

 Indexing Large-Scale Raster Geospatial Data
Using Massively Parallel GPGPU Computing

Jianting Zhang
Dept. of Computer Science
City College of New York
New York City, NY, 10031

jzhang@cs.ccny.cuny.edu

Simin You
Dept. of Computer Science

CUNY Graduate Center
New York, NY, 10006

syou@gc.cuny.edu

Le Gruenwald
School of Computer Science

University of Oklahoma
Norman, OK 73071

ggruenwald@ou.edu

ABSTRACT
Advances in geospatial technologies have generated large
amounts of raster geospatial data. Massively parallel General
Purpose Graphics Processing Unit (GPGPU) computing
technologies have provided personal computers with tremendous
computing capabilities. In this paper, we report our work on fast
indexing of large-scale raster geospatial data using GPGPU
computing. We have designed a cache conscious quadtree data
structure (CCQ-Tree) that is suitable for GPU indexing. A set of
algorithms have been developed and integrated to construct CCQ-
Trees on GPUs by utilizing multiple pyramid data structures and
Z-order based prefix sum. Experiments on multiple 4096*4096
blocks of a global precipitation raster data have shown that CCQ-
Tree indexing using a 112-core Nvidia Quadro FX3700 GPU
device reduces construction times from around 9.83 seconds to
0.42 seconds (23X speedup).

Categories and Subject Descriptors
H.2 [Database Systems]
Keywords
Indexing, Raster, Large-Scale, GPGPU, Parallel Computing

1. INTRODUCTION
Advances in geospatial technologies have generated

large amounts of raster geospatial data at ever increasing speeds.
Different from vector geospatial data that sophisticated indexing
techniques have been extensively developed and applied, research
on indexing raster geospatial data is limited. Traditionally raster
geospatial data are mostly used for sophisticated offline analysis
(such as image classification and physics based environmental
modeling) and simple online display (such as tiling based image
display in Google Map/Earth). Massively parallel General
Purpose Graphics Processing Unit (GPGPU) technologies [1],
which allow using graphics processing units for general purpose
computing, have provided personal computers with tremendous
computing capabilities. For example, a single Nvidia Fermi-based
GeoForce GTX480 GPU device has 480 cores and a peak floating
point performance of 1.35 Terra Flops [2] at the cost of a few
hundreds of dollars. The computing power provided by GPGPU
enabled devices will enable many traditionally offline applications
to run online and interact with users.

In this study, we aim at fast indexing of large-scale
raster geospatial data on GPGPU enabled devices to support
Region-of-Interests (ROI) type of queries. A ROI-type query
returns all spatial objects (including quadrants) that satisfy one or
more value range criteria, e.g., temperature in the range [t1,t2) and
precipitation in [p1,p2). We consider indexing raster geospatial
data as a special global operation in processing geospatial data
which is technically more challenging than parallelizing some
local and focal operations on raster data. More specifically, we
focus on quadtree based indexing due to its well-known data
compression and pruning power in query processing [3]. Different
from local or focal raster operations that transform one raster to
another, quadtree based raster data indexing transforms a
regularly shaped grid into an irregular, hierarchical data structure.
While the irregularity can be relatively easily handled on CPUs
through dynamic memory allocations and pointer linking, as
current GPGPU computing does not support dynamic memory
allocations and recursions, it is technically challenging to
generate, store and manipulate tree data structures on GPUs. Our
technical contributions can be summarized as follows:

• We design a cache conscious quadtree data structure (CCQ-
Tree) that is suitable for GPU indexing.

• We develop a set of algorithms to construct CCQ-Trees on
GPU devices based on GPGPU computing technologies.

• We perform experiments that show that CCQ-Tree indexing
using GPGPU computing speeds up its construction more
than 20 times on average using a 112-core Nvidia Quadro
FX3700 GPU card.

The remainder of the paper is structured as follows.
Section 2 presents the CCQ data structure and its construction
algorithm on GPUs. Section 3 reports our experiments on a real
global dataset before concluding the paper in Section 4.

