which has saved us con-
siderable time in developing the prototype system. We have also
investigated the way that MapServer generates images for WMS
requests and we found that the Java ImageIO package is easier to
use than the GD package that MapServer relies on. Nevertheless,
as discussed above, we believe that it is technically feasible to com-
bine the query processing server with the middleware and serve tile
images to client applications directly. The obvious advantage is re-
ducing data communication times between the two systems. In our
implementation, we co-locate the query processing server and the
middleware on a same machine to minimize the data communica-
tion overheads between the two systems.

3.4 Visualization Client
The client is responsible to interact with users to accept query in-
puts and formulate query strings before sending request to the mid-
dleware. When a binned quadtree is used, the client is also re-
sponsible to quantify the input minimum and maximum query val-
ues into the corresponding bins. In this study, we use Adobe Flex
programming API [38] and its ArcGIS Flex API [37] to develop
the client component. Flex API, as a Rich Internet Application
(RIA,[36]) programming platform, has provided rich built-in graph-
ics user interfaces to interact with users. The free ArcGIS Flex API
[37], as an extension to Adobe Flex API [38], has provided so-
phisticated functions to manipulate vector and raster geographical
data. While we only use ArcGIS Flex API to display base maps in
the image form, as reported in [8], quadrants in a query result can
actually be visualized as vector geographical data. We choose to
visualize the resulting quadrants as tiled images mostly for perfor-
mance considerations as it is not efficient to process a large number
of vector objects in the Flash plugin. Instead, performance can be
greatly enhanced by handling only a handful tiled images. We ex-
tend the TiledMapServiceLayer class in ArcGIS Flex API so that
the dynamic tiled images for the query results can be visualized in
the client just like static tiled images. We overwrite the getTileURL
function by appending the query value range to a query string to be
sent to the middleware. We also overwrite the buildTileInfo func-
tion to set the correct resolution and scale for each of the tile levels
so that the map scale bar can be shown correctly. Fig. 4 shows a
snapshot of mosaicing the dynmaic tiled images of a query result
overlaying with the raw data using the January global precipitation
data as detailed in the next section.

4. EXPERIMENTS AND EVALUATION
The January global precipitation data from the WorldClim [39][40]
is used for demonstration purposes. The value range of the dataset
is [0,1003] in millimeters. The dataset has a spatial resolution of 30
arc-seconds which is approximately 1km at the equator. The fine
resolution leads to 432000*216000 raster cells for the dataset. We
have set the maximum level of the BMMQ-Tree to 16 as 216 =
65536 is larger than 432000. In the experiments, k is set to 8 which
makes a 256 pixels by 256 pixels tile image. Studies reported in [8]
also showed that visualizing resulting quadrants as squares(vector)
often incur serious performance issues at the client side when the
number of quadrants are beyond the order of hundreds. The work
reported in this paper serves as a client side performance improve-
ment to the work reported in [8]. We will show that the proposed
dynamic tiled map services approach improves the client side per-
formances significantly by reporting the measured statistics of end-
to-end average query response times, tiled image generation times
and tiled image sizes for all non-blank tiled images at the differ-
ent levels under two realistic query value ranges. A Dell Precision
T5400 workstation with 16G main memory is used to host both the
query processing server and the middleware. GNU g++ 4.1.2 is
used to compile the query processing server without further opti-
mization. SUN JDK1.6.0 is used to compile and run the middle-
ware in a batch mode for all non-blank tiled images.

For a quadtree of level L and a tile image of size s = 2k, it
is not difficult to calculate that the number of tiles at the lowest
tile level is N = 2(L−k) ∗ 2(L−K) = 2(2L−2k). As L is set
to 16 and k is set to 8 in our experiments, even without consid-
ering the magnification factor (i.e., c is set to 0) , N would be
2(32−16) = 216 = 65536. Based on this number, the total num-
ber of tile images is N + N

4
+ N

42 + N
43 + ... + 1 = 4N

3
which

is more than 87,000, a considerably large number. However, we
note that the actual data occupies only a fraction of the space cov-
ered by the quadtree. More precisely, the space occupancy rate is
(43200/65536) ∗ (21600/65536) = 21.7%. As the dataset has
no data on the Earth surface covered by oceans and the percentage
is roughly 71%, the data space occupancy rate is further reduced
to about P = 21.7% ∗ 29% = 6.3%. The low space occupancy
makes quadtree data structures much more efficient than array rep-
resentations with respect to memory utilization. The unoccupied
space will result no quadrants for any query range values and the
tiles for the no-data regions can be represented as a generic blank
image. For queries with high selectivity, we expect the numbers of
needed tiles are even lower.

