

LARGE-SCALE SPATIAL DATA MANAGEMENT ON MODERN PARALLEL AND

DISTRIBUTED PLATFORMS

by

SIMIN YOU

A dissertation submitted to the Graduate Faculty in Computer Science

in partial fulfillment of the requirements for the degree of Doctor of Philosophy,

The City University of New York

2015

ii

© 2015

SIMIN YOU

All Rights Reserved

iii

This manuscript has been read and accepted for the

 Graduate Faculty in Computer Science in satisfaction of the

dissertation requirement for the degree of Doctor of Philosophy.

Dr. Jianting Zhang

Date

Chair of Examining Committee

Dr. Robert Haralick

Date

Executive Officer

Dr. Zhigang Zhu

Dr. Spiros Bakiras

Dr. Jun Zhang

Supervisory Committee

THE CITY UNIVERSITY OF NEW YORK

iv

Abstract

LARGE-SCALE SPATIAL DATA MANAGEMENT ON MODERN PARALLEL AND

DISTRIBUTED PLATFORMS

by

SIMIN YOU

Adviser: Dr. Jianting Zhang

Rapidly growing volume of spatial data has made it desirable to develop efficient techniques for

managing large-scale spatial data. Traditional spatial data management techniques cannot meet

requirements of efficiency and scalability for large-scale spatial data processing. In this

dissertation, we have developed new data-parallel designs for large-scale spatial data

management that can better utilize modern inexpensive commodity parallel and distributed

platforms, including multi-core CPUs, many-core GPUs and computer clusters, to achieve both

efficiency and scalability. After introducing background on spatial data management and modern

parallel and distributed systems, we present our parallel designs for spatial indexing and spatial

join query processing on both multi-core CPUs and GPUs for high efficiency as well as their

integrations with Big Data systems for better scalability. Experiment results using real world

datasets demonstrate the effectiveness and efficiency of the proposed techniques on managing

large-scale spatial data.

v

Contents

Abstract .. iv

List of Tables ... ix

List of Figures ... x

Chapter 1 Introduction ... 1

Chapter 2 Background and Related Work ... 4

2.1 Modern Parallel and Distributed Platforms .. 4

2.1.1 Single-Node Platforms .. 4

2.1.2 Multi-Node Platforms ... 11

2.2 Spatial Indexing Techniques .. 17

2.2.1 Grid-Files .. 18

2.2.2 Quadtrees .. 20

2.2.3 R-trees ... 22

2.2.4 Distributed Spatial Indexing Techniques .. 23

2.3 Spatial Join Techniques .. 30

2.3.1 Problem Definition.. 30

2.3.2 Plane-Sweep based Spatial Join .. 34

2.3.3 Indexed Nested-loop Spatial Join ... 36

vi

2.3.4 Synchronized Index Traversal based Spatial Join .. 38

2.3.5 Partition Based Spatial Join .. 40

Chapter 3 Parallel and Distributed Spatial Indexing ... 45

3.1 Overview .. 45

3.2 Parallel Spatial Indexing on Single-Node .. 45

3.2.1 Data Parallel Geometry Layout .. 45

3.2.2 Parallel Grid-File based Indexing for MBRs .. 49

3.2.3 Parallel R-tree based Indexing for MBRs ... 53

3.2.4 Parallel Quadtree based Indexing for Points ... 60

3.3 Multi-Node Distributed Spatial Indexing ... 63

3.4 Summary .. 66

Chapter 4 Parallel and Distributed Spatial Join ... 68

4.1 Single-Node Parallel Spatial Join ... 69

4.1.1 Parallel Spatial Filtering ... 69

4.1.2 Parallel Refinement ... 72

4.2 Multi-Node Distributed Spatial Join .. 76

4.2.1 Spatial Partition based Spatial Join ... 77

4.2.2 Broadcast based Spatial Join ... 81

4.3 Large-Scale Spatial Data Processing Prototype Systems ... 83

vii

4.3.1 SpatialSpark .. 83

4.3.2 ISP ... 87

4.3.3 LDE ... 89

4.4 Summary .. 93

Chapter 5 Evaluation and Performance Study ... 96

5.1 Setup ... 97

5.2 Parallel Spatial Data Management on Single-Node ... 100

5.2.1 Data-Parallel R-tree Implementation .. 100

5.2.2 Grid-file based Spatial Join ... 104

5.3 Parallel Spatial Data Management on Multi-Node .. 107

5.3.1 SpatialSpark .. 107

5.3.2 ISP ... 112

5.3.3 LDE ... 116

Chapter 6 Conclusions and Future Work .. 121

6.1 Summary of Contribution... 121

6.2 Discussions and Future Work .. 121

6.2.1 Spatial Indexing Techniques ... 121

6.2.2 Spatial Join Techniques .. 123

Appendix A. Parallel Primitives ... 125

viii

Appendix B. Publication during PhD Study ... 128

Reference .. 130

ix

List of Tables

Table 1 Summary of Spatial Indexes .. 18

Table 2 Summary of Spatial Join Techniques .. 33

Table 3 Machine Specifications .. 96

Table 4 Datasets Sizes .. 99

Table 5 Specs of Queries .. 99

Table 6 End-to-End Runtimes of Experiment Results of Full Datasets (in seconds) 109

Table 7 Breakdown Runtimes of Experiment Results Using Sample Datasets (in seconds) 110

Table 8 ISP Performance on Single Node .. 114

Table 9 Performance Comparisons between ISP and LDE in Standalone and Single-Node Modes

... 118

Table 10 Partition-based Spatial Join Results (end-to-end, time in seconds) 120

x

List of Figures

Figure 1 Parallel and Distributed Platforms.. 4

Figure 2 Multi-core CPU Architecture ... 6

Figure 3 GPU Architecture and Programming Model .. 9

Figure 4 MBR Examples .. 18

Figure 5 Spatial Index Examples .. 20

Figure 6 Partition Examples.. 27

Figure 7 Spatial Join Examples... 30

Figure 8 Intersection based Spatial Join Example .. 31

Figure 9 Spatial Join of WITHIN d .. 32

Figure 10 Indexed Nested-Loop Join Algorithm .. 37

Figure 11 Tile-to-Partition and Skewed Spatial Data ... 40

Figure 12 Spatial Data Layout Example ... 48

Figure 13 Extracting MBRs using Parallel Primitives .. 49

Figure 14 Parallel Grid-File based Indexing ... 50

Figure 15 Illustration of Linear R-tree Node Layout .. 53

Figure 16 Parallel R-tree Bulk Loading ... 54

Figure 17 Low-x R-tree Bulk Loading Example ... 56

Figure 18 STR R-tree Bulk Loading Example ... 58

Figure 19 Parallel Primitive based BFS Batch Query .. 59

Figure 20 A Running Example to Illustrate the Process of Generating Point Quadrants 60

Figure 21 Algorithm of Parallel Point Quadrant Generation .. 61

file:///C:/Users/you/Dropbox/thesis/draft/simin_thesis_final.docx%23_Toc437336697
file:///C:/Users/you/Dropbox/thesis/draft/simin_thesis_final.docx%23_Toc437336698
file:///C:/Users/you/Dropbox/thesis/draft/simin_thesis_final.docx%23_Toc437336699
file:///C:/Users/you/Dropbox/thesis/draft/simin_thesis_final.docx%23_Toc437336700
file:///C:/Users/you/Dropbox/thesis/draft/simin_thesis_final.docx%23_Toc437336701
file:///C:/Users/you/Dropbox/thesis/draft/simin_thesis_final.docx%23_Toc437336702
file:///C:/Users/you/Dropbox/thesis/draft/simin_thesis_final.docx%23_Toc437336703
file:///C:/Users/you/Dropbox/thesis/draft/simin_thesis_final.docx%23_Toc437336704
file:///C:/Users/you/Dropbox/thesis/draft/simin_thesis_final.docx%23_Toc437336705
file:///C:/Users/you/Dropbox/thesis/draft/simin_thesis_final.docx%23_Toc437336706
file:///C:/Users/you/Dropbox/thesis/draft/simin_thesis_final.docx%23_Toc437336707
file:///C:/Users/you/Dropbox/thesis/draft/simin_thesis_final.docx%23_Toc437336708
file:///C:/Users/you/Dropbox/thesis/draft/simin_thesis_final.docx%23_Toc437336709
file:///C:/Users/you/Dropbox/thesis/draft/simin_thesis_final.docx%23_Toc437336710
file:///C:/Users/you/Dropbox/thesis/draft/simin_thesis_final.docx%23_Toc437336711
file:///C:/Users/you/Dropbox/thesis/draft/simin_thesis_final.docx%23_Toc437336712
file:///C:/Users/you/Dropbox/thesis/draft/simin_thesis_final.docx%23_Toc437336713
file:///C:/Users/you/Dropbox/thesis/draft/simin_thesis_final.docx%23_Toc437336714
file:///C:/Users/you/Dropbox/thesis/draft/simin_thesis_final.docx%23_Toc437336715
file:///C:/Users/you/Dropbox/thesis/draft/simin_thesis_final.docx%23_Toc437336716
file:///C:/Users/you/Dropbox/thesis/draft/simin_thesis_final.docx%23_Toc437336717

xi

Figure 22 Parallel Quadtree Construction from Leaf Quadrants .. 62

Figure 23 Distributed Spatial Indexing Structure ... 65

Figure 24 Single Node Parallel Spatial Join ... 68

Figure 25 Light-weight Indexing for Point Dataset .. 70

Figure 26 Cell-to-polygon Relationship ... 72

Figure 27 Point-in-polygon Refinement on CPU and GPU.. 74

Figure 28 Spatial Partition based Spatial Join .. 79

Figure 29 Broadcast based Spatial Join .. 80

Figure 30 Table Layout in Spark SQL .. 84

Figure 31 Spatial Join in ISP .. 85

Figure 32 Point-in-polygon test based Spatial Join on ISP .. 87

Figure 33 LDE Architecture ... 90

Figure 34 Performance of R-tree Construction (time in milliseconds)....................................... 103

Figure 35 Speedups of GPU-based Implementations over Multi-Core CPU-based

Implementations for Spatial Window Query Processing .. 104

Figure 36 SpatialSpark Performance .. 108

Figure 37 Scalability Test Results of ISP-GPU and ISP-MC for taxi-nycb (left) and G50M-wwf

(right) Experiments ... 116

Figure 38 Scalability Comparisons between ISP and LDE on Multi-core CPU and GPU

Equipped Clusters ... 119

file:///C:/Users/you/Dropbox/thesis/draft/simin_thesis_final.docx%23_Toc437336718
file:///C:/Users/you/Dropbox/thesis/draft/simin_thesis_final.docx%23_Toc437336719
file:///C:/Users/you/Dropbox/thesis/draft/simin_thesis_final.docx%23_Toc437336720
file:///C:/Users/you/Dropbox/thesis/draft/simin_thesis_final.docx%23_Toc437336721
file:///C:/Users/you/Dropbox/thesis/draft/simin_thesis_final.docx%23_Toc437336722
file:///C:/Users/you/Dropbox/thesis/draft/simin_thesis_final.docx%23_Toc437336723
file:///C:/Users/you/Dropbox/thesis/draft/simin_thesis_final.docx%23_Toc437336724
file:///C:/Users/you/Dropbox/thesis/draft/simin_thesis_final.docx%23_Toc437336725
file:///C:/Users/you/Dropbox/thesis/draft/simin_thesis_final.docx%23_Toc437336726
file:///C:/Users/you/Dropbox/thesis/draft/simin_thesis_final.docx%23_Toc437336727
file:///C:/Users/you/Dropbox/thesis/draft/simin_thesis_final.docx%23_Toc437336728
file:///C:/Users/you/Dropbox/thesis/draft/simin_thesis_final.docx%23_Toc437336729
file:///C:/Users/you/Dropbox/thesis/draft/simin_thesis_final.docx%23_Toc437336734
file:///C:/Users/you/Dropbox/thesis/draft/simin_thesis_final.docx%23_Toc437336734

1

Chapter 1 Introduction

Recently, the fast growing data volume brings significant challenges on managing datasets at

very large scale. It motives the development of emerging “Big Data” techniques for managing

and analyzing the data. As most of information over the web includes spatial components, it is

desirable to develop efficient techniques for large-scale spatial data, or “Big Spatial Data”. For

example, the increasingly available mobile devices have been generating tremendous amount of

point data, such as locations collected using GPS. Advanced environmental observation and

sensing technologies and scientific simulations have also generated large amounts of spatial data.

For example, the Global Biodiversity Information Facility (GBIF
1
) has accumulated more than

400 million species occurrence records and many of them are associated with a location. It is

essential to map the occurrence records to various ecological regions to understand the

biodiversity patterns and make conservation plans.

On the other hand, parallel and distributed computing technologies have been developed

to improve performance, including both hardware and software. The recent hardware

developments include multi-core CPUs and emerging GPGPU (General Purpose computing on

Graphics Processing Units) technologies. Also, memory capacity is getting larger, which

motivates efficient in-memory processing techniques. On the software side, there are two major

improvements over the recent decade. One improvement includes modern programming tools for

multi-core CPUs and many-core GPUs, which make massive parallel computing power

accessible for general public. The other improvement is the development of Big Data

1
 http://data.gbif.org

2

technologies, e.g., MapReduce [19] and its open source implementation Apache Hadoop
2
, which

allows using simple computing models to process large-scale datasets on distributed computing

systems without deep knowledge in parallel and distributed computing. However, these

platforms are primarily designed for relational data and may not be efficient or even suitable for

spatial data.

Existing serial computing techniques for managing spatial data [82] usually focus on

accelerating spatial data processing on single core CPUs, which are not suitable to process

spatial data at very large scale especially when the data is beyond the capacity of a single

machine. Although parallel techniques have been proposed for processing spatial data over the

past few decades [82], most of them have not been able to take advantages of state-of-the-art

parallel and distributed platforms. To alleviate the gap between the available computing power of

parallel and distributed platforms and the practical needs on large-scale spatial data processing,

we have developed techniques that can efficiently manage large-scale spatial data on modern

parallel and distributed platforms. First of all, we have presented new parallel designs, including

parallel spatial indexing and query processing techniques, for large-scale spatial data

management. Second, we have investigated on how to implement such parallel designs using

parallel primitives that are efficiently supported by many modern parallel platforms to achieve

interoperability and productivity. Last but not least, we have developed relevant techniques to

scale out spatial data processing to clusters that are increasingly available in Cloud Computing.

2
 http://hadoop.apache.org

3

The major contributions of this dissertation are as follows. First, we have identified

practical challenges in large-scale spatial data management, especially in spatial indexing and

spatial join processing. Second, we have developed parallel designs that are capable of taking

advantages of state-of-the-art parallel and distributed platforms to address the practical needs of

high performance computing for large-scale spatial data. Third, we have implemented prototype

systems based our parallel designs to demonstrate the feasibility of the introduced designs.

Finally, extensive experiments have been performed to demonstrate efficiency of the designs and

implementations. Performance results of multiple reference implementations are discussed to

understand the advantages and disadvantages of exploiting different modern parallel and

distributed platforms in processing large-scale spatial data.

The rest of this dissertation is organized as follows. Chapter 2 introduces background and

related work of this dissertation. Chapter 3 presents designs and implementations of parallel and

distributed spatial indexing techniques. Chapter 4 provides designs and implementations of

large-scale spatial join, which scale up on single-node parallel platforms and scale out on multi-

node distributed platforms. Chapter 5 conducts extensive experiments for performance study on

the implementations of the introduced designs. Finally, Chapter 6 concludes this dissertation and

outlines potential future work.

4

Chapter 2 Background and Related Work

2.1 Modern Parallel and Distributed Platforms

The recent development of parallel computing technologies generally exploits two levels of

parallel computing power. The first level is single-node parallelization that tightly couples

multiple processors within a single machine, such as multi-core CPUs and GPGPUs, to deliver

high computing power. The second level is multi-node parallelization that aggregates computing

power from multiple loosely coupled machines in a distributed way. Figure 1 illustrates a typical

architecture of modern parallel and distributed platforms that will be investigated in this

dissertation.

2.1.1 Single-Node Platforms

Parallel techniques have been developed on a single machine to deliver higher performance. An

effort of increasing computing power on a single machine is to add more cores on a single CPU

multi-node cluster

Distributed Framework

Spark MapReduce Impala

CPU

GPU

Memory

Disk

single-node Core

L1 VPU

Core

L1 VPU

Core

L1 VPU

Core

L1 VPU

L2

L2

L2

L2

L3

CPU

GPU

Shared

Global Memory

Shared Shared Shared Shared

SM

Figure 1 Parallel and Distributed Platforms

5

socket (referred as multi-core CPU techniques), so that multiple tasks can be processed

concurrently. Another effort is to use co-processors that are capable of providing massive

parallel computing power, such as GPUs for general purpose computing (referred as many-core

GPU techniques). All parallel processing units on the machines share the same memory space

and they are considered as shared-memory systems.

2.1.1.1 Multi-core CPUs

While clock frequency on a single CPU core is nearly reaching physical limit, in the past few

years, manufactures start to pack multiple cores into a single CPU socket in order to continue

increase single CPU performance [38]. Today, almost every commodity computer has at least

one multi-core CPU, which brings parallel computing to general public. Even for mobile phones,

it is not uncommon to have a multi-core processor. However, there is still a significant gap

between hardware and software as many software packages have not fully taken advantage of

parallel hardware yet. To alleviate the gap, various parallel programming models have been

developed. A common approach to utilize multi-core systems is using thread model, such as

those based on OpenMP
3
 and Intel Threading Building Blocks (TBB

4
) parallel libraries. In the

thread model, computation is decomposed and distributed to all available cores in the form of

software threads and all threads share the same memory space. This level of parallelism is

termed as task level parallelism, where computation is divided into tasks and executed

independently among threads.