2. PROPOSED SOLUTIONS

2.1 Array-Representation of CCQ-Tree
The Cache Concisions Quadtree (CCQ-Tree) we

propose in this paper is motivated by the pioneering works on
Cache Sensitive Search Tree (CSS-Tree) and Cache Sensitive B+-
Tree (CSB+-Tree) [4][5]. CCQ-Tree uses an array representation
and places all nodes in a one-dimensional array to completely
remove non-continuous memory allocations. The layout of a
CCQ-Tree node includes a user-defined data field and a field
indicating the position of its first child on the node array. In ROI-
type queries, all the child nodes of a tree node being examined
need to be visited sequentially. As such, putting all its child nodes
consecutively in an array instead of storing them in disparate
memory addresses will improve cache hits. Compared with classic
main memory quadtrees that store memory pointers to four child
nodes, storing only one position number to a node’s first child
reduces memory consumption significantly. The lower part of Fig.
1 illustrates the layout of a CCQ-Tree through an example.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. ACM GIS '10, November
2-5, 2010. San Jose, CA, USA (c) 2010 ACM ISBN 978-1-4503-0428-
3/10/11...$10.00

450

Fig. 1 Illustration of CCQ-Tree Layout

2.2 Overview of CCQ-Tree Construction on
GPGPUs

 Constructing hierarchical data structures on GPUs
imposes a major technical challenge compared to well-established
recursive approaches on CPUs. Current GPGPU computing does
not allow dynamic memory allocations and pointer referencing
and dereferencing. Recall that a CCQ-Tree node has a data field
and a first child position field. We need to fill both fields of all the
nodes to successfully construct a CCQ-Tree. In addition, since the
nodes are processed in parallel, each node needs to know its
position in the array representing the tree. The main idea of our
CCQ-tree construction algorithm includes the following
components: (1) build a pyramid of matrices from the raw raster
data to materialize the data field in each node, (2) at each level of
the pyramid, by checking whether an element of the matrix at the
level has a valid value, it can be determined that whether the tree
node corresponding to the element should be pruned. By
traversing the pyramid from top to bottom and following Morton-
order [6] or Z-order [7] at each level, the position of each tree
node can be computed (3) At each level of the pyramid, by
checking the number of valid children for each node, the first
child position of a tree node can be determined using a similar
approach.

Although the three steps are executed sequentially on
CPU, quadrants of the raster are processed in parallel in all the
three steps on GPU. The constructed tree in the form of an array
of tree nodes will be finally transferred back to CPU and is ready
for processing queries. Since the maximum of threads allowed by
our GPU device (Nvidia Quadro FX3700) is 512, we have used a
square layout of T*T (T=2U where U<=4) threads per block. We
refer to [1] for more details on CUDA-based GPU computing.
Assuming that a raster dataset has a size of N*N (N=2K) and P*P
computing blocks (P=2L) are used in CUDA programming, each
thread will be responsible for processing Q*Q elements (Q=2K-L-U)
at the finest level. We will present the algorithm in details in the
following subsections.

2.3 Parallel Building Data Pyramid
Given a raster R of size N*N where N=2K, the pyramid

for the raster includes K-1 matrices of sizes N/2 by N/2, N/4 by
N/4…and 1*1. The value of an element of the matrix at the level k
of the pyramid is a function of the four elements under it at the
level k+1 (assuming the root has a level 0), i.e., dk=f({di

k+1|i=0,3}).
We define f as a function to compute the minimum and maximum
values to make it comparable to our previous work on Binned
Min-Max Quadtree (BMMQ-Tree) [8] although it can be defined

differently depending on applications. In this case, each matrix
element has two fields, the minimum and the maximum. Note that
while the pyramid does not include R, the bottom level matrix is
computed from R by applying function f to the corresponding
elements of R. It is not difficult to compute the total number of
elements of the pyramid
as

))
4
1(1(*

3
*

)4/1(1
)4/1(1*

4
1**)

4
1...

4
1

4
1(

2
2

12
K

k

K

NNNNM −=
−
−

=+++= −

.

