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ABSTRACT 
Global remote sensing and large-scale environmental modeling 
have generated huge amounts of raster geospatial data. While the 
inherent data parallelism of large-scale raster geospatial data 
allows straightforward coarse-grained parallelization at the chunk 
level on CPUs, it is largely unclear how to effectively exploit such 
data parallelism on massively parallel General Purpose Graphics 
Processing Units (GPGPUs) that require fine-grained 
parallelization. In this study, we have developed an efficient 
spatial data structure called BQ-Tree to code raster geospatial data 
by exploiting the uniform distributions of quadrants of bitmaps at 
the bitplanes of a raster. In addition to utilizing the chunk-level 
coarse grained parallelism on both multicore CPUs and GPGPUs, 
we have also developed two fine-grained parallelization schemes 
and their four implementations by using different system and 
application level optimization strategies. Experiments show that 
the best GPGPU implementation is capable of decoding a BQ-
Tree encoded 16-bits NASA MODIS geospatial raster with 
22,658*15,586 cells in 190 milliseconds, i.e., 1.86 billion cells per 
second, on an Nvidia C2050 GPU card. The performance achieves 
a 6X speedup when compared with the best dual quadcore CPU 
implementation and 239-290X speedups when compared with a 
baseline single thread CPU implementation. 

1. INTRODUCTION 
High resolution large-scale raster geospatial datasets 

provide tremendous opportunities to understand the Earth and our 
environments deeper than ever before. Modern computing devices 
increasingly rely on parallel hardware architectures to meet the 
ever increasing demands of data processing power. Multicore 
CPUs and General Purpose Graphics Processing Units (GPGPUs) 
are the two leading hardware architectures that are already 
available in commodity computers. The data parallel nature of 
large-scale raster geospatial data matches these parallel hardware 
architectures very well. To make full use of the parallel 
computing capabilities, it is crucial to understand how spatial data 
structures and algorithms perform on these hardware 
architectures. 

Among numerous spatial data structures that have been 
proposed over the past thirty years[1][2], quadtree probably is the 
most popular family due to its effectiveness and simplicity in 
indexing, compressing and querying both vector and raster 
geospatial data. For example, quadtree indexing of polygons has 
been implemented in Oracle Spatial [3] and a variant of quadtree 
representation has been implemented in Microsoft SQL Server 
Spatial [4]. Quadtrees have also been used to encode images 
[5][6]. Bitplane level quadtree coding/indexing is also strongly 
related to bitmap indexing [7] when applied to raster geospatial 
data. Many bitmap based efficient query processing techniques 
can readily be applied to raster geospatial data to improve query 
responses and reduce I/O accesses. Reducing disk and memory 
I/O overheads is especially beneficial to modern parallel 
processors given that I/O, rather than computation, is increasingly 

becoming the primary bottleneck of overall system performance 
[8][9]. In addition, while traditionally spatial data structures and 
algorithms assume uniform access cost to memory, the increasing 
performance gaps between different levels of memory hierarchy 
have made cache-conscious data structures significantly faster 
than their peers. Unfortunately, research on cache-conscious 
spatial data structures and algorithms has received very little 
attention. The performance of classic spatial data structures (such 
as quadtrees) on modern commodity parallel processors with 
different configurations of memory hierarchies is largely 
unknown. 

Among various operations on quadtree coded bitplane 
bitmaps (or bitplane quadtrees for short), encoding rasters into 
bitplane quadtrees and decoding bitplane quadtrees to restore 
original rasters (or decoding) are two fundamental operations. As 
encoding is a one-time task and usually can be done offline, it is 
technically more challenging to develop fast online parallel 
algorithms to decode bitplane quadtrees. Our focus in this study is 
to investigate the effectiveness of utilizing parallel computing 
resources available in commodity personal computers in decoding 
bitplane quadtrees, including both multicore CPUs and GPGPUs. 
The work is the first step towards developing a high-performance 
Geographical Information System (GIS) in a personal computing 
environment that allows Query Driven Visual Explorations 
(QDVE [10]) of high-resolution, time-evolving and multi-variant 
raster geospatial data to effectively support global environmental 
studies. More specifically, our technical contributions in this study 
are outlined as follows:  

(1) We have designed an efficient and cache-friendly 
quadtree data structure, termed as Bitplane Quadtree (BQ-Tree), 
for coding bitplane bitmaps of raster geospatial data. The BQ-Tree 
orders tree nodes in a breadth-first traversal manner which does 
not need pointers to chain parent-child node pairs. The data 
structure can be naturally serialized and works with both CPUs 
and GPGPUs efficiently.  

(2) We have proposed two different parallelization 
schemes to decode BQ-Trees on GPGPUs. We have also 
developed optimization strategies for each of the two approaches 
with demonstrated efficiencies.  

(3) We have conducted comprehensive performance 
comparisons on both multicore CPUs and GPGPUs using a real 
NASA satellite remote sensing dataset. Experiments show that the 
best GPGPU implementation can achieve nearly 6X speedup 
running on an Nvidia C2050 card when compared with the best 
multicore CPU implementation running on an Intel dual quadcore 
CPU. The best GPGPU implementation also achieves 239X-290X 
speedups over a baseline single-threaded CPU implementation.  

The rest of the paper is organized as follows. Section 2 
introduces background and research motivations. Section 3 
presents the BQ-Tree data structure. Section 4 presents the 
encoding and decoding algorithms for BQ-Trees on CPUs and 
discusses parallelization of decoding on both CPUs and GPGPUs. 
Section 5 provides two fine-grained parallelization schemes on 
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GPGPUs and its four implementations. Section 6 is the 
performance comparisons. Section 7 briefly introduces related 
works. Finally, Section 8 is the conclusion and future works. 

2. BACKGROUND AND MOTIVATIONS 
Raster data representation is a major data model for 

geospatial data [11]. Surprisingly, compared to vector geospatial 
data that hundreds of indexing techniques have been developed 
[1][2], raster geospatial data is much less well supported in spatial 
databases with respect to efficient indexing and query processing. 
Existing techniques in spatial databases adopt a chunking 
approach to store raster geospatial data and index the metadata of 
the chunks using standard vector spatial indexing. While queries 
on the spatial locations and metadata values of the chunks are 
supported, chunks are stored as Binary Large Objects (BLOBs) 
with or without compression and usually no queries on the chunks 
are supported. The open source SciDB project [12] provides a 
comprehensive framework to manage multidimensional arrays, 
including raster geospatial data. While the current implementation 
(Version 0.75) does support generic compression methods (by 
using Zlib and BZlib), currently it does not support efficient 
queries on compressed chunks, i.e., compression is strictly for 
storage and does not benefit query processing. As quadtrees 
support raster compression and indexing simultaneously, we 
consider quadtrees a better choice for managing and querying 
large-scale raster geospatial data. However, classic quadtrees 
usually have overwhelming pointer (4/8 bytes) to data (1 bit) ratio 
when applied to bitplane bitmaps of rasters.     

