
A Short Version to Appear in ACMGIS 2011 Conference

Parallel Quadtree Coding of Large-Scale Raster Geospatial Data on Multicore
CPUs and GPGPUs

Jianting Zhang
Dept. of Computer Science
City College of New York
New York City, NY, 10031

jzhang@cs.ccny.cuny.edu

Simin You
Dept. of Computer Science

CUNY Graduate Center
New York, NY, 10016

syou@gc.cuny.edu

Le Gruenwald
School of Computer Science

University of Oklahoma
Norman, OK 73071

ggruenwald@ou.edu

ABSTRACT
Global remote sensing and large-scale environmental modeling
have generated huge amounts of raster geospatial data. While the
inherent data parallelism of large-scale raster geospatial data
allows straightforward coarse-grained parallelization at the chunk
level on CPUs, it is largely unclear how to effectively exploit such
data parallelism on massively parallel General Purpose Graphics
Processing Units (GPGPUs) that require fine-grained
parallelization. In this study, we have developed an efficient
spatial data structure called BQ-Tree to code raster geospatial data
by exploiting the uniform distributions of quadrants of bitmaps at
the bitplanes of a raster. In addition to utilizing the chunk-level
coarse grained parallelism on both multicore CPUs and GPGPUs,
we have also developed two fine-grained parallelization schemes
and their four implementations by using different system and
application level optimization strategies. Experiments show that
the best GPGPU implementation is capable of decoding a BQ-
Tree encoded 16-bits NASA MODIS geospatial raster with
22,658*15,586 cells in 190 milliseconds, i.e., 1.86 billion cells per
second, on an Nvidia C2050 GPU card. The performance achieves
a 6X speedup when compared with the best dual quadcore CPU
implementation and 239-290X speedups when compared with a
baseline single thread CPU implementation.

1. INTRODUCTION
High resolution large-scale raster geospatial datasets

provide tremendous opportunities to understand the Earth and our
environments deeper than ever before. Modern computing devices
increasingly rely on parallel hardware architectures to meet the
ever increasing demands of data processing power. Multicore
CPUs and General Purpose Graphics Processing Units (GPGPUs)
are the two leading hardware architectures that are already
available in commodity computers. The data parallel nature of
large-scale raster geospatial data matches these parallel hardware
architectures very well. To make full use of the parallel
computing capabilities, it is crucial to understand how spatial data
structures and algorithms perform on these hardware
architectures.

Among numerous spatial data structures that have been
proposed over the past thirty years[1][2], quadtree probably is the
most popular family due to its effectiveness and simplicity in
indexing, compressing and querying both vector and raster
geospatial data. For example, quadtree indexing of polygons has
been implemented in Oracle Spatial [3] and a variant of quadtree
representation has been implemented in Microsoft SQL Server
Spatial [4]. Quadtrees have also been used to encode images
[5][6]. Bitplane level quadtree coding/indexing is also strongly
related to bitmap indexing [7] when applied to raster geospatial
data. Many bitmap based efficient query processing techniques
can readily be applied to raster geospatial data to improve query
responses and reduce I/O accesses. Reducing disk and memory
I/O overheads is especially beneficial to modern parallel
processors given that I/O, rather than computation, is increasingly

becoming the primary bottleneck of overall system performance
[8][9]. In addition, while traditionally spatial data structures and
algorithms assume uniform access cost to memory, the increasing
performance gaps between different levels of memory hierarchy
have made cache-conscious data structures significantly faster
than their peers. Unfortunately, research on cache-conscious
spatial data structures and algorithms has received very little
attention. The performance of classic spatial data structures (such
as quadtrees) on modern commodity parallel processors with
different configurations of memory hierarchies is largely
unknown.

Among various operations on quadtree coded bitplane
bitmaps (or bitplane quadtrees for short), encoding rasters into
bitplane quadtrees and decoding bitplane quadtrees to restore
original rasters (or decoding) are two fundamental operations. As
encoding is a one-time task and usually can be done offline, it is
technically more challenging to develop fast online parallel
algorithms to decode bitplane quadtrees. Our focus in this study is
to investigate the effectiveness of utilizing parallel computing
resources available in commodity personal computers in decoding
bitplane quadtrees, including both multicore CPUs and GPGPUs.
The work is the first step towards developing a high-performance
Geographical Information System (GIS) in a personal computing
environment that allows Query Driven Visual Explorations
(QDVE [10]) of high-resolution, time-evolving and multi-variant
raster geospatial data to effectively support global environmental
studies. More specifically, our technical contributions in this study
are outlined as follows:

(1) We have designed an efficient and cache-friendly
quadtree data structure, termed as Bitplane Quadtree (BQ-Tree),
for coding bitplane bitmaps of raster geospatial data. The BQ-Tree
orders tree nodes in a breadth-first traversal manner which does
not need pointers to chain parent-child node pairs. The data
structure can be naturally serialized and works with both CPUs
and GPGPUs efficiently.

(2) We have proposed two different parallelization
schemes to decode BQ-Trees on GPGPUs. We have also
developed optimization strategies for each of the two approaches
with demonstrated efficiencies.

(3) We have conducted comprehensive performance
comparisons on both multicore CPUs and GPGPUs using a real
NASA satellite remote sensing dataset. Experiments show that the
best GPGPU implementation can achieve nearly 6X speedup
running on an Nvidia C2050 card when compared with the best
multicore CPU implementation running on an Intel dual quadcore
CPU. The best GPGPU implementation also achieves 239X-290X
speedups over a baseline single-threaded CPU implementation.

The rest of the paper is organized as follows. Section 2
introduces background and research motivations. Section 3
presents the BQ-Tree data structure. Section 4 presents the
encoding and decoding algorithms for BQ-Trees on CPUs and
discusses parallelization of decoding on both CPUs and GPGPUs.
Section 5 provides two fine-grained parallelization schemes on

A Short Version to Appear in ACMGIS 2011 Conference

GPGPUs and its four implementations. Section 6 is the
performance comparisons. Section 7 briefly introduces related
works. Finally, Section 8 is the conclusion and future works.

2. BACKGROUND AND MOTIVATIONS
Raster data representation is a major data model for

geospatial data [11]. Surprisingly, compared to vector geospatial
data that hundreds of indexing techniques have been developed
[1][2], raster geospatial data is much less well supported in spatial
databases with respect to efficient indexing and query processing.
Existing techniques in spatial databases adopt a chunking
approach to store raster geospatial data and index the metadata of
the chunks using standard vector spatial indexing. While queries
on the spatial locations and metadata values of the chunks are
supported, chunks are stored as Binary Large Objects (BLOBs)
with or without compression and usually no queries on the chunks
are supported. The open source SciDB project [12] provides a
comprehensive framework to manage multidimensional arrays,
including raster geospatial data. While the current implementation
(Version 0.75) does support generic compression methods (by
using Zlib and BZlib), currently it does not support efficient
queries on compressed chunks, i.e., compression is strictly for
storage and does not benefit query processing. As quadtrees
support raster compression and indexing simultaneously, we
consider quadtrees a better choice for managing and querying
large-scale raster geospatial data. However, classic quadtrees
usually have overwhelming pointer (4/8 bytes) to data (1 bit) ratio
when applied to bitplane bitmaps of rasters.