3
 http://openmp.org

4
 http://threadingbuildingblocks.org

6

In addition to multi-cores, current CPUs usually have specialized hardware components

such as Vector Processing Unit (VPU) to provide Single-Instruction-Multiple-Data (SIMD)

capability[38]. With VPUs, each instruction can process multiple data items simultaneously. For

instance, a 256-bit VPU can process eight 32-bit words in parallel. Thread level parallelism is

then further enhanced by utilizing the specialized VPUs, which leads to another level of

parallelism. Assuming there are p cores in a multi-core computing system and each core can

perform SIMD operation on v items, the maximum number of parallel processing units in such a

system is p*v. While most of existing works on parallel spatial data management only focus on

utilizing available processing cores in parallel and distributed systems, it is possible to take

advantage of VPUs which can further improve the overall performance. For relational data

management, there are several works [54, 77, 109] successfully demonstrated the efficiency of

utilizing SIMD operations. However, using SIMD computing power for spatial data processing is

challenging for two reasons. First, SIMD instructions are usually restricted, and it is nontrivial to

Figure 2 Multi-core CPU Architecture

 L2 Cache

L1 Cache

Shared L3 Cache

 L2 Cache

L1 Cache

 L2 Cache

L1 Cache

 L2 Cache

L1 Cache

 C

B

A

Thread

SIMD unit

…

#pragma omp simd

for (i=0; i<n; i++)

C[i] = A[i] + B[i];

7

identify which portions of spatial data processing are suitable for SIMD execution. Second, the

memory access mechanism of SIMD units requires careful designs; otherwise it will result in low

performance. Thus, memory access pattern in spatial data processing needs to be considered in

order to achieve good performance.

Figure 2 shows an abstract architecture of multi-core CPUs including memory access

hierarchy. Each core of the CPU has specialized SIMD units and private L1 and L2 caches, and

there also exists shared L3 cache among CPU cores. The multi-level cache hierarchy aims to

reduce expensive memory access time. The lower-left side of Figure 2 provides an example of

adding up two arrays (A and B) and storing results to another array (C) using both threads and

SIMD units. The workload is first divided into ranges, and each range is assigned to a thread for

parallel processing. Then, within each thread, the range is further divided into batches which are

processed by a SIMD unit in multiple rounds. Current CPUs also have limitations when used for

large-scale spatial data management. First, memory access is expensive if memory hierarchy is

not taken into consideration. When dealing with large-scale datasets, cache conscious data

structures are critical for efficient memory access. For instance, dynamically allocated tree

structures are very likely to result in significant cache misses during tree traversals. Second,

irregular memory accesses can also result in serial executions on VPUs which is inefficient.

Excessive use of memory gather/scatter operations might negatively impact SIMD performance

as well. These challenges motivate us to develop data-parallel designs for large-scale spatial data

processing that can be efficiently supported by current multi-core CPU platforms with SIMD

capability.

8

2.1.1.2 GPGPUs

Traditional GPUs are dedicated accelerators for visual computing such as computer graphics,

video decoding and 3D games. Unlike CPUs, GPUs have a large number of processing units

which can perform computation on many pixels in parallel. Special function units (e.g. sine,

cosine, reciprocal, square root) are also provided in GPUs to accelerate floating point

computation in computer graphics applications. Many modern GPUs are capable of general

computing and GPGPU technologies are becoming increasingly available, e.g., NVIDIA’s

Compute Unified Device Architecture (CUDA
5
) first appeared in 2007. Inheriting the advantage

of using a large amount of processing units designed for graphical computing, GPGPUs can

provide parallel computation by exploiting the general computing power of these parallel

processing units. In this dissertation, we use GPU to refer to GPGPU unless otherwise explicitly

stated.

A single GPU device consists of a chunk of GPU memory and multiple Streaming

Multiprocessors (SMs). Each SM has multiple GPU cores; for example, there are 192 GPU cores

on a SM and 14 SMs on an NVIDIA GTX Titan GPU. In the CUDA programming model, the

parallel portions of an application executed on the GPU are called kernels. A kernel consists of

multiple computing blocks and each block has multiple threads. During an execution, a

computing block is mapped to a SM and each thread is executed on a GPU core. Notice that

CUDA thread is different from CPU thread. A GPU core is typically weaker than a CPU core

with lower clock frequency and much smaller caches. As a group of GPU cores (currently 32 in

5
 https://developer.nvidia.com/what-cuda

9

CUDA) in a computing block, called a warp, is only allowed to perform SIMD operations, GPU

cores in a warp behave similarly to VPUs rather than CPU cores. All GPU cores within a warp

can be considered as a VPU with a larger SIMD length (32*32=1024 bits). In addition, GPU

cores assigned to the same computing block can use shared memory to share data. Different from

CPUs that use large caches to hide memory latency, GPUs have much smaller caches but can use

large numbers of computing blocks/warps to hide memory latency. Suppose the number of SMs

on a GPU is p and each SM consists of v GPU cores, the total number of parallel processing units

is then p*v which is similar to multi-core CPUs. However, p*v processing units on GPUs is

significantly larger than that of multi-core CPUs. For instance, NVIDIA GTX Titan GPUs have

14 SMs and there are 192 GPU cores in a SM, which allows processing 14*192=2688 32-bit

words simultaneously. In contrast, Intel X5405 CPUs only have 4 cores with 256-bit VPUs

which can process 4*8=32 32-bit words in parallel.

Parallel computing on GPUs also has some disadvantages. The major problem is that

Thread Block

Figure 3 GPU Architecture and Programming Model

//kernel function on GPUs

__global__ void addVector(int *A, int *B,int *C)
{

 //using built-in variables (blockDim.x=N)
 int id= blockIdx.x * blockDim.x +threadIdx.x;

 //execute in parallel for all threads in a block

 C[id]=A[id]+B[id];
}

int main()
{

...

//allocate A, B, C vectors on GPUs

//transfer A/B to GPU from CPU

//kernel call using M blocks and N threads per block
addVector<<<M,N>>>>(A,B,C)

//transfer C back to CPU if needed
...

10

communication cost between CPU main memory and GPU memory is expensive. Currently

GPUs are attached via PCI-E buses and data must be first transferred from CPU memory to GPU

memory before performing computation on GPUs. Similarly, results need to be sent back to CPU

memory for further processing after executions on GPUs. Because data transfer over a PCI-E bus

is expensive (currently limited to 16GB/s for PCI-E 3 devices), the overall performance

accelerated by GPUs might not be significant or even worse in some scenarios. In addition,

GPUs typically have smaller memory capacity than CPUs, which can be a limiting factor in

many applications. Even though GPUs can use pinned memory from CPU memory to virtually

expand their memory capacities, the performance might be hurt due to data transfer overhead

between CPU memory and GPU memory.

Figure 3 illustrates a typical GPU architecture and programming model. The left side of

the figure shows an example of adding up two vectors in parallel on GPUs (using the CUDA

model). The data is first transferred from CPU memory to GPU memory as shown in the first

few lines of the main function. After that, the workload is divided into M blocks and each block

uses N threads for computation. In CUDA, a block will be assigned to a physical SM for

execution where each thread corresponds to a GPU core of the SM. Within a computing block,

an index can be computed to address the relevant vector elements for inputs/outputs based on its

thread identifier (threadIdx.x) and block identifier (blockIdx.x), which are automatically assigned

by the hardware scheduler, and block dimension (blockDim.x), which is defined when the kernel

is invoked.

11

GPU technology has been adopted in relational data management to accelerate database

operators in the past few years [8, 27, 32, 36, 37, 93, 105]. Even before the existence of general

purpose computing on GPUs, Bandi et al. [9, 10] has developed spatial selection and join query

processing on GPUs using graphics rendering. As general purpose GPU computing becomes

rapidly available in the past few years especially the development of CUDA programming

model, many spatial data management techniques [7, 34, 49, 58, 65, 78, 79, 89, 90, 99–101],

including spatial indexing and query processing, have been developed on GPUs.

2.1.2 Multi-Node Platforms

While many supercomputers in High-Performance Computing (HPC) centers have adopted

distributed computing architectures and supported distributed computing over multiple

computing nodes, they typically require users to adopt a pre-installed software stack such as

Message Passing Interface (MPI
6
) libraries to simplify development and operation. Restricted

accesses to HPC resources and steep learning curves on software tools have limited the adoptions

of using HPC for Big Data applications. In contrast, Cloud Computing technologies have made it

possible to rent cluster computers on-demand and pay-as-you-go with affordable prices for

general public. New distributed computing tools, such as MapReduce [20] and its open source

implementation Apache Hadoop
7
, have made it much easier to develop and deploy parallel tasks

on cluster computers provided by Cloud Computing vendors, such as Amazon EC2
8
. We next

review two categories of distributed Big Data platforms, one is based on disk and the other

6
 http://www.mpi-forum.org

7
 https://hadoop.apache.org/

8
 http://aws.amazon.com/ec2/

12

further takes advantages of in-memory processing. Large-scale spatial data management on in-

memory platforms can be significantly more performant than disk-based platforms, especially

when GPU hardware accelerations are incorporated. On the other hand, disk-based platforms

have longer history than in-memory platforms and are typically more robust and better

supported. They may still be preferable when computing resources on individual computing

nodes are limited.

2.1.2.1 Disk-based Platforms: MapReduce/Hadoop

MapReduce [20] is a parallel computing framework that is developed for processing large-scale

datasets on large computer clusters. Unlike traditional cluster computing frameworks that require

user to take care every aspect of parallel computing, MapReduce simplifies a parallel process

into two steps, namely map and reduce. The map step divides input into sub-problems and sends

them among all available nodes for distributed processing. The reduce step collects results from

distributed nodes and assembles them into the final output. Users only need to write customized

map and reduce functions and distributed execution is automatically accomplished by

MapReduce runtime. Comparing with traditional parallel frameworks on clusters such as MPI,

MapReduce is relatively simple and hides details of task scheduling and communication. A

typical representation of MapReduce is as follows:

The user-defined map function converts the original problem into representation,

and then the pairs are shuffled and distributed among all processing units automatically.

13

Subsequently each processor applies operations on in parallel and generates

intermediate results, i.e., a list of . Finally, the reduce function takes the

intermediate results as input and reduces on to form the final output list.

A popular and widely used MapReduce implementation is Apache Hadoop. The Hadoop

platform provides a dedicated distributed file system on top of operating system’s file system,

called Hadoop Distributed File System (HDFS). Data is stored in HDFS and is accessible to all

computing nodes. MapReduce/Hadoop is a scalable system and has a relatively easy-to-use

programming model. However, communication cost can be very high because data needs to be

distributed to all computing nodes during the shuffling phase. For complex problems,

decomposing the original problem using the MapReduce framework can be challenging due to

the restrictive requirements of map and reduce operations. In order to utilize MapReduce, a

problem may be decomposed in a suboptimal way that could potentially result in poor

performance. The simplicity of MapReduce model brings scalability on large-scale data

progressing; however, it may sacrifice expressive power and performance. Another issue of

Hadoop based systems is that temporary results are written to HDFS, which sometimes can cause

performance downgrade because of the excessive disk accesses which are very expensive.

2.1.2.2 In-memory based Platforms: Spark and Impala

As memory is getting significantly cheaper and computers are increasingly equipped with large

memory capacities, there are considerable research and application interests in processing large-

scale data in memory to reduce disk I/O bottlenecks and achieve better performance. Existing

applications based on MapReduce/Hadoop have been praised for high scalability but criticized

14

for low efficiency [6]. Indeed, outputting intermediate results to disks, although advantageous for

supporting fault-tolerance, incurs excessive disk I/Os which is getting significantly more

expensive when compared with floating point computation on modern hardware and is

considered a major performance bottleneck. In-memory big data systems designed for high

performance, such as Apache Spark [106] and Cloudera Impala [14], have been gaining

popularities since their inceptions.

From a user’s perspective, Spark is designed as a development environment that provides

data parallel APIs (Application Programming Interfaces) on collection/vector data structures,

such as sort, map, reduce and join, in a way similar to parallel primitives. Spark is built on the

notion of RDD (Resilient Distributed Dataset) [106] and implemented using Scala, a functional

language that runs on Java Virtual Machines (JVMs). Compared with Java, programs written in

Scala often utilize built-in data parallel functions for collections/vectors (such as map, sort and

reduce), which makes the programs not only more concise but also parallelization friendly. Keys

of collection data structures are used to partition collections and distribute them to multiple

computing nodes to achieve salability. By using actor-oriented Akka communication module
9
 for

control-intensive communication and Netty
10

 for data-intensive communication, Spark provides

a high-performance and easy-to-use data communication library for distributed computing which

is largely transparent to developers. Spark is designed to be compatible with the Hadoop

ecosystem and can access data stored in HDFS directly. While Spark is designed to exploit large

main memory capacities as much as possible to achieve high performance, it can spill data to

9
 http://akka.io/

10
 http://netty.io/

15

distributed disk storage which also helps to achieve fault tolerance. Although hardware failures

are rare in small clusters [52], Spark provides fault tolerance through re-computing as RDDs

keep track of data processing workflows. Recently, a Spark implementation of Daytona

GraySort, i.e., sorting 100 TB of data with 1 trillion records, has achieved 3X more performance

using 10X less computing nodes than Hadoop
11

.

When comparing Spark with Hadoop, although both of them are intended as a

development platform, Spark is more efficient with respect to avoiding excessive and

unnecessary disk I/Os. MapReduce typically exploits coarse-gained task level parallelisms (in

map and reduce tasks) which makes it friendly to adopt traditional serial implementations. Spark

typically adopts parallel designs and implementations with fine-grained data parallelisms. The

computing model adopted by Spark provides a richer set of parallel primitives not limited to map

and reduce in MapReduce. The required efforts for re-designs and re-implementations of

existing serial designs and implementations are very often well paid-off with higher

performance, as programs expressed in parallel primitives based functional descriptions typically

exhibit higher degrees of parallelisms and better optimization opportunities. With Spark, a

problem represented by parallel primitives usually is less error-prone. A Spark cluster consists of

a master node and multiple worker nodes. In runtime, the master node is responsible for

coordination and dispatching workload to all worker nodes for execution.

Different from Spark, Impala is designed as an end-to-end system for efficiently

processing SQL queries on relational data. It is an efficient Big Data query engine, which is

11

 https://databricks.com/blog/2014/10/10/spark-petabyte-sort.html

16

considered as a replacement of Apache Hive
12

 (compiles SQL statements to MapReduce jobs for

execution) for interactive queries. In Impala, a SQL statement is first parsed by its frontend to

generate a logical query plan. The logical query plan is then transformed into a physical

execution plan after consulting HDFS and Hive metastore to retrieve metadata, such as the

mapping between HDFS files and local files and table schemas. The physical execution plan is

represented as an Abstract Syntax Tree (AST) where each node corresponds to an action, e.g.,

reading data from HDFS, evaluating a selection/projection/where clause or exchanging data

among multiple distributed Impala instances. Multiple AST nodes can be grouped as a plan

fragment with or without precedence constraints.

An Impala backend consists of a coordinator instance and multiple worker instances. One

or multiple plan fragments in an execution plan can be executed in parallel in multiple work

instances within an execution stage. Raw or intermediate data are exchanged between stages

among multiple instances based on the predefined execution plan. When a set of tuples (i.e., a

row-batch) is processed on a data exchange AST node, the tuples are either broadcast to all

Impala work instances or sent to a specific work instance using a predefined hash function to

map between the keys of the tuples and their destination Impala instances. Tuples are sent,

received and processed in row batches and thus they are buffered at the either sender side,

receiver side or both. While adopting a dynamic scheduling algorithm might provide better

efficiency, currently Impala makes the execution plan at the frontend and executes the plan at the

backend. No changes on the plan are made after the plan starts to execute at the backend. This

12

 https://hive.apache.org

17

significantly reduces communication complexities and overheads between the frontend and the

backend which could make Impala more scalable, at the cost of possible performance lose.

As an in-memory system that is designed for high performance, the raw data and the

intermediate data that are necessary for query processing are stored in memory, although it is

technically possible to offload the data to disks to lower memory pressure and to support fault

tolerance. An advantage of in-memory data storage in Impala is that, instead of using multiple

copies of data in map, shuffle and reduce phases in Hadoop, it is sufficient to store pointers to the

raw data in intermediate results, which can be advantageous than MapReduce/Hadoop in many

cases, especially when values in (key, value) pairs have a large memory footprint.

2.2 Spatial Indexing Techniques

Spatial indexes are used by spatial databases to accelerate spatial queries. Various types of

spatial indexes have been developed in the past few decades to support efficient spatial data

access in many scenarios [30, 82]. In this section, we briefly introduce three major spatial

indexes that are related to this research, i.e., Grid-files [70, 82], Quadtrees [28, 83] and R-trees

[12, 35, 85, 103]. The major characteristics of the three categories of spatial indexes are

tabulated in Table 1. The details will be discussed in the following subsections. As a common

practice, for complex spatial objects such as polylines and polygons, instead of indexing on the

exact geometry of spatial objects, Minimum Bounding Rectangles (MBRs) are used to

approximate the geometry of spatial objects. As illustrated in Figure 4, MBRs are axis-aligned

rectangles and can be efficiently derived from original objects.