Bitmap indexing has been extensively investigated in 
relational databases [7][13][14][15][16][17][18]. While virtually 
all bitmap indexing techniques can be applied to raster geospatial 
data by ordering raster cells into a one dimensional sequence 
based on a spatial order, e.g., row-major, column-major, Z-order 
and Hilbert Space Filling Curve (SFC) [19], they are not designed 
for raster geospatial data. Unlike quadtree base query processing 
that naturally returns spatial hierarchy of resulting raster cells, 
queries based on classic bitmap indexing can only return 
individual tuple (correspond to raster cells) identifiers while the 
spatial relationships among the raster cells are lost. The respective 
advantages and disadvantages of quadtree based and bitmap based 
indexing have motivated us to develop a quadtree based efficient 
spatial data structure (BQ-Tree) to code bitplane bitmaps of large-
scale raster geospatial data. Given that bitmap indexing has been 
widely used in commercial relational database systems and open 
source implementations (e.g., FastBit [20]) are available, we next 
discuss how BQ-Tree coding of raster geospatial data can reuse 
the bitmap based query processing framework and existing 
software codebase for fast system prototyping and practical 
environmental applications. 

According to [7], bitmap indexing technologies can be 
divided into three categories, namely binning, encoding and 
compression.  Binning is to produce a set of identifiers (e.g., bin 
numbers) from a set of arbitrary values to be used in the encoding 
step. This step is optional in indexing raw remotely sensed data as 
the raster cell values are usually already binned when optical or 
electronic signal strengths are converted to digital numbers. The 
encoding step takes the bin identifiers and translates them into a 
set of bitmaps. As detailed in [7], there are three major types of 
encoding schemes, namely equality encoding, range encoding and 
interval encoding. They are suitable for different types of queries. 
More complex encoding schemes can be derived by combining 
the three encodings within a multi-component and multi-level 

framework. The approach that we use for encoding raster cells in 
this study can be considered as a multi-component encoding that 
uses N components, where N is the number of bits for the raster to 
be encoded. Each component represents a binary raster and the ith 
binary raster consists of all the ith bits of the raster cells, i.e., 
bitplane bitmap. All components are encoded the same way using 
the basic exact encoding scheme as each component value is 
either 0 or 1. The encoding scheme is called binary encoding in 
bitmap indexing of relational data and we term it as bitplane 
bitmap encoding when it is applied to geospatial rasters. With the 
mapping between bitplane bitmap coding of raster geospatial data 
and the generic bitmap coding of relational data, all the query 
techniques that utilize bitmap indexing can now be applied to 
speed up queries on individual raster cells.  

Our plan is to replace existing bitmap compression 
techniques (the third step of bitmap indexing), such as run-length 
and Word-Aligned Hybrid (WAH) [16] that are spatial agnostic 
and utilize flat data structures, with the BQ-Tree encoding to 
efficiently support both spatial (point, window, join) and attribute-
based queries (exact, range, interval) on encoded geospatial 
rasters. While it is quite possible to directly perform queries on 
the BQ-Trees both serially and in parallel (which is left for future 
work), in this study, we adopt a simpler and more practical 
approach by parallel decoding BQ-Trees into bitmaps before 
executing queries. Query optimizers can choose to access only a 
subset of BQ-Trees that are relevant to a query to reduce I/Os. To 
process queries that require reconstructing raster chunks from 
encoded bitplane bitmaps, the BQ-Tree encoding is also beneficial 
as encoded bitplane bitmaps are usually much smaller than the 
raw raster chunks and thus expensive I/Os can be reduced. 
Utilizing parallel hardware, including multicore CPUs and 
GPGPUs, to speed up the reconstructions is a promising solution 
and is the focus of the paper.  

Compared to CPU computing, GPGPU computing is 
relatively young. We next briefly introduce the basics of GPGPU 
computing to help understand the GPGUP decoding algorithms 
and implementations to be presented in Section 5. A Graphics 
Processing Unit (GPU) is a hardware device that is originally 
designed to work with CPU to accelerate rendering of 3D or 2D 
graphics. The highly parallel structures of modern GPU devices 
make them more effective than general-purpose CPUs for a range 
of complex graphics-related algorithms. The concept of General 
Purpose GPU computing turns the massive floating-point 
computational power of a modern graphics accelerator's graphics-
specific pipeline into general-purpose computing power. GPGPU 
computing technologies have gained considerable interests in 
many scientific research areas in the past few years [21][22]. 
Currently, Nvidia Compute Unified Device Architecture (CUDA) 
[23] might be the most popular parallel development framework 
on GPGPUs [24][25].  

While different models of GPU devices have different 
configurations and parallel processing capabilities, CUDA-
enabled GPU devices are organized into a set of Stream 
Multiprocessors (SMs). Each SM has a certain number (e.g., 16 or 
32) of computing cores. All the cores in a SM share a limited 
amount of fast memory called shared memory (with a few cycles 
delays) and all the SMs have access to a large but slow pool of 
global memory on the device (with a few hundreds of cycles 
delays). According to CUDA, developers write special C-like 
code segments called kernels. The kernels are invoked by the 
associated CPU code to run on GPU devices. CUDA based 
GPGPU programming makes it easier for task and data 
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decomposition and subsequent parallel computing. Basically a 
developer specifies the size of the layout of the data to be 
processed in the units of data blocks and the number of threads to 
be launched inside a data block. The GPU device is responsible 
for mapping the data blocks to the computing blocks within the 
SMs through hardware-based scheduling which is transparent to 
developers/users. Since each SM has limited hardware resources, 
such as the number of registers, shared memory and thread 
scheduling slots, a SM can accommodate only a certain number of 
blocks subjected to the combination of the constraints. Carefully 
selecting block sizes allows a SM to accommodate more blocks 
simultaneously and, subsequently, improves parallel throughputs. 
3. THE BQ-TREE DATA STRUCTURE 

 Given a bitplane bitmap of a raster R of size N*N 
(assuming N=2n), as illustrated in Fig.1, the bitmap can be 
represented as a quadtree where black leaf nodes represent 
quadrants of presence (“1”), white leaf nodes represent quadrants 
of absence (“0”) and internal nodes are colored as gray. The 
quadtree can be easily implemented in main-memory by using 
pointers or stored on hard drives as a collection of linear quadtree 
paths. However, while the storage overheads of pointers or the 
paths can be justified if the length of the data field is much larger 
than the length of the pointer field (4 bytes for 32-bit machine and 
8 bytes for 64-bits machine), the overhead is unacceptable as the 
data field is intended to be only 1-bit long to encode a bitplane 
bitmap. Furthermore, as the memory pointers are allocated 
dynamically and can point to arbitrary memory addresses, they are 
known to be cache unfriendly [26][27]. To overcome these 
problems, we have designed a spatial data structure called BQ-
Tree to efficiently represent bitmaps of bitplanes of a geospatial 
raster. 