Bitmap indexing has been extensively investigated in
relational databases [7][13][14][15][16][17][18]. While virtually
all bitmap indexing techniques can be applied to raster geospatial
data by ordering raster cells into a one dimensional sequence
based on a spatial order, e.g., row-major, column-major, Z-order
and Hilbert Space Filling Curve (SFC) [19], they are not designed
for raster geospatial data. Unlike quadtree base query processing
that naturally returns spatial hierarchy of resulting raster cells,
queries based on classic bitmap indexing can only return
individual tuple (correspond to raster cells) identifiers while the
spatial relationships among the raster cells are lost. The respective
advantages and disadvantages of quadtree based and bitmap based
indexing have motivated us to develop a quadtree based efficient
spatial data structure (BQ-Tree) to code bitplane bitmaps of large-
scale raster geospatial data. Given that bitmap indexing has been
widely used in commercial relational database systems and open
source implementations (e.g., FastBit [20]) are available, we next
discuss how BQ-Tree coding of raster geospatial data can reuse
the bitmap based query processing framework and existing
software codebase for fast system prototyping and practical
environmental applications.

According to [7], bitmap indexing technologies can be
divided into three categories, namely binning, encoding and
compression. Binning is to produce a set of identifiers (e.g., bin
numbers) from a set of arbitrary values to be used in the encoding
step. This step is optional in indexing raw remotely sensed data as
the raster cell values are usually already binned when optical or
electronic signal strengths are converted to digital numbers. The
encoding step takes the bin identifiers and translates them into a
set of bitmaps. As detailed in [7], there are three major types of
encoding schemes, namely equality encoding, range encoding and
interval encoding. They are suitable for different types of queries.
More complex encoding schemes can be derived by combining
the three encodings within a multi-component and multi-level

framework. The approach that we use for encoding raster cells in
this study can be considered as a multi-component encoding that
uses N components, where N is the number of bits for the raster to
be encoded. Each component represents a binary raster and the ith
binary raster consists of all the ith bits of the raster cells, i.e.,
bitplane bitmap. All components are encoded the same way using
the basic exact encoding scheme as each component value is
either 0 or 1. The encoding scheme is called binary encoding in
bitmap indexing of relational data and we term it as bitplane
bitmap encoding when it is applied to geospatial rasters. With the
mapping between bitplane bitmap coding of raster geospatial data
and the generic bitmap coding of relational data, all the query
techniques that utilize bitmap indexing can now be applied to
speed up queries on individual raster cells.

Our plan is to replace existing bitmap compression
techniques (the third step of bitmap indexing), such as run-length
and Word-Aligned Hybrid (WAH) [16] that are spatial agnostic
and utilize flat data structures, with the BQ-Tree encoding to
efficiently support both spatial (point, window, join) and attribute-
based queries (exact, range, interval) on encoded geospatial
rasters. While it is quite possible to directly perform queries on
the BQ-Trees both serially and in parallel (which is left for future
work), in this study, we adopt a simpler and more practical
approach by parallel decoding BQ-Trees into bitmaps before
executing queries. Query optimizers can choose to access only a
subset of BQ-Trees that are relevant to a query to reduce I/Os. To
process queries that require reconstructing raster chunks from
encoded bitplane bitmaps, the BQ-Tree encoding is also beneficial
as encoded bitplane bitmaps are usually much smaller than the
raw raster chunks and thus expensive I/Os can be reduced.
Utilizing parallel hardware, including multicore CPUs and
GPGPUs, to speed up the reconstructions is a promising solution
and is the focus of the paper.

Compared to CPU computing, GPGPU computing is
relatively young. We next briefly introduce the basics of GPGPU
computing to help understand the GPGUP decoding algorithms
and implementations to be presented in Section 5. A Graphics
Processing Unit (GPU) is a hardware device that is originally
designed to work with CPU to accelerate rendering of 3D or 2D
graphics. The highly parallel structures of modern GPU devices
make them more effective than general-purpose CPUs for a range
of complex graphics-related algorithms. The concept of General
Purpose GPU computing turns the massive floating-point
computational power of a modern graphics accelerator's graphics-
specific pipeline into general-purpose computing power. GPGPU
computing technologies have gained considerable interests in
many scientific research areas in the past few years [21][22].
Currently, Nvidia Compute Unified Device Architecture (CUDA)
[23] might be the most popular parallel development framework
on GPGPUs [24][25].

While different models of GPU devices have different
configurations and parallel processing capabilities, CUDA-
enabled GPU devices are organized into a set of Stream
Multiprocessors (SMs). Each SM has a certain number (e.g., 16 or
32) of computing cores. All the cores in a SM share a limited
amount of fast memory called shared memory (with a few cycles
delays) and all the SMs have access to a large but slow pool of
global memory on the device (with a few hundreds of cycles
delays). According to CUDA, developers write special C-like
code segments called kernels. The kernels are invoked by the
associated CPU code to run on GPU devices. CUDA based
GPGPU programming makes it easier for task and data

A Short Version to Appear in ACMGIS 2011 Conference

decomposition and subsequent parallel computing. Basically a
developer specifies the size of the layout of the data to be
processed in the units of data blocks and the number of threads to
be launched inside a data block. The GPU device is responsible
for mapping the data blocks to the computing blocks within the
SMs through hardware-based scheduling which is transparent to
developers/users. Since each SM has limited hardware resources,
such as the number of registers, shared memory and thread
scheduling slots, a SM can accommodate only a certain number of
blocks subjected to the combination of the constraints. Carefully
selecting block sizes allows a SM to accommodate more blocks
simultaneously and, subsequently, improves parallel throughputs.
3. THE BQ-TREE DATA STRUCTURE

 Given a bitplane bitmap of a raster R of size N*N
(assuming N=2n), as illustrated in Fig.1, the bitmap can be
represented as a quadtree where black leaf nodes represent
quadrants of presence (“1”), white leaf nodes represent quadrants
of absence (“0”) and internal nodes are colored as gray. The
quadtree can be easily implemented in main-memory by using
pointers or stored on hard drives as a collection of linear quadtree
paths. However, while the storage overheads of pointers or the
paths can be justified if the length of the data field is much larger
than the length of the pointer field (4 bytes for 32-bit machine and
8 bytes for 64-bits machine), the overhead is unacceptable as the
data field is intended to be only 1-bit long to encode a bitplane
bitmap. Furthermore, as the memory pointers are allocated
dynamically and can point to arbitrary memory addresses, they are
known to be cache unfriendly [26][27]. To overcome these
problems, we have designed a spatial data structure called BQ-
Tree to efficiently represent bitmaps of bitplanes of a geospatial
raster.

Fig. 1 Quadtree Representation of a bitplane bitmap
The basic idea of BQ-Tree is to sequence nodes of a

regular quadtree into a byte-stream through breadth-first traversals
with sibling nodes following the Z-order [19]. Different from
classic main-memory quadtrees that use pointers to address child
nodes, the child node positions in a BQ-Tree do not need to be
stored explicitly. As such, the pointer field in regular quadtrees
can be eliminated which reduces storage overhead significantly.
In addition to tree nodes, a BQ-Tree also includes a compacted
“last level” quadrant signature array. While the details on the
sequenced tree node array and the last level quadrant signature
array (as well as the correspondence between the leaf nodes and
the last level quadrant signatures) will be detailed next, we would
like to mention that sequencing quadtree nodes and quadrant
signatures as one-dimensional arrays is not only cache friendly
but also makes it more interoperable between CPUs and GPUs
that currently have distinct memory spaces in the respective
devices.

The layout of BQ-Tree nodes is as follows. Each BQ-
Tree node is represented as a byte (8 bits) with each child
quadrant takes two bits. We term the two bits as child node
signature. The three combinations correspond to three types of

nodes in classic quadtrees: “00” corresponds to white leaf nodes,
“10” corresponds to black leaf nodes and “01” corresponds to
gray nodes. The combination of “11” is currently not used. Child
nodes corresponding to the quadrants with “00” or “10” signatures
in their parent node can be safely removed from the byte stream as
all the four quadrants in the child nodes are the same and their
presence/absence information has already been represented in the
respective quadrant signatures of the parent nodes. By
consolidating four child quadrants’ information into a single node,
the depth of a BQ-Tree can be reduced by 1 when compared with
classic quadtrees. The technique can potentially reduce memory
footprint to up to 1/4.