18

Table 1 Summary of Spatial Indexes

 Grid-file Quadtree R-tree

Partition

Strategy space-oriented space-oriented data-oriented

Hierarchical

Structure No Yes Yes

Parallelization

friendly Good Medium Poor

Skewness

Handling Poor Medium Good

2.2.1 Grid-Files

Grid-file [70] is a simple spatial data structure developed for efficient spatial data access and an

example is shown in Figure 5a. To build a grid-file index, two parameters need to be specified

first. One parameter is the extent of the indexing space which can be derived by scanning the

input dataset being indexed. The other parameter is the size of grid cell, which is chosen

empirically. After the initial parameter setup, MBRs are extracted from the original spatial

objects. The MBRs are then mapped to the grid space according to the size of grid cell. If a MBR

is larger than a single grid cell, it will be duplicated in all intersected grid cells. For example,

object A in Figure 5a is duplicated in four grid cells (i.e., 1, 2, 5, 6). For range queries, the query

processing is almost identical to index construction where the query window is mapped to the

Figure 4 MBR Examples

MBR

19

same grid space and all intersected MBRs are retrieved using the matched grid cells. Since

MBRs may be duplicated in the index construction phase, an additional duplication removal

phase is required.

Based on how the space is decomposed, a grid-file can be categorized into non-uniform

and uniform. For a non-uniform grid-file, the splitting points for each dimension are not

uniformly distributed; so the splitting points need to be stored in order to locate each grid cell

correctly. On the contrary, a uniform grid-file does not need to keep such information because

the splitting points are uniformly distributed on each dimension and they can be derived from the

extent of the space and the size of grid cells. In our research, we prefer uniform grid-file for

simplicity. We will use grid-file to refer to uniform grid-file hereafter.

Unlike tree based hierarchical structures such as Quadtree and R-tree, a grid-file uses a

flat structure that simply splits the space into grid cells, where each grid cell is a subspace that

contains overlapping objects. The flat structure of grid-file indexing makes it parallelization

friendly, because each grid cell can be processed independently and no dependency and

synchronization between grid cells which are usually inevitable in hierarchical structures. The

simplicity of grid-file has demonstrated its efficiency on modern parallel hardware, comparing

with tree based indexes [73, 87, 88]. One drawback of grid-file indexing is skewness handling,

especially for the uniform grid-file indexing. Since grid cells are generated by equally splitting

the space, the number of objects in each grid cell can be very different on skewed datasets. The

skewness will degrade index pruning performance and also create uneven workload that leads

load balance issue in parallel computing. One way to partially address such issue is to choose a

20

good resolution for the space. However, finer resolution will incur another object duplicate issue.

The issue is that, if an object overlaps with multiple grid cells, such object will be assigned to all

overlapping cells. As such, an additional duplicate removal step is required when using grid-file

indexing. Meanwhile, larger duplication imposes higher memory pressure, which could be a

potential problem for memory constraint systems. Therefore, a good resolution parameter can be

crucial to overall performance. Previous works [45, 102] have shown that both index

construction and query processing can be significantly improved by using grid-file indexing on

GPUs. Both [45] and [102] optimized the ray-tracing application using grid-file index on GPUs.

Unlike previous works that focus on visualization, we exploit the potentials of utilizing parallel

grid-file indexing for spatial data management. We also develop data-parallel designs using

parallel primitives for grid-file based indexing, especially for supporting spatial join processing

(Section 2.3). Recent works [33, 34] have adopted the idea of utilizing grid-file on the GPU for

managing trajectory data.

2.2.2 Quadtrees

Quadtree [28, 83] is a tree structure that is used for indexing spatial objects in 2-D space. It

behaves similarly to binary trees in 1-D space. While there are many Quadtree variants, in this

research, we use the term Quadtree to refer to Region Quadtree [82]. Region Quadtree follows

Figure 5 Spatial Index Examples

c) R-tree b) Quadtree b) Grid-file

0030

21

space-oriented decomposition and decomposes the whole space to be indexed into subspaces

recursively until a certain criterion (e.g., minimum number of objects in the subspace, or the

minimum size of the subspace) is met. Figure 5b illustrates an example of Region Quadtree,

where each Quadtree node has four child nodes. Unlike R-tree to be introduced in the next

subsection, Quadtree generates non-overlapping partitions that cover the whole space in a

mutually exclusive and collectively exhaustive manner. Each node in the Quadtree, either leaf

node or non-leaf node, is called a quadrant in Quadtree, which corresponds to a subspace. By the

nature of Quadtree, each node is either decomposed into zero or four children. The four children

are usually named NW (northwest), NE (northeast), SW (southwest) and SE (southeast)

according to their relative locations. In a typical implementation of Quadtree on CPUs, each non-

leaf node has four pointers pointing to its four children.

One feature of Quadtree is that each quadrant can be represented as a Morton code [82]

which is a mapping based on Z-order [82]. The mapping can be realized by using 0, 1, 2, 3 to

represent NW, NE, SW, SE nodes, respectively [31]. For example, the leftmost node in the last

level of Figure 5b (enclosed in the dotted square) is represented as 0030. Such representation can

be used to speed up range queries [2]. The regular splitting pattern of Quadtree is suitable for

data-parallel designs. For example, the work in [39] took advantage of such feature to speed up

spatial join processing. However, as Quadtree is a hierarchical data structure, there are

dependencies between parent and child nodes. Comparing with grid-file indexing, it is

technically challenging to develop a parallel Quadtree structure that can fully exploit parallelism.

On the other hand, Quadtree splits the space using a threshold parameter that can alleviate the

skewness issue as discussed in grid-file indexing. Even though dependency is an issue, it is still

22

attractive to use Quadtree indexing as a balance between parallelization and skewness handling.

In this work, we will introduce data-parallel Quadtree construction and query algorithms on

modern hardware such as multi-core CPUs and GPUs to support parallel spatial join processing.

2.2.3 R-trees

R-tree [35, 103] is a well known spatial indexing technique and has been widely adopted in

many applications for indexing 2-D or higher dimensional spatial data. Similar to B-tree [18], an

R-tree is also a balanced search tree but is adapted for multi-dimensional data. The key idea of

R-tree is to group nearby objects and represent their aggregated spatial extent as a MBR. Unlike

Quadtree that generates non-overlapping partitions, the spatial extents of R-tree nodes may

overlap each other. On the other hand, R-tree typically follows data-oriented partition so that

object duplication can be avoided. An example of R-tree is given in Figure 5c. In the example,

we illustrate the R-tree with a fan-out of 2. The R-tree nodes are constructed from MBRs in the

left of Figure 5c. For each entry in an R-tree node, a pair of MBR M and pointer P is stored,

where the MBR M represents the union of all MBRs from its child node (e.g., R2 is the union of

C and D) and the pointer P is used to access the child node corresponding to the entry.

An R-tree can be constructed via dynamic insertion or bulk loading. Dynamic insertion

means the tree is constructed while MBRs are inserted one by one, which is suitable for indexing

dynamic datasets. For static datasets, bulk loading might be more efficient. In bulk loading, an

R-tree is constructed from the whole dataset typically by sorting and hierarchically aggregating

MBRs bottom-up [74]. Querying on an R-tree is just like classic tree traversal, where MBRs

stored at each node are used for spatial pruning. The query processing can be categorized into

23

two types, Depth-First-Search (DFS) based and Breadth-First-Search (BFS) based. To parallelize

DFS based batch query, it is straightforward to assign each query to a parallel processing unit to

query the tree individually. In such a design, each DFS query needs to maintain a small stack to

keep track of intersected tree nodes. However, using DFS based query may incur load unbalance

as queries usually follow different paths. The access pattern for DFS based query is also not

cache friendly and not coalesced, which are important for parallel hardware such as GPUs.

Previous work [63] suggested BFS based query processing can be more efficient on parallel

hardware especially GPUs. Other works [50, 104] used a hybrid approach, in which R-tree was

first traversed and then followed by a parallel linear scan.

In this work, we have improved parallel R-tree construction using parallel primitives

(Section 3.2.3). The design is portable across multiple parallel platforms and improves the works

reported in [63, 97]. We have also developed parallel primitive based designs for query

processing which can serve as a module for efficient spatial join query processing.

2.2.4 Distributed Spatial Indexing Techniques

Most of the spatial indexing techniques developed in the past few decades focused on improving

performance on a single computing node, and very few of them are developed for distributed

environments [82]. Kamel and Faloutsos [47] proposed a parallel R-tree technique to support

efficient range query. Observing that disk I/O was the dominating factor, they designed a parallel

R-tree structure on a special hardware architecture which consisted of one CPU and multiple

disks. In order to maximize throughput, R-tree nodes were distributed among all disks and linked

24

by cross-disk pointers. To answer a range query, R-tree nodes were loaded in parallel from disks

and checked for intersection.

Koudas et al. [51] developed a parallel R-tree technique on a shared-nothing system.

Instead of distributing R-tree nodes to multiple disks in [47], their design de-clustered R-tree

nodes to multiple computing nodes. Another parallel R-tree structure on shared-nothing system

is called Master-client R-tree proposed by Schnitzer and Leutenegger [84]. A master R-tree

resided in a master node and its sub-trees called client trees were distributed on all client nodes.

When a query arrived, it was processed on the master node sequentially and then distributed on

client nodes to continue search in parallel.

Lai et al. [53] found that processing time on master node in [84] was a bottleneck and

they proposed a different structure called upgraded R-tree which partitioned data space first and

built an R-tree for each partition. By this means, the R-tree was distributed among all nodes and

the bottleneck issue was solved. Mutenda and Kitsure [68] proposed a Replicated-Parallel-

Packed R-tree (RPP-R-tree) technique which tried to minimize communication cost. The idea

was to replicate R-tree among all nodes (by assuming disk storage cost was negligible). The

master node was dedicated for task assignment and workload balancing. They developed a

parallel spatial join approach using the proposed RPP-R-tree technique and claimed that their

RPP-R-tree was more efficient for static data compared with dynamic R-tree used in [16].

The recent trend of distributed processing technologies, such as rapid development of Big

Data platforms, motivates new designs and implementations of distributed spatial indexing

techniques. Unlike earlier works introduced previously, the state-of-the-art distributed spatial

25

indexing techniques are designed for specific Big Data platforms (e.g., Hadoop). As those

platforms usually provide restrictive data access models, most recently developed distributed

spatial indexing techniques [3, 24, 98, 107, 108] are based on data repartition. In other words,

spatial data are reorganized by spatial partitions where each partition contains a subset of the

dataset. By performing a partition step, a spatial dataset is divided into a collection of

independent subsets which can minimize unnecessary disk access and inter-node data transfer

when processing a query. The spatial locality is preserved by spatially storing nearby data within

a partition, which can accelerate related spatial queries such as nearest neighbor query.

 VegaGiStore [108] was developed using the MapReduce model and running on top of

Hadoop. In VegaGiStore, a global Quadtree based partitioning and indexing technique was

provided, where each partition was represented as a quadrant of a global Quadtree and stored as

a separate file with the calculated Morton code. Within each partition, a local index was saved as

a file header and the rest of the file were spatial objects sorted according to Hilbert curve.

Hadoop-GIS [96] provided several partition strategies that can spatially partition data into

tiles. In their work, spatial partitioning techniques were developed to solve the data skewness

problem, which can significantly improve spatial query performance with MapReduce. An

efficient and scalable partitioning framework named SATO [96] based on Hadoop was proposed,

and the framework was implemented in four main steps: Sample, Analyze, Tear and Optimize.

Distributed spatial indexing is also supported in SpatialHadoop [24]. In the storage layer

of SpatialHadoop, a two-level (including global and local) index structure was employed, which

is similar to the idea of VegaGiStore. SpatialHadoop supported multiple spatial indexing

26

structures such as Grid-file, R-tree and R+-tree. The size of each partition was determined by

HDFS block size, so that SpatialHadoop can achieve optimized disk access. The global indexing

structure was physically stored as a master file on disk and can be loaded into memory while

performing spatial query processing. Within each partition, SpatialHadoop stored a bulk-loaded

local index at the beginning and it will be loaded while processing the particular partition.

GISQF [69] is an extension of SpatialHadoop that is developed to manage geo-referenced

event database. MD-HBase [71] is a location based data management system on top of a key-

value store, i.e., Apache HBase
13

. In their work, an additional multi-dimensional index layer was

built for efficient data retrieval. Spatial objects (points) were encoded as bit strings according to

Z-order, and queries were formalized as prefix matching. Li et al. [57] have developed Pyro,

which is a spatial-temporal big data storage system also on top of HBase. However, different

from MD-HBase, Pyro integrated spatial range query capacity into HBase system rather than

making it an additional layer. Pyro also developed group based block replica placement that can

preserve spatial locality for data storage. The shortcoming of both MD-HBase and Pyro is that

they were developed for points rather than complex geometry objects, e.g., polygons. Since both

systems relied on linearization, such as Z-order in MD-HBase and Moore encoding in Pyro [17,

95], it can be more challenging to extend them for complex geometries. Van and Takasu [94]

recently developed an R-tree based distributed spatial indexing technique also on top of HBase.

In their work, they designed a distributed spatial index structure using a combination of

13

 http://hbase.apache.org/

27

Geohash
14

 and R-tree. Fox et al. [29] developed distributed indexing for NoSQL database, i.e.,

Apache Accumulo
15

, where key-value store based design was adopted.

Since most of the state-of-the-art distributed spatial indexing techniques rely on spatial

partitioning, partition quality will directly impact the performance of distributed processing. We

will review three partition strategies, i.e., Fixed-Grid Partition (FGP), Binary Split Partition (BSP)

and Sort-Tile Partition (STP) [96], which are related to this work. Those techniques are also

integrated in our partition based spatial join in Section 4.2.1. Examples are provided in Figure 6

to illustrate the three spatial partition techniques, respectively.

Fixed-Grid Partition (FGP) is the most straightforward way of space decomposition,

where the whole space is divided into grid partitions with an equal size. This technique has been

proposed and used in PBSM [76]. The choice of grid partition size heavily impacts the efficiency

of FGP. When a large grid partition is chosen, fewer partitions will be generated. Using fewer

partitions degrades the level of parallelism and also makes it difficult to process skewed data. To

14

 http://geohash.org

15
 https://accumulo.apache.org/

Fixed-Grid Binary-Split Sort-Tile

Figure 6 Partition Examples

28

increase parallelism and handle data skewness effectively, one solution is to use finer grid

partitions. With the improvement, more grid partitions are generated which is able to provide

higher level of parallelism. Also, the straggler effect will be reduced if finer grid partitions are

adopted. However, if an object crosses the boundary of multiple grid partitions, the object needs

to be duplicated in each overlapping partition to ensure correctness. A finer grid partition will

generate a larger number of duplications, which requires more memory during runtime. To sum

up, FGP replies on the choice of grid partition, which typically impacts the overall performance

as a “U” curve. To determine a good grid size, one solution is to perform selectivity estimation,

and develop a cost model considering both data skewness and object duplication. Alternative

solutions that can tackle skewness, such as using adaptive grid partition or multilevel grid

partition (instead of using fixed-grid partition) can also be considered.

Binary Split Partition (BSP) is a partition strategy aims to produce balanced partitions,

and partition boundaries are determined by data distribution rather than fixed in FGP. BSP first

samples input data before splitting space into two subspaces and the process is done recursively.

The splitting phase is very similar to the construction of K-D tree [13]. During an iteration step, a

splitting dimension is chosen to split the space on the median point of the chosen dimension. The

same procedure is recursively applied to the partitioned subspaces until the desired criterion is

reached. The choice of splitting dimension can be based on the distribution of data as suggested

in [96]. Meanwhile, a parameter defines the maximum number of recursive level, which controls

the number of resulting partitions, needs to be introduced. In practice, constructing BSP from a

large dataset can be time consuming. A single split needs a scan of the data for chosen dimension

and a sort for calculating the splitting boundary. Even though single scan and sort could be

29

efficient on shared memory parallel platforms, multiple rounds of scan and sort operations

require large amounts of data communication which may degrade performance in distributed

computing environments. Besides, at each recursive step, the data will be reordered for the next

iteration which also incurs significant data communication cost. One solution is to use a small

portion of input dataset as a sample dataset to generate partitions on a single machine, if the

sample is representative for the whole dataset. The BSP principle is also applicable to Quadtree

based partition, which can be done by substituting the splitting phase with the Quadtree

decomposition. More generally, the splitting phase can be replaced by any other recursive

splitting approaches. Nevertheless, multiple rounds of scan and sort operations significantly

lower the performance of BSP, which makes it less desirable for large datasets.

Sort-Tile Partition (STP) is proposed to generate partitions more efficiently. The technique

is similar to the first step of Sort-Tile-Recursive R-tree (STR R-tree) bulk loading [55]. Data is

first sorted along one dimension and split into equal-sized strips. Within each strip, final

partitions are generated by sorting and splitting data according to the other dimension. The

parameters for STP are the number of splits at each dimension as well as a sampling ratio. STP

can be adapted to strip-based partition by setting the number of splits on the secondary

dimension to one, which essentially skips the second sort and split. Also, by first projecting data

according to a space-filling curve (e.g, Z-order, Hilbert curve), using the same strip-based

adaption can easily generate partitions based on the space-filling curve ordering. Different from

BSP, STP at most sorts data twice and contains no recursive decompositions. Therefore, STP can

be more efficient for large datasets.

30

2.3 Spatial Join Techniques

In a “Big Data” era, large-scale data analysis tools are highly demanded to analyze huge volume

of spatial data that are generated every day. For example, with the fast growing smart phone

market, tremendous amount of spatial data are generated from smart phones in the forms of GPS

points and trajectories. To analyze the data, spatial join is required. For instance, answering a

query such as “find all smart phone users who are less than 100 meters to a movie theater” needs

a spatial join based on the “within distance” spatial relationship. However, it is not a trivial task

to join huge amount of such data, especially when the spatial data is complex (e.g. polygon). In

this section, we will first define the spatial join problem and then review existing works that have

been developed to address the problem.

