
a c t a o e c o l o g i c a 3 5 ( 2 0 0 9 ) 1 4 – 2 1
ava i lab le a t www.sc iencedi rec t .com

journa l homepage : www.e lsev ie r . com/ loca te /ac toec
Original article

Linking variability in species composition and MODIS
NDVI based on beta diversity measurements
Kate S. Hea,*, Jianting Zhangb, Qiaofeng Zhangc

aDepartment of Biological Sciences, Murray State University, 2112 16th Street, Murray, KY 42071, USA
bDepartment of Computer Science, The City College of the City University of New York, New York, NY 10025, USA
cDepartment of Geosciences, Murray State University, Murray, KY 42071, USA
a r t i c l e i n f o

Article history:

Received 8 January 2008

Accepted 17 July 2008

Published online 28 August 2008

Keywords:

Species composition

Normalized difference vegetation

index (NDVI)

Beta diversity

Bray–Cutis dissimilarity index

Taxonomic rank

Ecoregion

Phenology

Mantel test
* Corresponding author. Fax: þ1 270 809 2788
E-mail addresses: kate.he@murraystate.e

1146-609X/$ – see front matter ª 2008 Elsevi
doi:10.1016/j.actao.2008.07.006
a b s t r a c t

Finding an effective method to quantify species compositional changes in time and space

has been an important task for ecologists and biogeographers. Recently, exploring regional

floristic patterns using data derived from satellite imagery, such as the normalized

difference vegetation index (NDVI) has drawn considerable research interests among

ecologists. Studies have shown that NDVI could be a fairly good surrogate for primary

productivities. In this study, we used plant distribution data in the North and the South

Carolina states to investigate the correlations between species composition and NDVI

within defined ecoregions using Mantel test and multi-response permutation procedure

(MRPP). Our analytical approach involved generating compositional dissimilarity matrices

by computing pairwise beta diversities of the 145 counties in the two states for species

distribution data and by computing Euclidian distances for NDVI time series data. We

argue that beta diversity measurements take the pairwise dissimilarities into consideration

explicitly and could provide more spatial correlation information compared with uni- or

multi-dimensional regressions. Our results showed a significant positive correlation

between species compositional dissimilarity matrices and NDVI distance matrices. We also

found for the first time that the strength of correlation increased at a lower taxonomic

rank. Same trends were discovered when incorporating variability in phenological patterns

in NDVI. Our findings suggest that remotely sensed NDVI can be viable for monitoring

species compositional changes at regional scales.

ª 2008 Elsevier Masson SAS. All rights reserved.
1. Introduction field or plot data to assess the spatial and temporary changes
An important issue in terrestrial vegetation study is to identify

the distribution patterns of floristic composition of a given site

and to determine the factors controlling the distribution and

diversity of species. Ecologists have long realized that using
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scales are at regional or global levels. Recent advancements in

remote sensing technology have brought tremendous help in

large scale vegetation studies. This has been facilitated by the

availability of new satellite sensors with moderate to fine
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spatial resolution, which allows ecologist to investigate

ecosystem dynamics and monitor changes in species diversity

based on spectral reflectance of vegetation. An overview of

using remote sensing to assess biodiversity has been provided

in Nagendra (2001) and Pettorelli et al. (2005).

Satellite-derived vegetation indices have been widely used

among ecologists to study the relationships between produc-

tivity, biodiversity, and habitat heterogeneity. One of the most

commonly used indices is the normalized difference vegeta-

tion index (NDVI), stating a ratio between red and near-

infrared reflectance captured by satellite sensors (Tucker,

1979; Tucker and Seller, 1986). The relationship between NDVI

and vegetation productivity is well studied, indicating that

NDVI could be a fairly good surrogate for net primary

productivity (NPP) and gross primary productivity (GPP) (Box

et al., 1989; Prince, 1991; Waide et al., 1999; Aarssen, 2004;

Pettorelli et al., 2005).

