
Efficiently Managing LargeScale Raster Species
Distribution Data in PostgreSQL

Jianting Zhang
Department of Computer

Science
City College of New York
New York� NY 10031

jzhang@cs.ccny.cuny.edu

Michael Gertz
Institute of Computer Science
University of Heidelberg
Heidelberg� Germany

gertz@informatik.uni-
heidelberg.de

Le Gruenwald
School of Computer Science
University of Oklahoma
Norman� OK 73071

ggruenwald@ou.edu

ABSTRACT

Species distribution data play an important role in biodiversity re-
lated research, especially in exploring relationships with the envi-
ronment. In the recent years, both the number of species being
explored and the spatial resolution of species distribution data are
increasing fast. It is thus imperative to develop database systems
that allow users to efficiently query such large-scale data based on
spatial and non-spatial (e.g., taxonomic and phylogenetics) criteria.
In this paper, we present our approach to building such a system

by integrating several components, including a quadtree represen-
tation of binary raster data, tree path indexing and query processing
in PostgreSQL, and window decomposition techniques for spatial
queries. Our unique contribution is in associating species identi-
fiers with intermediate quadtree nodes and query optimization for
multiple independent queries after window query decomposition.
Our system enables PostgreSQL to support binary raster data with-
out requiring any changes to the database backend and is suitable
for managing large-scale species distribution data.
Our experiments using 4000+ bird species distribution data re-

lated to the Western hemisphere show that the proposed approach
in associating species identifiers with quadtree nodes reduces the
number of database tuples by more than 1/3 and the average iden-
tifiers to be associated with each tuple from 110.6 to 4.8, a signifi-
cant improvement compared to classic quadtree-based approaches.
With respect to query optimization, optimized queries are 6-9.5
times faster than the baseline queries for average query response
times and 5.5-8.3 times faster than the baseline queries for max-
imum query response times for four query window sizes ranging
from 0.1 to 5.0 degrees. Our query optimization techniques thus
make the system suitable for many interactive applications for query-
ing and exploring species distribution data.

Categories and Subject Descriptors

H.2.8 [Database Applications]: Spatial Databases and GIS; H.2.4
[Systems]: Query Processing

General Terms

Design, Experimentation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM GIS ’09 November 4-6, 2009. Seattle, WA
Copyright 2009 ACM 978-1-60558-649-6/09/11 ...$10.00.

Keywords

Species distribution data, quadtrees, window query decomposition,
query optimization, PostgreSQL

1. INTRODUCTION
Recent years have witnessed significant developments in Internet-

based information systems in support of biodiversity studies. In
parallel, species distribution data available to the community is in-
creasing at a staggering rate. Community standardization efforts,
such as the Darwin Core standard developed by the Biodiversity In-
formation Standards [7] and the adoption of distributed access pro-
tocols, such as Distributed Generic Information Retrieval [6], allow
users to exchange, share and integrate disparate museum records
and research data repositories.
Examples of taxon-based Web-Portals are the Global Biodiver-

sity Information Facility [13], the Ocean Biographic Information
System (OBIS) [24], the Mammal Networked Information System
(MaNIS) [20], the ORNithological Information System (ORNIS)
[25], and HerpNET [15], to name only a few. While point locations
of species occurrences themselves are useful to model species dis-
tributions at the individual species level, range maps or distribution
datasets compiled from museum records or scientific literature play
an important role in global and regional biodiversity studies, espe-
cially when correlating biodiversity with environmental variables
(see, e.g., [14, 36, 37]). For example, the USGS Digital Represen-
tation of Tree Species Range Maps from the “Atlas of United States
Trees” by Elbert L. Little, Jr. [35] consists of 679 tree species and
has played important roles in USGS’s vegetation-climate modeling.
More recently, NatureServe has published Digital Distribution

Maps of the Birds of the Western Hemisphere, which covers 4,273
bird species. Similar range maps for 1737 mammal species of the
Western hemisphere and more than 6000 of the World’s amphib-
ians are also available from NatureServe’s Website [23]. We en-
vision that the availability of species range maps will significantly
increase over the next couple of years, something that will be im-
portant not only to environmental modeling but also to phylogeog-
raphy, phylogenetics and other branches of bioinformatics. It is
thus imperative to develop suitable database management infra-
structures and techniques to effectively support global biodiversity
research and subsequent species conservation practices.
An important functionality in querying polygonal species distri-

bution data is to efficiently answer window queries. One viable
approach for this is to use traditional indexing approaches based on
the R-Tree. However, for polygonal data, this approach has several
shortcomings. First, polygons representing distributions of differ-
ent species are highly overlapping, a fact that makes the selectivity
of space partitioning trees less effective in query processing. Sec-

316

ond, such polygons can be very complex and thus computing inter-
sections between the polygons and query windows is computation-
ally expensive. Consequently, this makes it difficult to use spatial
databases for online or interactive applications. Finally, species dis-
tributions are fuzzy in nature and querying distribution data often
can tolerate errors to a certain degree. As such, the majority of ex-
isting biodiversity research using species distribution data employs
raster tessellations of distribution data.
Compared to vector data, raster data is less well supported in

spatial databases. Although the region quadtree has been studied
extensively for representing and indexing binary raster data (see,
e.g., [12, 16, 21, 30]), surprisingly only a very few database sys-
tems support geospatial binary raster data on a native basis. While
research prototypes such as QUILT [33] and SAND [9, 32] have
been developed based on quadtrees in the context of GIS applica-
tions, they do not offer Structured Query Language (SQL) support.
In many application domains, however, SQL-based query formu-
lation is preferred, especially when integration with tabular and
other non-spatial data is necessary and a client-server architecture
is adopted in a distributed computing environment. Motivated by
the availability of a module called LTREE for tree path indexing in
the PostgreSQL system [26] and the similarity between the defined
LTREE data type and linear quadtree paths, we propose to utilize
the data storage, indexing and query processing functionality im-
plemented in the LTREE PostgreSQL module for geospatial binary
raster data representing species distributions. To support spatial
window queries that are not natively supported by the LTREE mod-
ule, we implemented a window decomposition algorithm to trans-
form a query window into multiple query cells, which then can be
used to query LTREE tree path data. Respective query results are
then combined to answer the original spatial window query.
The contributions of our approach are the following.