2.3.1 Problem Definition

Spatial join can be formalized as follows. Given two spatial datasets and , the result of spatial

join over and is,

 ,

(a) Point to Nearest Polyline (b) Point to Nearest Polygon (c) Point in Polygon

Figure 7 Spatial Join Examples

31

 where relation is a spatial relationship (usually a spatial predicate) between two spatial objects.

Figure 7 gives three examples of spatial join based on point-to-nearest-polyline search, point-to-

nearest-polygon search and point-in-polygon test, respectively. A naïve implementation of a

spatial join is first to pair all objects from R and S and then to remove pairs that do not satisfy the

spatial relationship in the spatial join. The naïve approach incurs a total complexity of

 . However, spatial datasets are usually non-uniform and clustered and the naïve approach

can be very inefficient. For example, in Figure 8, the naïve approach requires twelve intersection

tests. However, if the space is indexed as partitions in advance and only objects in the same

partition are paired, the number of intersection tests can be reduced to one. An intuition is that, if

pairs can be pruned with little overhead before performing expensive geometric computation in

testing spatial predicates, the overall performance can be improved. For this reason, filter-and-

refinement strategy is adopted in most of existing spatial join techniques [43, 44].

The filter-and-refinement strategy divides spatial join processing into two phases, i.e.,

filter and refinement. In the filter phase, spatial objects are first approximated by axis aligned

MBRs, and then stored in the form of Here is a pointer to the original spatial

object and refers to the extent of the spatial object. The approximated MBR representation

Figure 8 Intersection based Spatial Join Example

32

saves expensive geometric computation on the exact original spatial objects. For instance, the

complexity of point-in-polygon test using the classic ray-casting algorithm is where n is the

number of vertices of the polygon being test. However, determining whether a point is in the

MBR of a spatial object is only . Candidate pairs are generated and pruned with the MBR

representation. Spatial access structures such as spatial indexes are usually used to reduce

unnecessary candidate pairs and accelerate the pairing process. Denoting and as

pointers to original spatial objects in R and S, the output of the filter phase can be represented as

a list of .

For the filter phase, the most common spatial predicate on which prior works have

studied extensively is MBR intersection, where two MBRs are checked on whether they spatially

intersect each other. A running example of intersection based spatial join is given in Figure 8.

Many other spatial relationship operators can be transformed into spatial intersection test. For

example, the spatial join query operators such as “within d” and “nearest neighbor within d”

can be realized by extending MBRs with distance and subsequently performing spatial

intersection join, as illustrated in Figure 9.

R1

R2

S1

d

d

Figure 9 Spatial Join of WITHIN d

33

The filter phase prunes pairs that do not satisfy a spatial relationship but allows false

positives because MBRs are used to approximate complex spatial objects. The refinement phase

completely removes all false positives from the previous phase by testing the spatial relationship

between two spatial objects based on their exact geometry. During the refinement phase, the

exact geometric data are loaded using the and pointers. Spatial relationships are

evaluated on the spatial objects by performing relevant geometric computation, such as point-in-

polygon test. Due to expensive geometric computation as well as I/O costs of loading original

objects, the false positive rate of the filter phase significantly impacts the overall performance of

a spatial join. As such, most existing research has focused on optimizing the filter phase in order

to minimize false positives.

Table 2 Summary of Spatial Join Techniques

Plane-Sweep

based

Indexed Nested-

loop based

Synchronized Index

Traversal based

Partition

based

Pre-processing Sort

Index

construction Index construction Sort/Shuffle

Need Spatial

Index? No Yes Yes No

Generate

Duplicates in

Output No

Depends on

index Depends on index Yes

Support Data-

Parallel Design?

Very Difficult

(Sequential in

nature) Easy

Difficult (Due to

irregular data access

on trees) Moderate

34

For the rest of Section 2.3, we will discuss four leading spatial join techniques, including

plane-sweep, indexed nested-loop, synchronized index traversal and partition-based. We will

focus on parallelisms in discussing these spatial join techniques to set the context of this research

on parallel spatial joins in Section 4.1 while refer to [44] for a more comprehensive survey on

spatial joins. As a summary, Table 2 tabulates major characteristics of the four spatial joins that

are relevant to our discussion. They will be detailed in the rest four subsections of Section 2.3.

2.3.2 Plane-Sweep based Spatial Join

The classic plane-sweep algorithm [86] reports all intersections from two sets of rectangles

(MBRs in spatial joins) efficiently and has been widely used in spatial databases and

Geographical Information System (GIS). The algorithm first sorts rectangles by their boundaries

along one dimension (e.g., x axis). A vertical line then scans through the sorted list from left to

right (or top to bottom). At any instant, a rectangle is considered active when it intersects with

the sweep line. The key idea of this algorithm is, during the scan, a set of active rectangles are

maintained and searched for reporting intersected pairs. To this end, the algorithm maintains a

data structure, called sweep structure, to store active rectangles. Each time the sweep line meets

a new rectangle, the sweep structure is updated where inactive rectangles are evicted and new

active rectangles are inserted. Intersected pairs are then reported by searching on active

rectangles. Various data structures, such as simple linked list, interval tries, interval tree and

segment tree [44], have been adopted to support plane-sweep based spatial joins. Due to the

initial sort before scan, the complexity of sweep plane implementations is at least ,

where n denotes the sum of the sizes of the two joining datasets. In the classic plane-sweep

35

algorithm, data are required to be loaded into memory first which restricts the scalability of

plane-sweep based spatial joins.

To parallelize plane-sweep algorithm, a straightforward way is to divide the space to be

swept into strips and apply plane-sweep algorithm on each strip. The parallelization of plane-

sweep is known to be difficult as discuss in [66]. The authors attempted to implement parallel

plane-sweep on multi-core systems by partitioning the space into multiple strips. In their design,

pre- and post-processing steps were required to divide search space and merge results. During

pre-processing, a scan was initiated to split input data into strips. The strips then ran plane-

sweep algorithm individually in parallel. Finally, results were merged from all strips. There are

several shortcomings in strip based parallel plane-sweep. First of all, choosing an optimal strip

division is difficult. Using equal intervals on non-uniform distributed dataset usually results in

unbalanced workload, which leads to poor performance. However, finding the optimal division is

likely to impose more overhead of pre-processing, which might break the assumption that pre-

processing overhead is negligible [66]. Second, parallel strip based approaches are limited in

scalability. The parallelism for strip based plane-sweep is determined by the number of strips

that can be processed in parallel. To maximize the performance, the number of strips needs to be

at least equal or larger than the number of processing units. As the number of strips increases,

post-processing overhead will also increase. From the analysis in [66], the complexity of post-

processing is and it becomes inefficient when the number of strips () becomes

large. Thus, strip based parallel plane-sweep is more suitable for processing small datasets or as

a component in a larger framework (e.g. in [107]). Finally, the sequential scan in each strip

restricts the granularity of parallelism, because such scan has dependencies which cannot be

36

broken down for finer granularity. Although there are many other parallel algorithms [11, 48, 59]

have been developed for the plane-sweep problem, the intrinsic of plane-sweep algorithm limits

its application in parallel spatial join domain. This characteristic is reflected in the last row of

Table 2.

2.3.3 Indexed Nested-loop Spatial Join

Given two datasets R and S, if dataset is indexed, indexed nested-loop join uses the other

dataset S as a batch of queries on R to generate the join results. In the batch query, each element

in S searches on the index of R with the desired spatial relationship and candidate pairs are

reported if the relationship is met. For example, rectangle intersection based spatial join can be

modeled as using one dataset as query windows to query the index of the other dataset. Given

one dataset R with R-tree index and the other dataset S, and assuming the complexity for an

element in S searching on the R-tree of R is , then the complexity of indexed nested-

loop join on R and S is where is the additional overhead of generating

intersection pairs. In many scenarios, spatial datasets have already been indexed using techniques

such as R-trees and Quadtrees to boost spatial queries. Therefore, indexed nested-loop join can

be realized relatively easily and no additional data structures are required. Figure 10 is the

algorithm sketch of the indexed nested-loop join. Clearly, indexed nested-loop join is highly

parallelizable (last row of Table 2) by assigning a data item in S to a processing unit and process

all the items in parallel.

37

Luo et al. [63] implemented R-tree based batch query on GPUs. Their design supported a

batch of window queries on an R-tree in parallel on GPUs, where each GPU computing block

handled a single query in a Breadth-First-Search (BFS) manner [62]. The other approach of

parallelizing indexed nested loop join is to use spatial indexes designed for parallelizing range

queries. Kamel and Faloutsos [47] proposed parallel R-tree to support efficient range query.

Observing that disk I/O was the dominating factor, they designed a parallel R-tree structure on a

special hardware architecture which consisted of one CPU and multiple disks. To answer a range

query, R-tree nodes were loaded in parallel from disks and checked for intersection. Koudas et

al. [47] developed a parallel R-tree based on spatial join technique on a shared-nothing system.

Instead of distributing R-tree nodes to multiple disks in [47], their design de-clustered R-tree

nodes to multiple computer nodes. Another parallel R-tree structure on shared-nothing system

called Master-client R-tree was proposed by Schnitzer and Leutenegger [84], where a master R-

tree resided in a master node and its sub-trees called client trees were distributed on all client

nodes. When a query arrived, the technique first processed it on the master node sequentially and

then distributed it to client nodes to continue search in parallel. Lai et al. [53] found that

processing time on the master node in [84] was a bottleneck and they proposed a different

Indexed_Nested_Loop_Join ()

1. begin

2. Create_Index()

3. foreach do

4. Index_Search(,)

5. Report
6. end

7. end

Figure 10 Indexed Nested-Loop Join Algorithm

38

structure called upgraded R-tree which partitioned data space first and built an R-tree for each

partition individually. As a result, the whole R-tree was distributed among all nodes and the

bottleneck issue was solved. In Hadoop-GIS [4], the authors also adopted R-tree based nested

loop spatial join. The technique first partitioned the input datasets by sampling, and then,

shuffled the datasets according to the generated partitions [96]. Each partition thus had a subset

from both of the input datasets. Subsequently the indexed nested-loop join technique was applied

within a partition while the whole spatial join can be parallelized at the partition level.

2.3.4 Synchronized Index Traversal based Spatial Join

When both datasets are indexed using tree based index, synchronized index traversal based

spatial join can be used. Brinkhoff et al. [15] proposed using existing R-trees to speed up spatial

joins by synchronized traversals from the roots of both R-trees, and nodes at same level were

examined for spatial intersection. At each tree level during the traversal, a plane-sweep algorithm

was used to report spatial intersections. Subsequently, intersected nodes were expanded and

traversed until leaves were reached. If two trees did not have a same height, leaf nodes of the R-

tree with lower height continued range queries on the rest sub-trees of the other R-tree. Huang et

al. [42] optimized the original R-tree join in [15] using BFS traversal that achieved better

performance; however, it had a drawback on controlling the priority queue size during the

traversal.

Brinkhoff et al. [16] extended the sequential R-tree based join [15] to a shared-nothing

parallel system. Similar to the sequential version, synchronized hierarchical traversal was used

but sub-trees were sent to processors for parallel processing. On shared-nothing parallel systems,

39

in addition to CPU and I/O costs, network communication cost is also a crucial factor. A

challenge identified in [15] was how to balance workload among processors during the execution

with minimal communication overhead. Another parallel R-tree join technique on shared-nothing

system was proposed by Mutenda and Kitsure [68]. They tried to minimize communication cost

by proposing Replicated-Parallel-Packed R-tree (RPP-R-tree) as the spatial index. The idea was

to replicate R-tree among all nodes (by assuming the disk storage cost was negligible). A master

node was dedicated for task assignment and workload balancing. SpatialHadoop [24]

implemented an R-tree based synchronized spatial join on Hadoop. When two datasets were

indexed by R-tree, SpatialHadoop first generated the intersected partitions using a global R-tree.

For each partition pair, synchronized spatial join was applied. For parallel R-tree joins on shared-

memory systems, Yampaka and Chonstivatana [101] described a GPU based spatial join using

R-tree. They used the same design from [16] but distributed the MBR intersection tests on GPUs

instead of CPUs. During the spatial join, R-trees were bulk loaded before synchronized DFS

traversals on the two R-trees. The traversals continued until leaf nodes were reached.

Besides R-trees, Quadtrees have also been adopted in parallel spatial joins. Hoel and

Samet [39] developed a data parallel spatial join using PMR-Quadtree [82] on a hypercube

machine. Starting from the root of two input datasets, nodes from the source and the target

Quadtrees were matched and pairs were examined for spatial intersection in parallel. They

demonstrated joining two polyline datasets based on the design. Hoel and Samet [39] also

implemented R-tree based spatial join using the same hierarchical traversal design. Experiment

study on both Quadtree and R-tree implementations showed that the Quadtree version

outperformed the R-tree version significantly. The primary reason is that, on a data-parallel

40

computing platform, manipulating R-tree nodes, which are irregularly decomposed and are

spatially non-disjoint, is more expensive than manipulating Quadtree nodes, which have non-

overlapping spaces and a fixed number (i.e., four) of children.

As shown in the last row of Table 2, we rate the support for parallel designs in

synchronized traversal based spatial join as “difficult”, mostly due to irregular data accesses on

trees and the complexity in synchronizing the traversals on both trees.

2.3.5 Partition Based Spatial Join

Partition Based Spatial-Merge Join (PBSM) was proposed by Patel and Dewitt [76]. Similar to

other spatial join algorithms, PBSM included the filter and refinement phases. However, PBSM

did not build indexes if input datasets were not indexed. The data space was divided into

partitions with a spatial partition function and each partition was assigned to a virtual processor

to perform plane-sweep algorithm. If a MBR overlapped with multiple partitions, the MBR was

duplicated and inserted into all overlapping partitions. Choosing a good spatial partition function

was crucial for the performance. For example, as shown in the left side of Figure 11, partition 0

Partition 0 Partition 1

Partition 2 Partition 3

Figure 11 Tile-to-Partition and Skewed Spatial Data

 0 1 2 3

 1 2 3 0

 2

 2

 3

 3 0 1

 0 1

41

and partition 1 are denser than other partitions. To address this issue, PBSM suggested a tile-to-

partition mapping strategy. As illustrated in the right side of Figure 11, PBSM first divided space

into tiles with finer granularity and then grouped them into coarser partitions to overcome

unbalanced division. The space was first decomposed into tiles where was greater

than P. Subsequently the tiles were assigned to partitions in a Round-Robin manner (or using

hashing). After the filter phase, MBR pairs were generated for the refinement

phase. As duplicated MBRs were generated during partitioning, they could also be generated in

the filter phase and needed to be removed. This could be realized by sorting or Reference Point

Method (RPM) technique suggested in [22]. With RPM, duplicate pairs could be removed by

checking whether the reference point fell within the partition without sorting which could be

expensive.

Although the PBSM algorithm was developed for serial computing on a single CPU, the

idea of using virtual processors can be naturally adapted to parallel computing. The

implementation of Parallel PBSM (PPBSM) is straightforward by assigning each partition to a

processor in a shared-nothing parallel environment. Patel and Dewitt [75] proposed two spatial

join algorithms, clone join and shadow join, which are considered as improved versions of

PPBSM. Clone join was identical to the spatial partition function used in the original PBSM, i.e.,

MBRs intersected with tiles were replicated and assigned to all intersecting tiles. Observing that

there were large numbers of duplication generated in clone joins, finer object approximations

were used in shadow joins in [75]. Instead of using a single MBR, a spatial object was

approximated using multiple fragment boxes, where each fragment box was the MBR of the

overlapped portion of the object and a tile. This design minimized the size of duplication by

42

creating partial surrogates. However, additional steps were required to eliminate partial

surrogates to form candidate pairs for the refinement phase in shadow joins.

Niharika [80] is a parallel spatial data analysis infrastructure developed for Cloud

environments which aims to exploit all available cores in a heterogeneous cluster. Niharika first

uses a declustering technique that creates balanced spatial partitions and then dispatched

workload to multiple workers. SPINOJA [81] is a system developed for in-memory parallel

spatial join processing. In SPINOJA, a technique called MOD-Quadtree (Metric-based Object

Decomposition Quadtree) is developed to handle skewness in order to produce better workload.

Zhou et al. [111] have implemented PBSM on a dedicated parallel machine. They improved the

original PBSM partition function by using Z-order curve [82] instead of the original Round-

Robin assignment. The Z-order curve partition preserved better locality and achieved better

performance according to their experiments. Zhang et al. [107] developed a variant of PPBSM

called SJMR based on the MapReduce framework. SJMR adopted duplication avoidance

technique named reference tile method, which considered checking whether the reference point

fell within tiles rather than in partitions [22]. Zhong et al. [108] also implemented parallel spatial

join on MapReduce platform using two-tier index which actually served as a partition function.

To perform spatial join in the two-tier structure, overlapping partitions were matched and loaded

through their filenames. In each partition, intersecting pairs were generated using an in-memory

spatial join technique based on Hilbert Space Filling Curve [82]. Parallel SECONDO [61]

introduced by Lu and Guting is another Hadoop-based solution which extends SECONDO [21]

from a single machine to a Hadoop cluster.

43

In order to handle skewness, PBSM divides space into a large number of tiles. However,

it is possible to group non-continuous tiles into a same partition (see the right side of Figure 11).

Lo and Ravishankar [60] suggested the Spatial Hash Join (SHJ) technique to address this issue.