 
 
 
 
 
 
 
 

Fig. 1 Quadtree Representation of a bitplane bitmap 
The basic idea of BQ-Tree is to sequence nodes of a 

regular quadtree into a byte-stream through breadth-first traversals 
with sibling nodes following the Z-order [19]. Different from 
classic main-memory quadtrees that use pointers to address child 
nodes, the child node positions in a BQ-Tree do not need to be 
stored explicitly. As such, the pointer field in regular quadtrees 
can be eliminated which reduces storage overhead significantly. 
In addition to tree nodes, a BQ-Tree also includes a compacted 
“last level” quadrant signature array. While the details on the 
sequenced tree node array and the last level quadrant signature 
array (as well as the correspondence between the leaf nodes and 
the last level quadrant signatures) will be detailed next, we would 
like to mention that sequencing quadtree nodes and quadrant 
signatures as one-dimensional arrays is not only cache friendly 
but also makes it more interoperable between CPUs and GPUs 
that currently have distinct memory spaces in the respective 
devices. 

The layout of BQ-Tree nodes is as follows. Each BQ-
Tree node is represented as a byte (8 bits) with each child 
quadrant takes two bits. We term the two bits as child node 
signature. The three combinations correspond to three types of 

nodes in classic quadtrees: “00” corresponds to white leaf nodes, 
“10” corresponds to black leaf nodes and “01” corresponds to 
gray nodes. The combination of “11” is currently not used. Child 
nodes corresponding to the quadrants with “00” or “10” signatures 
in their parent node can be safely removed from the byte stream as 
all the four quadrants in the child nodes are the same and their 
presence/absence information has already been represented in the 
respective quadrant signatures of the parent nodes. By 
consolidating four child quadrants’ information into a single node, 
the depth of a BQ-Tree can be reduced by 1 when compared with 
classic quadtrees. The technique can potentially reduce memory 
footprint to up to 1/4. 

 
 
 
 
 
 
 
 
 

Fig. 2 Streaming BQ-Tree Nodes 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3 Generating LLQS Array Using Different Quadrant Sizes 
If we represent the four (2*2) raster cells in a quadrant 

as a BQ-Tree leaf node, then the second bit of the four quadrant 
signatures in the node will always be 0 (i.e., the signatures are 
either “00” or “10”). The redundancy is undesirable. To further 
reduce the memory footprint of the BQ-Tree for a bitplane 
bitmap, we introduce the concept of “Last Level Quadrant 
Signature”, or LLQS. A last level quadrant is defined as a bitmap 
quadrant that is indexed by a 2-bit child node signature of a BQ-
Tree leaf node. For the last level quadrant size of 2k*2k, we term 
the concatenation of the bits of the 2k*2k quadrant following a 
row-major order as the Last Level Quadrant Signature (LLQS). 
The LLQSs need to be recorded for the bitmap quadrants 
corresponding to BQ-Tree leaf node quadrants whose signatures 
are neither “00” nor “10”, i.e., when the LLQSs are mixtures of 0s 
and 1s.  It is clear that by recording the LLQSs separately from 
the quadtree nodes, the bitplane bitmap cells do not need to be 
represented as the quadrant signatures in the leaf nodes of a BQ-
Tree with values of either “00” or “10” and thus the 
aforementioned redundancy is avoided. When k=1, half of the 
memory for storing BQ-Tree leaf nodes can be saved, as only 4 
bits, instead of 8 bits, are needed for a 2*2 quadrant. Similar to 
compacting BQ-Tree nodes, LLQSs can also be compacted when 
they are all 0s (with “00” signatures in BQ-Tree leaf nodes) or 
when they are all 1s (with “10” signatures in BQ-Tree leaf nodes). 

0 2 
1 3 

34 01 00 10 
10 01 00 01 
10 10 00 00 
10 10 00 00 

34343434343434343434343434343410
34 01
10 00
343434343434343434343434343434012*2 

Tree node byte array:  01100100 1010010 00001001 
Last-level quadrant byte array: 01110001 0100XXXX

4*4 34 01
10 00
34343434343434343434343434343401

Tree node byte array:  01100100 
Last level quadrant byte array (short integers): 
1101111111001101 0011001100010000 

34 01 00 10 
10 01 00 01 
10 10 00 00 
10 10 00 00 

34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 10 34 01
10 00
34343434343434343434343434343401

0001100100000000 00001001 10101010 10100101 

Z-order 

Byte-stream: shaded nodes do not need to be stored 
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It can also be seen that, while the BQ-Tree data structure does not 
explicitly store the positions of the compacted quadrant signatures 
in its leaf tree nodes, both encoding and decoding algorithms can 
utilize the implicit correspondence when the tree node array and 
the LLQS array are processed in a streamline manner. 

Our BQ-Tree design allows arbitrary last level quadrant 
sizes of powers of 2. For a last level quadrant of size 2*2, we will 
need to combine two of such quadrant signatures (each is 4 bits) 
to form a byte. For a last level quadrant of size 4*4, it is natural to 
use a short integer (16 bits) to represent the quadrant signatures. 
Fig. 3 shows the processes of compacting LLQSs using both 2*2 
and 4*4 quadrant sizes. The bitmap shown in the left part of Fig. 3 
represents a bitplane of an 8*8 raster. Using a 2*2 last level 
quadrant size, a BQ-Tree with two levels (as shown in the top of 
Fig. 3) is generated. Breadth-first traversal of the tree generates 
the tree node array as 01100100 1010010 00001001. Note that the 
second and the fourth level-2 tree nodes are skipped as the 
corresponding child node signatures in the root node are “10” and 
“00”, respectively.  Combing the two last level quadrants that are 
the mixtures of 0s and 1s (shaded in the top-left part of Fig. 3) 
generates the first byte of the LLQS array. Note that the XXXX (a 
half-byte) at the end of the array is a filler to make a whole byte. 
On the other hand, using the 4*4 last level quadrant size generates 
a BQ-Tree with only one level. Similar to using 2*2 quadrant size, 
quadrants with mixtures of 1s and 0s are sequenced on the LLQS 
array (short integer data type in this case). Note that the bit order 
of last level quadrants (in both 2*2 and 4*4 cases) follows row-
major order instead of Z-order to minimize Z-order calculation. 
Our experiments have shown that Z-order calculation can be 
expensive when not optimized. It is clear that using larger last 
level quadrant sizes will reduce BQ-tree depths and numbers of 
tree nodes at the cost of increasing the LLQS array volume.  

4. CODING RASTER GEOSPATIAL DATA 
ON CPUs 

Before presenting the GPGPU algorithms to decode 
large-scale raster geospatial data in Section 5, we next provide the 
baseline encoding and decoding algorithms on CPUs. The CPU 
encoding implementation provides encoded data for 
experimentation on both CPU and GPGPU based decoding 
algorithms. The single-thread CPU decoding implementation is 
used to validate the GPGPU decoding results, in addition to form 
the baseline for comparisons. 