Empirical evidence suggests that regional variability in

community structure, productivity, and biodiversity is related

to spatial environmental heterogeneity shaped by climate,

latitude, elevation, historical processes, as well as interactions

among species (Rosenzweig, 1995; Gaston, 2000). Ecologists

have generalized that the relationship between productivity

and biodiversity varies at different spatial scales. The patterns

of productivity–diversity are more often displayed as hump-

shaped curves at a small or local scale (Tilman, 1982; Colwell

and Lees, 2000; Grime, 2001), while they are positively related

at a large or regional scale (Waide et al., 1999; Mittelbach et al.,

2001; Francis and Currie, 2003; Whittaker and Heegaard, 2003;

Evans et al., 2005). Recent work based on remotely sensed

measures suggests that NDVI/productivity is positively

correlated to species richness even though correlations are

weak in most cases (Gould, 2000; Bawa et al., 2002; Tuomisto

et al., 2003; Fairbanks and McGwire, 2004; Gillespie, 2005;

Rocchini et al., 2005). Levin (2007) did conclude that plant

richness is significantly correlated with the standard devia-

tion of NDVI in a mountainous region. Most methods of

exploring the relationship between plant species richness and

NDVI focus on the linear regression of numbers of species

within homogeneous communities (alpha diversity) and NDVI

values and their derivatives (e.g., standard deviation). Multi-

variate statistical techniques, e.g., multivariate regression and

principal component analysis (PCA), have also been applied to

correlate environmental variables and species richness at plot

levels (Dogan and Dogan, 2006). However, there have been few

quantitative, regional-scale studies designed for charactering

species richness patterns in relation to productivity at various

taxonomic ranks.

In this study, we used plant distribution data in the North

and the South Carolina states to investigate the correlations

between species composition and NDVI within defined ecor-

egions. Our analytical approach involved generating the

dissimilarity matrices by computing pairwise beta diversities

between the counties in the two states using both the species

abundance data and NDVI time series data. It is known that

beta diversity refers to species turnover along environmental

gradients (Whittaker, 1960) or variability in species composi-

tion among sites for a given area (Anderson et al., 2006; Clarke

et al., 2006). We argue that the most significant advantage of

using beta diversity instead of simple species numbers or
other alpha diversity indices is that, beta diversity measure-

ments take the pairwise dissimilarities into consideration

explicitly and could provide more spatial correlation infor-

mation compared with uni- or multi-dimensional regressions.

Moreover, beta diversity effectively reflects variations in

spatial heterogeneity and the rates of taxa turnover at

a regional scale. We did not use either alpha diversity or

gamma diversity in our study because of the following

reasons. First, alpha diversity is focused on species identity

often at a local scale (such as plots or quadrates); studies have

shown that alpha diversity is not correlated to NDVI while

using 1� 1 m quadrats (Harrison et al., 2006; Harrison and

Grace, 2007). Secondly, gamma diversity measures species

diversity of the whole region which is not our original intent of

the study.

We also took species taxonomy into consideration for the

first time when correlating species composition and NDVI.

Three taxonomic ranks were used in our analyses, including

family, genus, and species. In addition, we believed that

phenological patterns could affect the correlation between

species composition and NDVI. For this reason, we separated

the 16-day yearly NDVI values into summer and winter

classes in the analysis.

We aimed to test the hypothesis that correlation between

the variability in species composition and NDVI exists, in

particular, the stronger correlation should be found: (1) at

a lower taxonomic rank, such as the species rank; (2) at the

peak of NDVI, i.e., when summer NDVI data from a temperate

climatic region is used. If such a relationship between floristic

composition and NDVI is found, it may have important

implications for biodiversity assessment and conservation

management. Typically, a robust relationship allows ecolo-

gists to use remotely sensed data to predict and characterize

the dynamic change in species composition and distribution at

regional or a larger scale; more importantly, a rapid biodiver-

sity monitoring system can be developed without intensive,

time consuming, or even unrealistic ground investigations.
2. Methods

2.1. Data preparation

The NDVI data were from the Moderate Resolution Imaging

Spectroradiometer (MODIS), an instrument aboard NASA’s

Terra and Aqua satellites (launched in 1999 and 2002,

respectively). The MODIS sensors are capable of collecting

data for the entire Earth every 1–2 days. The NDVI data used in

this study were obtained from University of Maryland’s Global

Land Cover Facility (GLCF) project (http://glcf.umiacs.umd.

edu/data/ndvi). The GLCF MODIS NDVI data have a spatial

resolution of 250 m and temporal resolution of 16 days. For the

continental United States, there are 21,000 pixels in width and

13,000 pixels in height for a single NDVI image whose size is

approximately 267 MB. There are 23 such images for a whole

year. We downloaded the 23 NDVI images for the year of 2005.

For each of the NDVI images, we imported it in the ESRI ArcGIS

software and performed zonal statistics using the US county

data shipped with the ArcGIS. For each of the counties, the

zonal statistics module reports a few parameters associated

http://glcf.umiacs.umd.edu/data/ndvi
http://glcf.umiacs.umd.edu/data/ndvi
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with the county, such as the number of pixels in a NDVI image

falling within the county, the minimum value and the

maximum value of the pixels, and the range, mean, standard

deviation of the pixel values. We calculated the yearly mean

values of the 23 NDVI images as a sample vector for each of the

counties.