� First, we tackle the problem of managing (including stor-
ing, indexing and querying) binary raster data in an object-
relational database environment (PostgreSQL in particular),
which has many practical applications, yet is poorly addres-
sed in current spatial database practices. The approach we
propose does not require any modifications to the database
backend.

� Second, large-scale species distribution data are highly over-
lapping and complex, which makes traditional vector based
representation and indexing inadequate for spatial window
queries that require fast response times. As an extension
to classic quadtree data structures designed for individual
datasets, we associate species identifiers with both leaf and
non-leaf quadtree nodes. As we will demonstrate, this makes
cross-dataset querying much more efficient. Techniques for
efficiently storing species distribution datasets and process-
ing spatial window queries are tailored to such a data repre-
sentation framework.

� Third, we present a prototype system that realizes the above
functionality to efficiently manage and query 4000+ species
distribution datasets. Our experimental evaluation demon-
strates the effectiveness of the proposed approach.

The remainder of the paper is structured as follows. Section 2 in-
troduces some background on large-scale species distribution data
management, which is our key application domain, and it also pro-
vides an overview of related work. Section 3 presents our approach
for storing binary raster species distribution data in a PostgreSQL
database. A baseline and an improved approach to query window
decomposition and query result combination are discussed as well

in that section. Section 4 presents our experiments on 4000+ real
species distribution datasets. Finally, Section 5 concludes the paper
and outlines future research directions.

2. BACKGROUND AND RELATEDWORK

2.1 Species Distribution Data
Our research is motivated by the various needs in biodiversity

studies to query the numbers of species and their corresponding
areas. Each species may have multiple polygons representing its
geographic distribution. These polygons may be neighboring or
disjoint and may vary significantly in terms of shape and area be-
ing covered. Some generalist species may have large distribution
ranges while some specialist species may have very restrictive dis-
tribution ranges. We assume that species distribution datasets are
available in raster format and that a quadtree for each individual
species distribution dataset has been built.
Species distribution data are not only geo-referenced, but they

are also speciesreferenced. Species may be grouped according
to different taxonomic, phylogenetic or functional characteristics.
A database system that has the capability to perform spatial- and
species-based queries on large-scale species distribution data is es-
sential for interactive exploration and rigorous statistical analysis
of relationships between biodiversity and the environment. The
most typical scenario for querying species distribution data is illus-
trated in Fig. 1. In the illustration, each species is associated with
a quadtree representing its distribution grid cells using a common
raster tessellation. Each species may also be associated with one
or multiple taxonomic, phylogenetic or ecosystem hierarchies. The
hierarchies can be represented as tree paths or sets of relational at-
tributes, depending on the underlying database implementation. As
our focus in this paper is on spatial window queries, we assume a
list of species is available after non-spatial restrictions have been
satisfied before processing spatial queries. For a spatial window
query, we need to return the distribution grid cells of species in the
candidate species list that intersect with the given query window.
The species identifiers and their areas (and sizes) within the query
window will be returned to the user.
The Social-Economic Data and Application Center (SEDAC) at

Columbia University has rasterized the original NatureServe’s an-
imal species distribution data in ESRI shapefile format into Geo-
TIFF images at a resolution of 30 arc-seconds. The GeoTIFF im-
ages for individual species are available for download through a
Web-interface [5]. They have also derived a family richness grid
dataset by counting the number of species for all the species fami-
lies. However, the system does not allow users to define regions of
interest or to group species of interest, which motivates our work
in managing large-scale species distribution datasets in a spatial
database environment that allows users to query such data based on
spatial and species criteria.

2.2 Quadtree Indexing and Query Processing
Numerous spatial query indexing approaches have been proposed

in the last three decades. The quadtree family is among the oldest
and most extensively studied one; for details, we refer the reader to
the survey by Gaede and Günther [11] and in particular the book by
Samet [31]. On the commercial side, Oracle Spatial and Microsoft
SQL Server Spatial support quadtree based indexing of polygonal
data. However, their techniques are designed as filtering mecha-
nisms to facilitate querying spatial relationships (disjoint, touch,
contain etc.) at the polygon level ([10, 17]) and are not directly
accessible to application developers. To the best of our knowl-
edge, quadtree indexing for binary raster data is not available in

317

Species A

Species B

Species C

Species Area
A 14
B 10
C 10
… …

Query window

Cross-dataset query result

Taxonomic Tree

Phylogenetic Tree

Ecosystem hierarchy: Community – Ecosystem – Biomes – Biosphere

Figure 1: Illustration of a spatial window query over three species distribution datasets.

open source databases (and PostgreSQL in particular). This is one
motivation for our work to seek for alternative solutions. Existing
systems related to raster data management in a database environ-
ment, such as Oracle Spatial GeoRaster [18] or Rasdaman [28], are
designed to support storing and querying dense multi-dimensional
real-valued arrays based on tiling (chunking) techniques and they
are not suitable for our application. When large-scale species distri-
bution data are forced to be represented as multi-dimensional array
data with binary values, the array would be extremely large and
sparse, something our approach tries to avoid. For example, the
size of the array for 10,000 species at the global 1 minute resolu-
tion would be 10,000 * 10,800 * 21,600, which is approximately
2.5 petabytes, assuming each array element takes 1 byte.
A few research prototypes, such as QUILT [33] and SAND [9,