When K is reasonably large, M is approximately N2/3, i.e., one
third of the total size of R. To build the pyramid on GPU, we
allocate a one-dimensional array of size N2/3 on CPU, initialize
the array and transfer it to GPU. When the kernel to populate the
pyramid was invoked, each thread processes Q*Q elements at the
level K-1 of raster R as discussed before. All the matrices are
generated bottom-up in parallel at each level. For the matrices
above level K-1, the workload of each thread is reduced to 1/4 due
to the aggregations of elements.

2.4 Parallel Computing of First-Child Node
Positions

A multiple-level Z-order [7] based algorithm is applied
to compute the first child node positions that are required for all
the non-leaf tree nodes in a derived CCQ-Tree. The algorithm to
compute first child node positions has three steps. First, similar to
the min/max pyramid (A), we also create a pyramid of matrices to
record the number of children for each matrix elements of the
pyramid (B). The computation can be performed by launching
GPU kernels in a way similar to the method presented in the
previous subsection. Also in this step, a prefix sum (scan) [9][10]
is performed in parallel to accumulate the numbers of children for
all elements with at least one child. The value of the last element
in the matrix at every level is the total number of children for all
the elements at the level. The numbers at all the levels are used to
formulate an array and, subsequently, a prefix sum is performed to
compute the starting position of the first valid element at all the
levels. As the number of levels is limited (typically <20), this step
can be performed at CPU quickly. Note that the root takes one
position and should be counted as shown in Fig. 2. The last step of
the algorithm is to finally compute the first node positions of all
the elements that have at least one child. This is done by adding
the starting position of the first valid element at each level to all
the matrix elements by applying prefix sum as in the first step. As
discussed in the next subsection, we need the number of children
pyramid (B) to generate a CCQ-Tree in the final step. Since it is
not possible to perform an in-place prefix sum, we make a copy of
B and use B’s value as the initial for the first child node position
pyramid (C).

34 0 0 0 0 0 2 2
0 0 0 0 0 0 2 2
0 0 0 0 1 1 2 1
0 0 0 0 1 1 2 2

34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 0

34 0 0 1 2 2 3 3
0 0 1 1 2 2 3 3
1 1 3 3 3 3 4 4
1 1 3 3 3 3 4 4

34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 0

(0,0)(-1)
(0,2)(5) (0,3)(9) (2,4)(13)

(0,0)(-1) … … … … … … …

0 1 5

(minB: 16bits;maxB: 16bits)
(position of first child: 32bits)

9 13 17 21

(1,2)(17)(2,2)(-1) (1,1) (-1) (0,1)(21)

451

An issue that has not been addressed in the algorithm

given above is how to determine whether an array element in the
matrices of pyramid A should be considered as a tree node. While
different rules can be applied which may generate different trees,
the following rule is used in this study: if an element has different
minimum and maximum values or if any of its min/max values is
different from its parent’s min/max values, respectively, then the
element is considered to be a tree node. To help illustrate the
algorithm better, an example is presented in Fig. 2. As shown in
the top part of Fig. 2, all the elements of A1 should be considered
to be tree nodes as they have different min/max values or their
min/max values are different from their parent’s min/max values.
In contrast, the top-left four elements of array A2 have the same
min/max values and they are the same as their parent’s min/max
values. As such, they will be pruned from the quadtree. Based on
the rule, we can derive B2 from R and A2, derive B1 from A2 and
A1 and derive B0 from A1 and A0 by following Step 1. The
numbers of children at the three levels are thus 4, 12, and 8,
respectively. Since the root node takes a position, the numbers of
children arrays will be (1,4, 12, 8) and thus the corresponding
array after the prefix-sum will be W=(0,1,5,17) after Step 2, as

shown in the middle of Fig. 2. To illustrate Step 3, we use the
derivation of C1 as an example. The initial value of C1 is copied
from B1, i.e., (0, 4, 4, 4). After applying the prefix sum based on
the Z-order, C1 becomes (0, 0, 4, 8). After adding the start
position of the level, i.e., W[2]=5, to all the elements of C1
(except those of which the values of the corresponding elements
in B are 0), C1 becomes (-1, 5, 9, 13). Each element of C1 is the
first child node position of the corresponding tree node being
constructed. For example, the tree node corresponding to the
second element of A1 has four children (B1[1]=4) and its first
child node position is 5 (C1[1]=5). On the other hand, the tree
node corresponding to the first element of A1 has 0 children
(B1[0]=0) and its first child node position is set to -1 (C1[0]=-1).