To verify these calculations, we have performed two of experi-
ments. The first experiment uses the full value range of the dataset,
i.e., [0,1003] as the query value range and the second experiment
uses the [90,300] query value range which is the same as used in our
previous study reported in [8]. As the binning mechanism is used in
our query processing sever, these two value ranges translate to bin
ranges of [0,25] and [19,24], respectively. Table 1 lists the numbers
of non-blank tiled images, the minimum, maximum and average of
the corresponding query response times , tiled image generation
times and tiled image sizes (S, in bytes) at the different levels un-
der the two query value ranges. Note that the query response times
are measured in an end-to-end manner. We have collocated the
middleware with the query processing server to minimize the ef-
fect of network traffic variations and thus the data communication
costs between the two systems are negligible. Data communication
overheads need to take into consideration when the middleware and
the query processing server are distributed.

34 0 0 0 0 0 2 2

0 0 0 0 0 0 2 2

0 0 0 0 1 1 2 1

0 0 0 0 1 1 2 2

34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 0

34 0 0 1 2 2 3 3

0 0 1 1 2 2 3 3

1 1 3 3 3 3 4 4

1 1 3 3 3 3 4 4

34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 0

Level 1 tile (0,1) Level 2 tile (0,2)

(0,0) (0,2)

(0,4)

(0,2) (2,4)

(1,1) (3,3) (0,1) (0,0) (1,1) (1,2) (2,2) (3,3) (4,4)
(2,2)

(0,0)

Locating the second level 1 tile

Querying with value range [1,3] under the tile

1 1

1

Drawing resulting
quadrants on a tile image

Figure 3: Processing Tile-based ROI-Finding Query and Generating Tiled Images Using Quadtree

Figure 4: A Snapshot Showing the Dynmaic Tiled Images of a Query Result Overlaying with the Raw Data

Table 1: Statistics on the Query Processing Times, Tiled Image Generation Times and Tiled Image Sizes for the Two Tests
Test1 [0,1003] Test2 [90,300]
#of Tiles=6846 #of Tiles=1197

Measurement Type Min Max Avg Min Max Avg
Query Response Time (QT,in milliseconds) 46 107 55.01 46 81 51.80
Tile Generation Time (GT,in milliseconds) 0 199 11.46 0 142 5.10

Tile Image Size (S, in bytes) 339 8275 3076 336 8275 2071

From Table 1 we can see that both the average query processing
times and the tiled image generation times are around 50 millisec-
onds on both tests. The sizes of the generated image tiles vary from
a few hundred bytes to a few thousands bytes with averages around
2-3 kilobytes for both tests. Assuming that the data communica-
tion rates between the middleware and clients are in the order of a
few hundreds kilobytes to a few megabytes, then the image tile can
be transmitted to clients (i.e.,image transmission time, TT) in the
order of 1-10 milliseconds. We conservatively assume TT=10 mil-
liseconds in typical network traffic scenarios. Also assuming the
client display area is 1024*1024 pixels, then the number of active
tiles is about 4*4=16. This lead to the total response times in the
order of (QT+GT+TT)*16 = (50+10+10)*16=1120 milliseconds.
Considering that users usually focus on the tiles centered at the dis-
play area, the response time for requesting key tiles should be less
than half a second. We thus conclude that the dynamic tiled map
services implemented in our prototype system has achieved the de-
sired performance for online interactive visual exploration based
applications.