4.1 Encoding 
The inputs for the encoding algorithm are raster (or 

raster chunk) R, raster/chunk size C (C=2m*2m), last level 
quadrant size S (S=2q*2q) and B, which is the number of bits of R. 
The outputs of the algorithm include the compacted BQ-Tree 
node array CN and the compacted LLQS array CL. The 
initialization includes allocating a pyramid array for all bitplanes 
(PA) and allocating a LLQS array (LA). Clearly the size of PA 
should be B* (1+4+16+…+2m-q-1*2m-q-1)) =B*(4m-q-1)/3 and the 
size of LA should be B*2m-q*2m-q. The encoding algorithm is 
given in Fig. 4 which is straightforward to follow by using the 
examples provided in Fig. 3.  First, a whole raster (or a raster 
chunk) is divided into quadrants based on the last level quadrant 
size. Both the signatures of the last level quadrants and the 
corresponding leaf nodes are then generated (Step 1). Second, for 
each bitplane, a pyramid is generated bottom-up by combining the 
child node signatures into the parent node signatures (Step 2). 
Third, starting from the root of the BQ-tree for each bitplane, all 

the nodes in the matrix correspond to a pyramid level are 
examined by following the Z-order. The pyramid is then 
compacted into a byte array for each bitplane by skipping 0x00 
(all 0s) and 0xaa (all 1s) bytes (Step 3). Finally, the signatures of 
the last level quadrants are also compacted into either a byte or 
short integer stream by keeping only signatures that are 
considered to be uniform, i.e., those correspond to “00” or “10” 
values in any of the four quadrants of the leaf nodes of a BQ-Tree, 
depending on the last level quadrant sizes (Step 4). We note that it 
is possible to use Hamming distance [28] to define the 
“uniformity” of the last level quadrants by comparing their 
signatures with sequences of all 0s and all 1s. The approximation 
can reduce memory footprint of the LLQS array and may be 
desirable in many cases. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4 BQ-Tree CPU Encoding Algorithm 

4.2 Decoding 
The decoding process is the reverse of the encoding 

process. A detailed procedure similar to Fig. 4 can be easily 
constructed and is skipped due to space limit. Instead, we next 
present an overview of the steps of the decoding algorithm that 
serves as the common base for both CPU and GPGPU 
implementations. Starting from the root of a BQ-Tree, the 
pyramid PA is reconstructed level by level as follows. Each 
quadtree node is scanned and the signatures of the four child 
nodes are extracted and examined. Values of 0x00 and 0xaa will 
be used to update the corresponding matrix elements in the next 
level (i.e., child nodes in the pyramid layout) if the child node 
signatures are “00” or “10”, respectively. Otherwise, a byte value 
is retrieved from the compacted BQ-Tree byte stream and used to 
update the corresponding matrix elements in the next level. After 
the pyramid is reconstructed, the elements of the last level matrix 
of the pyramid (correspond to the leaf nodes of the BQ-Tree) are 
then combined with the LLQS array to reconstruct the original 
bitplane bitmap by setting the LLQSs with either all 0s and all 1s 
(depending on the quadrant signatures in the leaf nodes), or with 
the values in the LLQS array. Finally, the reconstructed bitplane 
bitmaps are combined to reconstruct the raster cell values through 
bitplane level composition. To set the ith bit of raster cell value v 

Step 1: for each of the 2m-q *2m-q last level quadrants 
1.1 Gather the raster cells in the quadrant and calculate the Z-order 
number of the quadrant 
1.2 For each of the B bits 
 1.2.1 Generate the last level quadrant signatures and write them to LA  
 1.2.2 Derive the child node signatures for four neighboring quadrants and 
form a leaf node; output the leaf node to level m-q matrix of PA 
Step 2: For each of the m-q-1 levels of PA, loop bottom-up along the 
pyramid and do the following 
 2.1 For each of the elements of the matrix at the level l 
 2.1.1 For each of the B bits do the following:  
 2.1.1.1 Examine the four child nodes at the level l+1 matrix and generate 
the signatures for the four quadrants of the node using the following rules: 
0x00->”00”, 0xaa->”10”, all others ->”01”.  
 2.1.1.2 Concatenate the four 2-bits signatures and write the node value to 
the level l matrix  
Step 3: For all the elements in PA 
3.1 Skip all bytes whose values are 0x00 or 0xaa  
Step 4 For all the elements in LA 
4.1 If the last level quadrant size is 2*2 (q=1): skip all half-bytes with 
value of 0x0 or 0xF and combine two consecutive half bytes into one byte  
 4.2 If last-level quadrant size is 4*4 (q=2): skip all short integer values (2 
bytes) of 0x0000 or 0xFFFF.  
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decoded from the ith BQ-Tree of a raster chunk, the following 
bitwise operation can be applied: v|=(1<<i).  

4.3 Discussions on Parallelization 
While a formal proof is omitted due to space limit, we 

would like to note that both the encoding and decoding algorithms 
are data independent which means that the space and time 
complexities of the algorithms do not depend on data 
distributions. The relevant data are processed bitplane by bitplane 
and tree level by tree level, all on regular data structures (matrices 
and arrays). While the algorithms may not be the most work 
efficient ones when compared to quadtrees that allow depth-first 
traversals where certain quadrants can be skipped in encoding and 
decoding, the streamline processing feature of the proposed 
algorithms makes them cache-friendly and can potentially lead to 
more efficient implementations on modern hardware architectures 
that depend on deeper memory hierarchies and are sensitive to 
caching.  

More importantly, the algorithms lend themselves to 
both coarse-grained and fine-grained parallel implementations. 
Given that current generations of commodity desktop computers 
or computing nodes of cluster computers typically have 4-12 CPU 
cores, it is natural to assign a chunk (e.g., 1024*1024) of a raster 
or a bitplane of a raster to a CPU core for coarse grained 
parallelization. We note that both the number of chunks c 
(assuming c=2p where p>=4) and the number of bitplanes 
(typically 8/16/32) are multiplications of the numbers of CPU 
cores in a commodity computer (typically 2/4/8). This can be 
implemented using quite a few parallel computing frameworks on 
CPUs, such as Pthreads, OpenMP, MPI for multicores, Phoenix (a 
MapReduce variation for multicore CPUs) [29], Intel Thread 
Building Blocks (TBB) and Microsoft Parallel Pattern Library 
(PPL). In this study, we have chosen to use OpenMP as the 
directive-based programming framework is easy to use and well 
supported by major compliers on both Linux and Windows 
platforms.   