We also formally divided the 23 yearly NDVI images into

summer and winter vectors based on cluster analysis to

examine the phenological changes of vegetation. Hierarchical

agglomerative cluster analysis using unweighted arithmetic

average (UPGMA) clustering method was used to divide the 23

yearly NDVI vectors into 12 summer image vectors with

relatively higher NDVI values in average and 11 winter image

vectors with lower NDVI values in average. Lastly, three NDVI

distance metrics were generated based on Euclidian distance

for 145 counties using all 23 yearly NDVI images, 12 summer

images, and 11 winter images, respectively.

The plant species abundance data were obtained from

USDA plant database. There were 3157 species in 1001 genus

and 189 families for the 145 counties of the two states (one

county did not have species data). Three compositional

dissimilarity matrices were generated by computing all-pair

beta diversities using Bray–Cutis dissimilarity index for the

145 counties at the three taxon ranks, including species,

genus, and family.

The ecoregion dataset was downloaded from the EPA Level

III Ecoregions database at http://www.epa.gov/wed/pages/

ecoregions/level_iii.htm#Ecoregions. There are four level III

ecoregions in the area (Fig. 1) including Piedmont (55

counties), a part of temperate hardwood forests found in the

eastern North America; Middle Atlantic Coastal Plain (35

counties), containing mostly swamps and salt marshes;

Southeastern Plains (35 counties), a mosaic of forest woodland

and pasture/cropland; and Blue Ridge (20 counties), including

Appalachian oak forests, northern hardwood forests and

spruce-fir forests. For each of the counties, if it is more than
Fig. 1 – Four level III ecoregions in the
51% falling within an ecoregion, we associated the county

with that specific ecoregion.

2.2. Statistical analyses

We computed species compositional dissimilarities using

Bray–Cutis dissimilarity index (Koleff et al., 2003) between

counties. NDVI matrices were generated using Euclidian

distance of NDVI between counties. To examine the correla-

tions between species composition and NDVI, Mantel test was

performed using pairwise species compositional dissimilarity

matrices and NDVI distance matrices, including yearly,

summer, and winter NDVIs, respectively. The significance of

Mantel test was determined by a Monte Carlo permutation

test. We used Mantel test because it is a simple and flexible

approach that overcomes some of the problems inherent in

explaining species–environment relationships (Mantel, 1967;

Manly, 1991; Legendre and Legendre, 1998; Peres-Neto and

Jackson, 2001). The technique of the test involves a regression

in which the variables are themselves distance or dissimi-

larity matrices summarizing pairwise similarities among

sample locations or plots (counties in our case). The flexibility

of Mantel test comes from two aspects: (1) it can be applied to

different data types including continuous, ordinal, and binary

data; and (2) almost any chosen distance measurements both

in Euclidean and non-Euclidean spaces can be employed.

Sequentially, principal coordinate analysis (PCoA) was

performed to visualize the correlation between the dissimi-

larity and distance matrices of both species composition and

NDVI in a two-dimensional ordination space. It was expected

that counties with similar species compositions should be

close to each other in the ordination space.

Finally, in addition to Mantel test, we also conducted multi-

response permutation procedure (MRPP, Zimmerman et al.,

1985) to examine whether the NDVI values and species

composition values among the same ecoregions are more
North and South Carolina states.

http://www.epa.gov/wed/pages/ecoregions/level_iii.htm%23Ecoregions
http://www.epa.gov/wed/pages/ecoregions/level_iii.htm%23Ecoregions


Table 2 – Mantel statistics based on Pearson’s product-
moment correlation between species compositional
dissimilarity matrices and summer NDVI distance matrix
at three taxonomic ranks

Taxon
rank

Mantel
statistics

r

Significance Empirical upper
confidence limits of r

90% 95% 97.5% 99%

Species 0.4018 P< 0.001 0.0469 0.0664 0.0825 0.0973

Genus 0.3611 P< 0.001 0.0561 0.0802 0.1013 0.1186

Family 0.291 P< 0.001 0.0553 0.0774 0.1007 0.1174

All calculations were based on 1000 permutations.
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similar to each other. The MRPP is a robust, nonparametric,

multivariate approach that tests the null hypothesis that two

or more predefined groups are not different in composition (in

our case, predefined groups are ecoregions). The method of

MRPP is mathematically allied with analysis of variance; it

compares dissimilarities within and among groups (Mielke,

1984). The computed MRPP statistic delta (d) represents the

overall weighted mean of within-group means of pairwise

dissimilarities among plots. In addition, the chance-corrected

within-group agreement A statistic was computed (A¼ 0

means that in-group and out-group heterogeneities are equal;

A¼ 1 means that all members of each group are identical and

different from the members of other groups).