Fig. 2 Streaming BQ-Tree Nodes

Fig. 3 Generating LLQS Array Using Different Quadrant Sizes
If we represent the four (2*2) raster cells in a quadrant

as a BQ-Tree leaf node, then the second bit of the four quadrant
signatures in the node will always be 0 (i.e., the signatures are
either “00” or “10”). The redundancy is undesirable. To further
reduce the memory footprint of the BQ-Tree for a bitplane
bitmap, we introduce the concept of “Last Level Quadrant
Signature”, or LLQS. A last level quadrant is defined as a bitmap
quadrant that is indexed by a 2-bit child node signature of a BQ-
Tree leaf node. For the last level quadrant size of 2k*2k, we term
the concatenation of the bits of the 2k*2k quadrant following a
row-major order as the Last Level Quadrant Signature (LLQS).
The LLQSs need to be recorded for the bitmap quadrants
corresponding to BQ-Tree leaf node quadrants whose signatures
are neither “00” nor “10”, i.e., when the LLQSs are mixtures of 0s
and 1s. It is clear that by recording the LLQSs separately from
the quadtree nodes, the bitplane bitmap cells do not need to be
represented as the quadrant signatures in the leaf nodes of a BQ-
Tree with values of either “00” or “10” and thus the
aforementioned redundancy is avoided. When k=1, half of the
memory for storing BQ-Tree leaf nodes can be saved, as only 4
bits, instead of 8 bits, are needed for a 2*2 quadrant. Similar to
compacting BQ-Tree nodes, LLQSs can also be compacted when
they are all 0s (with “00” signatures in BQ-Tree leaf nodes) or
when they are all 1s (with “10” signatures in BQ-Tree leaf nodes).

0 2
1 3

34 01 00 10
10 01 00 01
10 10 00 00
10 10 00 00

34343434343434343434343434343410
34 01
10 00
343434343434343434343434343434012*2

Tree node byte array: 01100100 1010010 00001001
Last-level quadrant byte array: 01110001 0100XXXX

4*4 34 01
10 00
34343434343434343434343434343401

Tree node byte array: 01100100
Last level quadrant byte array (short integers):
1101111111001101 0011001100010000

34 01 00 10
10 01 00 01
10 10 00 00
10 10 00 00

34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 10 34 01
10 00
34343434343434343434343434343401

0001100100000000 00001001 10101010 10100101

Z-order

Byte-stream: shaded nodes do not need to be stored

A Short Version to Appear in ACMGIS 2011 Conference

It can also be seen that, while the BQ-Tree data structure does not
explicitly store the positions of the compacted quadrant signatures
in its leaf tree nodes, both encoding and decoding algorithms can
utilize the implicit correspondence when the tree node array and
the LLQS array are processed in a streamline manner.

Our BQ-Tree design allows arbitrary last level quadrant
sizes of powers of 2. For a last level quadrant of size 2*2, we will
need to combine two of such quadrant signatures (each is 4 bits)
to form a byte. For a last level quadrant of size 4*4, it is natural to
use a short integer (16 bits) to represent the quadrant signatures.
Fig. 3 shows the processes of compacting LLQSs using both 2*2
and 4*4 quadrant sizes. The bitmap shown in the left part of Fig. 3
represents a bitplane of an 8*8 raster. Using a 2*2 last level
quadrant size, a BQ-Tree with two levels (as shown in the top of
Fig. 3) is generated. Breadth-first traversal of the tree generates
the tree node array as 01100100 1010010 00001001. Note that the
second and the fourth level-2 tree nodes are skipped as the
corresponding child node signatures in the root node are “10” and
“00”, respectively. Combing the two last level quadrants that are
the mixtures of 0s and 1s (shaded in the top-left part of Fig. 3)
generates the first byte of the LLQS array. Note that the XXXX (a
half-byte) at the end of the array is a filler to make a whole byte.
On the other hand, using the 4*4 last level quadrant size generates
a BQ-Tree with only one level. Similar to using 2*2 quadrant size,
quadrants with mixtures of 1s and 0s are sequenced on the LLQS
array (short integer data type in this case). Note that the bit order
of last level quadrants (in both 2*2 and 4*4 cases) follows row-
major order instead of Z-order to minimize Z-order calculation.
Our experiments have shown that Z-order calculation can be
expensive when not optimized. It is clear that using larger last
level quadrant sizes will reduce BQ-tree depths and numbers of
tree nodes at the cost of increasing the LLQS array volume.

4. CODING RASTER GEOSPATIAL DATA
ON CPUs

Before presenting the GPGPU algorithms to decode
large-scale raster geospatial data in Section 5, we next provide the
baseline encoding and decoding algorithms on CPUs. The CPU
encoding implementation provides encoded data for
experimentation on both CPU and GPGPU based decoding
algorithms. The single-thread CPU decoding implementation is
used to validate the GPGPU decoding results, in addition to form
the baseline for comparisons.

4.1 Encoding
The inputs for the encoding algorithm are raster (or

raster chunk) R, raster/chunk size C (C=2m*2m), last level
quadrant size S (S=2q*2q) and B, which is the number of bits of R.
The outputs of the algorithm include the compacted BQ-Tree
node array CN and the compacted LLQS array CL. The
initialization includes allocating a pyramid array for all bitplanes
(PA) and allocating a LLQS array (LA). Clearly the size of PA
should be B* (1+4+16+…+2m-q-1*2m-q-1)) =B*(4m-q-1)/3 and the
size of LA should be B*2m-q*2m-q. The encoding algorithm is
given in Fig. 4 which is straightforward to follow by using the
examples provided in Fig. 3. First, a whole raster (or a raster
chunk) is divided into quadrants based on the last level quadrant
size. Both the signatures of the last level quadrants and the
corresponding leaf nodes are then generated (Step 1). Second, for
each bitplane, a pyramid is generated bottom-up by combining the
child node signatures into the parent node signatures (Step 2).
Third, starting from the root of the BQ-tree for each bitplane, all

the nodes in the matrix correspond to a pyramid level are
examined by following the Z-order. The pyramid is then
compacted into a byte array for each bitplane by skipping 0x00
(all 0s) and 0xaa (all 1s) bytes (Step 3). Finally, the signatures of
the last level quadrants are also compacted into either a byte or
short integer stream by keeping only signatures that are
considered to be uniform, i.e., those correspond to “00” or “10”
values in any of the four quadrants of the leaf nodes of a BQ-Tree,
depending on the last level quadrant sizes (Step 4). We note that it
is possible to use Hamming distance [28] to define the
“uniformity” of the last level quadrants by comparing their
signatures with sequences of all 0s and all 1s. The approximation
can reduce memory footprint of the LLQS array and may be
desirable in many cases.