Instead of decomposing space into regular gird tiles, SHJ generated buckets from one dataset,

termed inner dataset. The other dataset, termed outer dataset, was overlaid on top of the inner

buckets to pair MBRs from the outer dataset with the overlapping inner buckets. A recent

technique called TOUCH [72] used an idea similar to SHJ. In TOUCH, an in-memory data

structure similar to an R-tree was created from one dataset. MBRs from the other dataset were

pushed down to the tree structure and assigned to different buckets. Unlike SHJ that retrieved all

intersecting buckets for the query MBR, TOUCH found the minimal enclosing node and used all

MBRs from the node as candidates. Even though larger false positives were generated, TOUCH

avoided duplication and performed well due to contiguous memory access on modern hardware.

THERMAL-JOIN [92] is another in-memory spatial join which is similar to TOUCH but yields

better performance. The major improvement in THERMAL-JOIN comparing with TOUCH is

the indexing structure. Instead of using tree structure in TOUCH, the new design adopted grid

file based indexing, namely T-Grid and P-Grid, and it demonstrated significant speedup over

TOUCH on dynamic workload. Partition based methods are also adopted by distributed systems

such as Hadoop. Both Hadoop-GIS [3, 4, 96] and SpatialHadoop [23–26] adopted a two-step

approach for distributed spatial join where the first step was dedicated to pairing spatial

partitions. Different from Hadoop-GIS that used indexed nested loop in the second step within a

partition as discussed in Section 2.3.3, SpatialHadoop also supported plane-sweep and

synchronized index traversal.

44

With respect to supporting parallel designs, the parallelisms at the partition level in partition

based spatial join are obvious and there are parallelization opportunities within partitions. Unlike

indexed nested-loop spatial join where load balancing can be relatively easy achieved, it requires

more efforts to avoid/remove duplicates and achieve load balancing in spatial partition based

spatial join. For this reason, as indicated in the last row of Table 2, we rate the level of support

for parallel designs in spatial partition based spatial join as “Medium”.

45

Chapter 3 Parallel and Distributed Spatial Indexing

3.1 Overview

We develop parallel designs of spatial data management at two levels. First, we would like to

fully exploit the parallel computing power on a single computing node using commodity

hardware such as multi-core CPUs and GPUs. We investigate on data structures and parallel

algorithm designs for the new hardware, which can scale up spatial data processing on a single

node. The second level is to scale out the single node parallel designs to multiple computing

nodes, which provides scalable data management capabilities for larger scale spatial data. By

achieving both efficiency and scalability, we expect our parallel and distributed techniques can

significantly speed up processing large-scale spatial data using existing software packages,

which are mostly designed for uniprocessors and disk-resident systems based on a serial

computing model.

3.2 Parallel Spatial Indexing on Single-Node

In this section, we will introduce our designs on parallel spatial indexing on a single node. First,

we will discuss our proposed spatial data layout that is efficient on both multi-core CPUs and

GPUs. We will then introduce our parallel designs on three well-known spatial indexes, i.e.,

Grid-file, Quadtree and R-tree. While parallel designs of spatial indexes are mainly focused on

single-node parallelization that utilizes multi-core CPUs and GPUs, they can be used as building

blocks for distributed computing to be presented in Section 4.2.

3.2.1 Data Parallel Geometry Layout

46

Although several geometry representation formats such as Well-Known Text (WKT)
16

 have been

adopted in many existing software libraries, they were not designed for data-parallel operations

and are not efficient on the current generation of parallel hardware, such as SIMD enabled

processors. We have developed novel spatial data layout designs for efficient in-memory

geometry operations, which are cache friendly and effective for data-parallel operations on both

multi-core CPUs and GPUs.

Since Open Geospatial Consortium Simple Feature Specification (OGC SFS
17

) has been

widely adopted by the Spatial Databases and GIS communities, our in-memory data structures

for geometries are designed to support the standard. Taking polygon data as an example,

according to the specification, a polygonal feature may have multiple rings and each ring

consists of multiple vertices. As such, we can form a four level hierarchy from a dataset

collection to vertices, i.e., dataset feature ring vertex. In our design, five arrays are used

for a large polygon collection. Besides the x and y coordinate arrays, three auxiliary arrays are

used to maintain the position boundaries of the aforementioned hierarchy. Given a dataset ID

(0..N-1), the starting position and the ending position of features in the dataset can be looked up

in the feature index array. For a feature (polygon) within a dataset, the starting position and the

ending position of rings in the feature can be looked up in the ring index array. Similarly, for a

ring within a feature, the starting position and the ending position of vertices belong to the ring

can be looked up in the vertex index array. Finally, the coordinates of the ring can be retrieved

by accessing the x and y arrays. We note that for a single polygon dataset, the feature index array

16

 https://en.wikipedia.org/wiki/Well-known_text

17
 http://www.opengeospatial.org/

47

can be replaced by a constant to simplify the structure. Similarly, for polygons with a single ring,

the ring index array can be skipped. Polyline datasets can follow similar designs where rings

correspond to line segments. Point datasets can simply use the x and y arrays without the

auxiliary arrays for polylines and polygons.

It is easy to observe that retrieving coordinates of single or a range of polygon datasets,

features and rings can all be done by sequentially scanning the arrays in a cache friendly manner.

It is also clear that the number of features in a dataset, the number of rings in a feature and the

number of vertices in a ring can be easily calculated by subtracting two neighboring positions in

the respective index array. As such, the array representation is also space efficient. Clearly,

polygons using our proposed data layout are represented as Structure of Arrays (SoA) instead of

Array of Structures (AoS), which is used in most of existing geometry representation including

WKT. The use of SoA is potentially more efficient on modern parallel hardware because same

data types are grouped together and exposed for better vectorization, especially on SIMD

enabled devices such as VPUs and GPUs. Figure 12 gives an example of the SoA layout of a

polygon collection. In the example, a polygon with identifier 50 stores ending positions (73,

78, …, 100) of its rings in the ring index array. Therefore, we are able to locate all rings belong

to the polygon, which starts right after the last ring of the previous polygon (e.g., 70 in ring index

array) and ends at the last ring (e.g., 100 in the ring index array). The ending vertex position of

each ring is stored in the vertex index array. For example, the first ring of polygon 50 (73 in the

ring index array) has an ending position of 913 in the example. By using the ending position

from each vertex range, x/y coordinates are retrieved from the coordinate arrays.

48

In addition to the exact representation of geometry objects, approximate representation

such as MBR is also important because it is widely adopted in spatial indexing. We represent

MBRs using four arrays to store the lower-x, lower-y, upper-x and upper-y coordinates,

respectively. Extracting MBRs from the original geometry objects is embarrassingly

parallelizable. The whole MBR extraction procedure can be easily implemented by using a single

reduce_by_key parallel primitive (see Appendix A) with the vertex array as one input and the

MBR id array as another input to specify keys. Figure 13 is an example of utilizing parallel

primitives to extract MBRs from the spatial data layout we have developed. First, an auxiliary

identifier array is allocated with the same length of the x or y array. The array is filled out by

using a scatter and a scan primitive. The scatter primitive writes polygon identifiers to the newly

allocated identifier array using the starting positions of polygon vertices. The partially filled

identifier array is then completed with a scan primitive, which copies every identifier to its right

until another identifier is met. The process is illustrated in the upper right of Figure 13. After

generating the identifier array, a reduce_by_key is performed by using identifiers as the keys and

coordinate arrays (x and y) are the reduction values. In reduce_by_key, the reduction values with

Polygon Dataset

… …

70 73 78 …

100 …

Ring Index

…

…

885 913 959 989

…

…

Vertex Index

X/Y Coordinates

Figure 12 Spatial Data Layout Example

Polygon:50

49

the same key will be applied with a pre-defined binary and associative operation, such as min or

max function. Finally, the results are saved into the four arrays as introduced previously.

3.2.2 Parallel Grid-File based Indexing for MBRs

We first introduce an in-memory grid-file based spatial index on parallel platforms using data-

parallel designs for MBRs of both polylines and polygons (Section 2.2). The designs are also

applicable to points that can be considered as MBRs with a zero extent. The data-parallel grid-

file index is designed to support efficient parallel spatial queries (this section) and spatial joins

(Section 4.1). There are three major components in developing the parallel grid-file based

indexing technique. First, we design the index layout using simple linear arrays that are efficient

on both CPUs and GPUs as discussed previously. Uniform grid is chosen for simplicity and

efficiency. Second, we develop a query strategy using binary search that is both efficient and

requires no extra space. Third, for all the stages of index construction, our introduced data-

parallel designs can be implemented using parallel primitives, which not only simplifies code

complexity but also makes it portable across multiple parallel platforms.

Figure 13 Extracting MBRs using Parallel Primitives

…… ……

Poly1 Polyi Polyn

x

y

…… ……
MBRs are generated using

reduce_by_key

…… ……

Generate keys from Poly

array using scatter and scan

scatter

scan

50

The parallel grid-file indexing technique is based on the decomposition of a set of MBRs

according to a uniform grid space whose resolution is chosen empirically. The grid-file index is

constructed through projecting the input MBRs on the grid space followed by an aggregation

operation. The projection is parallelizable by decomposing MBRs to grid cells in parallel by

chaining a few parallel primitives, which will be illustrated using an example. The aggregation

can be regarded as a parallel reduction operation where the grid cell ids are keys. We store grid-

file index using simple arrays, including grid cell ids, MBR ids and an additional position array.

The position array stores the ending positions of rasterized MBRs and links grid cell ids and

MBR ids. In our design, only grid cells that intersect MBRs are stored for space efficiency.

The middle part of Figure 14 illustrates the procedure of constructing a grid-file index

from two input MBRs. First, two MBRs (P1 and P2) are first projected to the grid space and the

output sizes for the MBRs are calculated. A scan is performed on the output size array in order to

compute the starting position of each MBR. With the starting positions and output sizes, each

MBR is decomposed into cell id and MBR id pairs, which are stored in arrays PC and PQ,

Figure 14 Parallel Grid-File based

Indexing

grid index

5

3

2

P1
Q1

Q2

… … 1 2 2 … 2 1

… … 2 … 3 … 2 3

1 5 … 2 4 … 3

1 1 2 2 2 1

PQ

PC

QQ

QC

 … 2 … 1 2 ... 1 … 1

2 … 3 ... 5 … …

PQ’

PC’

aggregate by cell ids (PC)

search using cell id

P2

P1 P2 MBR:
24 36

0 24

 map

size

pos
 scan

 sort,reduce

 map

… 2 … 1 2 ... 1 … 1

2 … 3 ... 5 … …

PQ’

PC’

index construction batch query

5

1

1

1 1

2 …

…

pairing

QQ

PQ’
1

1 2

51

respectively. Finally, the pairs are sorted by the cell id array. A reduce_by_key parallel primitive

is applied to transform the cell id array from a dense representation into a sparse representation

by keeping only the unique cell ids (PC’) and the numbers of duplicated cells (PN) which

represent the numbers of MBRs that intersect with cells. Note that, in the middle of Figure 14,

array PQ’ is the sorted copy of PQ; array PN, which keeps track of the connection between PC’

and PQ’, is skipped to simplify the illustration.

We also design parallel batch query processing using the grid-file based indexing, where

a batch of range queries (i.e., window queries) are performed in parallel and intersected pairs are

returned. Using the example shown in Figure 14, we assume that {P1, P2} and {Q1, Q2} are the

indexed MBRs and query MBRs, respectively. Without using spatial index, the query needs to

cross compare on all pairs, which is very expensive. To efficiently find the P-Q pairs that

spatially intersect using the grid-file index, as illustrated in the right part of Figure 14, first, P1

and P2 are projected onto a grid space and indexed by arrays PC’ and PQ’ using the previously

introduced procedure. Second, the query MBRs (i.e., Q1 and Q2) are projected to the same grid

space and the results are stored in arrays QC and QQ. QC and QQ represent query MBRs and the

order of the arrays will not affect the results. As such, for efficiency purpose, it is not necessary

to sort and reduce QC or QQ to generate QC’ and QQ’. Finally, the query is performed by

matching the cell ids from the two sets of MBRs and the result pairs are generated based on

matched cell ids. The details on matching are given next.

In classic designs based on serial computing, the matching process can be done by

maintaining a hash-table for indexed MBRs with their cell ids. In contrast, our data-parallel

52

design chains several parallel primitives for the purpose. Since both the index MBRs and query

MBRs are projected to the same space, we can link them using cell ids which can be

implemented as a parallel binary search of all the elements in QC on PC’. For example, in the

right part of in Figure 14, the query pair (3, 1) in QC and QQ array locates the corresponding cell

in the index arrays (PC’ and PQ’). Since the index arrays are sorted, the matching is done by

performing a binary search on PC’ for each query cell from QC. To speed up the process, we

assign each query cell from QC to a thread so that the matching can be done by a parallel binary

search. After the parallel binary search, each query cell is associated with a matched cell

identifier from PC’. In the example, the query pair (3, 1) is matched with 3 in PC’ and then

identifiers 1 and 2 are retrieved from PQ’ by using an auxiliary array that links PC’ and PQ’. By

performing parallel binary search on the sorted PC’ array, each cell identifier from QC can be

matched with a cell identifier in PC’. Then, identifiers from PQ’ and QQ are further paired since

they are directly connected with PC’ and QC. As all the involved operations, i.e., sort, search

and unique, can be efficiently parallelized in quite a few parallel libraries including Thrust
18

 (that

comes with CUDA SDK), batch spatial query using grid-file indexing can be relatively easily

implemented on GPUs.

The process of grid-file based query processing transforms a spatial query problem (MBR

intersection) into a non-spatial problem (binary search) that can be easily parallelized. However,

the MBRs intersecting with multiple grid cells will be duplicated in each grid cell, which

imposes additional memory pressure that can be a significant limiting factor on devices with

18

 https://thrust.github.io/

53

limited memory, such as GPUs. This issue can be partially addressed by tuning grid cell sizes.

Clearly using larger grid cells will have smaller number of pairs but produce more false

positives. Compared with the R-tree based spatial indexing to be introduced next, while parallel

grid-file is simple in design and easy to implement, it typically requires larger memory footprint

and should be used with caution.

3.2.3 Parallel R-tree based Indexing for MBRs

3.2.3.1 Data-Parallel R-tree Layout

Instead of using classic pointer based tree structure, we design simple linear array based data

structures to represent an R-tree. As discussed previously, the simple linear data structures can be

easily streamed between CPU main memory and GPU device memory without

serialization/deserialization and are also cache friendly on both CPUs and GPUs. In our design,

each non-leaf node is represented as a tuple {MBR, pos, len}, where MBR is the minimum

Figure 15 Illustration of Linear R-tree Node Layout

(MBR, pos, len)

R1(MBR1,3,3) R2(MBR2,6,2) R0(MBR0,1,2)

R3(-,8,3) R4(-,11,2) R6(-,15,2) R7(-,17,3) R5(-,13,2)

0 1 2

3 4 5 6 7

Node layout

R1 R2

R3 R5 R4 R6 R7

R8 R10 R9 R11 R12 R13 R14 R15 R16 R17 R19 R18

Classic pointer based R-tree

Linear R-tree

54

bounding rectangle of the corresponding node, pos and len are the first child position and the

number of children, respectively. The tree nodes are serialized into an array based on the

Breadth-First-Search (BFS) ordering. The design is illustrated in Figure 15.

Compared with a previous work reported in [63] that stored entries for all children in

non-leaf nodes, our design is more memory efficient. The decision to record only the first child

node position instead of recording the positions of all child nodes in our approach is to reduce

memory footprint. Since sibling nodes are stored sequentially, their positions can be easily

calculated by adding the offsets back to the first child node position. In addition to memory

efficiency, the feature is desirable on GPUs as it facilitates parallelization by using thread

identifiers as the offsets. As discussed in Section 2.2.3, an R-tree can be constructed through

either dynamic insertions or bulk loading. In our targeting applications, as the datasets (such as

administrative boundaries) are usually static or infrequently updated, we focus on bulk loading

which allows simple and elegant implementations using parallel primitives.

3.2.3.2 Parallel R-tree construction

Figure 16 Parallel R-tree Bulk Loading

Input: fan-out d; dataset D

Output: packed R-tree

1. sort D using 1-D ordering (e.g. low-x)

2. for level decrease to 1

3. if (level is last level)

4. reduce from original data D

5. else

6. reduce from lower level

Input: fan-out d; dataset D

Output: packed R-tree

1. while (true)

2. if ()

3. root pack MBRs

4. break;

5. else

6. sort_by_key on x-coordinates

7. sort_by_key on y-coordinates for each slice

8. reduce_by_key packed every d MBRs

9.

55

In this study, we have developed data parallel designs based on both low-x packing (used in [63])

and Sort-Tile-Recursive (STR) packing [5, 55] to construct bulk-loaded R-trees. For the low-x

packing approach, the initialization step first sorts the original data (MBRs) by applying a linear

ordering schema (sort based on low-x in this case, other linear order may also apply). An R-tree

is constructed in the main step by packing MBRs bottom-up, and the parallel design using

parallel primitives is illustrated in the left part of Figure 16. Line 1 sorts the original dataset

using low-x ordering. From Lines 2 to 6, an R-tree is iteratively packed from lower levels. In

Line 4 and 6, keys with the same identifiers need to be generated every d items for parallel

reduction purpose. The MBRs, first child positions and numbers of children are computed from

the data items at the lower levels as follows. For the d items with a same key, the MBR for the

parent node is the union of MBRs of the children nodes. For each R-tree node, the first child

position (pos) is computed as the minimum sequential index of lower level nodes and the length

(len) is calculated by counting the number of child nodes. Figure 17 is an example of R-tree bulk

loading with fan-out set to 3. Objects (O1, O2, O3, …) are first sorted by low-x coordinates. Then

the R-tree is constructed by recursively packing from lower levels until reaching the root. For

example, O1, O2 and O3 are first packed and represented as {MBR1, 0, 3} in a higher level, where

MBR1 is the union extent of O1, O2 and O3, 0 is the index of O1 and 3 represents that there are

three items in this node. Similarly, {MBR2, 3, 3} and {MBR3, 6, 3} are generated. Finally, the

root of the tree ({MBR0, 1, 3}) is generated by packing all three nodes from the previous step.