The program used for cluster analysis and PCoA was

SYTAX 2000 (Podani, 2001). Mantel and MRPP tests were

performed in R environment using the vegan package, R 2.5.1

(R Developmental Core Team, 2006).
3. Results

3.1. Correlation between variations in species
composition and NDVI

The Mantel test results showed a significant positive correla-

tion between the NDVI distance matrices and the species

compositional dissimilarity matrices (Table 1). The r values

decreased from 0.4055 at the species taxon rank to 0.2999 at

the family taxon rank. The same pattern repeated when using

summer and winter NDVI distance matrices in separate

Mantel tests (Tables 2 and 3). Similar positive correction r

values were found when summer NDVI distance matrix was

used. It is somewhat unexpected that the species composi-

tional dissimilarity matrices correlate slightly higher with

yearly NDVI distance matrix than the summer matrix; the

lowest correlation was associated with the winter NDVI

distance matrix as we predicted. Our results in Tables 1–3

showed that the highest correlation was found at the taxo-

nomic rank of species (r¼ 0.4055), with the winter NDVI

yielding the lowest correlation at species rank (r¼ 0.1875).

3.2. Correlation visualization in an ordination space

We performed PCoA to visualize and scale the dissimilarity/

distance matrices in a two dimensional space using the first
Table 1 – Mantel test results based on Pearson’s product-
moment correlation between species compositional
dissimilarity matrices and yearly NDVI distance matrix at
three taxonomic ranks

Taxon
rank

Mantel
statistics

r

Significance Empirical upper
confidence limits of r

90% 95% 97.5% 99%

Species 0.4055 P< 0.001 0.0457 0.0621 0.0721 0.0857

Genus 0.3646 P< 0.001 0.0508 0.0672 0.0825 0.1066

Family 0.2999 P< 0.001 0.0603 0.0814 0.0981 0.1196

All calculations were based on 1000 permutations.
and the second principal axes. These first two axes explained

more than 66% total variances for species composition data at

all three taxon ranks as well as for the NDVI measurements

(see Tables 4 and 5 for details of PCoA axes). The PCoA scaling

plots were presented in Fig. 2a–f.

Fig. 2a–c revealed that ordination patterns of 145 counties

were similar for compositional dissimilarity measurements at

species and genus ranks. However, counties were better

separated at the species rank with a clear compositional

grouping structure according to predefined ecoregions. As

shown in Fig. 2a, counties belonging to the Blue Ridge ecor-

egion were nicely clustered at the upper right of the plot;

counties belonging to the Piedmont ecoregion were distrib-

uted at the lower right part of the plot, while counties classi-

fied to Middle Atlantic Coastal Plain and Southeastern Plains

appeared at the top and bottom left side of the plot, respec-

tively. On the contrary, at family rank (Fig. 2c), most counties

were aggregated with lower dissimilarity values; counties

from mountainous ecoregions were combined together at the

upper left of the plot, while counties from the Plains were

clustered at the lower part of the plot.

Fig. 2d–f shows the PCoA plots for NDVI measurements. It

was noticed that all 145 counties were best separated when

summer NDVI measurements were used in the ordination

plot. As shown in Fig. 2e, counties from mountainous ecor-

egions were distributed at the upper left and the lower part of

the plot; counties from the plain ecoregions were scattered on

the right side of plot. When the winter NDVI measurements

were used in the PCoA scaling, counties were least discrimi-

nated, even though there was still a clear separation between

counties from Piedmont and Middle Atlantic Coastal Plain
Table 3 – Mantel statistics based on Pearson’s product-
moment correlation between species compositional
dissimilarity matrices and winter NDVI distance matrix
at three taxonomic ranks

Taxon
rank

Mantel
statistics

r

Significance Empirical upper
confidence limits of r

90% 95% 97.5% 99%

Species 0.1875 P< 0.001 0.0485 0.0599 0.0734 0.0909

Genus 0.1747 P< 0.001 0.0562 0.0775 0.0955 0.1060

Family 0.1666 P¼ 0.002 0.0595 0.0829 0.1017 0.1307

All calculations were based on 1000 permutations.