Fig. 4 BQ-Tree CPU Encoding Algorithm

4.2 Decoding
The decoding process is the reverse of the encoding

process. A detailed procedure similar to Fig. 4 can be easily
constructed and is skipped due to space limit. Instead, we next
present an overview of the steps of the decoding algorithm that
serves as the common base for both CPU and GPGPU
implementations. Starting from the root of a BQ-Tree, the
pyramid PA is reconstructed level by level as follows. Each
quadtree node is scanned and the signatures of the four child
nodes are extracted and examined. Values of 0x00 and 0xaa will
be used to update the corresponding matrix elements in the next
level (i.e., child nodes in the pyramid layout) if the child node
signatures are “00” or “10”, respectively. Otherwise, a byte value
is retrieved from the compacted BQ-Tree byte stream and used to
update the corresponding matrix elements in the next level. After
the pyramid is reconstructed, the elements of the last level matrix
of the pyramid (correspond to the leaf nodes of the BQ-Tree) are
then combined with the LLQS array to reconstruct the original
bitplane bitmap by setting the LLQSs with either all 0s and all 1s
(depending on the quadrant signatures in the leaf nodes), or with
the values in the LLQS array. Finally, the reconstructed bitplane
bitmaps are combined to reconstruct the raster cell values through
bitplane level composition. To set the ith bit of raster cell value v

Step 1: for each of the 2m-q *2m-q last level quadrants
1.1 Gather the raster cells in the quadrant and calculate the Z-order
number of the quadrant
1.2 For each of the B bits
 1.2.1 Generate the last level quadrant signatures and write them to LA
 1.2.2 Derive the child node signatures for four neighboring quadrants and
form a leaf node; output the leaf node to level m-q matrix of PA
Step 2: For each of the m-q-1 levels of PA, loop bottom-up along the
pyramid and do the following
 2.1 For each of the elements of the matrix at the level l
 2.1.1 For each of the B bits do the following:
 2.1.1.1 Examine the four child nodes at the level l+1 matrix and generate
the signatures for the four quadrants of the node using the following rules:
0x00->”00”, 0xaa->”10”, all others ->”01”.
 2.1.1.2 Concatenate the four 2-bits signatures and write the node value to
the level l matrix
Step 3: For all the elements in PA
3.1 Skip all bytes whose values are 0x00 or 0xaa
Step 4 For all the elements in LA
4.1 If the last level quadrant size is 2*2 (q=1): skip all half-bytes with
value of 0x0 or 0xF and combine two consecutive half bytes into one byte
 4.2 If last-level quadrant size is 4*4 (q=2): skip all short integer values (2
bytes) of 0x0000 or 0xFFFF.

A Short Version to Appear in ACMGIS 2011 Conference

decoded from the ith BQ-Tree of a raster chunk, the following
bitwise operation can be applied: v|=(1<<i).

4.3 Discussions on Parallelization
While a formal proof is omitted due to space limit, we

would like to note that both the encoding and decoding algorithms
are data independent which means that the space and time
complexities of the algorithms do not depend on data
distributions. The relevant data are processed bitplane by bitplane
and tree level by tree level, all on regular data structures (matrices
and arrays). While the algorithms may not be the most work
efficient ones when compared to quadtrees that allow depth-first
traversals where certain quadrants can be skipped in encoding and
decoding, the streamline processing feature of the proposed
algorithms makes them cache-friendly and can potentially lead to
more efficient implementations on modern hardware architectures
that depend on deeper memory hierarchies and are sensitive to
caching.

More importantly, the algorithms lend themselves to
both coarse-grained and fine-grained parallel implementations.
Given that current generations of commodity desktop computers
or computing nodes of cluster computers typically have 4-12 CPU
cores, it is natural to assign a chunk (e.g., 1024*1024) of a raster
or a bitplane of a raster to a CPU core for coarse grained
parallelization. We note that both the number of chunks c
(assuming c=2p where p>=4) and the number of bitplanes
(typically 8/16/32) are multiplications of the numbers of CPU
cores in a commodity computer (typically 2/4/8). This can be
implemented using quite a few parallel computing frameworks on
CPUs, such as Pthreads, OpenMP, MPI for multicores, Phoenix (a
MapReduce variation for multicore CPUs) [29], Intel Thread
Building Blocks (TBB) and Microsoft Parallel Pattern Library
(PPL). In this study, we have chosen to use OpenMP as the
directive-based programming framework is easy to use and well
supported by major compliers on both Linux and Windows
platforms.

As the current commodity GPGPUs can launch much
larger numbers of threads (hundreds or more) where groups of
threads are executed in a SIMD (Single Instruction Multiple Data)
manner, it is also important to explore fine-grained parallelization
to coordinate GPGPU threads when processing bitplane bitmaps.
While we have implemented both encoding and decoding
algorithms on CPUs using chunk-level coarse-grained data
parallelism, since our focus in this study is decoding (for the
reasons discussed previously), we have only implemented the
decoding algorithms on GPGPUs while leaving implementations
of the encoding algorithms on GPGPUs for future work. Since
encoding and decoding rasters based on the BQ-Trees are
symmetrical, the GPGPU decoding implementations to be
presented in the next section might provide some ideas on
constructing BQ-Trees on GPGPUs by utilizing fine-grained data
parallelism.
5 GPGPU DECODING:
PARALLELIZATION SCHEMES AND
IMPLEMENTATION OPTIMIZATIONS

The output of BQ-Tree encoding of large scale raster
geospatial data is a collection of BQ-Trees, each represents a
compressed bitmap of a bitplane of an M*M (M=2m) raster chunk.
The encoded BQ-Trees can be accessed independently with
distinct chunk and bitplane combinations to facilitate efficient
data processing that requires multiple BQ-Trees. In this study, we

aim at making full use of GPGPUs’ massive parallel computing
capabilities to speed up decoding large-scale geospatial raster
from encoded BQ-Trees. CUDA has two levels of parallelism:
block level and thread level. Assigning a chunk to a CUDA
computing block is very similar to the coarse-grained
parallelization on CPUs which is relatively straightforward.
However, assigning hierarchically encoded BQ-trees of a raster
chunk to a group of flatly organized GPGPU threads within a
computing block requires more careful designs. We have designed
two parallelization schemes and developed two implementations
for each scheme.

5.1 Parallelization Scheme 1: Divide
Separately and Process (DSP)

The DSP approach is an adoption of the coarse-grained
parallelization strategy that has been used for multicore CPUs and
GPGPU computing blocks. As illustrated in Fig. 5, given a raster
chunk of size M*M (M=2m) and assuming there are Tn=2t*2t
threads available for a computing block, each thread is responsible
for processing a level t subtree and decoding 2m-t*2m-t raster cells
under the subtree. To make the Tn threads run in parallel, the
starting positions of all the t threads in processing the tree node
array (for all the m-t tree levels) and the LLQS array are required.
These positions can be pre-generated when encoding the raster
chunks. Assuming the number of bitplanes is B, the additional
storage overheads for the starting positions are Sn=Tn*(m-t)*B
integers and Sl=B*Tn integers for the two arrays, respectively.
Note that the top t levels of BQ-Tree nodes need to be processed
in CPU to make full use of the GPGPU threads.

Fig. 5 Illustration of the Divide Separately and Process

(DSP) Parallelization Scheme
The major advantage of the DSP algorithm is that it

resembles the CPU decoding algorithm closely and it is simple.
However, the main disadvantage is that each thread needs to fetch
data from non-continuous GPU global memory individually.
Except for the first level BQ-tree nodes being processed on
GPGPU, the threads access non-continuous global memory
locations. GPUs need to issue distinct memory operations for the
threads. Unlike CPUs that have large caches (e.g., 256K L2 per-
core and 8M L3 shared for Intel Xeon E5520 quad-core CPUs) to
significantly reduce memory access costs, GPUs have very
limited caches and thus accesses to global memory are more
expensive than CPUs. Even the latest Nvidia Fermi GPUs have
only a maximum of 48K per-SM L1 cache and 768K L2 cache for
all its 14 SMs/448 cores. Given the large number of threads that
are launched simultaneously in the decoding kernel (in the order
of thousands as detailed in the experiment section), caching in the
current generation of GPUs can not help non-coalesced memory

0 2
1 3

0 0
0 0
1 1
1 1

2 2
2 2
3 3
3 3

0 0
0 0
0 0
0 0

0 0
0 0
0 0
0 0

2 2
2 2
2 2
2 2

2 2
2 2
2 2
2 2

1 1
0 1
1 1
1 1

1 1
1 1
1 1
1 1

3 3
3 3
3 3
3 3

3 3
3 3
3 3
3 3

10 2 3

CPU

A Short Version to Appear in ACMGIS 2011 Conference

accesses as much as that in CPUs. As shown in the experiment
section, DSP based implementations are much less efficient than
the PCL based ones (to be detailed in the next subsection).
Nevertheless, the parallelization scheme and its implementations
can help understand the importance of designing parallel
algorithms that fit hardware architectures and serve as baselines
for comparisons. We next discuss two DSP implementations.