2.5 Parallel Generating CCQ-Tree
After computing the first child node positions of all the

matrix elements in pyramid C, we are ready to convert the
pyramid representation into a compact one-dimensional array
representation to reduce memory footprint. After Step 2 of the
first child node position calculation algorithm, we are able to
know the total number of nodes for the CCQ-Tree being generated
(assuming S) which is given by the last element of the array after

34 -1 -1 -1
-1 -1 -1 0
343434343434343434343434343434-1

34 0 0 0 0 0 2 2
0 0 0 0 0 0 2 2
0 0 0 0 1 1 2 1
0 0 0 0 1 1 2 2

34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 0

34 0 0 1 2 2 3 3
0 0 1 1 2 2 3 3
1 1 3 3 3 3 4 4
1 1 3 3 3 3 4 4

34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 0

34 0,0 0,0 2,2

0,0 0,0 1,1 1,2

0,0 0,1 2,2 3,3

1,1 3,3 3,3 4,4

34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 0,0

34 0,2

0,3 2,4

3434343434343434343434343434340,0
0,4

34 0 0 0
0 0 0 4
0 4 0 0
0 0 0 0

3434343434343434343434343434340
34 4
4 4

3434343434343434343434343434340 4

4 128

015

34 0
4 8
343434343434343434343434343434-1

34 5 6
 7 8

9 10 13 14
11 12 15 16

343434343434343434343434343434

34 2
3 4

34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 1

1

Root

17

34

 17 18
 19 20

34 34 34 34 34 34 34 34 34 34 34 34 34 34 34

34 21 22
 23 24

34 34 34 34 34 34 34 34 34 34 34 34 34 34 34

0
-1 4 -1 -1
-1 -1 -1 -1

1

2

3

R

A2

A0
A1

B0 B1
B2

C0

C1C2

1

Fig. 2 Illustration of Parallel Computing First-Child Node Positions

452

the prefix sum in the step. We thus allocate an array (E) of
structures with size S on GPU. A major remaining question is that,
for each valid matrix element in the pyramid, how do we tell its
position in the array representation? The answer is to apply a
similar technique described in the previous section. What we need
to do is to replace the numbers of children with 0s and 1s based on
whether the elements have at least one child. After Step 3 is
finished, the matrix element values in the pyramid (D) will be the
positions in the one-dimensional array of the corresponding
matrix elements. Note that the prefix sum on D can be done in-
place.

Assuming the data pyramid is A, the number of child
pyramid is B, the first child position pyramid is C, the node
position pyramid is D and the CCQ-Tree array is E, then we can
derive E from A, B, C and D on GPU in parallel as follows: using
a similar block/thread layout as discussed in Section 2.2, for each
matrix element in raster R’s pyramid (A, B, C or D), the algorithm
first checks its number of children using B. If the number is large
than 0, then the element should be a node in the CCQ-Tree and
should be put in array E at the correct position; the position of the
node in array E can be retrieved from pyramid D, the data field
can be copied from pyramid A and the first child node position
can be retrieved from pyramid C, all from the corresponding
matrix elements in the respective pyramid.

3 EXPERIMENTS
To verify the correctness of the proposed CCQ-Tree

construction algorithm on GPUs and tests its efficiency, we report
our results on a real raster dataset. We compare the index
construction times incurred using the GPU based solution running
on a 112-core Quadro FX 3700 card (500 MHz) and that using the
single core CPU based one running on an Intel E5405 processor
(2.0 GHz) that comes with a Dell T5400 workstation. We use the
current climate data published by WorldClim [11][12] in our
experiments. The dataset is the same one that we have used for the
experiments reported in our previous works [8][13] to allow direct
comparisons. The Nvidia Quadro FX 3700 card has only 512M
device memory available to GPGPU computing. As such, we are
only able to generate CCQ-Trees for image tiles of 4096*4096
and there are 11*5 raster tiles in our experiments. Note that some
of the tiles on the bottom or right boundaries are padded with NO-
DATA values. Also some of the tiles that mainly cover oceans
have very few cells with valid data.