Table 4 – Results of PCoA based on Bray–Curtis
dissimilarity between 145 counties for species
abundance data, showing eigenvalues, percentage
variations, and cumulative percentage variations for the
first two principal axes

Family Genus Species

Axis 1 Axis 2 Axis 1 Axis 2 Axis 1 Axis 2

Eigenvalues 24.293 17.385 59.975 42.579 143.605 63.099

Percentage

variation

45.32 32.43 46.50 33.02 54.70 24.03

Cumulative

percentage

variation

45.32 77.75 46.50 79.52 54.70 78.73

Table 5 – Results of PCoA based on Euclidian distance
between 145 counties for NDVI measurements, showing
eigenvalues, percentage variations, and cumulative
percentage variations for the first two principal axes

Yearly NDVI Summer NDVI Winter NDVI

Axis 1 Axis 2 Axis 1 Axis 2 Axis 1 Axis 2

Eigenvalues 0.052 0.015 0.067 0.011 0.083 0.011

Percentage

variation

50.91 14.82 62.86 11.05 69.35 9.03

Cumulative

percentage

variation

50.91 65.73 62.86 73.91 69.35 78.38
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ecoregions (Fig. 2f). Yearly NDVI plot provided a reasonable

grouping structure showing counties from mountainous

ecoregions clustered at the lower part of the plot, while

counties from plain ecoregions gathered at the upper part of

the scaling plot (Fig. 2d).

3.3. Evaluation of differences in species composition
among ecoregions

The results of MRPP showed that counties within the same

ecoregion had less within-group dissimilarity and greater

between-group dissimilarity for NDVI distance matrices as well

as for species compositional dissimilarity matrices at three

taxonomic ranks, all with significance of P< 0.001 (Table 6). For

species composition, the computed A statistics indicated that

similarities in composition among plots/counties of a same

ecoregion were highest at the species rank (A¼ 0.352) and

lowest at the family rank (A¼ 0.209). For NDVI, the computed A

statistics indicated that similarities in NDVI among plots/

counties of a same ecoregion were highest with summer NDVI

data (A¼ 0.273) and lowest with winter NDVI (A¼ 0.12). Both A

statistics suggested that species composition data collected at

the ground and the remotely sensed NDVI measurements

clearly agree with the ecoregion classification; in particular, the

sharpest agreement came from the data at the species rank and

when summer NDVI measurements were used in MRPP.
4. Discussion

We have observed a significant positive correlation between

species compositional dissimilarity matrices and NDVI

distance matrices through separate Mantel tests at different

taxonomic ranks. Our results are consistent when incorpo-

rating variability in taxonomy and phenological pattern in

NDVI. Our study further confirms the positive relationship

between productivity and diversity at the regional scale. We

wanted to stress that Mantel test normally provides lower r

values in matrix correlation compared to univariate linear

Pearson’s correlation (Dutilleul et al., 2000; Legendre, 2000).

One possible reason for this could be that Mantel statistic is

the sum of the products of distances, is linear in form, and is

not sensitive to nonlinear associations between small

distances expected of contagious (i.e. in this case rich species

hot spots). Our results in Tables 1 and 2 showed that the
highest correlation was found at the taxonomic rank of

species when yearly NDVI (r¼ 0.4055) or summer NDVI

(r¼ 0.4018) was used. Winter NDVI yielded the lowest corre-

lation at species rank with r¼ 0.1875 (Table 3). Correlations

were much weaker when higher taxonomic rank, such as

family was used. Our results indicate that a lower taxonomic

rank and phenological factor are important when changes in

species compositions are examined spatially using remotely

sensed data. This fits well with the definition of NDVI in that

different plant species might possess different leaf traits

which in turn lead to variations in reflectance captured by

remote sensors. Aggregated taxonomic ranks could not

provide such a discriminating ability due to their

inclusiveness.

Mantel test also indicated a slightly higher correlation

between species composition and yearly NDVI, it might

suggest that a whole year NDVI with large dimensions works

better for matrix correlation analysis compared with a smaller

dimension NDVI matrix, such as the summer NDVI alone. We

expect that a multi-year NDVI might provide a more robust

result as suggested by Levin (2007) and Fairbanks and McGwire

(2004) in a vegetation study in Mount Hermon, Israel and in

California, respectively.