As the current commodity GPGPUs can launch much 
larger numbers of threads (hundreds or more) where groups of 
threads are executed in a SIMD (Single Instruction Multiple Data) 
manner, it is also important to explore fine-grained parallelization 
to coordinate GPGPU threads when processing bitplane bitmaps. 
While we have implemented both encoding and decoding 
algorithms on CPUs using chunk-level coarse-grained data 
parallelism, since our focus in this study is decoding (for the 
reasons discussed previously), we have only implemented the 
decoding algorithms on GPGPUs while leaving implementations 
of the encoding algorithms on GPGPUs for future work. Since 
encoding and decoding rasters based on the BQ-Trees are 
symmetrical, the GPGPU decoding implementations to be 
presented in the next section might provide some ideas on 
constructing BQ-Trees on GPGPUs by utilizing fine-grained data 
parallelism.   
5 GPGPU DECODING: 
PARALLELIZATION SCHEMES AND 
IMPLEMENTATION OPTIMIZATIONS  

The output of BQ-Tree encoding of large scale raster 
geospatial data is a collection of BQ-Trees, each represents a 
compressed bitmap of a bitplane of an M*M (M=2m) raster chunk. 
The encoded BQ-Trees can be accessed independently with 
distinct chunk and bitplane combinations to facilitate efficient 
data processing that requires multiple BQ-Trees. In this study, we 

aim at making full use of GPGPUs’ massive parallel computing 
capabilities to speed up decoding large-scale geospatial raster 
from encoded BQ-Trees. CUDA has two levels of parallelism: 
block level and thread level. Assigning a chunk to a CUDA 
computing block is very similar to the coarse-grained 
parallelization on CPUs which is relatively straightforward. 
However, assigning hierarchically encoded BQ-trees of a raster 
chunk to a group of flatly organized GPGPU threads within a 
computing block requires more careful designs. We have designed 
two parallelization schemes and developed two implementations 
for each scheme.  

5.1 Parallelization Scheme 1: Divide 
Separately and Process (DSP) 

The DSP approach is an adoption of the coarse-grained 
parallelization strategy that has been used for multicore CPUs and 
GPGPU computing blocks. As illustrated in Fig. 5, given a raster 
chunk of size M*M (M=2m) and assuming there are Tn=2t*2t 
threads available for a computing block, each thread is responsible 
for processing a level t subtree and decoding 2m-t*2m-t raster cells 
under the subtree. To make the Tn threads run in parallel, the 
starting positions of all the t threads in processing the tree node 
array (for all the m-t tree levels) and the LLQS array are required. 
These positions can be pre-generated when encoding the raster 
chunks. Assuming the number of bitplanes is B, the additional 
storage overheads for the starting positions are Sn=Tn*(m-t)*B 
integers and Sl=B*Tn integers for the two arrays, respectively. 
Note that the top t levels of BQ-Tree nodes need to be processed 
in CPU to make full use of the GPGPU threads.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5 Illustration of the Divide Separately and Process 

(DSP) Parallelization Scheme 
The major advantage of the DSP algorithm is that it 

resembles the CPU decoding algorithm closely and it is simple. 
However, the main disadvantage is that each thread needs to fetch 
data from non-continuous GPU global memory individually. 
Except for the first level BQ-tree nodes being processed on 
GPGPU, the threads access non-continuous global memory 
locations. GPUs need to issue distinct memory operations for the 
threads. Unlike CPUs that have large caches (e.g., 256K L2 per-
core and 8M L3 shared for Intel Xeon E5520 quad-core CPUs) to 
significantly reduce memory access costs, GPUs have very 
limited caches and thus accesses to global memory are more 
expensive than CPUs. Even the latest Nvidia Fermi GPUs have 
only a maximum of 48K per-SM L1 cache and 768K L2 cache for 
all its 14 SMs/448 cores. Given the large number of threads that 
are launched simultaneously in the decoding kernel (in the order 
of thousands as detailed in the experiment section), caching in the 
current generation of GPUs can not help non-coalesced memory 
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accesses as much as that in CPUs. As shown in the experiment 
section, DSP based implementations are much less efficient than 
the PCL based ones (to be detailed in the next subsection). 
Nevertheless, the parallelization scheme and its implementations 
can help understand the importance of designing parallel 
algorithms that fit hardware architectures and serve as baselines 
for comparisons. We next discuss two DSP implementations.  

As discussed in Section 4.2, B bitplane bitmaps need to 
be accessed simultaneously to decode raster cells. Since the BQ-
Trees for the bitplane bitmaps are stored and decoded separately, 
they need to be combined during the decoding process. There are 
several possibilities. The first one is, similar to CPU 
implementation, using global memory as the scratchpad for the 
combination (as illustrated in Fig. 6). This is straightforward and 
actually was our first implementation. Unfortunately, it gives us 
very poor performance. As shown in the experiment section, the 
performance is so poor that it is only comparable to single thread 
CPU implementation which makes the GPGPU implementation 
meaningless in most cases. We found the poor performance was 
largely due to excessive non-coalesced global memory access. In 
addition to accessing encoded BQ-Trees and compacted LLQSs in 
global memory that is unavoidable, the naïve implementation also 
requires reading and writing bitmaps of all pyramid levels during 
bitwise composition (combination) processes to restore bitplane 
bitmaps into the original rasters. Assuming that the raster to be 
decoded has a size of M*M at each computing block, then the 
number of reads and writes to global memory by all the threads in 
the computing block can be roughly estimated as 
B*2*(1/3*M2+M2) where 1/3*M2 is for accessing quadtree nodes 
(also refer to the formula in calculating the size of the pyramid in 
Section 4.1) and M2 is for accessing LLQSs. We term this 
implementation as DSP-Naïve. 

 
 
 

 
 
 
 

Fig. 6 Illustration of DSP-Naïve Implementation: Excessive Non-
Coalesced Global Memory Accesses 

 
 
 
 
 
 
 
 

Fig. 7 Illustration of the DSP-Register Implementation: Reducing 
Excessive Global Memory Accesses by Using Registers 

 
Our optimized DSP implementation, termed as DSP-

Optimized, is to utilize GPGPUs’ registers to reduce read and 
write accesses to global device memory. As shown in Fig. 7, four 
register variables are used per thread when processing a 2*2 
quadrant of the BQ-Trees of all B bitplanes. Since all the 
intermediate results in composting B bitplanes to decode a raster 
cell use registers and only the register variables need to be written 
back to global memory, the global memory I/Os are now reduced 
to 1/B when compared with DSP-Naïve. As shown in the 

experiment section, DSP-Optimized reduces decoding time to less 
than 1/3 of that of DSP-Naïve, i.e., a 3X speedup is achieved. 

5.2 Parallelization Scheme 2: Process 
Collectively and Loop (PCL) 

The PCL scheme adopts a different parallelization 
strategy than DSP. As shown in Fig. 8, all the threads assigned to 
a computing block are bundled together to process a quadrant of 
matrices in a BQ-Tree pyramid during decoding. This collective 
process is looped over all the quadrants and all levels of the 
pyramid. Similar to the DSP approach that requires the starting 
positions of each thread in the tree node array and LLQS array, 
the PCL approach requires the starting positions in both arrays in 
order to make the threads assigned to the GPGPU computing 
blocks work in parallel. However, keeping the positions for all 
threads is impractical since the storage overhead is overwhelming. 
A solution is to calculate the positions for all threads on the fly. 
Unfortunately, synchronizing GPGPU computing blocks, which is 
required to calculate the positions for quadrants across computing 
blocks, is very costly and inflexible in the current generations of 
GPGPUs.  