5. CONCLUSIONS AND ONGOING WORK
In this study, we address the technical challenges of facilitating vi-
sualization of dynamic query results on large-scale raster geospatial
data in a distributed computing environment by integrating open
Web-based standards, including OGC WMS and its tile extension,
OGC WCS and OPeNDAP DDS, from an architectural view. We
have designed algorithms to efficiently perform tile-based queries
on quadtrees and to convert quadrant-based query results into tiled
images. An end-to-end prototype has been developed to demon-
strate the feasibility of the proposed dynamic tiled map services
approach. Experiments results have showed that the prototype sys-
tem achieves an end-to-end performance in the order of sub-second
for 1024 ∗ 1024 pixels display area using 16 tiles.

The reported work leads to several future work directions. First,
while our query processing server implements a typical but spe-
cialized coverage operation (i.e., ROI-finding), we did not follow
WCPS syntax strictly. We would like to revise our query process-
ing server by following the WCPS standard to achieve better in-
teroperability. This will not only standardize the communications
between the middleware and the query processing server to serve
tiled images, but also allows other applications to use our WCPS-
compliant query processing server in an interoperable manner. Sec-
ond, in this study we used a main-memory based quadtree to speed
query processing. While the binning strategy significantly reduced
memory consumption, it also brings false positives. Although this
may not necessarily be a disadvantage as quite often aggregated
and generalized information are easier to interpret, we would like
to indicate the uncertainty information in the tiled images. The new
improvement is likely to increase end-to-end response times and
proper tradeoffs might be made. Finally we would like to address
the technical challenges of visual scientific explorations of the same
large-scale raster geospatial data on mobile handheld devices using

the same dynamic tiled map services strategy but accommodate is-
sues such as low computation power, small screen, short battery
life and perhaps more importantly, low-rate and unreliable wireless
connections.

6. REFERENCES
[1] Schmit, T. J., J. Li, et al.: The GOES-R Advanced Baseline

Imager and the Continuation of Current Sounder Products.
Journal of Applied Meteorology and Climatology 47(10):
2696-2711, 2008.

[2] Open Geospatial Consortium Inc. .
http://www.openGeospatial.org

[3] OpenGIS Web Map Server Implementation Specification
http://www.openGeospatial.org/standards/wms .

[4] Web Coverage Service (WCS)
http://www.openGeospatial.org/standards/wcs .

[5] Web Coverage Processing Service (WCPS)
http://www.openGeospatial.org/standards/wcps .

[6] Baumann, P: Designing A Geoscientific Request Language -
A Database Approach. Scientific and Statistical Database
Management Conference(SSDBM) 2009, New Orleans,
USA, June 2-4, 2009

[7] OpenGIS Tiled WMS Discussion Paper
http://portal.opengeospatial.org/files/?artifact_id=23206.

[8] Zhang J., You S., Supporting Web-based Visual Exploration
of Large-Scale Raster Geospatial Data Using Binned
Min-Max Quadtree To appear in the Proceedings of
Scientific and Statistical Database Management
Conference(SSDBM)’2010, Heidelberg,Germany, June
29-July 2, 2010.Lecture Notes in Computer Science
(LNCS),Springer.

[9] Gaede, V., Gunther, O.: Multidimensional access methods.
ACM Computing Surveys 30(2) (1998) 170–231

[10] Samet, H.: Foundations of Multidimensional and Metric
Data Structures. Morgan Kaufmann Publishers Inc. (2005)

[11] Wu, K., Koegler, W., Chen, J., Shoshani, A.: Using bitmap
index for interactive exploration of large datasets. In:
Scientific and Statistical Database Management
Conference(SSDBM)’03. (2003) 65–74

[12] Stockinger, K., Shalf, J., Wu, K., Bethel, E.W.: Query-driven
visualization of large data sets. In: IEEE Visualization.
(2005) 22

[13] Glatter, M., Mollenhour, C., Huang, J., Gao, J.Z.: Scalable
data servers for large multivariate volume visualization.
IEEE Transactions on Visualization and Computer Graphics
(TVCG) 12(5) (2006) 1291–1298

[14] Kendall, W., Glatter, M., et al.: Terascale data organization
for discovering multivariate climatic trends. In:
SuperComputing’09. (2009) 1–12

[15] Fuchs, R., Hauser, H.: Visualization of multi-variate
scientific data. Computer Graphics Forum 28(6) (2009)
1670–1690