32], have been developed to manage geographical binary raster
data. However, they are more suitable to be categorized as GIS
rather than spatial databases. Many database features that are im-
portant to application developers are not provided in these pro-
totype systems. Aref and colleagues have published a few pa-
pers on implementing and experimenting with space partitioning
tree indexing approaches based on the Generalized Search Tree
(GIST) framework in PostgreSQL, known as SP-GIST [2, 8]. A
variety of quadtree indexing methods, including MX-quadtree, PR-
Quadtree, MX-CIF-quadtree and PMR-quadtree, have been devel-
oped for PostgreSQL. However, these quadtree indexing methods
are designed for line segments rather than polygons. While they
are suitable for filtering polygons stored as collections of line seg-
ments in processing spatial window queries, they do not support
region-based queries directly, which is important in our application
to querying species distribution data.
The work by Aboulnaga and Aref [1] describes an algorithm and

a cost model for processing window queries in linear quadtrees.
The algorithm recursively decomposes the data space into quadtree
blocks and uses the blocks overlapping the query window to search
the B-Tree used to index the quadtree blocks. While the technique
can be implemented in an extensible spatial database environment
in a way similar to the authors’ later work on SP-GIST, the win-

dow query processing technique requires modifying the database
backend, and a significant effort may be needed for coding, debug-
ging and testing, which often prevents application developers from
adopting such techniques.
The recently released Microsoft SQL Server Spatial is based on

an adaptive quadtree-like multi-level grid [10]. It decomposes both
polygons and query windows into grid cells according to a com-
mon raster tessellation and matches their paths for query process-
ing. Similar to the work described in [1], the B-Tree indexing in-
frastructure is used to speed up query processing by limiting search
ranges. Different from the work in [1], the key values used in Mi-
crosoft SQL Server Spatial do not need to be sorted based on Mor-
ton code [22]; instead, the parent-child relationships are explicitly
maintained based on cell ids (in the form of tree paths). A path
matching is further decomposed into a sequence of B-Tree queries.
Similar to SP-GIST, Microsoft SQL Server Spatial is based on an
extensible indexing framework. However, as discussed above, the
shear amount of work required for database backend development
makes it less attractive for application developers. A question to
ask is “Can we utilize existing database backend functionality to
support new types of data without changing the backend?”.
In addressing this question, it is interesting to observe that Post-

greSQL includes a module called LTREE [26]. The LTREE mod-
ule essentially implements a generic trie-based indexing method
based on the GIST framework. The module has been well devel-
oped and is included in recent PostgreSQL releases. Naturally,
quadtree paths can be stored as LTREE data objects in a Post-
greSQL database that supports path-based queries, such as exact
matches and querying ancestors and descendants of a tree path. Un-
fortunately, LTREE does not support spatial range queries directly,
an aspect our framework addresses, as described in the following.

2.3 Overview of the Proposed Approach
Motivated by the work reported in [1] and Microsoft SQL Server

Spatial [10] on decomposition based window queries over spatial
data represented as quadtree, in the context of managing large-
scale species distribution data, we propose the following approach

318

to support spatial window queries in PostgreSQL without requiring
any changes to the database backend. Compared to previous work
that extends a spatial database backend directly to support new data
types and queries, the proposed approach can be categorized as
a middleware approach that involves three components: database
preparation, query transformation, and result combination.
For database preparation, we build a quadtree for each of the

individual species distribution datasets. Second, we union these
quadtrees and build a combined quadtree, which associates its nodes
(leaf and non-leaf) with sets of species identifiers. Third, we store
both the paths of the tree nodes and the corresponding identifiers
in a PostgreSQL database after the combination. Finally, we cre-
ate an index for the tree paths using the LTREE indexing module.
For query transformation, we implemented a window decomposi-
tion approach where a query window is decomposed into cells us-
ing the same raster tessellation as used for the input datasets. The
cell identifiers are then used to query the PostgreSQL database, and
the individual query results are combined to obtain the final result,
which is then delivered to applications.
While the details of the approach are deferred to the next section,

we would like to point out that the proposed approach is built on top
of a few existing techniques. The most relevant ones are quadtree
representation of geo-referenced data and linear quadtrees [9, 12,
16, 30, 32, 33], efficient decomposition of window queries [1, 3,
4, 27, 34] and tree path indexing [26]. Although we do not claim
making novel contributions to individual components, the proposed
middleware approach seamlessly integrates these components in a
novel way. The end-to-end system we developed is able to man-
age large-scale species distribution data effectively and to process
queries efficiently, as we will show in our experiments in Sect. 4.

3. THE PROPOSED SOLUTION
As outlined in the previous section, the basis for our approach

consists of three concepts: database preparation, query transfor-
mation and result combination. The system components realizing
these concepts are illustrated in Fig. 2 and will be detailed in the
following subsections. For the rest of the paper, we adopt the com-
mon quadtree terminology when referring to classic quadtrees. In
classic quadtrees, leaf nodes can be either black or white, repre-
senting the presence or absence of data in the respective block (or
quadrant). Non-leaf nodes are gray, representing a mixture of white
and black descendant nodes. A quadtree node can be represented
by the path from the root to that node by concatenating the quad-
rant numbers (0-3) along the path. Figure 3 shows how quadrants
in a quadtree are numbered.