56

We note that the linear ordering of MBRs will directly impact the qualities of constructed

R-trees and subsequently impact the query performance on R-trees [46, 55]. This is because

spatial adjacency in 2-D may not be well preserved in 1-D, an issue that has been intensively

studied in spatial databases [67]. In addition to low-x packing, we have also developed the STR

R-tree bulk loading algorithm, which can preserve spatial locality better. The algorithm is

developed using parallel primitives as follows. First, MBRs are sorted along one direction, i.e.,

using x coordinates from lower left corners, which can be implemented by using a sort primitive.

Then the space is divided into slices according to the predefined fan-out d, and each slice is

sorted along the other direction, such as y-coordinates. Finally every d MBRs in a slice are

packed as parent nodes which will be used as the input for the next iteration. This process is

iteratively executed until the root of the tree is constructed. The right part of Figure 16 outlines

the STR R-tree construction algorithm. Lines 2 to 4 check whether the number of MBRs is

smaller than the fan-out d. If this is the case, the MBRs will be packed as the root node and the

{MBR3, 6, 3} {{MBR2, 3, 3} {MBR1, 0, 3}

{MBR0, 1, 3}

Figure 17 Low-x R-tree Bulk Loading Example

Sorted by low-x coordinates

O1 …… O2 O3

57

iteration is terminated. Otherwise, the MBRs are first sorted using low-x coordinates (Line 6),

and N MBRs are divided into slices where each slice is sorted according to low y-

coordinates (Line 7). After sorting on each slice, parent nodes are generated via packing every d

MBRs (Line 8). Finally, nodes are used as the input for the next iteration (Line 9). The first

sort can be easily implemented by sorting data using x-coordinates as the key. To implement the

second sort where each slice is sorted individually, an auxiliary array is used to identify items

that belong to the same slice. This is achieved by assigning the same unique identifier for all

items belong to the same slice, i.e., a sequence identifier is assigned for each slice and stored in

the auxiliary array. With the help of the auxiliary array, Line 7 can be accomplished by

performing sort on two keys, where the primary key is y-coordinates and the secondary key is the

unique identifiers in the auxiliary array. Line 8 is the same as the packing phase of low-x packing

introduced previously (Lines 4 and 6 in the left of Figure 16). The difference between the two

packing algorithms is that the low-x packing algorithm only sorts once while the STR packing

algorithm requires multiple sorts at each level. Figure 18 shows a running example of the sorting

and tiling process. First, all MBRs are sorted by x and divided into three strips (left of Figure 18).

Then, within each strip, MBRs are sorted on the y direction (middle of Figure 18). Finally, tiles

are generated by further dividing each strip as shown in the right of Figure 18. During tree

construction, the same process is recursively called until the root is reached.

58

3.2.3.3 Parallel Batch Query on R-tree

After introducing the parallel design of R-tree construction, we next introduce our parallel design

for batch spatial range queries on R-trees. As we have introduced in Section 2.2.3, Luo et al. [63]

proposed a BFS based batch query technique on GPUs, where multiple queries are assigned to a

block and a queue is maintained for the whole block. With such a design, a better intra-block

load balance can be achieved and GPU shared memory can be used to further speed up the query

processing. The authors addressed the queue overflow issue by adding another step to re-run

overflowed queries repetitively until completion. However, their design was tied to specific

hardware (i.e., GPU) and may not be suitable for other parallel platforms. Meanwhile, workload

balance in [63] was limited to a block. In contrast, our design uses a global queue for all queries

instead of multiple queues in [63], which generally leads to better load balancing. In addition,

our design not only works on GPUs but also can be easily ported to other parallel platforms such

as multi-core CPUs.

Figure 18 STR R-tree Bulk Loading Example

Sort MBRs by x

first

Divide into strips and

then sort MBRs by y

within each strip

Generate tiles and

perform reduction

59

The left side of Figure 19 outlines our parallel primitives based design. First, a global

queue is maintained and it is initialized using the root of the R-tree for each query. Second, all

queries are checked for intersection with its corresponding R-tree node in parallel using a

transform primitive which applies the intersection test operator for all the pairs. Third, non-

intersected pairs are removed from the queue and the queue is compacted. Fourth, intersected

nodes are then expanded to prepare for the next iteration. This step is a combination of several

parallel primitives such as scan, scatter and transform. The iteration terminates when the queue

is empty or the last level of the R-tree is reached. Finally, query results are copied from the

queue to an output array. A running example is illustrated in the right side of Figure 19. Two

queries and their execution traces are illustrated in bold and dashed lines, respectively. At the

beginning, the queue is initialized with pairs of the root node (A) and query id (1 and 2). After

that, the R-tree nodes are checked and expanded to the next level R-tree nodes (B, C and D).

Finally, the iteration terminates and the queue represents query results (F1, G1, I2 and J2).

Iterate until queue is empty

or reaches leaves

scan+scatter+

transform

 Initialization Check

intersection

Remove

non-

intersected

Queue is

initialized to

{qid, root}

transform transform partition

Generate

next level

iteration

Figure 19 Parallel Primitive based BFS Batch Query

Queue: A1 A2

 B1 C1 D2

F1 G1 I2 J2

D B C

E F G H I J

A

60

We note that there are two potential issues in our design. First, the queue is maintained

globally without considering specific hardware features such as fast shared memory on GPUs. At

each level, the expansion of the current nodes requires global memory accesses, which can be

more expensive than accessing shared memory on GPUs and may lower its performance.

Second, the parallel primitives based implementation imposes additional overhead by parallel

primitive libraries when compared with using native parallel programming languages such as

CUDA. However, as shown in Section 5.2.1, despite the disadvantages, the simple and portable

design has achieved reasonable performance and represented a good balance between code

efficiency and portability and development productivity.

3.2.4 Parallel Quadtree based Indexing for Points

Although point datasets can be indexed using parallel indexing techniques for MBRs introduced

previously by treating a point as a MBR, it is not efficient for large point datasets which is

typical in practice. As such, we develop a parallel Quadtree indexing technique to index large-

Figure 20 A Running Example to Illustrate the Process of Generating Point Quadrants

38 24

11 2

9 16

 13

9

 15

4 7

0 11 20 29 36 45 53 58 66

Level 1

Level 2

Level 1 3

Prefix Sum Starting Position

Z-Order

/Sorting

2

11

4

9

7

9

9

7

10

9

11

8

12

5

13

8

14

7

4

9

7

9

2

11

4

9

7

9

2

11

9

7

10

9

11

8

12

5

13

8

14

7

Leaf Key

points

point vector

Level 3

61

scale point data, which can be used to support spatial range queries and spatial joins. There are

two steps in the introduced Quadtree based indexing technique for point data: step 1 generates

non-leaf quadrants with each quadrant has at most K points, and step 2 assembles the leaf

quadrants into a tree structure. Both steps are based on parallel primitives.

We present the following data parallel design for generating leaf quadrants from point

dataset and the idea is illustrated in Figure 20 using an example. The strategy is to partition the

point data space in a top-down, level-wise manner and identify the quadrants with a maximum of

K points at multiple levels. While the point quadrants are being identified level-by-level, the

remaining points get more clustered, the numbers of remaining points become smaller, and the

data space is reduced. The process completes when either the maximum level is reached or all

points have been grouped into quadrants. The maximum number of points in a quadrant (K) and

the maximum level are set empirically by users.

Input: point dataset P, max level M, min number of points NP

Output: re-arranged point dataset P’, quadrant key vector Q,

 vector of numbers of points falling within quadrants Len,

 vector of numbers of starting positions of points in quadrants Pos

1. for k from 1 to M levels:

2. Key ← Z-order(P, k)

3. sort by Key on P

4. reduce by Key and count number of points Num_Pts for each key

5. for each key in Key:

6. if num_pts ≤ NP:

7. copy quadrant and points to P’ and Q, and generate Len and Pos

8. remove the copied subset from P

9. prepare P for next iteration

Figure 21 Algorithm of Parallel Point Quadrant Generation

62

The algorithm of generating point quadrants is listed in Figure 21. Starting from level 1 to

M of the Quadtree, quadrants are recursively generated from points. Line 2 generates Z-order

code as the sort key, which can use a transform primitive. The current level k is used for

generating quadrant keys for the current level. For example, at the first level only the first two

bits of the Z-order code are used as the key. As a result, all points within the same quadrant will

have the same key and stored consecutively due to the sort in Line 3. Line 4 counts the number

of points for each key using a reduce primitive. Line 5-8 check the counts of quadrants, and

move quadrants that meet the requirement to the output vectors. After that, the dataset is

compacted and prepared for the next iteration.

A complete Quadtree can be subsequently constructed from leaf quadrants using the

similar layout for R-trees as introduced in Section 3.2.3.1. However, since the number of

children for Quadtree is either zero or four, we do not need the len array that has been used in R-

Input: leaf quadrants Qs where each item is (z_val, lev, p_id)

Output: Quadtree T

ParallelConstructQuadtree(Qs):

1. sort Qs by z_val

2. sort Qs by lev

3. (lev, lev_size) = reduce Qs by lev //count size of quadrants at each level

4. lev_pos = exlusive_scan(lev_size) //get start position for each level

5. copy last level quadrants from Qs to T

6. current_lev = MAX_LEV

7. while (current_lev > 0):

8. current_lev = current_lev – 1

9. transform and reduce quadrants in T at current_lev+1 to current_lev and save in

TempQs
10. copy quadrants at current_lev from Qs to TempQs

11. sort and unique TempQs

12. copy TempQs to T

13. return T

Figure 22 Parallel Quadtree Construction from Leaf Quadrants

63

trees. We adopt a parallel primitive based design of constructing a complete Quadtree from its

leaf quadrants, as listed in Figure 22. The input (Qs) is a vector of leaf quadrants with their

corresponding identifiers to the points and the output will be the constructed Quadtree (T). We

use z_val, lev and p_id to represent Morton code, level and the corresponding point identifier

respectively. At the beginning, Lines 1-2 sort leaf quadrants with their Morton codes and levels.

After this step, the level boundaries are extracted in Line 3 and 4, which will be used in the

following for generating non-leaf quadrant at each level. We first copy last level quadrants to the

tree (Line 5), and complete the tree in a bottom up manner (Line 7-12). To generate a new level,

say current_lev, there are two major components. One component directly comes from leaf

quadrants. With the pre-generated level information at Line 3 and 4, we can easily locate leaf

quadrants at current_lev and copy them to a temporary space (TempQs). The other component

should come from the reduction of lower level quadrants, in other words, the quadrants at

current_lev+1. Those quadrants then are appended to TempQs. We note that, to maintain the

link between two consecutive levels, the first child position (fc) must be set appropriately. This is

achieved by performing a reduce operation where four child positions that belong to the same

parent are applied by a min operator. The last step is to copy the TempQs to the tree structure T

(Line 12). The iteration continues on a higher level until the root of the tree is reached.

Using the constructed Quadtree, the batch query processing is almost identical to using R-

tree (Section 3.2.3.3) except that the MBR of a quadrant is implicitly stored in the format of a

Morton code. We thus skip the details of spatial query processing on Quadtrees for point data.

3.3 Multi-Node Distributed Spatial Indexing

64

To efficiently process large-scale spatial datasets on multiple machines (multi-node) with

reasonable load balancing, one of the most important techniques is spatial partition to divide

large-scale datasets into small pieces and each piece can be processed on a single machine. We

have developed distributed spatial indexing based on spatial partitioning in order to support

efficient large-scale spatial data processing on multi-node environments. The distributed spatial

indexing structure is illustrated in Figure 23. The structure consists of an index file and a

partitioned dataset, which is similar to VegaGiStore [108] and the distributed index in

SpatialHadoop [24].

Unlike existing works that are tightly coupled with their execution environment, we

design the distributed indexing as a separate module which is independent from execution

environments such as Hadoop. As shown in the figure, the index is stored as a separate file

without adding additional information in the original dataset. The dataset is only re-organized

according to one of the spatial partition strategies that will be introduced later. In the index file,

we store metadata about the indexed dataset. For each partition we store the MBR of the partition

as well as other metadata. A link is maintained for each partition in order to access the

corresponding data block, which can be either a file location or an offset in the data file. Our

distributed index works for any partition strategies, which is different from VegaGiStore that can

only use Quadtree-like partition [108]. Meanwhile, we design the distributed indexing to be

platform independent and the index is stored as a separate file so that other systems without the

indexing module can still work on the raw dataset. The design is different from SpatialHadoop

where local index is saved into the partitions, which makes it incompatible with other systems.

65

In this work, we have designed and implemented all the three partition strategies

introduced in Section 2.2.4 using data-parallel primitives. As data-parallel primitives are well

supported by parallel libraries as well as Big Data systems such as Spark, our implementations

are easy to be implemented. The data-parallel designs are also applied to shared-memory systems

such as multi-core CPUs and GPUs with data-parallel primitive libraries. Although Hadoop-GIS

has a similar effort on spatial partitioning [96], their implementations were sequential and the

design has not been developed for data-parallel environments. Unlike SpatialHadoop that stores

the local index in each partition, we consider either storing local indexes to the index file or

completely removing local indexes for partitions. The design of storing local indexes in the

separated index file provides compatibility on different systems. On the contrary, datasets

indexed by SpatialHadoop cannot be processed by other systems if the dedicated data loader is

not implemented. Besides, local indexes may not be useful if random data access is not

supported (such as functional operators in Apache Spark). In this case, using local indexes

imposes additional IO overhead without benefiting system performance. On the other hand,

MBR1

MBR2

MBRn

Metadata

…

Partition 1

Partition 2

Partition n

…

Metadata
Link

Metadata
Link

Metadata
Link

Index File

Dataset

Figure 23 Distributed Spatial Indexing Structure

66

hierarchical spatial indexing structures such as R-tree may not be efficient on current generation

of hardware due to irregular memory access and synchronization. Since a partition can be

completely loaded in memory to process, performing parallel scan on the whole partition instead

of traversing index can potentially be more efficient, especially when caching is taken into

consideration. An alternative solution is to build on-demand local index using bulk-loading for

expensive spatial operators such as spatial join. Our design guarantees the separation of indexing

structure and original dataset, and only necessary data re-ordering is applied to the original

dataset.

3.4 Summary

In this chapter, we have introduced parallel designs of spatial indexing techniques, including

both space- and data-oriented indexing structures. Data-parallel designs of space-oriented data

structures such as Grid-file and Quadtree have been presented. Since these two indexing

structures regularly decompose the space to be indexed, the spatial problem (spatial query) can

be transformed into a non-spatial problem (binary search) that is suitable for parallelization. For

objects overlapping with indexing unit boundaries, such as grid cell boundaries in grid-file

indexing, they are duplicated in each overlapping grid cell in order to ensure complete query

results. Therefore, additional duplication removal step is used to generate unique results.

Memory footprint can be a bottleneck because redundant information is required to store. The

data-oriented partition can solve the duplication issue more effectively because the boundaries

can be computed from the data. However, it brings challenges for parallelization due to irregular

partitioning. We have developed data-parallel R-tree techniques, for both index construction and

batch query processing. The data-parallel designs are GPU friendly so that we can take

67

advantages of promising hardware accelerator. In additional to parallel indexing on a single

node, we have also discussed the design of distributed indexing that can be applied to distributed

environments especially for big data platforms. Different from existing works such as

SpatialHadoop, our design emphasizes on not only efficiency but also compatibility. Meanwhile,

we have discussed parallel batch query processing using our parallelized spatial indexing

structures in this chapter, which can be applied in spatial join processing in the next chapter.

68

Chapter 4 Parallel and Distributed Spatial Join

To develop efficient spatial join designs on modern parallel and distributed platforms, we break

down the problem into two levels. First, we develop parallel techniques that are used for

accelerating single-node spatial join, which are able to exploit parallel computing power on a

single machine. At the second level, we design spatial join techniques for distributed

environments to achieve scalability. By combining the two levels of parallelism, we are able to

perform spatial join effectively at very large scales.

Figure 24 Single Node Parallel Spatial

Join

Parallel Refinement

(geometric computation on

each candidate pair)

Join Results

Intermediate Filter

(compute coarse relationship

for each pair)

SIMD

Data

R

S

r1 r2 r3 r4 r5

s1 s2 s3 s4 s5

…

Disk-based

Storage

Pair

Matching

Parallel Index

Construction

In-memory Structures Parallel Filter

69

4.1 Single-Node Parallel Spatial Join

As introduced in Section 2.3, a spatial join typically has two phases, i.e., filter and refinement.

When a spatial join is performed on a single node, the filter phase first generates candidate pairs

by using approximated representations and the refinement phase completely removes false

positives to produce exact results. The spatial filter phase shares several similarities with batch-

query on spatial indexes as discussed previously. However, it is possible that none of the input

datasets in a spatial join is indexed. In this case, a spatial join needs to choose a proper filter

strategy, including building indexes on-the-fly, to join the data items in the input datasets

efficiently. In addition, while the number of spatial queries (represented as MBRs) in a batch can

be large, it is typically smaller than the number of data items of the input datasets in a spatial

join. More importantly, spatial refinement in a spatial join can dominate the whole process and

its performance is critical for the end-to-end performance. As such, additional techniques sitting

between filter and refinement phases that can further improve pruning power and reduce the

number of tests of spatial predicates in the refinement phase are preferable. Although the spatial

indexing and query processing techniques that we have developed in Section 3.2 are data-parallel

and efficient, we would like to investigate on more techniques that can potentially improve

spatial joins on large datasets and improve single-node efficiency for spatial join. The framework

of our parallel spatial join technique on a single node is illustrated in Figure 24.