The PCL approach adopts a strategy that requires pre-
generating the positions for every Tn elements that are processed 
in a computing block while computes the positions on the fly for 
all the Tn threads within a computing block. We believe the hybrid 
strategy provides a good tradeoff and the efficiency has been 
verified by the experiments. Clearly the storage overheads for the 
starting positions (including both the tree node array and the 
LLQS array) can be calculated as Sn=B*(1+4+…+4m-t-1) = B*(4m-t 

-1)/3 and Sl=B*M*M/Tn. Contrary to the DSP scheme where both 
Sn and Sl increase as Tn increases, both Sn and Sl decrease as Tn 
increases (note Tn=2t*2t) in PCL. This feature makes PCL 
preferable when the degree of parallelization (in terms of number 
of threads per computing block) increases. We next present the 
details of the on-the-fly calculation of the positions in a GPGPU 
computing block.  

 
 
 
 
 
 
 
 
 
 
 

Fig. 8 Illustration of Thread Assignment in the PCL 
Parallelization Scheme 

 
Assuming that the starting position of a data segment 

with Tn data elements (tree nodes or LLQSs) in the whole array is 
p, the task is to compute the positions for the Tn threads from 
where the threads can fetch data from global memory and perform 
decoding independently. In our implementation, first, the numbers 
of child nodes (or non-uniform last level quadrants) are counted 
by examining the parent nodes and counting the numbers of 
quadrants with “01” signature. These values are then written to an 
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array of size 2*Tn in the computing block’s fast shared memory. 
The position offsets of all the threads relative to the first thread 
(whose position is known as p) can then be calculated through a 
fast parallel scan process in the shared memory. The CUDA code 
snippet and an example using four threads are shown in Fig. 9. 
Clearly the time complexity is in the order of O(logTn). For 
Tn=256, the process completes in 8 parallel steps. After the 
starting positions of the threads are computed, they can work 
independently and achieve good parallel performance. We note 
that the PCL scheme does not incur additional accesses to global 
memory as the on-the-fly calculation of positions is all done in 
fast shared memory. Experiments have shown that the calculation 
cost is negligible on GPUs. In addition, the PCL scheme assures 
that global memory is always accessed continuously by the 
threads of the computing blocks. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 9 CUDA Code Snippet and an Example to Illustrate 

Fast Calculation of Starting Positions using Parallel Scan 
Similar to the three DSP implementations, we next 

present two PCL implementations, namely PCL-Register and 
PCL-Optimized. Similar to DSP-Optimized, PCL-Register uses 
GPGPU registers to hold the intermediate results during the 
bitwise composition process in the last step of decoding. While it 
is easier to implement, one big problem is that 4*16 registers are 
needed per thread for this purpose where 4 is because one leaf 
BQ-Tree node is mapped to four last level quadrants and 16 is due 
to using a 4*4 quadrant size in forming LLQSs (as short integers). 
Unfortunately, Nvidia Fermi-based GPUs currently allows 32768 
registers shared by 1024 threads in a SM, i.e., 32 registers per 
thread, when the SMs are fully utilized. Even worse, quite some 
registers are needed for other parts of the decoding algorithm. 
While it is possible to use shared memory to alleviate the register 
stress to a certain extent, we have determined that the PCL-
Register implementation is not practical. This motivates us to 
develop the PCL-Optimized implementation. Before we present 
the PCL-Optimized implementation in details next, we would like 
to stress that, thanks to CUDA, the PCL-Register implementation 
still runs perfectly although spilling register variables to global 
memory hurts performance significantly. As shown in the 
experiment section, although the PCL-Register implementation is 

more than an order better than DSP-Naive, it only achieves about 
1/5 performance of PCL-Optimized.  

The PCL-Optimized implementation writes individual 
reconstructed bitmaps to global memory and launches a separate 
kernel to combine the decoded bitplane bitmaps. Although this 
requires additional global memory accesses, it significantly 
reduces register consumptions which subsequently eliminate 
register spilling to global memory. The implementation of the 
combination kernel is quite simple as the decoded bitplane 
bitmaps are now regularly shaped matrices which are excellent for 
coalesced global memory accesses. Since the raster dataset in our 
experiments is the 16-bits short integer type and there are 16 
bitplane bitmaps represented as 8-bits chars, a working array of 8 
short integers is used to hold intermediate results. Each thread 
reads a byte from 16 bitmaps, converts them to 8 short integers 
and writes the short integers to global memory. The 
implementation is easy to be modified for 8 and 32 bits rasters.  

6 PERFORMANCE STUDIES 
6.1 Dataset and Experiment Setup 

We use a real NASA MODIS (Moderate Resolution 
Imaging Spectroradiometer) raster dataset obtained from the 
Global Land Cover Facility (GLCF) website [30]. The specific 
dataset we use is band1 of the North America 2003097 imagery. 
The dataset has a spatial resolution of 500 meters and 
22,658*15,586 cells sampled at 16-bits. The original data volume 
is 706,295,176 bytes. A downscaled image is shown in Fig. 10 to 
help understand the dataset better. The image clearly shows that a 
signficant portion of the dataset is covered by oceans whose raster 
cell values are mostly NO_DATA or some other special masks. 
Among the cells with valid values (1-16000), 75.8% cells have 
values that are less than 4096, i.e., the first 4 bitplane bitmaps 
(most significant bit first) are mostly 0s. As such, we can expect 
significant compression when the dataset is encoded by BQ-Trees. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10 Grayscale Image of the Experiment Dataset  
Our experiments are performed on a SGI Octane III 

machine. While the machine comes with two identical and 
independent nodes and four Nvidia Fermi C2050 GPU devices, 
only one node and a single GPU device on the node is used for 
experiments. The computing node is equipped with dual Intel 
Xeon E5520 quadcore CPUs with hyper-threading enabled. As 
such, the computing node has 8 CPU cores (2.26 GHz) and is 
capable of launching 16 software threads. The computing node is 
also equipped with 48 GB 1333MHz DDR3 memory and 4 TB 
SATA 7200 RPM hard drives. The C2050 GPU card attached to 
the machine has 448 cores (1.15 GHz). The GPU device also has 
3GB GDDR5 graphics memory running at 1.5 GHz clock rate. 
The GPU device is attached to the motherboard through a PCI-E 

__device__ inline ushort scan4(ushort num)   
{ 
     __shared__  ushort ptr[2*Tn]; 
    ushort val=num; 
    uint idx = threadIdx.x; 
    ptr[idx] = 0; 
    idx += Tn; 
    ptr[idx] =num; 
    SYNC 
    val += ptr[idx -   1]; SYNC ptr[idx] = val; SYNC 
    val += ptr[idx -   2]; SYNC ptr[idx] = val; SYNC 
    val += ptr[idx -   4]; SYNC ptr[idx] = val; SYNC 
     … 
    val = ptr[idx - 1];     return val; 
} 
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x16 slot that can provide a theoretical unidirectional data transmit 
speed of 4GB/s.  