3.1 Database Preparation
When a large number of species distribution datasets – each rep-

resents an individual species distribution with a unique identifier –
is imported into a database, it is typical that the polygons repre-
senting the distributions vary in size and shape. More importantly,
the distributions among species may overlap frequently. While one
could follow an approach using Oracle Spatial or Microsoft SQL
Server Spatial to create quadtrees for the polygons, many of the
quadtree nodes will be associated with multiple species, and the
quadtree paths will be duplicated multiple times, potentially up to
the number of datasets. From a data storage perspective, it is thus
beneficial to associate a quadtree node with a set of species identi-
fiers instead of just a single identifier as done in the classic quadtree
approach. This is especially true when the number of species is
large, as in our application.
A straightforward approach to create such combined quadtree

leaf nodes with their associated identifier sets is to visit the gray

nodes of multiple quadtrees in a synchronized manner, break down
black nodes and combine the relevant identifiers until the largest
depths of all quadtree nodes in respective quadrants has been reached.
Consider the example shown in Fig. 3 where three species distribu-
tion datasets A, B, and C are involved. The quadtrees correspond-
ing to the three datasets are shown in the top of the figure. The
combined quadtree and its corresponding leaf nodes are shown in
the bottom part of the figure. To illustrate the classic combination
process, node 3 in the combined quadtree is derived from node 3
of species A quadtree and so is node 3.0 of species B quadtree,
and nodes 3.0.0 and 3.0.2 of the species C quadtree. When the
quadtrees of species A and B are combined, node 3 of species A
is broken down into four quadrants and each quadrant is associated
with species A. Thus, the first quadrant corresponding to node 3.0
is associated with species A and B. Similarly, when the species C
quadtree is combined, the quadrant needs to be broken down and
the quadrants corresponding to node 3.0.0 and node 3.0.2 will be
associated with species A, B and C. To comply with the notation of
classic quadtrees, we set a leaf node in the combined quadtree to
black if there is at least one species associated with the node.
While the standard quadtree combination (union) process based

on the classic quadtree definition (herein referred to as the clas-
sic combination) could in principle be implemented, we observed
that this is not necessary in the context of processing spatial win-
dow queries on quadtree paths. Instead of breaking down the upper
level black nodes, combining lower level nodes (black or white)
and associating sets of identifiers only with leaf nodes, our new
combination approach allows a non-leaf quadtree node to be asso-
ciated with a set of species identifiers. The proposed combination
approach is a straightforward union of identifiers at each combined
quadtree node.
From an implementation perspective, such type of combination

simply requires a map data structure that is readily available in
many packages, including C++ STL. An entry in the map is a pair
of �path, identifiers�, where path can be implemented as
a string and identifiers can be implemented as a set of iden-
tifiers. For each given quadtree node represented by its path from
the root to the node, we simply look up the path in the map data
structure. If there is a match, we add the identifier associated with
the quadtree node to the set. If not, we create a new entry with the
path as key and a set with the identifier as the value and add the
entry to the map. It is trivial to enumerate the key-value pairs in the
map data structure and to store the data in a PostgreSQL database.
The approach works for both linear quadtrees with secondary stor-
age and pointer quadtrees in main memory. Figure 4 shows the
results of the proposed quadtree combination approach. The com-
bined quadtree has 25 leaf nodes and 8 non-leaf nodes that need to
be stored in the database, which is significantly less than storing 42
leaf nodes derived from the classic combination. As each quadtree
node corresponds to a database tuple, fewer database tuples usually
lead to improved indexing and query response time.
Using an example, we next show that query results based on the

proposed combination are the same as those based on the classic
combination. Assuming path 3 is one of the paths representing
a query window cell after query window decomposition (see next
subsection for details) and thus we need to retrieve all the species
identifiers associated with cells of quadtree nodes that are descen-
dants of path 3 (c.f. Fig.1). Based on Fig. 3 it is obvious that
we need to retrieve all the black nodes and count the number of
data cells at the finest level for species A, B, and C, respectively.
Assume bk_id and sp_ids are the columns for the quadtree
paths and species identifiers, respectively, in a table called TB. An
SQL query selecting relevant tuples (quadtree node paths) in Post-

319

Build individual quadtrees

Combine quadtree leaf nodes and generate
database tuples (tree_path, species_id)

Store the database tuples and index on
tree_path column

Query window decomposition

Convert decomposed cells
into tree paths

Query string formulation

Database Preparation Query Transformation

Database Backend

Result Combination
• Eliminate duplicates
• Combine values that have

the same key

Client applications

1

1

2

2

Synchronization on
raster tesselation

Coordination on tree
path formulation

Figure 2: Components of the proposed system.

greSQL before summarizing the results looks as follows:

select bk_id, sp_ids from TB where bk_id <@ ‘3’

<@ is an operator defined by the LTREE module to predict whether
the LTREE object on the left is a descendant of the LTREE object
on the right. By definition, the operator is inclusive, i.e., an LTREE
object is a descendant of itself. The selection criterion bk_id <@

‘3’ means selecting all the tuples whose bk_id are descendants
of tree path ‘3’. Since only leaf nodes of the quadtree are stored
in the database based on the classic combination (see lower part of
Fig. 3), 10 database tuples representing leaf nodes will be returned
as answer to the query. It is not difficult to determine the result
based on Fig. 3, which are 16, 4, and 4 data cells at the finest level,
respectively.
When comparing the tables in Fig. 3 and Fig. 4 (the right-most

ones), we can see that the table in Fig. 4 is much smaller. Only six
identifiers are associated with the quadtree paths (one for each) and
the number is significantly less than the 18 identifiers in the same
table in Fig. 3. The example clearly demonstrates that the proposed
combination approach requires less storage and computation for
producing query results. Associating less species identifiers with
quadtree nodes (and hence database tuples) not only reduces stor-
age overhead, but, more importantly, reduces memory consump-
tion per database tuple when swapping pages between disk and
main memory. For a limited main memory buffer for a database
instance, this means that more database tuples can be brought into
main memory, which then speeds up query processing.