As discussed in Section 4.2, B bitplane bitmaps need to
be accessed simultaneously to decode raster cells. Since the BQ-
Trees for the bitplane bitmaps are stored and decoded separately,
they need to be combined during the decoding process. There are
several possibilities. The first one is, similar to CPU
implementation, using global memory as the scratchpad for the
combination (as illustrated in Fig. 6). This is straightforward and
actually was our first implementation. Unfortunately, it gives us
very poor performance. As shown in the experiment section, the
performance is so poor that it is only comparable to single thread
CPU implementation which makes the GPGPU implementation
meaningless in most cases. We found the poor performance was
largely due to excessive non-coalesced global memory access. In
addition to accessing encoded BQ-Trees and compacted LLQSs in
global memory that is unavoidable, the naïve implementation also
requires reading and writing bitmaps of all pyramid levels during
bitwise composition (combination) processes to restore bitplane
bitmaps into the original rasters. Assuming that the raster to be
decoded has a size of M*M at each computing block, then the
number of reads and writes to global memory by all the threads in
the computing block can be roughly estimated as
B*2*(1/3*M2+M2) where 1/3*M2 is for accessing quadtree nodes
(also refer to the formula in calculating the size of the pyramid in
Section 4.1) and M2 is for accessing LLQSs. We term this
implementation as DSP-Naïve.

Fig. 6 Illustration of DSP-Naïve Implementation: Excessive Non-
Coalesced Global Memory Accesses

Fig. 7 Illustration of the DSP-Register Implementation: Reducing
Excessive Global Memory Accesses by Using Registers

Our optimized DSP implementation, termed as DSP-

Optimized, is to utilize GPGPUs’ registers to reduce read and
write accesses to global device memory. As shown in Fig. 7, four
register variables are used per thread when processing a 2*2
quadrant of the BQ-Trees of all B bitplanes. Since all the
intermediate results in composting B bitplanes to decode a raster
cell use registers and only the register variables need to be written
back to global memory, the global memory I/Os are now reduced
to 1/B when compared with DSP-Naïve. As shown in the

experiment section, DSP-Optimized reduces decoding time to less
than 1/3 of that of DSP-Naïve, i.e., a 3X speedup is achieved.

5.2 Parallelization Scheme 2: Process
Collectively and Loop (PCL)

The PCL scheme adopts a different parallelization
strategy than DSP. As shown in Fig. 8, all the threads assigned to
a computing block are bundled together to process a quadrant of
matrices in a BQ-Tree pyramid during decoding. This collective
process is looped over all the quadrants and all levels of the
pyramid. Similar to the DSP approach that requires the starting
positions of each thread in the tree node array and LLQS array,
the PCL approach requires the starting positions in both arrays in
order to make the threads assigned to the GPGPU computing
blocks work in parallel. However, keeping the positions for all
threads is impractical since the storage overhead is overwhelming.
A solution is to calculate the positions for all threads on the fly.
Unfortunately, synchronizing GPGPU computing blocks, which is
required to calculate the positions for quadrants across computing
blocks, is very costly and inflexible in the current generations of
GPGPUs.

The PCL approach adopts a strategy that requires pre-
generating the positions for every Tn elements that are processed
in a computing block while computes the positions on the fly for
all the Tn threads within a computing block. We believe the hybrid
strategy provides a good tradeoff and the efficiency has been
verified by the experiments. Clearly the storage overheads for the
starting positions (including both the tree node array and the
LLQS array) can be calculated as Sn=B*(1+4+…+4m-t-1) = B*(4m-t

-1)/3 and Sl=B*M*M/Tn. Contrary to the DSP scheme where both
Sn and Sl increase as Tn increases, both Sn and Sl decrease as Tn
increases (note Tn=2t*2t) in PCL. This feature makes PCL
preferable when the degree of parallelization (in terms of number
of threads per computing block) increases. We next present the
details of the on-the-fly calculation of the positions in a GPGPU
computing block.

Fig. 8 Illustration of Thread Assignment in the PCL
Parallelization Scheme

Assuming that the starting position of a data segment

with Tn data elements (tree nodes or LLQSs) in the whole array is
p, the task is to compute the positions for the Tn threads from
where the threads can fetch data from global memory and perform
decoding independently. In our implementation, first, the numbers
of child nodes (or non-uniform last level quadrants) are counted
by examining the parent nodes and counting the numbers of
quadrants with “01” signature. These values are then written to an

BP1 BP2 BPn

…

...

Global Memory

BP1 BP2 BPn

Global
Memory

Registers

0 2
1 3

0 2
1 3
0 2
1 3

0 2
1 3

0 2
1 3
0 2
1 3

0 2
1 3
0 2
1 3

0 2
1 3
0 2
1 3

0 2
1 3
0 2
1 3

0 2
1 3
0 2
1 3

0 2
1 3
0 2
1 3

0 2
1 3
0 2
1 3

0 2
1 3

0 2
1 3

0 2
1 3

Loop

Loop

A Short Version to Appear in ACMGIS 2011 Conference

array of size 2*Tn in the computing block’s fast shared memory.
The position offsets of all the threads relative to the first thread
(whose position is known as p) can then be calculated through a
fast parallel scan process in the shared memory. The CUDA code
snippet and an example using four threads are shown in Fig. 9.
Clearly the time complexity is in the order of O(logTn). For
Tn=256, the process completes in 8 parallel steps. After the
starting positions of the threads are computed, they can work
independently and achieve good parallel performance. We note
that the PCL scheme does not incur additional accesses to global
memory as the on-the-fly calculation of positions is all done in
fast shared memory. Experiments have shown that the calculation
cost is negligible on GPUs. In addition, the PCL scheme assures
that global memory is always accessed continuously by the
threads of the computing blocks.

Fig. 9 CUDA Code Snippet and an Example to Illustrate

Fast Calculation of Starting Positions using Parallel Scan
Similar to the three DSP implementations, we next

present two PCL implementations, namely PCL-Register and
PCL-Optimized. Similar to DSP-Optimized, PCL-Register uses
GPGPU registers to hold the intermediate results during the
bitwise composition process in the last step of decoding. While it
is easier to implement, one big problem is that 4*16 registers are
needed per thread for this purpose where 4 is because one leaf
BQ-Tree node is mapped to four last level quadrants and 16 is due
to using a 4*4 quadrant size in forming LLQSs (as short integers).
Unfortunately, Nvidia Fermi-based GPUs currently allows 32768
registers shared by 1024 threads in a SM, i.e., 32 registers per
thread, when the SMs are fully utilized. Even worse, quite some
registers are needed for other parts of the decoding algorithm.
While it is possible to use shared memory to alleviate the register
stress to a certain extent, we have determined that the PCL-
Register implementation is not practical. This motivates us to
develop the PCL-Optimized implementation. Before we present
the PCL-Optimized implementation in details next, we would like
to stress that, thanks to CUDA, the PCL-Register implementation
still runs perfectly although spilling register variables to global
memory hurts performance significantly. As shown in the
experiment section, although the PCL-Register implementation is

more than an order better than DSP-Naive, it only achieves about
1/5 performance of PCL-Optimized.