4.1.1 Parallel Spatial Filtering

We have developed lightweight on-the-fly spatial indexing for spatial join that involves point

datasets, such as point-in-polygon test based spatial join. Recent studies [73, 87] have shown that

using non-hieratical and simple spatial indexes on modern parallel hardware may produce better

70

performance than using classic hieratical spatial indexes (e.g., R-tree). Given that spatial join

between a large and dynamic point dataset (e.g., taxi trip locations) and a relatively small and

static polygon/polyline dataset (e.g. administrative zones) based on point-in-polygon test is one

of the most popular types of spatial join, we next introduce a lightweight on-the-fly indexing

technique for a large point dataset to be joined with a polygon/polyline dataset that is pre-

indexed using a grid-file (described in Section 3.2.2).

Assuming a grid-file has been created by indexing the input polygon/polyline dataset, the

idea is to create a grid-file for the input point dataset, which may have a high update frequency

and may not be previously indexed. Clearly, it is desirable to use the same grid-file configuration

of the input polygon/polyline dataset for the input point dataset, which is possible in spatial join

as we are building a grid-file index on demand. The design of the lightweight indexing technique

for point data using parallel primitives is illustrated in Figure 25. The transform primitive

generates grid cell identifiers for all points; the sort primitive sorts points based on the cell IDs;

Point coordinates: (x, y)

Transform/Map: (x, y)(row, col) Cell ID

Reduce (by key): (Cell-ID)(count) 3

0

4

3

2

7
Scan (count) (pos)

Sort (by Cell ID)

Figure 25 Light-weight Indexing for Point Dataset

71

the reduce (by key) primitive counts the number of points within each grid cell; and finally the

(exclusive) scan primitive computes the prefix-sums of the numbers of points in all grid cells

which are the starting positions of the points in the sorted point data vector.

Compared with Quadtree based point indexing technique presented in Section 3.2.4, the

design is indeed lightweight which makes it desirable for spatial joins. However, this is at the

expense that the number of points in a cell can be potentially unbounded and may incur load

unbalance in spatial refinement when the points in a cell is assigned to a processing unit in a

naïve way. Fortunately, parallel libraries such as TBB on multi-core CPUs can tolerate load

unbalancing to a certain degree by using algorithms such as work stealing [64]. Similarly, CUDA

computing model also tolerates load unbalancing to a certain degree at the computing block level

as GPU hardware assigns computing blocks to GPU cores in the units of warps dynamically. We

plan to investigate techniques that can mitigate load unbalancing, such as merging cells with too

few points and splitting cells with too many points.

To further improve the efficiency of the point-in-polygon test based spatial join, we have

added an intermediate step between the spatial filter phase (based on grid cell matching) and

spatial refinement (based on point-in-polygon test) using cell-in-polygon test. The idea is

illustrated in Figure 26. The motivation is that, if a cell is completely within/outside a polygon,

then all the points that are indexed by the cell will be completely within/outside the polygon

without needing performing the expensive point-in-polygon tests for the points individually. If

the number of the points in the cell is large, it is likely that the overall performance can be

significantly improved. For example, in the right side of Figure 26, point-in-polygon tests in cells

72

A, A’ and B can be saved since they are either completely outside or inside the polygon. We note

that cell-in-polygon test can also adopt a data parallel design in a way similar to the design of

parallelizing the point-in-polygon test design to be described next. We note that similar ideas can

be also applied to other types of spatial joins which are left for our future work.

4.1.2 Parallel Refinement

The results of the filter phase are candidate pairs whose MBRs meet the spatial relationship but

with false positives. Thus, a refinement phase is used to completely remove the false positives

and generate the final results. The refinement phase usually involves geometric computations,

such as point-in-polygon test, to determine the exact spatial relationship of candidate pairs. The

geometry operations that we will be focusing on include distance based and topology based

operations. The distance based operations are mainly used for nearest neighbor search based

spatial joins that involve distance calculation. For topology based operations, we currently focus

on intersection test based spatial join, such as point-in-polygon test.

Figure 26 Cell-to-polygon Relationship

73

Geometry operations have been well studied in computational geometry and implemented

in several general-purpose geometry libraries such as JTS
19

 and GEOS
20

. However, to our best

knowledge, there is no existing geometry library that can fully take advantages of SIMD units on

CPUs as well as GPUs. Unfortunately, using a general-purpose geometry library such as GEOS

to perform geometry operations is very slow based on our in-house benchmarks. Thus, we have

developed a specialized geometry engine that is parallelized on both CPUs and GPUs based on

our columnar spatial data layout introduced in Section 3.2.1. The engine supports major spatial

data types (including point, polyline and polygon and related distance based and topology based

operations). The major challenge of developing the geometry engine is to design data-parallel

geometry algorithms that can exploit SIMD parallel computing power. In the refinement phase of

spatial join, the computation usually performs on a set of candidate pairs instead of a single pair.

As such, we design the geometry engine to process a geometry operation in batches that can be

mapped to multi-core CPUs (with VPUs) and GPUs for efficient SIMD processing. We next

introduce our design using point-in-polygon test operation as an example. Other operations such

as distance calculation of two spatial objects for nearest neighbor search can follow a similar

design.

19

 http://www.vividsolutions.com/jts/JTSHome.htm

20
 http://trac.osgeo.org/geos/

74

During the refinement phase of point-in-polygon test based spatial join, we assign each

pair of point-in-polygon test to one SIMD execution unit (i.e., thread in GPU and VPU lane in

CPU). Using the classic ray-casting algorithm for point-in-polygon test [40], a point loops

through all the vertices of its paired polygon on each SIMD execution unit. As nearby points

have similar spatial coordinates, it is very likely that all execution units on all VPU lanes in a

CPU core or a computing block on a GPU follow a same path. As discussed in the next two

paragraphs, the design is efficient on CPUs due to cache locality and efficient on GPUs due to

coalesced memory accesses. Although there exist point-in-polygon test algorithms in the

complexity of O(log n) or even O(1) [40, 41, 56, 110], we argue that the ray-casting algorithm

does not require additional pre- and post-processing on polygons, and the simplicity of its

Figure 27 Point-in-polygon Refinement on CPU and GPU

Memory (CPU/GPU)

points

polygon

Shared Mem

GPU SM

true false true results:

Ray-casting
CPU Core

SIMD Unit

temporal

loop

Cache

range

75

implementation makes it robust. Meanwhile, the implementation of our point-in-polygon test

directly manipulates data items in SoA, which is very efficient comparing with existing libraries

that usually have significant abstraction overheads and are not cache friendly due to excessive

dynamic memory allocations.

The parallel designs of point-in-polygon test operation on both multi-core CPUs with

VPUs and GPUs are further illustrated in Figure 27. For GPUs, we assign a group of points to a

GPU computing block, in which all points within the group perform point-in-polygon tests on

the same polygon. Each GPU thread loads a point and loop through all vertices of the targeting

polygon in a lockstep manner. If the test result is positive, its corresponding indicator is set and

saved to GPU global memory. Since points are stored consecutively, the global memory access is

perfectly coalesced. As for polygons vertices, since all threads in a computing block access the

same polygon vertex at a time, the vertex data can be broadcast to all threads in the warps of the

computing block by GPU memory controller hardware, which is highly efficient on GPUs. The

multi-core CPU design is very similar to the GPU design, where each test is assigned to a SIMD

lane in VPUs instead of a thread in GPU. Since all SIMD lanes within the VPU of a CPU core

are accessing vertices of the same polygon in the same order, it is efficient on memory accesses.

The difference between GPU and multi-core CPU for the refinement is mainly on task

decomposition and execution. A point-in-polygon test task on multi-core CPUs is divided into

subtasks based on ranges of points and a micro batch with size equals to the number of SIMD

lanes is assigned to the VPU on the CPU core to loop through all the points in the range. On

GPUs, a range of points is assigned to a thread block for parallel processing and the GPU

76

hardware maps the threads to GPU cores in warps (Section 2.1.1.2). While CPUs may cache both

points and polygon vertices to reduce memory access costs, GPUs mainly rely on coalesced

memory accesses (for points) and broadcast memory accesses (for polygon vertices that are

shared) among threads in warps to hide memory access latency.

4.2 Multi-Node Distributed Spatial Join

To perform spatial join on very large datasets, especially when the sizes of data exceed the

capacity of a single machine, we need to develop efficient distributed spatial join techniques for

multi-node computing environments, i.e., a cluster with multiple machines. We have developed

two distributed spatial join designs based on the characteristics of input datasets. When both

datasets are very large and at a similar scale, we call the two datasets symmetric. To process

spatial joins on symmetric datasets (or symmetric spatial join), we have developed spatial

partition based spatial join techniques, where data are divided based on a predefined spatial

partition schema and processed individually in distributed computing nodes. However, the

process of generating spatial partitions can be very expensive if the datasets are large. On the

other hand, we have observed that in many spatial join applications the input datasets are

asymmetric. This means, one of the two input datasets is relatively small comparing with the

other one. For example, a point-in-polygon test based spatial join application involves a large

number of GPS locations and a moderate size of administrative zone boundaries. As one side of

the join inputs (boundaries) is relatively small comparing with the other side (GPS locations), we

term the spatial join as asymmetric spatial join. For this type of spatial join, instead of

performing expensive spatial partition that is necessary in spatial partition based spatial join, we

have developed a more efficient approach by broadcasting the small dataset to all the partitions

77

of the large dataset for distributed executions. In this section, we will introduce spatial join

implementations that take advantage of the state-of-the-art Big Data technologies, including

several prototype systems.

4.2.1 Spatial Partition based Spatial Join

We have developed a spatial partition based spatial join technique to process symmetric spatial

joins on multi-node platforms. The parallelization on a multi-node environment is different from

single-node parallelization. For example, while random access is well supported on a single

machine because of shared-memory architectures within single computing nodes, it is very

expensive on shared-nothing cluster computers that involve data communication among

distributed nodes. When designing parallel spatial join techniques on multiple computing nodes,

it is necessary to minimize the expensive communication cost in order to improve end-to-end

performance. On the other hand, in parallel computing, the overall performance is usually

dominated by stragglers (slow nodes). A good parallelization design has to minimize the effects

from stragglers. Therefore, the basic idea of our spatial partition based spatial join technique is:

divide the spatial join task into small (nearly) equal-sized and independent subtasks and process

those small tasks in parallel efficiently. The technical challenges are as follows: 1) how to divide

a spatial join task into small non-overlapping tasks that can run in parallel with low

communication cost, 2) how to divide a spatial join task in a way that achieves better load

balance. We introduce spatial partition based spatial join techniques to address those challenges.

Spatial partition based spatial join is designed in two phases, i.e., the partition phase and

the local spatial join phase. In the partition phase, a partition schema is computed based on the

78

spatial distribution of either the whole or a sample of the input dataset and the input data are

subsequently partitioned according to the partition schema. If both datasets have already been

partitioned using one of the previous introduced strategies (such as FGP, STP or BSP in Section

2.2.4), there are two methods to accomplish the partition phase. The first method is to repartition

one dataset according to the existing partition boundaries from the other dataset. Another method

is to match partition boundaries from both datasets and each matched pair is considered as a

virtual partition that will be assigned to a computing node. After the partition phase, each

partition contains objects from both sides and local parallel spatial join is performed using the

techniques developed for single-nodes as introduced previously. By this means, we are able to

achieve two levels of parallelism, i.e., inter-node parallelism and intra-node parallelism. As intra-

node parallelization has been discussed in the previous sections, we focus on inter-node

parallelization in this section.

An example of spatial partition based spatial join on non-indexed datasets is illustrated in

the left part of Figure 28. First, a partition schema is generated by sampling the input datasets (A

and B). After that, A and B are partitioned by the schema and each partition holds subsets of the

original datasets, e.g., A1 and B1 are in partition 1. Finally, partitions (Partition 1, 2 and 3 in the

figure) are assigned to a computing node for local spatial join processing. If input datasets have

already been partitioned (indexed), an alternative approach is to match existing partitions instead

of performing repartition. The approach is illustrated in the right part of Figure 28 which is

almost identical to the previous one except that the partition phase is different. In this approach,

instead of performing repartition in the first method, partition boundaries from both datasets are

matched. Then, matched pairs are assigned to computing nodes. As discussed in previous works

79

[81, 96], a good partition schema may result in better performance. In this work, we have

developed data-parallel designs and implementations of the three spatial partition techniques

introduced in Section 2.2.4 for our partition based spatial join on modern parallel and distributed

platforms. To our knowledge, this has not been addressed in previous works.

In the first method, after an on-demand partition schema is generated, both input datasets

need to be shuffled based on the schema so that local spatial join within each partition can be

performed. Towards this end, each data object will be assigned a partition id based on the

partition schema. For spatial objects with zero extent (such as points), the one-to-one

correspondence is easy to calculate. However, for those spatial objects with non-zero extent (e.g.,

polygons and polylines), when they are on the partition boundaries, one object can intersect with

multiple partitions and the object needs to be duplicated for each partition it intersects. When a

spatial join involves buffered search, such as nearest neighbor search within a defined buffer

Figure 28 Spatial Partition based Spatial Join

80

radius, a partition should include not only objects intersect with it but also objects that intersect

with the buffered region (derived by expanding the object with the buffer radius). For FGP, the

partition id can be directly calculated from the predefined grid size. However, this is not

straightforward for other partition techniques because their partition boundaries can be irregular.

We create a spatial index on the partition boundaries (e.g., using R-tree) and perform query

processing for each data item so that the corresponding partition ids can be assigned. Since

spatial objects are possibly duplicated in the process, an additional post-processing is required to

remove the duplication and the easiest way is to sort. As both sort and scan can be performed on

modern parallel hardware efficiently (in the orders of hundreds of millions per second), we sort

the combined results and remove duplication via a full parallel scan on the results to reduce

implementation complexity.

In the second method where partitions are pre-generated, we assume partition boundaries

Figure 29 Broadcast based Spatial Join

81

are saved as metadata. In the partition matching step, metadata (partition boundaries) from both

partitioned datasets are loaded and matched. Usually, a master node is responsible for

performing the partition matching and a list of matched pairs will be maintained. Since the

number of partitions is relatively small, we can apply single-node parallel spatial join techniques

to generate the matched pairs. Once the list has been generated, computing nodes can process on

the partition pairs and generate the final results. For each partition pair, we apply the single-node

parallel spatial join technique as we have adopted in the previous approach.

4.2.2 Broadcast based Spatial Join

In spatial partition based spatial join, the partition phase can be very expensive due to data re-

ordering as well as the additional partition matching phase. Transferring large amount of data

may also degrade the overall performance significantly. This motivates us to develop an efficient

spatial join technique for asymmetric spatial joins. Considering a spatial join whose left side is a

large point dataset and the right side is a moderately sized polyline or polygon dataset, we can

broadcast the right side to all the partitions of the left side and perform spatial join locally for

better efficiency. The assumption for the broadcast based spatial join is that the small dataset can

be fit in the memory of each machine which is typically valid in many applications. For example,

a dataset of administrative boundaries of a city is usually in the order of tens of thousands and

the data volume is no more than tens of megabytes, which can be easily stored in the main

memory of current commodity computers.

Our broadcast based spatial join technique works as follows. The first step is to broadcast

the small dataset to all computing nodes; an optional on-demand spatial index may be created

82

during the broadcasting. As a result, each node owns a copy of the small dataset as well as the

spatial index if applicable. In the second step, the large dataset is loaded from a distributed file

system (such as HDFS) and equally distributed among the distributed nodes using range

partition. Each node then performs local spatial join on its own portion of the large dataset. As

the geometry objects of the small dataset are stored locally, the refinement phase can be

performed without additional data transfer. Figure 29 provides an example of broadcast based

spatial join. In the example, the small dataset B as well as an on-demand R-tree index is

broadcast to all computing nodes. On the other side, the large dataset A is divided into chunks

and processed independently by all computing nodes.

The small dataset as well as the on-demand spatial index are read-only during the whole

process. Therefore, no synchronization is involved and each local spatial join can run

independently. Since each data item in the large dataset performs query on the same small

dataset, the runtime of query data item is roughly the same during the filter phase. However, for

the refinement phase, the workload can be very different because the intensity of geometry

computation varies across partitions. One solution to address this problem is to adjust workload

for each cluster node by using proper selectivity estimation metrics. By avoiding the expensive

data re-ordering and spatial partition, broadcast based spatial joins for asymmetric datasets can

potentially achieve much better performance than spatial partition based spatial joins.

Furthermore, since no additional phase to remove duplication is needed, the already reduced

workload is likely to be balanced, which is desirable. To sum up, the key advantage of broadcast

based spatial join is avoiding expensive overheads of spatial partitioning and data re-ordering

83

while the major disadvantage is that broadcast based spatial join requires larger memory and may

not be applicable for joining two large datasets.

4.3 Large-Scale Spatial Data Processing Prototype Systems

To demonstrate the feasibility and effectiveness of our parallel designs introduced previously, we

have developed three prototype systems based on state-of-the-art Big Data technologies. The

first two prototype systems, called SpatialSpark and ISP, are based on Spark [106] and Impala

[14], respectively. The third one, called LDE, is a light-weight distributed processing engine,

which does not rely on existing Big Data platforms (except HDFS that is used for distributed

storage). We will introduce the details of the three prototype systems in the following.