PCoA plots provided an effective visual tool to present

study plots/counties in an ordination space. As we expected

counties were most separable at a lower taxonomic rank

(species) and when summer NDVI was used according to

predefined ecoregions (Fig. 2a and e). The highest eigenvalues

were associated with species rank for species composition

data and winter NDVI for spectral reflectance data, respec-

tively, in PCoA (Tables 4 and 5). The NDVI plots (Fig. 2d–f)

showed that the Plains are less separable compared with the

Blue Ridge and Piedmont ecoregions. This could be related to

the vegetation types associated with the ecoregions. We

suggest that compositional differences in vegetation are the

main cause for variability in NDVI as the results of Mantel test

indicated. The vegetation of Blue Ridge is dominated by

Appalachian oak forests and northern hardwood forests. The

Piedmont ecoregion comprises a transitional area between

the mostly mountainous ecoregions of the Appalachians to

the northwest and the flat plains to the southeast; it is covered

with large amount of successional pine forests and hardwood

forests. For the Southeastern plains, it contains a mosaic of

forest woodland (oak, hickory, maple, etc.) and pasture or

cropland. The coastal plain contains mostly swamps and salt
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Fig. 2 – PCoA scaling plots of 145 counties identified according to ecoregions to which they belong: (a) compositional

dissimilarities between counties at species rank; (b) compositional dissimilarities between counties at genus rank;

(c) compositional dissimilarities between counties at family rank; (d) yearly NDVI distance between counties; (e) summer

NDVI distance between counties; (f) winter NDVI distance between counties.
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marshes; tree cover in this ecoregion is mostly loblolly and

some shortleaf pines, with patches of oak, gum, and cypress.

Distinct compositional characteristics found in vegetation

explain the clear separation between the Blue Ridge and

Piedmont ecoregions. On the contrary, similarities in compo-

sition found in the relatively flat plain ecoregions might have

contributed to the less separation in NDVI. We speculate that

NDVI is more related to species composition as suggested by

previous studies (Box et al., 1989; Walker et al., 1992; O’Brien

et al., 2000; Pettorelli et al., 2005), rather than the number of

species found in the study sites. Furthermore, we consider

that the compositional differences of vegetation types are

caused by spatial heterogeneity linked to regional climatic

constrains, latitude, elevation, and historical processes.
In addition, our results from MRPP test confirmed the val-

idity of ecoregion classification systems by showing smaller

within-group dissimilarity and greater between-group

dissimilarity for NDVI and for species composition for all 145

counties at three taxonomic ranks. Furthermore, the MRPP

results are consistent with the results from Mantel test. For

example, both tests agree that ecoregion classification works

best at species rank and with summer NDVI measurements

throughout the analyses.

We concluded that species rank works best for ecologists

and biogeographers as it has been in the past. Our findings are

significant in formally testing taxonomic ranks for the first

time for correlating species composition data and NDVI. Our

results answer the questions raised by previous studies



Table 6 – Results of MRPP test for species composition and NDVI matrices based on 1000 permutations

Family Genus Species Yearly NDVI Summer NDVI Winter NDVI

Chance-corrected within-

group agreement A

0.209 0.307 0.352 0.212 0.273 0.120

Observed d 0.613 0.839 1.147 275.4 220.7 225.3

Expected d 0.775 1.211 1.770 349.2 303.6 256.1

Significance P< 0.001 P< 0.001 P< 0.001 P< 0.001 P< 0.001 P< 0.001

a c t a o e c o l o g i c a 3 5 ( 2 0 0 9 ) 1 4 – 2 120
including Fairbanks and McGwire (2004) as to what taxonomic

domain provides a reasonable accurate estimation of biodi-

versity using satellite-derived information. In addition, it

would be interesting to test how NDVI relates to functional

types/guilds of plant communities identified through ground

investigations in a future study.
5. Conclusion

We found that a significant positive relationship exists

between variations in species composition and NDVI based on

a multivariate distance approach. The relationships are much

stronger at the taxonomic rank of species and at the peak of

NDVI. Our results suggest that remotely sensed NDVI can be

viable for monitoring species compositional changes at

regional scale. A consistent strength of relationship between

species composition and NDVI could provide ecologists with

confidence in using remote sensing in detecting changes in

biodiversity across all plant communities, ecoregions, or even

biomes. We are also cautious in inferring casual relationship

between species composition and NDVI. There are many

factors that could affect the relationship which we have not

addressed in our study, such as the degree of anthropogenic

disturbance, the accuracy of species distribution data, and the

fact of using a single year NDVI in the analyses. However, our

findings provide a useful point in seeking casual relationships

between species composition and remotely sensed NDVI.
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