3.2 Query Window Decomposition
Because species distribution data is now stored as tree paths in

the database, in the proposed approach, it is necessary to transform
a spatial query window into tree paths to match database tuples.
While several query window decomposition algorithms are avail-
able [3, 4, 27, 34], we have chosen the one reported by Tsai et
al. in [34] because of its efficiency and ease of implementation. The
output of a decomposed window is given in the form of �x� y� n)
where x and y are the coordinates of the top-leftmost data cell at the

finest resolution and n is the width/height of a decomposed query
window cell (square). As the output is not suitable to be used for
a path query against PostgreSQL, we have also converted the algo-
rithm’s output into tree paths by repetitively dividing x and y by
2 until the size (width/height) of the divided quadrant is the same
as n. The remainders are kept during the division process and are
used to construct the path of the query window cell.
While the detailed algorithm is omitted due to space limitations,

Figure 5 shows an example of a query window decomposition us-
ing the algorithm presented in [34]. It uses the same query window
as shown in Fig. 1. At the finest level �k = 3), four query win-
dow cells, 0.1.3, 1.0.2, 1.0.3 and 1.1.2, are stripped from the left.
Subsequently, cells 0.3.1, 0.3.3 and 2.1.1 are stripped from the top,
cells 3.0.0, 3.0.1 and 3.1.0 are striped from the right and cells 1.3.0
and 1.3.2 are stripped from the bottom. At the next level �k = 2),
only one query window cell (1.2) is stripped before the query win-
dow becomes empty. The 4*4 query window is decomposed into
one level 2 and 12 level 3 cells. Note that the query window cells
are different from the data cells at the finest level. A query window
cell corresponds to a leaf node in the query quadtree and may cover
many data cells at the finest level. They agree only at the finest
level of the same spatial configuration that the data quadtree and
the query window quadtree share.
The level 2 node with tree path 1.2 has an exact match in the

database storing the quadtree paths shown in the combined quadtree
in Fig. 4. Among the 12 level 3 cells, some have exact matches in
the database and some do not. As we can see from the example, the
query window decomposition result does not always agree with the
combined quadtree that allows exact matches. As such, for query-
ing the decomposed cells, we not only have to search the database
for exact matches of cell paths but also have to search for their an-
cestors. On the other hand, for the decomposed cells that are not
leaf nodes in the corresponding quadtree, we also need to search for
all its descendants. Thus, the condition to match a query window
cell C with a database tuple r is as follows, assuming that a path is
both an ancestor and a descendant of itself.

320

1.0.2 A,C
1.0.3 A,C
1.1.2 C
1.1.3 C
1.2.0 A,B,C
1.2.1 A,B,C
1.2.2 A,B
1.2.3 A,B
1.3.0 C
1.3.1 C
1.3.2 A,C
1.3.3 C

0.1.2 A,B
0.1.3 A,B
0.2.1 A,B
0.2.2 C
0.2.3 A,B,C
0.3.0 A,B
0.3.1 A,B
0.3.2 A,B,C
0.3.3 A,B,C

2.0 C
2.1.0 A,B,C
2.1.1 A,B,C
2.1.2 A,C
2.1.3 A,B,C
2.2.0 C
2.2.1 C
2.3.0 A,C
2.3.1 A,C
2.3.2 C
2.3.3 C

3.0.0 A,B,C
3.0.1 A,B
3.0.2 A,B,C
3.0.3 A,B
3.1 A
3.2.0 A,C
3.2.1 A
3.2.2 A,C
3.2.3 A
3.3 A

Species A,
37 cells
13 leaf nodes

Species B,
19 cells
10 leaf nodes

Species C,
32 cells
20 leaf nodes

Combined quadtree, 42 leaf nodes
0 1 2 3

0

0

0

1

1

1 2

2

2

3

3

3

0 2
1 3

Figure 3: Individual quadtrees for species A, B, and C �top), and combined quadtree based on the classic combination approach

�bottom), including species identifiers associated with nodes and node paths, respectively.

321

A,B CA,B

A

B A,C C

A,B

A,B,C

A,C

C

B
C

A

Combined quadtree, 33 nodes

3 A
3.0 B
3.0.0 C
3.0.2 C
3.2.0 C
3.2.2 C

0.1.2 A,B
0.1.3 A,B
0.2.1 A,B
0.2.2 C
0.2.3 A,B,C
0.3 A,B
0.3.2 C
0.3.3 C

1.0.2 A,C
1.0.3 A,C
1.1.2 C
1.1.3 C
1.2 A,B
1.2.0 C
1.2.1 C
1.3 C
1.3.2 A

2.0 C
2.1 A,C
2.1.0 B
2.1.1 B
2.1.3 B
2.2.0 C
2.2.1 C
2.3 C
2.3.0 A
2.3.1 A

Figure 4: Combined quadtree based on the improved combination approach.

Figure 5: Example of query window decomposition.

(C.ID is an ancestor of r.path) or
(C.ID is a descendant of r.path)

The matching criteria are the same as in the filtering function in
Microsoft SQL Server Spatial [10]. Different from Microsoft SQL
Server Spatial, which only allows four levels in linear quadtree
paths, our approach does not impose a restriction on the depth of
tree paths. This is necessary to achieve the desired accuracy for
both data and query windows, which is different from the objec-
tive in Microsoft SQL Server Spatial whose the primary purpose is
object filtering.
For a complexity analysis of the window decomposition process,

in addition to a time complexity ofO�m) for the decomposition al-
gorithm, where m is the larger of the width and height of a query
window given in [34], the complexity for converting the cells into
tree paths has a complexity of O�l ∗ d), where l is the number of

decomposed cells and d is the depth of the quadtree for a prede-
fined raster tessellation. According to [34], l is proportional to one
dimension of the query window, and the complexity can be reduced
to O�m ∗ d), because m and l are comparable. Because d is a rel-
atively small number, for example, d = 14 is already sufficient for
global 1 minute resolution datasets, we conclude that the overall
complexity is O�m) for reasonable values of d. For a query win-
dow with a few degrees in width (longitude) and height (latitude),
m is about 100-1000. As such, the complexity for the window
decomposition component is insignificant, and experiments have
shown that in general the computation time for window decompo-
sition is negligible.