Fig. 3 Comparison of Indices Construction Times on
GPU and CPU

The CCQ-Tree construction times on GPU for the 55

4096*4096 image tiles are shown in Fig. 3. For easy comparisons,
the quadtree construction times on CPU are also shown in Fig. 3.

The minimum and maximum CCQ construction times on GPU are
0.38 second and 0.47 second, respectively, with an average of
0.42 second. In contrast, the quadtree construction on CPU takes
9.28 seconds at minimum and 10.11 seconds at maximum with an
average of 9.83 seconds. The average speedup among the 55 tests
is 23.4 times which is considerably significant.

3. SUMMARY AND CONCLUSIONS
In this study, we reported our work on indexing large-

scale geospatial raster using massively parallel GPGPU
computing. Towards this end, we have designed the CCQ-Tree
data structure that is suitable for GPU-based indexing. Using a
112-core Nvidia Quadro FX3700 graphics card, we are able to
improve tree indices construction times from 9.28-10.11 seconds
on a CPU core to 0.38-0.47 second with an average speedup of 23
times.

While currently the total indices construction time for a
global 1-km spatial resolution dataset takes 23.02 seconds on a
112-core FX3700 card, we project that a personal workstation
equipped with 1-4 Fermi GPU cards can index global 30-arc
seconds spatial resolution (approximately 1km) datasets
(43200*21600) in a few seconds. The capability of indexing
large-scale high resolution datasets in real time can potentially
have significant implications in managing and processing large-
scale raster geospatial data.

REFERENCES
1. D. B. Kirk and W. Hwu. Programming Massively Parallel

Processors: A Hands-on Approach. Morgan Kaufmann,
2010.

2. Wikipedia. Nvidia GeForce 400 series specification.
http://en.wikipedia.org/wiki/GeForce_400_Series.

3. H. Samet. Foundations of Multidimensional and Metric Data.
Structures. Morgan., 2005.

4. J. Rao and K. A. Ross. Cache conscious indexing for
decision-support in main memory. VLDB’99, 78-89, 1999.

5. J. Rao and K. A. Ross. Making b+- trees cache conscious in
main memory. SIGMOD'00, 475-486.

6. G. M. Morton. A computer oriented geodetic data base and a
new technique in file sequencing. Technical report, IBM
Ltd., 1966.

7. J. A. Orenstein. Spatial query processing in an object-
oriented database system. SIGMOD’86, 326-336, 1986.

8. J. Zhang and S. You. Supporting web-based visual
exploration of large-scale raster geospatial data using binned
min-max quadtree. SSDBM’10, 379-396, 2010.

9. W. D. Hillis and J. Guy L. Steele. Data parallel algorithms.
Communications of the ACM, 29(12):1170-1183, 1986.

10. G. E. Blelloch. Vector Models for Data-Parallel Computing.
MIT Press, 1990.

11. R. J. Hijmans, S. E. Cameron, J. L. Parra, P. G. Jones, and A.
Jarvis. Very high resolution interpolated climate surfaces for
global land areas. International Journal of Climatology,
25(15):1965-1978, 2005.

12. WorldClim. Worldclim current conditions data 1950-
2000.http://www.worldclim.org/current.

13. J. Zhang and S. You. Dynamic tiled map services:
Supporting query-based visualization of large-scale raster
geospatial data. Com.Geo’10, 2010.

0.00

2.00

4.00

6.00

8.00

10.00

12.00

0 10 20 30 40 50 60

Image Tile #

In
de

x
C

on
st

ru
ct

io
n

Ti
m

e
(s

)

CPU-Pointer
GPU-CCQ

453