[16] Sinha, R.R., Winslett, M., Wu, K.: Finding regions of
interest in large scientific datasets. In: Scientific and
Statistical Database Management Conference(SSDBM)’09.
(2009) 130–147

[17] Chow, T. E. The Potential of Maps APIs for Internet GIS
Applications. Transactions in GIS , 12(2): 179-191,2008

[18] Google Map http://maps.google.com
[19] Yahoo Map http://maps.yahoo.com/
[20] Microsoft Bing Map http://www.bing.com/maps/
[21] ESRI ArcGIS Server http://www.esri.com/

software/arcgis/arcgisserver
[22] MapServer http://mapserver.org/
[23] TileCache http://tilecache.org/
[24] Yuen, H. and L. Hanzo : Block-run run-length coding of

handwriting and bilevel graphics based on quadtree
segmentation. Pattern Recognition Letters 18(2): 187-191,
1997.

[25] Ageenko, E. and P. Franti : Lossless compression of large
binary images in digital spatial libraries. Computers and
Graphics-Uk 24(1): 91-98, 2000.

[26] Reavy, M. D. and C. G. Boncelet : An algorithm for
compression of bilevel images. IEEE Transactions on Image
Processing 10(5): 669-676, 2001.

[27] Tsai, Y.-C., M. S. Lee, et al.: A Quad-Tree Decomposition
Approach to Cartoon Image Compression. 2006 IEEE 8th
Workshop on Multimedia Signal Processing.

[28] Ryan, O.: Runlength-Based Processing Methods for Low
Bit-depth Images. IEEE Transactions on Image Processing
18(9): 2048-2058, 2009.

[29] Raguram, R., M. W. Marcellin, et al: Improved resolution
scalability for bilevel image data in JPEG2000. IEEE
Transactions on Image Processing 18(4): 774-82, 2009.

[30] OPeNDAP: Open-source Project for a Network Data Access
Protocol http://opendap.org/

[31] THREDDS Data Server http:
//www.unidata.ucar.edu/projects/THREDDS/

[32] Hyrax Server
http://opendap.org/download/hyrax.html

[33] Woolf, A., Haines, K.,Liu, C. L., : A web service model for
climate data access on the grid. International Journal of High
Performance Computing Applications, 17(3), 281-295,2003.

[34] Rutledge, G. K., Alpert, J.,Ebisuzaki, W., : Nomads - A
climate and weather model archive at the National Oceanic
and Atmospheric Administration. Bulletin of the American
Meteorological Society, 87(3), 327-341, 2006.

[35] OpenLayers http://openlayers.org/
[36] Rich Internet Application (RIA)

http://en.wikipedia.org/wiki/Rich_
Internet_application

[37] ArcGIS Flex API http://resources.esri.com/
arcgisserver/apis/flex/

[38] Adobe Flex http://livedocs.adobe.com/flex/
[39] WorldClim Global Climate Data

http://www.worldclim.org/current
[40] Hijmans, R.J., Cameron, S.E., et al: Very high resolution

interpolated climate surfaces for global land areas. Int.J. of
Climatology 25(15), 1965-1978, 2005

http://maps.google.com
http://maps.yahoo.com/
http://www.bing.com/maps/
http://www.esri.com/software/arcgis/arcgisserver
http://www.esri.com/software/arcgis/arcgisserver
http://mapserver.org/
http://tilecache.org/
http://opendap.org/
http://www.unidata.ucar.edu/projects/THREDDS/
http://www.unidata.ucar.edu/projects/THREDDS/
http://opendap.org/download/hyrax.html
http://openlayers.org/
http://en.wikipedia.org/wiki/Rich_Internet_application
http://en.wikipedia.org/wiki/Rich_Internet_application
http://resources.esri.com/arcgisserver/apis/flex/
http://resources.esri.com/arcgisserver/apis/flex/
http://livedocs.adobe.com/flex/
http://www.worldclim.org/current

	Introduction
	Background and Related Work
	The Proposed Solution
	System Architecture
	Query Processing Server
	Image Generation and Caching Middleware
	Visualization Client

	Experiments and Evaluation
	Conclusions and Ongoing Work
	References