3.3 QueryOptimization and Result Combina-
tion

While the condition to match a cellC with a database tuple r dis-
cussed in the previous section (which we denote as baseline query)
guarantees to compute correct query results, it may not be the most
efficient technique. For a large query window that does not align
with quadrant divisions very well, the decomposed cells can be in
the thousands and most of them will be small cells with the same
ancestor nodes. In addition, as the queries are sent to the server
independently, duplicate tuples may be returned and need to be re-
moved when generating query results. Ideally, the number of dupli-
cates should be minimized as much as possible. In the following,
we discuss how to handle these two related issues.
We observe that while the decomposed cells are different, their

tree paths can share the same sub-paths. For example, two de-
composed query cells 0.3.2 and 0.3.3 share path 0.3. When the
query condition “C.ID is a descendant of r.path” is applied when
querying the two cells, tree path 0.3 will be returned twice from the
database. Figure 6 shows the quadtree for the query window based

322

on its decomposed cells (denoted as query quadtree). Assuming
all the cells in the query quadtree have matches in the database,
the number of times the database tuples corresponding to the query
cells will be returned has been indicated by labels in Fig. 6. These
numbers are the same as the numbers of leaf nodes under the re-
spective intermediate query tree nodes. For example, in Fig. 6, the
database tuples associated with node N1 (in the form of “x.y.z”)
will be returned 3 times, because it has three leaf nodes as its de-
scendants. The total number of duplicates can be fairly large when
the query quadtree has a large depth.

Least Common
Ancestor (LCA)

11 1

7

11

3 N1
2

2 1 2

1 1

7

Figure 6: Dividing nodes of a query tree into three parts.

To solve this problem, we divide the cells into three parts. The
first part consists of all cells below the rectangle. To answer a spa-
tial window query correctly, we need to retrieve all the tuples whose
quadtree paths are descendants (inclusive) of the nodes below the
rectangle. The second part covers the nodes inside the rectangle.
We need to retrieve all the tuples whose quadtree paths exactly
match the cell identifiers. As such, we can combine the queries
for individual nodes into one single query by using the query con-
dition

where r.path in �path1, path2, ..., pathN).

The exact query can further utilize B-Tree indexing to improve
query response time. The third part consists of only one node,
which is the root of the query tree and it is the Least Common
Ancestor of all the decomposed query cells. We need to retrieve
all the tuples whose paths are ancestors of the path correspond-
ing to the root of the query tree. It is not difficult to see that the
combination of the query results using the three types of cells is
the same as using the query criteria used previously without distin-
guishing the three types of nodes in the query quadtree. The new
approach is better in the sense that no duplicate tuples are returned
and thus, it is more efficient in query processing and result combi-
nation. For distinction, we term the approach as optimized query.
We will compare it with the baseline query in the experiments in
the next section.

3.4 Discussion
The proposed solution differs significantly from existing studies

on managing large-scale geo-referenced data in an object-relational
database environment. Rather than defining new data types, devel-
oping new indexing approaches, modifying query syntax and revis-
ing database query engines, our approach utilizes existing database
storage and indexing functions. Correspondingly, user queries are
transformed into a format that is supported by existing database
backends, and the results are combined to answer users’ queries
effectively and efficiently. As mainstream database systems are be-
coming more and more sophisticated, even though some systems
provide mechanisms to allow user-defined data types and indexing,

the shear amount of development work might explain the fact that
very few indexing and query processing algorithms have been im-
plemented and are not available in mainstream database systems.
We believe our solution has certain appealing features from an ap-
plication perspective. For example, the underlying database system
is left untouched, and one simply uses SQL query syntax instead
of being forced to use language APIs in some prototype systems.
The features are especially desirable when commercial database
systems are used where the source code is not available.
As mentioned previously, our approach relies on efficient tree

path indexing. In PostgreSQL, this functionality is provided by the
LTREE module. We argue that many commercial database systems
are now supporting XML data and thus are likely to support effi-
cient path indexing and querying. As reported in [10], Microsoft
SQL Server Spatial actually uses its XML indexing module for
polygon indexing based on a variant of the quadtree representa-
tion. As such, our approach can be applied to other mainstream
databases with minimal modifications.

4. EXPERIMENTS AND EVALUATION
As the research reported in this paper is application-driven, we

opt to perform experiments on real data. Among the species distri-
bution data published by NatureServe, we choose the birds datasets
as they are more complex than the mammal and reptile datasets.
Two groups of experiments will be reported. The first group of
experiments is to compare the storage requirements of the clas-
sic and improved combination approaches to combine individual
quadtrees and store the combined quadtree nodes in the form of
(tree_path, species_ids) tuples in database preparation phase. The
second group of experiments is to compare the query response times
of the baseline and the optimized query approaches at the client side
using different query window sizes.

4.1 Experiment Setup
We downloaded the bird species distribution maps from Nature-

Serve’s Website [23]. The geographical range of the bird species in
the datasets are limited to the Western hemisphere, i.e., (-180,-90,
0, 90). Therefore, the number of cells along both latitude and longi-
tude at 1 minute resolution is 180*60=10,800. We set the depth for
the quadtree for the experiments to 14 as 2**14=16,384 is already
greater than 10,800. Thus, the effective resolution at the finest res-
olution level is 180/2**14. We discard species that have only point
data and species whose ranges are less than the size of the cell
at the finest resolution. The final number of datasets for the bird
species tested is 4,062. All experiments aere performed on a Dell
Precision T5400 workstation with 8G main memory. As database
we use PostgreSQL 8.3.5. The query window decomposition and
result combination modules are written in Java. JDBC is used to
connect to the PostgreSQL database. We run the database and the
query client on the same machine to eliminate network communi-
cation cost. All reported query response times are measured in an
end-to-end manner.
For the query processing experiments, we use four window sizes,

0.1, 0.5, 1 and 5 degrees for both width and height. For each ex-
periment, we first randomly generate the center and then compute
the spatial range of the query window. In the experiments, if any
portion of the query window is outside of the study area (global
in this case) or the query window does not result in at least one
species, the cases will be discarded. For each query window, the
experiments are repeated 100 times, and only the experiments with
valid query results are recorded for further analysis. The number
of valid queries for the four query window sizes are 44, 41, 50 and
45, respectively.