The PCL-Optimized implementation writes individual
reconstructed bitmaps to global memory and launches a separate
kernel to combine the decoded bitplane bitmaps. Although this
requires additional global memory accesses, it significantly
reduces register consumptions which subsequently eliminate
register spilling to global memory. The implementation of the
combination kernel is quite simple as the decoded bitplane
bitmaps are now regularly shaped matrices which are excellent for
coalesced global memory accesses. Since the raster dataset in our
experiments is the 16-bits short integer type and there are 16
bitplane bitmaps represented as 8-bits chars, a working array of 8
short integers is used to hold intermediate results. Each thread
reads a byte from 16 bitmaps, converts them to 8 short integers
and writes the short integers to global memory. The
implementation is easy to be modified for 8 and 32 bits rasters.

6 PERFORMANCE STUDIES
6.1 Dataset and Experiment Setup

We use a real NASA MODIS (Moderate Resolution
Imaging Spectroradiometer) raster dataset obtained from the
Global Land Cover Facility (GLCF) website [30]. The specific
dataset we use is band1 of the North America 2003097 imagery.
The dataset has a spatial resolution of 500 meters and
22,658*15,586 cells sampled at 16-bits. The original data volume
is 706,295,176 bytes. A downscaled image is shown in Fig. 10 to
help understand the dataset better. The image clearly shows that a
signficant portion of the dataset is covered by oceans whose raster
cell values are mostly NO_DATA or some other special masks.
Among the cells with valid values (1-16000), 75.8% cells have
values that are less than 4096, i.e., the first 4 bitplane bitmaps
(most significant bit first) are mostly 0s. As such, we can expect
significant compression when the dataset is encoded by BQ-Trees.

Fig. 10 Grayscale Image of the Experiment Dataset
Our experiments are performed on a SGI Octane III

machine. While the machine comes with two identical and
independent nodes and four Nvidia Fermi C2050 GPU devices,
only one node and a single GPU device on the node is used for
experiments. The computing node is equipped with dual Intel
Xeon E5520 quadcore CPUs with hyper-threading enabled. As
such, the computing node has 8 CPU cores (2.26 GHz) and is
capable of launching 16 software threads. The computing node is
also equipped with 48 GB 1333MHz DDR3 memory and 4 TB
SATA 7200 RPM hard drives. The C2050 GPU card attached to
the machine has 448 cores (1.15 GHz). The GPU device also has
3GB GDDR5 graphics memory running at 1.5 GHz clock rate.
The GPU device is attached to the motherboard through a PCI-E

__device__ inline ushort scan4(ushort num)
{
 __shared__ ushort ptr[2*Tn];
 ushort val=num;
 uint idx = threadIdx.x;
 ptr[idx] = 0;
 idx += Tn;
 ptr[idx] =num;
 SYNC
 val += ptr[idx - 1]; SYNC ptr[idx] = val; SYNC
 val += ptr[idx - 2]; SYNC ptr[idx] = val; SYNC
 val += ptr[idx - 4]; SYNC ptr[idx] = val; SYNC
 …
 val = ptr[idx - 1]; return val;
}

0 0 0 0 3 2 0 13 2 0 1

0 0 0 0 3 5 2 1

0 0 0 0 3 5 5 6

0 0 0 0 3 5 5 6

Step 0

Step 1

Step 2

Step 3

Result of
exclusive scan

A Short Version to Appear in ACMGIS 2011 Conference

x16 slot that can provide a theoretical unidirectional data transmit
speed of 4GB/s.

Our primary measurement in this study is the wall-clock
running times measured in milliseconds. We do not include data
transfer times between CPUs and GPUs in the comparisons
among CPU running times and GPGPU running times for the
following reasons. First, in many cases, decoded rasters can be
used on GPUs for subsequent processing without needing to
transfer back to CPUs. Second, as shown later, the CPU to GPU
data transfer times, while signficant, is not dominant. Including
the data transfer times does not affect speedups dramatically.
Third, the encoded data can be pre-loaded to GPUs for time-
critical applications such as interactive visual explorations. The
processing time is more important than data transfer time in this
case. Mixing the two different types of time costs does not reflect
the application semantics accurately. Nevertheless, the data
transfer times are reported to help understand end-to-end
performance.

We have tested all the CPU and GPGPU
implementations using two chunk sizes: 1024*1024 and
4096*4096. Using small chunk sizes can certainly reduce the
volumes of padded data when the original rasters are not the exact
multiplications of the chunk sizes and can potentially reduce
workloads and improve performance. On the other hand, using
large chunk sizes can reduce hardware scheduling overheads
which could be beneficial in certain cases. Since encoded byte
streams depend on chunk sizes and last level quadrant sizes but
not CPU or GPGPU implementations, we report the results in this
subsection as tabulated in Table. 1. From Table 1 we can see that,
while chunking increases data volumes to be processed, it has
minimum effect on both tree node array sizes and LLQS array
sizes as the padded raster cells are largely compressed. We can
also see that in this particular dataset, using a 4*4 last level
quadrant size achieves more than 5% compression ratio than using
a 2*2 last level quadrant due to the fact that the quadtree node
sizes are significantly decreased while the last level quadrant sizes
are only moderately increased. As such, using a 4*4 last level
quadrant size provides a better tradeoff.

Table 1 CPU Encoding Results: Sizes (in Bytes) and
Compression Ratios (%)

Chunk Size 1024*1024 4096*4096
Data Volume 771,751,936 805,306,368
Last Level
Quadrant Size

2*2 4*4 2*2 4*4

Node Array Size 131,277,689 35,700,341 131,276,652 35,699,304
LLQS Array Size 136,290,830 191,154,696 136,290,199 191,154,696
Total Encoded Size 267,568,519 226,855,037 267,566,851 226,854,000
Compression Ratio 37.88% 32.12% 37.88% 32.12%

While it is non-trivial to optimize GPGPU

implementations even in the cases such as using registers to speed
up accesses to global memories (which is the motivation of
developing the DSP-Optimized implementation), such
optimizations can be easily achieved by setting proper
compilation flags on CPUs. We use O3 flag to optimize CPU code
for speed that is supported by the gcc compiler on Linux. We
report the CPU running times using both non-optimized and
optimized code.
6.2 CPU Performance

Using OpenMP APIs, we have set the number of current
threads to 1, 2, 4, 8 and 16 and measured their running times for
both 1024*1024 and 4096*4096 chunk sizes, respectively. The

results (both with and without optimization) are tabulated in Table
2. As we can see, the decoding times vary with the following
factors: compilation optimization, level of parallelization (number
of threads), chunk sizes and last level quadrant sizes. The first two
factors, i.e., optimization and multi-threading, play a dominate
role while the other two factors are secondary. The running times
for “non-optimized+4*4 last level quadrant size” cases are always
worse than those of “non-optimized+2*2 last level quadrant size”
cases. On the other hand, the “optimized+4*4 last level quadrant
size” cases are always better than those of the “optimized+2*2 last
level quadrant size” cases. This may suggest that using 4*4 last
level quadrant size is more optimization friendly. We can also see
that the speedups due to multi-threaded parallelization are almost
linear using up to 8 threads for almost all cases regardless of
options for optimization, chunk sizes and last level quadrant sizes.
The results suggest that the coding framework using BQ-Trees is
quite scalable on multicore CPUs. We also notice that using 16
threads only reduces decoding times slightly (3%-13%) and
sometimes even performs worse than using 8 threads. This is not
surprising since the machine has only 8 physical CPU cores and
the decoding algorithms are scalable in utilizing the physical
hardware resources. Using more than one thread per CPU core
can potentially incur resource contention and reduce performance.