Our primary measurement in this study is the wall-clock 
running times measured in milliseconds. We do not include data 
transfer times between CPUs and GPUs in the comparisons 
among CPU running times and GPGPU running times for the 
following reasons. First, in many cases, decoded rasters can be 
used on GPUs for subsequent processing without needing to 
transfer back to CPUs. Second, as shown later, the CPU to GPU 
data transfer times, while signficant, is not dominant. Including 
the data transfer times does not affect speedups dramatically. 
Third, the encoded data can be pre-loaded to GPUs for time-
critical applications such as interactive visual explorations. The 
processing time is more important than data transfer time in this 
case. Mixing the two different types of time costs does not reflect 
the application semantics accurately. Nevertheless, the data 
transfer times are reported to help understand end-to-end 
performance.  

We have tested all the CPU and GPGPU 
implementations using two chunk sizes: 1024*1024 and 
4096*4096. Using small chunk sizes can certainly reduce the 
volumes of padded data when the original rasters are not the exact 
multiplications of the chunk sizes and can potentially reduce 
workloads and improve performance. On the other hand, using 
large chunk sizes can reduce hardware scheduling overheads 
which could be beneficial in certain cases.  Since encoded byte 
streams depend on chunk sizes and last level quadrant sizes but 
not CPU or GPGPU implementations, we report the results in this 
subsection as tabulated in Table. 1. From Table 1 we can see that, 
while chunking increases data volumes to be processed, it has 
minimum effect on both tree node array sizes and LLQS array 
sizes as the padded raster cells are largely compressed. We can 
also see that in this particular dataset, using a 4*4 last level 
quadrant size achieves more than 5% compression ratio than using 
a 2*2 last level quadrant due to the fact that the quadtree node 
sizes are significantly decreased while the last level quadrant sizes 
are only moderately increased. As such, using a 4*4 last level 
quadrant size provides a better tradeoff.  

Table 1 CPU Encoding Results: Sizes (in Bytes) and 
Compression Ratios (%) 

Chunk Size 1024*1024  4096*4096 
Data Volume  771,751,936 805,306,368 
Last Level 
Quadrant Size 

2*2 4*4 2*2 4*4 

Node Array Size  131,277,689 35,700,341 131,276,652 35,699,304 
LLQS Array Size  136,290,830 191,154,696 136,290,199 191,154,696 
Total Encoded Size  267,568,519 226,855,037 267,566,851 226,854,000 
Compression Ratio 37.88% 32.12% 37.88% 32.12% 

 
While it is non-trivial to optimize GPGPU 

implementations even in the cases such as using registers to speed 
up accesses to global memories (which is the motivation of 
developing the DSP-Optimized implementation), such 
optimizations can be easily achieved by setting proper 
compilation flags on CPUs. We use O3 flag to optimize CPU code 
for speed that is supported by the gcc compiler on Linux. We 
report the CPU running times using both non-optimized and 
optimized code.  
6.2 CPU Performance 

Using OpenMP APIs, we have set the number of current 
threads to 1, 2, 4, 8 and 16 and measured their running times for 
both 1024*1024 and 4096*4096 chunk sizes, respectively. The 

results (both with and without optimization) are tabulated in Table 
2. As we can see, the decoding times vary with the following 
factors: compilation optimization, level of parallelization (number 
of threads), chunk sizes and last level quadrant sizes. The first two 
factors, i.e., optimization and multi-threading, play a dominate 
role while the other two factors are secondary. The running times 
for “non-optimized+4*4 last level quadrant size” cases are always 
worse than those of “non-optimized+2*2 last level quadrant size” 
cases. On the other hand, the “optimized+4*4 last level quadrant 
size” cases are always better than those of the “optimized+2*2 last 
level quadrant size” cases. This may suggest that using 4*4 last 
level quadrant size is more optimization friendly. We can also see 
that the speedups due to multi-threaded parallelization are almost 
linear using up to 8 threads for almost all cases regardless of 
options for optimization, chunk sizes and last level quadrant sizes. 
The results suggest that the coding framework using BQ-Trees is 
quite scalable on multicore CPUs. We also notice that using 16 
threads only reduces decoding times slightly (3%-13%) and 
sometimes even performs worse than using 8 threads. This is not 
surprising since the machine has only 8 physical CPU cores and 
the decoding algorithms are scalable in utilizing the physical 
hardware resources. Using more than one thread per CPU core 
can potentially incur resource contention and reduce performance. 

 Comparing the best performance of 1,095 milliseconds, 
which is achieved in the case of 1024 chunk size using 4*4 last 
level quadrant size and using 8 threads and with optimization, 
with the worst performance of 55,042 milliseconds, a speedup of 
more than 50X has been achieved. If we follow the speedup factor 
chain overlaid with Table 2 (where only one factor is changed per 
step), we can see that the optimization contributes 6.81X 
(7462/1095), the parallelization contributes 6.74X (50305/7462) 
and the last level quadrant size contributes 1.094X (55042/50305). 

Table 2 Running times of Decoding on CPUs 
Chunk 
Size 

1024*1024  
No optimization 

4096*4096  
No optimization 

1024*1024 
 –O3 

4096*4096  
-O3 

LLQS 2*2 4*4 2*2 4*4 2*2 4*4 2*2 4*4 
1T 45389 50305 51243 55042 9701 7005 11329 8613 
2T  23517 26512 27729 31015 5116 3693 6353 4815 
4T 12041 13654 14402 16362 2678 1917 3414 2557 
8T 6908 7462 7728 8835 1571 1095 1889 1451 
16T 5999 7054 7475 8185 1554 1281 1693 1487 

6.3 GPGPU Performance 
Table 3 lists both the volumes of additional position 

data that are required to be transferred to GPU device for parallel 
decoding as well the running times for the four GPGPU 
implementations, i.e., DSP-Naïve, DSP-Optimized, PCL-Register 
and PCL-Optimized. We note that the DSP implementations use a 
2*2 last level quadrant size while the PCL-implementations use a 
4*4 last level quadrant size. We have not tested the other 
parallelization and last level quadrant size combinations due to 
time limit. Not shown in Table 3 are the CPU-GPU (host to 
device) and GPU-CPU (device to host) data transfer times. 
Depending on the different combinations of chunk sizes, last level 
quadrant sizes, parallelization schemes and different runs, 
transferring the encoded data and the auxiliary position data for 
parallel execution from CPU to GPU takes about 72-77 
milliseconds while transferring back the decoded raster from GPU 
to CPU takes about 215-216 milliseconds. The effective data 
transfer rates are pretty consistent and are close to the maximum 
PIC-E *16 limit (4GB/s). Note that we do not include the data 
transfer times in calculating speedups for the reasons discussed 
previously.  
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We have chosen to use 256 threads per computing 
block, i.e., Tn=256, for all the GPGPU implementations to achieve 
an optimum GPGPU hardware occupancy after considering 
constraints related to registers and shared memory. Using 256 
threads per computing block is also recommended by the GPU 
vendor and by previous studies. Since each of the 14 SMs can 
hold up to 4 computing blocks, there are up to 14*4*256=14,336 
active threads in the decoding kernels. From Table 3 we can see 
that, the position data overhead is significant for neither chunk 
sizes using the PCL parallelization scheme. It is also insignificant 
for the DSP parallelization scheme using a chunk size of 4096 
(1.16%). However, the overhead is significant for the DSP 
parallelization scheme using a chunk size of 1024 (11.91%). The 
results reflect different scalabilities of the DSP and the PCL 
parallelization schemes, as formulated in Section 5. They also 
suggest that PCL is more preferable to DSP, not only from the 
running times perspective as detailed next, but also from storage 
overheads perspective. 
Table 3 GPGPU Results: Position Data Overheads and Decoding 