323

4.2 Experiments on Database Preparation
Combining all the rasterized bird species distributions generates

46,139,247 cells and 1,318,136,140 pairs of (cell, identifier) com-
binations at the finest resolution, i.e., about 28.7 species per cell.
Using the classic combination, 7,511,823 quadtree leaf nodes

are generated while the improved combination approach results in
4,957,050 quadtree nodes, including both leaf nodes and interme-
diate nodes. Thus, the classic combination generates 51.5% more
database tuples than the improved combination. The improved
combination approach achieves a 1:9.3 compression ratio (�cells
at the finest resolution/�quadtree nodes). The results support our
claim that a quadtree representation is an effective way for manag-
ing large-scale species distribution data.
The classic combination associates a total of 831,903,250 iden-

tifiers with the 7,511,823 nodes, an average of 110.7; the proposed
combination associates a total of 23,865,343 identifiers with the
4,957,050 nodes, an average of 4.8. The total number of identifiers
to store in the classic combination is 34.9 times larger than that of
the proposed combination. The average number of identifiers to
associate with each database tuple for the classic combination is
23.0 times larger than that of the our combination approach. The
results clearly demonstrate the superiority of our proposed combi-
nation approach. The performance improvements are due to the
fact that storing species identifiers at the upper levels eliminates
the need to store multiple copies of identifiers at the lower levels.
The results also show that the linear quadtree storage principle for
a single identifier (each identifier represents a layer or dataset), i.e.,
only storing leaf nodes to save storage, does not apply to cases
where multiple identifiers are associated with quadtree nodes.

4.3 Experiments on Query Processing
In this group of experiments, we first examine query window de-

composition times followed by query response times using both the
baseline query and the optimized query for all queries. We then re-
port the average and maximum response times for the two query
approaches under the four query window sizes. Experiment results
show that most of the window decomposition cost is less than 10
milliseconds for up to 2,500 query cells in the query, which is the
maximum number among all our experiments. The cost is less than
3 milliseconds for query windows whose number of decomposed
query cells is less than 500. The cost for query window decompo-
sitions is negligible in general.
Figure 7 shows the query response times (in milliseconds, y-

axis) versus the number of returned species using both a base-
line query (blue diamonds) and the corresponding optimized query
(pink squares). As one can see, the optimized queries perform bet-
ter across different query window sizes. This can be further demon-
strated through Table 1. The optimized queries are 6-9.5 times
faster than the corresponding baseline queries for average query re-
sponse times and 5.5-8.3 times faster than the baseline queries for
maximum query response times for the four query window sizes,
respectively.
The average response times for the optimized query approach

vary from 0.03 to 1.16 seconds for query window sizes from 0.1 to
5.0 degrees. The fast response times make optimized queries suit-
able for many interactive applications. We again want to bring to it
to the reader’s attention that the excellent performance is achieved
without any modifications to the database backend, which makes
our solution preferable in many practical applications.

5. CONCLUSIONSANDONGOINGWORK
In this paper, we addressed the practically relevant problem of

storing, indexing and querying large-scale species distribution data

0

5000

10000

15000

20000

25000

0 200 400 600 800 1000

lt

op

Figure 7: Plot for query result set complexities versus query

response times �in milliseconds) for both the baseline �lt) and

optimized �op) query approaches.

Baseline Query Optimized Query

Window Size avg max avg max

0.1 0.14 0.36 0.03 0.06

0.5 0.93 2.39 0.12 0.25

1 1.63 3.93 0.20 0.50

5 9.68 21.13 1.16 3.38

Table 1: Average and maximum response times for four query

windows for the three approaches �in seconds).

in the form of binary rasters in a database environment. We adopt
a middleware approach by utilizing existing PostgreSQL database
support for tree paths and to transform spatial window queries for
tree path matching. Unlike previous studies, our approach does not
require any modifications to the database backend, and it is appli-
cable to database systems that support tree path matching. As most
of the mainstream database systems do or will support XML data,
the approach has the potential to provide spatial window query ca-
pabilities in such database systems.
In addition to building an efficient end-to-end system to manage

large-scale species distribution datasets, our contributions also in-
clude an improved combination approach to union individual quad-
trees and to prepare database tuples representing tree paths with
species identifiers. We presented an optimized query method to
avoid generating duplicate query result tuples and to reduce path
matching overhead at the same time. Experiments using 4000+
real bird species distribution datasets have shown that the proposed
combination approach reduces the number of database tuples by
more than 1/3 and that it reduces the average number of species
identifiers to be associated with each tuple from 110.6 to 4.8. Cor-
respondingly, the total number of tree path and identifier combina-
tions is reduced from 831,903,250 to 23,865,343, a 35 times sav-
ing. With respect to query optimization, the optimized queries are
6-9.5 times faster than the corresponding baseline queries for av-
erage query response times and 5.5-8.3 times faster than the base-
line queries for maximum query response times for four query win-
dow sizes, respectively. The average response times for optimized
queries vary from 0.03 to 1.16 seconds for query window sizes from
0.1 to 5.0 degrees, which makes the optimized query processing
technique suitable for many interactive applications.
In our future work, the primary focus is to further extend our ap-

proach to manage even larger scale of species distribution datasets,
possibly through utilizing support for additional data types, index-

324

ing and query optimization algorithms as well as developing new
approaches at both the server and client side. Our ultimate goal
is to support the management of all known species datasets at the
million scale and to reduce average query response times to below
one second for realistic query window sizes in order to support in-
teractive user applications, such as visual exploration.

6. REFERENCES

[1] A. Aboulnaga and W.G. Aref: Window query processing in
linear quadtrees. Distributed and Parallel Databases
10(2):111–126, 2001.