 Comparing the best performance of 1,095 milliseconds,
which is achieved in the case of 1024 chunk size using 4*4 last
level quadrant size and using 8 threads and with optimization,
with the worst performance of 55,042 milliseconds, a speedup of
more than 50X has been achieved. If we follow the speedup factor
chain overlaid with Table 2 (where only one factor is changed per
step), we can see that the optimization contributes 6.81X
(7462/1095), the parallelization contributes 6.74X (50305/7462)
and the last level quadrant size contributes 1.094X (55042/50305).

Table 2 Running times of Decoding on CPUs
Chunk
Size

1024*1024
No optimization

4096*4096
No optimization

1024*1024
 –O3

4096*4096
-O3

LLQS 2*2 4*4 2*2 4*4 2*2 4*4 2*2 4*4
1T 45389 50305 51243 55042 9701 7005 11329 8613
2T 23517 26512 27729 31015 5116 3693 6353 4815
4T 12041 13654 14402 16362 2678 1917 3414 2557
8T 6908 7462 7728 8835 1571 1095 1889 1451
16T 5999 7054 7475 8185 1554 1281 1693 1487

6.3 GPGPU Performance
Table 3 lists both the volumes of additional position

data that are required to be transferred to GPU device for parallel
decoding as well the running times for the four GPGPU
implementations, i.e., DSP-Naïve, DSP-Optimized, PCL-Register
and PCL-Optimized. We note that the DSP implementations use a
2*2 last level quadrant size while the PCL-implementations use a
4*4 last level quadrant size. We have not tested the other
parallelization and last level quadrant size combinations due to
time limit. Not shown in Table 3 are the CPU-GPU (host to
device) and GPU-CPU (device to host) data transfer times.
Depending on the different combinations of chunk sizes, last level
quadrant sizes, parallelization schemes and different runs,
transferring the encoded data and the auxiliary position data for
parallel execution from CPU to GPU takes about 72-77
milliseconds while transferring back the decoded raster from GPU
to CPU takes about 215-216 milliseconds. The effective data
transfer rates are pretty consistent and are close to the maximum
PIC-E *16 limit (4GB/s). Note that we do not include the data
transfer times in calculating speedups for the reasons discussed
previously.

A Short Version to Appear in ACMGIS 2011 Conference

We have chosen to use 256 threads per computing
block, i.e., Tn=256, for all the GPGPU implementations to achieve
an optimum GPGPU hardware occupancy after considering
constraints related to registers and shared memory. Using 256
threads per computing block is also recommended by the GPU
vendor and by previous studies. Since each of the 14 SMs can
hold up to 4 computing blocks, there are up to 14*4*256=14,336
active threads in the decoding kernels. From Table 3 we can see
that, the position data overhead is significant for neither chunk
sizes using the PCL parallelization scheme. It is also insignificant
for the DSP parallelization scheme using a chunk size of 4096
(1.16%). However, the overhead is significant for the DSP
parallelization scheme using a chunk size of 1024 (11.91%). The
results reflect different scalabilities of the DSP and the PCL
parallelization schemes, as formulated in Section 5. They also
suggest that PCL is more preferable to DSP, not only from the
running times perspective as detailed next, but also from storage
overheads perspective.
Table 3 GPGPU Results: Position Data Overheads and Decoding

Running Times
Chunk Size/Last Level Quadrant Size 1024*1024

(2*2)
4096*4096

(4*4)
DSP Quadtree Position Data (Bytes) 30,146,560 2,752,512
DSP Last Level Position Data (Bytes) 6,029,312 393,216
DSP Position Data Overhead (%) 11.91% 1.16%
DSP- Naïve Runtime (milliseconds) 11615 9997
DSP- Optimized Runtime (milliseconds) 3314 3037
PCL Quadtree Position Data (Bytes) 494,592 523,776
PCL Last Level Position Data (Bytes) 1,507,328 1,572,864
PCL Position Data Overhead (%) 0.87% 0.92%
PCL- Register Runtime (milliseconds) 1053 946
PCL – Optimized Runtime (milliseconds) 190 283

From Table 3 we can see that, similar to CPU results,
the optimized implementations perform much better than non-
optimized ones. The DSP-Naïve has a running time of 11615
milliseconds which makes it even more inferior to the optimized
single-thread CPU implementation (11329 and 8613 milliseconds
using quadrant sizes of 2*2 and 4*4, respectively). Perhaps the
most signficant conclusion we can draw from this study, as shown
in Table 3 is that the PCL-Optimized implementation achieves a
performance of 190 milliseconds, which is a 5.8X speedup
(1095/190) when compared with the best CPU implementation on
dual quadcore CPUs using 16 threads. This clearly demonstrates
the importance of designing a good parallelization scheme to fully
utilize parallel hardware capacity on GPGPUs. When compared
the best GPGPU performance with the best single-thread CPU
performance, we can see a 36.9X speedup (7005/190).
Furthermore, when compared the best GPGPU implementation
performance with the baseline performance (non-optimized,
single-thread CPU implementation), an impressive speedup of
239X to 290X has been observed.

7 RELATED WORKS
The research reported in this paper is closely related to

our previous work on Binned Min-Max Quadtree (BMMQ-Tree)
indexing of large-scale raster geospatial data on GPGPUs [31]
which again is a port of the serial design/implementation
presented in [32]. This work explores the redundancy of bitplane
bitmaps of large-scale raster geospatial data through BQ-Tree
coding. The simultaneous lossless compression and indexing
makes it suitable for a wider range of applications. Terrain is an
important raster geospatial data and there are a few works on
visualizing large-scale terrain data using GPGPUs [33]. However,

these works are visualization (rather than query) centric and focus
on rendering. The rendering window sizes (e.g., 1024*1024) in
such applications are much smaller (1-2 orders) than the raster
sizes that we are targeting at to answer queries.

The MapReduce framework [34] have attracted
signficant interests in parallel processing of large-scale data on
shared-nothing clusters [35] and multicore CPUs [29]. In addition,
adapting and evolving traditional data management and relational
database techniques to multicore CPUs have been research
hotspots in recently years [36]. Compression is considered as a
viable solution to utilize parallel hardware resources, balance
between I/O and computation and speed up query processing on
read-only data [37][38]. Although existing research primarily
focuses on relational data, we see a similar evolution trend in
Spatial Databases and GIS. A few of works experiment on
building relational databases on GPGPUs, including indexing
[39][40] and compression [41], to speed up query processing.
Similar to applying the MapReduce framework to geospatial data
[42][43], the techniques currently designed for relational data can
potentially be adapted to process large-scale geospatial data.

Our work is also greatly influenced by the works on
developing efficient GPGPU primitives, especially the radixsort
implementations [44] which motivate us to utilize the parallel
scan primitive at the computing block level to compute the
positions on the BQ-Tree node array and the LLQS array for all
the threads on the fly. The implementation, PCL-Optimized, has
turned out to be the most efficient one among all the
implementations presented in this study.

8 SUMMARY AND CONCLUSIONS
In this study, we have developed the BQ-Tree spatial

data structure to code large-scale raster geospatial data. In
addition to utilizing the chunk-level coarse grained parallelism on
both multicore CPUs and GPGPUs, we have also developed two
fine-grained parallelization schemes, namely DSP and PCL, and
their four implementations by using different system and
application level optimization strategies. Experiments show that
the best GPGPU implementation, PCL-Optimized, is capable of
decoding a BQ-Tree encoded 16-bits NASA MODIS image with
22,658*15,586 cells in 190 milliseconds, i.e., 1.86 billion cells per
second, on an Nvidia C2050 GPU card. The performance achieves
a 6X speedup than the best dual quadcore CPU implementation
using 16 threads and achieves 239-290X speedups than a baseline
single thread CPU implementation.