Running Times 
Chunk Size/Last Level Quadrant Size 1024*1024 

(2*2) 
4096*4096 

(4*4) 
DSP Quadtree Position Data (Bytes) 30,146,560 2,752,512 
DSP Last Level Position Data (Bytes) 6,029,312 393,216 
DSP Position Data Overhead (%) 11.91% 1.16% 
DSP- Naïve Runtime (milliseconds) 11615 9997 
DSP- Optimized Runtime (milliseconds) 3314 3037 
PCL Quadtree Position Data (Bytes) 494,592 523,776 
PCL Last Level Position Data (Bytes) 1,507,328 1,572,864 
PCL Position Data Overhead (%) 0.87% 0.92% 
PCL- Register Runtime (milliseconds) 1053 946 
PCL – Optimized Runtime (milliseconds) 190 283 

From Table 3 we can see that, similar to CPU results, 
the optimized implementations perform much better than non-
optimized ones. The DSP-Naïve has a running time of 11615 
milliseconds which makes it even more inferior to the optimized 
single-thread CPU implementation (11329 and 8613 milliseconds 
using quadrant sizes of 2*2 and 4*4, respectively). Perhaps the 
most signficant conclusion we can draw from this study, as shown 
in Table 3 is that the PCL-Optimized implementation achieves a 
performance of 190 milliseconds, which is a 5.8X speedup 
(1095/190) when compared with the best CPU implementation on 
dual quadcore CPUs using 16 threads. This clearly demonstrates 
the importance of designing a good parallelization scheme to fully 
utilize parallel hardware capacity on GPGPUs. When compared 
the best GPGPU performance with the best single-thread CPU 
performance, we can see a 36.9X speedup (7005/190). 
Furthermore, when compared the best GPGPU implementation 
performance with the baseline performance (non-optimized, 
single-thread CPU implementation), an impressive speedup of 
239X to 290X has been observed.  

7 RELATED WORKS 
The research reported in this paper is closely related to 

our previous work on Binned Min-Max Quadtree (BMMQ-Tree) 
indexing of large-scale raster geospatial data on GPGPUs [31] 
which again is a port of the serial design/implementation 
presented in [32]. This work explores the redundancy of bitplane 
bitmaps of large-scale raster geospatial data through BQ-Tree 
coding. The simultaneous lossless compression and indexing 
makes it suitable for a wider range of applications. Terrain is an 
important raster geospatial data and there are a few works on 
visualizing large-scale terrain data using GPGPUs [33]. However, 

these works are visualization (rather than query) centric and focus 
on rendering. The rendering window sizes (e.g., 1024*1024) in 
such applications are much smaller (1-2 orders) than the raster 
sizes that we are targeting at to answer queries.  

The MapReduce framework [34] have attracted 
signficant interests in parallel processing of large-scale data on 
shared-nothing clusters [35] and multicore CPUs [29]. In addition, 
adapting and evolving traditional data management and relational 
database techniques to multicore CPUs have been research 
hotspots in recently years [36]. Compression is considered as a 
viable solution to utilize parallel hardware resources, balance 
between I/O and computation and speed up query processing on 
read-only data [37][38]. Although existing research primarily 
focuses on relational data, we see a similar evolution trend in 
Spatial Databases and GIS. A few of works experiment on 
building relational databases on GPGPUs, including indexing 
[39][40] and compression [41], to speed up query processing. 
Similar to applying the MapReduce framework to geospatial data 
[42][43], the techniques currently designed for relational data can 
potentially be adapted to process large-scale geospatial data.  

Our work is also greatly influenced by the works on 
developing efficient GPGPU primitives, especially the radixsort 
implementations [44] which motivate us to utilize the parallel 
scan primitive at the computing block level to compute the 
positions on the BQ-Tree node array and the LLQS array for all 
the threads on the fly. The implementation, PCL-Optimized, has 
turned out to be the most efficient one among all the 
implementations presented in this study.   

8 SUMMARY AND CONCLUSIONS 
In this study, we have developed the BQ-Tree spatial 

data structure to code large-scale raster geospatial data. In 
addition to utilizing the chunk-level coarse grained parallelism on 
both multicore CPUs and GPGPUs, we have also developed two 
fine-grained parallelization schemes, namely DSP and PCL, and 
their four implementations by using different system and 
application level optimization strategies. Experiments show that 
the best GPGPU implementation, PCL-Optimized, is capable of 
decoding a BQ-Tree encoded 16-bits NASA MODIS image with 
22,658*15,586 cells in 190 milliseconds, i.e., 1.86 billion cells per 
second, on an Nvidia C2050 GPU card. The performance achieves 
a 6X speedup than the best dual quadcore CPU implementation 
using 16 threads and achieves 239-290X speedups than a baseline 
single thread CPU implementation. 

For future work, first of all, as mentioned in the 
introduction and the motivations sections, we would like to follow 
the multi-component bitmap indexing framework introduced in 
[7] to code geospatial rasters that can facilitate exact, range and 
interval queries, in addition to bitplane level decoding which is 
the focus of this study. The major differences of the two tasks are 
only on deriving bitmaps from inputs and compositing bitmaps to 
derive outputs. The two tasks can share much of the codebase that 
has been developed in this study. By integrating these two 
components, we plan to develop a working prototype system with 
performance accelerated by multicore CPUs and GPGPUs to 
visually explore large-scale raster geospatial data and support 
global environmental studies. Second, while the GPGPU-based 
designs and implementations are compared against each other in 
this study, from a practical perspective, it is more useful to 
integrate multicore CPU and GPGPU implementations to achieve 
the best performance. We would like to develop cost models and 
efficient scheduling algorithms for this purpose. Third, while 



A Short Version to Appear in ACMGIS 2011 Conference 
 

SciDB [12] currently only considers parallelization of managing 
multidimensional array data on shared-nothing clusters, we would 
like to reuse SciDB and FastBit codebases to develop a plugin 
module to facilitate managing high-resolution, time-evolving and 
multi-variant raster geospatial data on commodity desktop 
computers equipped with multicore CPUs and GPGPUs.   
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