[2] W.G. Aref and I.F. Ilyas: SP-GiST: An extensible database
index for supporting space partitioning trees. Journal of
Intelligent Information Systems 17(2-3):215–240, 2001.

[3] W.G. Aref and H. Samet: Decomposing a Window into
Maximal Quadtree Blocks. Acta Informatica 30(5):425–439,
1993.

[4] W.G. Aref and H. Samet: Efficient Window Block Retrieval
in Quadtree-Based Spatial Databases. Geoinformatica
1(1):59–91, 1997.

[5] SEDAC Species Distribution Grid. http:
//sedac.ciesin.columbia.edu/species/.

[6] Distributed Generic Information Retrieval (DiGIR).
http://digir.sourceforge.net.

[7] Biodiversity Information Standards (TDWG).
http://www.tdwg.org.

[8] M.Y. Eltabakh, R. Eltarras, and W.G. Aref:
Space-Partitioning Trees in PostgreSQL: Realization and
Performance. In Proc. 22nd International Conference on
Data Engineering, IEEE Computer Society, 2006.

[9] C. Esperanca, and H. Samet: Experience with SAND-Tcl: A
scripting tool for spatial databases. Journal of Visual
Languages and Computing 13(2):229–255, 2002.

[10] Y. Fang, M. Friedman, G. Nair, M. Rys, and A.F. Schmid:
Spatial indexing in Microsoft SQL server 2008. In
Proc. 2008 ACM SIGMOD International Conference on
Management of Data, 1207–1216, 2008.

[11] V. Gaede and O. Günther: Multidimensional access methods.
ACM Computing Surveys 30(2):170–231, 1998.

[12] I. Gargantini: An Effective Way to Represent Quadtrees.
Communications of the ACM 25(2):905–910, 1982.

[13] Global Biodiversity Information Facility.
http://www.gbif.org.

[14] K. He and J. Zhang: Testing the correlation between beta
diversity and differences in productivity among global
ecoregions, biomes, and biogeographical realms. Ecological
Informatics 4(2):93–98, 2009.

[15] HerpNET: A new tool for the study and conservation of
biodiversity. http://www.herpnet.org.

[16] G.M. Hunter and K. Steiglitz: Operations on Images Using
Quad Trees. IEEE Transactions on Pattern Analysis and
Machine Intelligence 1(2):145–153, 1979.

[17] R.K.V. Kothuri, S. Ravada, and D. Abugov: Quadtree and
R-tree indexes in Oracle spatial: a comparison using GIS
data. In Proc. 2002 ACM SIGMOD international conference
on management of data, 546–557, 2002.

[18] R. Kothuri, A. Godfrind, and E. Beinat: Pro Oracle Spatial
for Oracle Database 11g. Apress, 2007.

[19] Y. Manolopoulos, A. Nanopoulos, A.N. Papadopoulos, and
Y. Theodoridis: R-Trees: Theory and Applications. Springer,
New York, 2005.

[20] Mammal Networked Information System)MaNIS.
http://manisnet.org/.

[21] D.M. Mark and D.J. Abel: Linear Quadtrees from Vector
Representations of Polygons. IEEE Transactions on Pattern
Analysis and Machine Intelligence 7(3):344–349, 1985.

[22] G.M. Morton: A computer oriented geodetic data base and a
new technique in file sequencing. Technical Report, IBM,
Ottawa ,Canada, 1966.

[23] NatureServe: A Network Connecting Science with
Conservation.
http://www.natureserve.org/getData/

animalData.jsp.

[24] Ocean Biographic Information System (OBIS).
http://www.iobis.org/.

[25] ORNithological Information System (ORNIS).
http://olla.berkeley.edu/ornisnet/.

[26] LTREE Module for PostgreSQL
http://www.postgresql.org/docs/

current/static/ltree.html.

[27] G. Proietti: An optimal algorithm for decomposing a window
into maximal quadtree blocks. Acta Informatica
36(4):257–266, 1999.

[28] rasdaman: The Intelligent RasterServer.
http://www.rasdaman.com.

[29] H. Samet: The Quadtree and Related Hierarchical
Data-Structures. ACM Computing Surveys 16(2):187–260,
1984.

[30] H. Samet, A. Rosenfeld, C.A. Shaffer, and R.E. Webber: A
Geographic Information-System Using Quadtrees. Pattern
Recognition 17(6):647–656, 1984.

[31] H. Samet: Foundations of Multidimensional and Metric Data
Structures. Morgan Kaufmann Publishers Inc., 2005.

[32] H. Samet and R.E. Webber: Extending the SAND spatial
database system for the visualization of three-dimensional
scientific data. Geographical Analysis 36, 87–101, 2006.

[33] C.A. Shaffer, H. Samet, and R.C. Nelson: QUILT: a
geographic information system based on quadtrees.
International Journal of Geographical Information Systems,
Volume 4(2):103–31, 1990.

[34] Y.H. Tsai, K.L.N. Chung, and W.Y. Chen: A
strip-splitting-based optimal algorithm for decomposing a
query window into maximal quadtree blocks. IEEE
Transactions on Knowledge and Data Engineering
16(4):519–523, 2004.

[35] Digital Representations of Tree Species Range Maps from
“Atlas of United States Trees” by Elbert L. Little, Jr. http:
//esp.cr.usgs.gov/data/atlas/little/.

[36] J. Zhang and L. Gruenwald: Embedding and extending GIS
for exploratory analysis of large-scale species distribution
data. In Proc. 16th ACM SIGSPATIAL International
Symposium on Advances in Geographic Information
Systems, 28, 2008.

[37] J. Zhang, D.D. Pennington, and X. Liu: GBD-Explorer:
Extending open source Java GIS for exploring
ecoregion-based biodiversity data. Ecological Informatics
2(2):94–102, 2007.

325