For future work, first of all, as mentioned in the
introduction and the motivations sections, we would like to follow
the multi-component bitmap indexing framework introduced in
[7] to code geospatial rasters that can facilitate exact, range and
interval queries, in addition to bitplane level decoding which is
the focus of this study. The major differences of the two tasks are
only on deriving bitmaps from inputs and compositing bitmaps to
derive outputs. The two tasks can share much of the codebase that
has been developed in this study. By integrating these two
components, we plan to develop a working prototype system with
performance accelerated by multicore CPUs and GPGPUs to
visually explore large-scale raster geospatial data and support
global environmental studies. Second, while the GPGPU-based
designs and implementations are compared against each other in
this study, from a practical perspective, it is more useful to
integrate multicore CPU and GPGPU implementations to achieve
the best performance. We would like to develop cost models and
efficient scheduling algorithms for this purpose. Third, while

A Short Version to Appear in ACMGIS 2011 Conference

SciDB [12] currently only considers parallelization of managing
multidimensional array data on shared-nothing clusters, we would
like to reuse SciDB and FastBit codebases to develop a plugin
module to facilitate managing high-resolution, time-evolving and
multi-variant raster geospatial data on commodity desktop
computers equipped with multicore CPUs and GPGPUs.

REFERENCES
1. Gaede, V. and O. Gunther (1998). Multidimensional access

methods. ACM Computing Surveys 30(2): 170-231.
2. Samet, H. (2005). Foundations of Multidimensional and

Metric Data Structures. Morgan Kaufmann.
3. Kothuri, R. K. V., S. Ravada, et al. (2002). Quadtree and R-

tree indexes in oracle spatial: a comparison using GIS data.
ACM SIGMOD conference, 546-557.

4. Fang, Y., M. Friedman, et al. (2008). Spatial indexing in
Microsoft SQL server 2008. ACM SIGMOD conference,
1207-1216.

5. Shusterman, E. and M. Feder (1994). Image Compression
Via Improved Quadtree Decomposition Algorithms. IEEE
Transactions on Image Processing 3(2): 207-215.

6. Senbel, S. and H. Abdel-Wahab (1997). A Quadtree-based
Image Encoding Scheme for Real-time Communication.
IEEE Conference on Multimedia Computing and Systems,
143-150.

7. Wu, K., A. Shoshani, et al. (2010). Analyses of multi-level
and multi-component compressed bitmap indexes. ACM
Trans. Database Syst. 35(1): 1-52.

8. Hennessy, J. L. and D. A. Patterson (2006). Computer
Architecture: A Quantitative Approach (4th ed.). Morgan
Kaufmann.

9. Asanovic, K., R. Bodik, et al. (2009). A view of the parallel
computing landscape. J Commun. ACM 52(10): 56-67.

10. Stockinger, K., J. Shalf, et al. (2005). Query-Driven
Visualization of Large Data Sets. IEEE Visualization
Conference: 167-174.

11. Samet, H. (2004). Object-based and image-based object
representations. ACM Computing Surveys 36: 159-217.

12. SciDB. http://www.scidb.org/.
13. Chan, C.-Y. and Y. E. Ioannidis (1998). Bitmap index design

and evaluation. ACM SIGMOD conference, 355-366.
14. Chan, C.-Y. and Y. E. Ioannidis (1999). An efficient bitmap

encoding scheme for selection queries. ACM SIGMOD
conference 215-226.

15. Wu, K., W. Koegler, et al. (2003). Using bitmap index for interactive
exploration of large datasets. SSDBM Conference 65-74.

16. Wu, K. S., E. J. Otoo, et al. (2006). Optimizing bitmap
indices with efficient compression. ACM Transactions on
Database Systems 31(1): 1-38.

17. Sinha, R. R. and M. Winslett (2007). Multi-resolution bitmap
indexes for scientific data, ACM Trans. Database Syst. 32: 16.

18. Lemire, D., O. Kaser, et al. (2010). Sorting improves word-
aligned bitmap indexes. Data & Knowledge Engineering
69(1): 3-28.

19. FastBit. https://sdm.lbl.gov/fastbit/.
20. Shekhar, S. and S. Chawla (2003). Spatial Databases: A

Tour. Prentice Hall.
21. Owens, J. D., D. Luebke, et al. (2007). A survey of general-

purpose computation on graphics hardware. Computer
Graphics Forum 26(1): 80-113.

22. Hwu, W.-M. W. (2011). GPU Computing Gems: Emerald
Edition. Morgan Kaufmann.

23. Nvidia. Compute Unified Device Architecture (CUDA).
http://www.nvidia.com/object/cuda_home_new.html

24. Owens, J. D., M. Houston, et al. (2008). GPU computing.
Proceedings of the IEEE 96(5): 879-899.

25. Garland, M. and D. B. Kirk (2010). Understanding
throughput-oriented architectures. J Commun. ACM 53(11):
58-66.

26. Rao, J. and K. A. Ross (1999). Cache Conscious Indexing for
Decision-Support in Main Memory. VLDB conference, 78-89.

27. Rao, J. and K. A. Ross (2000). Making B+- trees cache
conscious in main memory. SIGMOD 2000 Conference:
475-486.

28. Hamming distance.
http://en.wikipedia.org/wiki/Hamming_distance.

29. Yoo, R. M., A. Romano, et al. (2009). Phoenix rebirth:
Scalable MapReduce on a large-scale shared-memory
system. IEEE Symposium on Workload Characterization,
198-207.

30. Global Land Cover Facility (GLCF) MODIS 500m North
America Dataset,
ftp://ftp.glcf.umiacs.umd.edu/modis/500m/North_America/

31. Zhang, J., S. You, et al. (2010). Indexing large-scale raster
geospatial data using massively parallel GPGPU computing.
ACM-GIS Conference.

32. Zhang, J. and S. You (2010). Supporting Web-based Visual
Exploration of Large-Scale Raster Geospatial Data Using
Binned Min-Max Quadtree. SSDBM Conference, 379-396.

33. Amara, Y. and X. Marsault (2009). A GPU Tile-Load-Map
architecture for terrain rendering: theory and applications.
Visual Computer 25(8): 805-824.

34. Dean, J. and S. Ghemawat (2008). MapReduce: simplified
data processing on large clusters. J Commun. ACM 51(1):
107-113.

35. Pavlo, A., E. Paulson, et al. (2009). A comparison of
approaches to large-scale data analysis. ACM SIGMOD
conference. 165-178.

36. Cieslewicz, J. and K. A. Ross (2008). Database optimizations
for modern hardware. Proceedings of the IEEE 96(5): 863-
878.

37. Abadi, D., S. Madden, et al. (2006). Integrating compression
and execution in column-oriented database systems. ACM
SIGMOD conference, 671-682.

38. Holloway, A. L., V. Raman, et al. (2007). How to barter bits
for chronons: compression and bandwidth trade offs for
database scans. ACM SIGMOD Conference, 389-400.

39. He, B. S., M. Lu, et al. (2009). Relational Query
Coprocessing on Graphics Processors. ACM Transactions on
Database Systems 34(4).

40. Bakkum, P. and K. Skadron (2010). Accelerating SQL
database operations on a GPU with CUDA. GPGPU '10
workshop, 94-103.

41. Fang, W., B. He, et al. (2010). Database compression on
graphics processors, VLDB Endowment. 3: 670-680.

42. Cary, A., Z. Sun, et al. (2009). Experiences on Processing Spatial
Data with MapReduce. SSDBM Conference, 302-319.

43. Akdogan, A., U. Demiryurek, et al. (2010). Voronoi-Based
Geospatial Query Processing with MapReduce. IEEE
CloudCom Conference. 9-16.

44. Satish, N., M. Harris, et al. (2009). Designing efficient
sorting algorithms for manycore GPUs. IEEE Symposium on
Parallel\&Distributed Processing, 1-10.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