4.3.1 SpatialSpark

Based on our designs, we have initiated an effort to develop efficient big spatial data processing

engine using Spark, namely SpatialSpark. In SpatialSpark, we have implemented both broadcast

and spatial partition based spatial joins. Since Spark is written in Scala, most of Java libraries can

be used without any changes. Thus we could reuse the popular JTS library for spatial refinement.

For example, testing whether two geometric objects satisfy a certain spatial relationship (e.g.,

point-in-polygon) or calculating a certain metric between two geometric objects (e.g., Euclidian

distance). In addition to utilizing finer grained data parallelism to achieve higher performance, as

all the intermediate data are memory-resident in Spark, excessive disk I/Os can be minimized

which is a key to achieve the desired high-performance. For geometry representation, we choose

WKT format for storing geometry data in HDFS, which is simple and can be stored as native

string type.

84

For broadcast based spatial join, we take advantage of the broadcast mechanism in Spark,

which can send a broadcast variable (which can be a dataset) efficiently to all computing nodes.

JTS library is used to generate R-tree from the small input dataset and the geometries are

associated with the leaf nodes of the R-tree. A broadcast variable is created from the generated

R-tree, which can be accessed by all computing nodes. For large datasets, each data item

performs its local spatial join individually. We use R-tree batch query to generate candidate pairs

and all queries are executed in parallel. The spatial refinement phase also uses JTS library to

evaluate the spatial relationship in the join for each candidate pair.

The spatial partition based spatial join is more complex than the broadcast based spatial

join in SpatialSpark. We have implemented all the three partition strategies introduced

previously (Section 2.2.4) with both serial and parallel version variations on Spark. For fixed-

grid partition, the partition boundaries can be directly calculated based on the extent and grid

partition size. The partition assignment phase can be realized by simply assigning each data item

MBR1

Index Table

R-tree

MBR2 R-tree

Data Table

ID1 data

ID1 data

ID1 data

ID1 data

ID2 data

ID2 data

ID2 data

Figure 30 Table Layout in Spark SQL

85

with a partition id using the built-in Scala map primitive. For the other two partition techniques,

after an R-tree is constructed, each item queries the R-tree in parallel to compute its partition ids

Based on the partition ids, all data items are shuffled using the built-in join primitive. The

partition assignment and data shuffle steps are typically time consuming due to the expensive

data re-ordering as discussed previously (Section 2.2.4). After the shuffle phase, each partition

contains two lists of spatial objects. Since the two lists are not indexed, we create an on-demand

R-tree on one side and perform batch queries using the data items in the other side, for all

partitions in parallel. This step can also be replaced with a local nested loop join or a plane-

sweep join. Each local spatial join is assigned to a single thread that runs sequentially. Finally,

the output is combined and saved to HDFS.

Another implementation of partition based spatial join on top of the new Spark SQL
21

21

 http://spark.apache.org/sql/

Reading

Right table

(broadcast)

Impala Frontend (SpatialJoin keyword extension)

SpatialJoin

A1 A2 Reading

Left table

(partition)

B1 C1 D2

Hive metastore Impala Backend

HDFS

AST

Root

CUDA+THRUST Programming

Spatial Index

B

A

CB

A

Thread Block GPU Device
 Host

CPU GPU

I/O I/O
PCIe

TBB+THRUST

Figure 31 Spatial Join in ISP

86

module using its DataFrame APIs. Instead of generating on-demand partitions and spatial

indexes, spatial partitions and indexes are constructed and materialized as a separate table. Such

design will be more useful if the spatial dataset will be reused for multiple queries and join

processing. We adopt a two-level indexing structure where the first level partitions the dataset

and the second level uses R-tree for each partition. The index structure is maintained as a table in

Spark SQL. Each row of the table represents a spatial partition including a MBR for the whole

partition and an R-tree for all objects belonging to this partition. The leaf nodes of the R-tree are

identifiers that can be linked to the original dataset to retrieve the exact geometry

representations. An example of the table layout is shown in Figure 30. In the figure, two

partitions are stored in the index table where each row contains the MBR of the partition as well

as an R-tree for all objects within the partition. The two tables are linked through partition

identifiers. During the spatial join processing, the spatial indexes are first loaded and matched for

the filter phase. After that, a list of candidate pairs is generated for the refinement phase, and

each pair consists of two identifiers from both sides. The refinement phase performs a three-way

join and exact geometry representations are retrieved for geometric operation. The benefit of

using DataFrame is to take advantage of the optimizer and runtime code generation modules in

Spark SQL, which can produce better performance than the raw RDD operations. In order to

perform exact geometry refinement, intermediate results of the three-way join need to keep all

geometry representations. When the sizes of joining geometry objects are getting large, the

intermediate results of the three-way join can be very large due to duplication (a record from one

side may have multiple join candidates from the other side), and they may exceed memory

87

capacity in processing computing nodes. When memory capacity is exceeded, Spark runtime will

spill data from memory to disk, which can hurt performance significantly.

As SpatialSpark is functionally equivalent to several existing packages such as Hadoop-

GIS and SpatialHadoop, it is also desirable to evaluate and compare the performance among the

three platforms. We have conducted performance study for several real world spatial applications

to gain insights. We have also tested the scalability of SpatialSpark in the Cloud to demonstrate

its capability in processing large-scale datasets. The results are provided in Section 5.3.1.

4.3.2 ISP

In additional to SpatialSpark, we have also implemented broadcast-based spatial join on Impala

which is another leading in-memory processing engine. The prototype system is called ISP,

including a multi-core CPU version (ISP-MC) and a GPU version (ISP-GPU). Unlike Spark,

Impala query processing backend is implemented using C++. As such, it is ideal to serve as the

Figure 32 Point-in-polygon test based Spatial Join on ISP

88

base for further extensions when performance is critical. In particular, as currently Java has very

limited support for exploiting SIMD computing power on either CPUs or GPUs, C/C++

language interfaces might be the most viable option to effectively utilize hardware accelerations.

ISP is designed to fully take advantage of hardware accelerators. Figure 31 shows the

architectural design of ISP. First, we have modified the Abstract Syntax Tree (AST) module of

Impala frontend to support spatial query syntax. Second, we represent the geometry of spatial

datasets as strings to support spatial data accesses in Impala (as in SpatialSpark) and prepare

necessary data structures for GPU based spatial query processing. Third, we integrate our single-

node GPU-based spatial data management techniques with Impala to support large-scale spatial

data processing on GPU-equipped clusters. We currently have implemented broadcast based

spatial join due to its similarity with existing relational hash join implementation in Impala. For

spatial partition based spatial join, we found its implementation using existing infrastructure is

quite challenging. Unlike Spark that provides convenient parallel primitives, Impala is an end-to-

end system which makes it difficult to build custom applications. Although it is technically

possible to implement partition based spatial join on top of Impala, the implementation will be

tied to a specific version of Impala which makes it less attractive for general use.

We next present a detailed design of the point-in-polygon test based spatial join

accelerated by GPUs in ISP. In this design, we have developed broadcast based spatial join

introduced previously. The process of a point-in-polygon test based spatial join using R-tree in

ISP-GPU is illustrated in Figure 32. During the spatial join, the large table is first divided into

row batches where each row batch consists of multiple rows and is processed on an Impala

instance. Then, the small table is broadcast to all Impala instances and an on-demand R-tree is

89

created from the small table in an instance. We note that retrieving the small table from HDFS

can be efficiently done using multi-threaded I/O supported by Impala. Meanwhile, the on-

demand R-tree can adopt our parallel design introduced in Section 3.2.3. After the broadcast

step, we iterate through all the row batches that are assigned to an Impala instance to perform

local spatial join.

For each row batch, we use GPUs to parallelize tuple evaluations. Non-spatial sub-

expressions are evaluated first on CPUs before the spatial query is evaluated on GPUs using the

on-demand R-tree. This is because spatial operations are typically more expensive and can

benefit from filtering based on non-spatial criteria, in addition to GPU hardware accelerations of

floating point computation. The geometry of a whole row batch is transferred to GPUs for

parallel query against the GPU based R-tree built in the broadcast step. The query result is then

transferred back to CPUs in the form of a vector of identifier pairs. Finally, tuples of the big table

and the small table are located based on the identifier pairs and they are concatenated (possibly

after applying a projection operator) before written to an output tuple buffer. The buffer will be

consumed by upper level AST nodes for subsequent processing in row batches, e.g.,

aggregations (at the same level) and upper level SQL clauses (if a sub-query is involved).

We have evaluated the scalability of ISP on both multi-core CPU and GPU equipped

clusters to accelerate spatial join processing, including both filter and refinement phases. Similar

to SpatialSpark, comparisons have been made with other existing works. The results and

performance studies will be presented in the experiment chapter in Section 5.3.2.

4.3.3 LDE

90

Based on the experiences of developing SpatialSpark and ISP, we have observed that the

infrastructure overheads in distributed spatial join processing can be very expensive. Meanwhile,

extending existing systems such as Impala is very challenging, because the spatial processing

module is required to be tightly coupled with the underlining infrastructure in ISP. Even though

Spark provides a framework that spatial extensions can be relatively easily developed,

unfortunately, it is difficult to utilize hardware accelerators such as GPUs to further improve

performance because of the restrictions of the underlining runtime system. As such, we have

developed a lightweight distributed execution engine, namely LDE, to support efficient

distributed large-scale spatial data processing. We design LDE by taking consideration of three

key aspects. First of all, LDE is a lightweight framework that targets for domain specific

applications, especially spatial data processing. Second, LDE runs on distributed environments

so that large-scale datasets can be processed efficiently. Third, hardware accelerators such as

Figure 33 LDE Architecture

Worker 1

Distributed File System (HDFS)

Master

Indexer

Task Queue

Scheduler

Worker 2

Worker 3

Worker N

…

Receiver Worker Task Queue

Data Loader

Worker Data Queue

Receiver

Data

Processor

To Master

1

1

2

1

3

1

4

1

5

1

6

1

7

1 8

1

To HDFS

91

multi-core CPUs and GPUs can be integrated in order to fully exploit computing power on

individual computing nodes.

The architecture of LDE is illustrated in Figure 33. As shown in the figure, our execution

engine consists of a master node and a set of worker nodes. For both master and worker nodes,

we use threads and queues to achieve non-blocking calls. We have adopted Apache Thrift
22

 to

communicate among multiple machines, including serialization, data transfer and deserialization.

Data is stored in a distributed file system such as HDFS so that all workers are able to perform

random disk access.

Given a particular application to be executed on LDE, based on the gathered dataset

information, the indexer divides the original problem into multiple independent tasks and pushes

the tasks into a task queue asynchronously (Step 1). The scheduler, which runs as a demon

thread, consumes the task queue and dispatches available tasks to all workers for local

processing (Step 2 and 3). The dispatch of tasks is designed to be non-blocking. On each worker

node, a receiver thread is launched to accept tasks from the master node by listening to a

predefined port. Received tasks are pushed into its own task queue (Step 4), where the capacity

of the task queue is configured during system initialization. The worker task queue is initially

filled by the master node based on the advertised capacity. Upon successfully completing a task,

the worker node signals the master node to send a new task. A separate data loader thread

periodically checks the status of the task queue and pops up a task when the task queue is not

empty. When the worker task queue is not empty, the data loader thread consumes the task queue

22

 https://thrift.apache.org/

92

and loads relevant data for each task from the distributed file system in the framework (Step 6).

Loaded data are kept in memory and pushed into a data queue. Notice that the data loading is

also designed in a non-blocking manner, so the expensive IO overhead can be minimized with

asynchronous processing by a data processor thread (Step 7). Finally, the worker reports status

back to the master and relevant output will be saved into the distributed file system (Step 8).

We have developed both broadcast based and partition based spatial joins using the LDE

framework. In broadcast based spatial join, the large dataset is divided into equal ranges and the

small dataset is broadcast to all computing nodes. In the task queue of the master node, the task

is defined as a pair of a range and the broadcast dataset. When worker receives the task, it loads

the broadcast dataset from the underlying distributed file system (e.g., HDFS). The broadcast

dataset will be persisted in memory on each node to avoid unnecessary disk access during the

process. In this design, we do not load datasets from the file system on the master node. Instead,

only file locations and corresponding offsets are sent from the master node to worker nodes. By

this means, substantial disk IO can be avoided on the master node, and the data loading will be

delayed until worker nodes start to process. Meanwhile, loading data at each worker node can

also benefit from the scheduling of distributed file system which may improve the performance

of distributed IOs. On each worker node, similar to SpatialSpark and ISP, we apply our single-

node parallel spatial join techniques (see Section 4.1 for details). In LDE, a spatial index (such as

R-tree or grid-file) is created and kept in memory to speed up local spatial join processing.

In partition based spatial join, there are two design options in LDE. The first option is

similar to SpatialSpark, where a partition schema is generated by sampling the input datasets and

both datasets are repartitioned according the generated schema. Then, each partition is assigned

93

as an independent task in the LDE framework and processed using local parallel spatial join on a

single computing node. Another option is to index both datasets before performing spatial join.

The process is as follows. First, distributed indexes from both datasets are loaded in the master

node. Then, a local spatial join is performed on the distributed indexes and matched pairs are

assigned as tasks that will be processed in our LDE framework. Here, a matched pair refers to a

pair of intersected partitions from the indexed datasets. The idea is similar to indexed distributed

join developed in existing work SpatialHadoop [25]. However, our LDE framework is much

simpler than Hadoop runtime and we have more control over the whole process. As such, we

could potentially have better utilization of all available resources with less system overhead.

Furthermore, we can benefit from in-memory processing and take advantages of state-of-the-art

parallel hardware such as GPUs which are difficult when using existing JVM based systems.

4.4 Summary

We have introduced several designs for single-node parallel spatial join and multi-node

distributed spatial join in this chapter. For single-node parallel spatial join, we have developed

parallel designs for both filter and refinement phases. In this work, we assume the data is static

or near-static, which means, the updates on the dataset is not very frequently. As a result, the

spatial join techniques we have developed do not require maintaining dynamic indexing

structures and indexing structures are generated via efficient bulk loading techniques. Even

though our spatial join designs do not provide direct support for datasets with continuous

updates, spatial joins with moderate update frequencies can be performed in a batch manner

where the indexing structure can be re-generated. As the parallel bulk loading techniques we

have developed are very efficient, regenerating indexing structures can be very fast. Meanwhile,

94

if only one side of a spatial join contains updates, lightweight indexing techniques can be

applied, for example, the technique introduced in 4.1.1.

In this chapter, we have also introduced techniques to improve the refinement phase

using SIMD operations which has not been well studied in the past. By comparing with existing

geometry libraries, our designs are capable of taking advantages of current generation of

commodity parallel hardware. We have also introduced the design of intermediate filtering that

computes coarse relationship for each candidate pair as an extension to the classic filter-

refinement framework for spatial join.

 For very large scale datasets, they may be beyond a single node’s capacity in terms of

memory and computation, which requires distributed spatial join processing. Our goal is to

combine both single node parallel techniques such as GPU with state-of-the-art big data

platforms, which will provide another level of parallelism. First, we have developed two spatial

join designs, i.e., broadcast- and partition-based methods. The two designs are targeting at

different applications according to the characteristics of input datasets. The spatial partition

based method is a general approach by spatially dividing datasets into partitions, and no

communication is needed between partitions so that they can be processed independently. For

asymmetric input datasets, we have developed a broadcast based method which sends the small

dataset to all nodes instead of performing expensive spatial partitioning. As a result, expensive

data reordering can be saved and significant speedup has been achieved.

In this chapter, we have introduced three prototype systems, i.e., SpatialSpark, ISP and

LDE. These three implementations are built based on different platforms and representing

95

different needs of real world applications. For applications that are more concerned about

compatibility and extendibility, SpatialSpark will be the choice even though it cannot effectively

utilize hardware accelerators. LDE is a specialized implementation targeting on specific

applications where performance is most crucial, as LDE can take advantages of existing parallel

hardware and has least system overhead among the three systems. However, LDE is developed

from scratch and robustness and usability are under active improvements. ISP is between

SpatialSpark and LDE, which has both compatibility and efficiency. However, the development

complexity and low extendibility of Impala limit its practical applicability to processing spatial

data.

 In summary, we have developed designs for single-node parallel spatial join and

distributed spatial join. Evaluations and performance studies of the three prototype systems using

real world datasets will be presented in Chapter 5.

96

Chapter 5 Evaluation and Performance Study

To justify the feasibility and effectiveness of our designs introduced in the previous chapters, we

have conducted evaluations and performance studies using both benchmark datasets and datasets

from read world applications. In this chapter, we first present performance evaluations on single

node techniques, including data-parallel R-tree and grid-file indexing, using both multi-core

CPUs and GPUs. In the second part of this chapter, we conduct performance study on distributed

designs for multi-node prototype systems, i.e., SpatialSpark, ISP and LDE, including

performance comparison with SpatialHadoop and HadoopGIS.

Table 3 Machine Specifications

Name Hardware Software

WS-1

A workstation with two Intel E5405

processors at 2.0 GHz (8 cores in

total) and an NVIDIA Quadro 6000

GPU with CUDA 5.0

Ubuntu-10.04, GCC 4.6.3, Intel

TBB 2.2, Thrust 1.6

WS-2

A workstation that has dual 8 core

CPUs at 2.6 GHz, 128 GB memory, 8

TB HDD and NVIDIA GTX Titan

GPU with 6 GB graphics memory

and 2,668 cores.

CentOS 6.5, Hadoop 2.5.0

from Cloudera CDH 5.2.0,

GCC 4.9.0, Intel TBB 2.2,

Thrust 1.6

EC2

A cluster is built using Amazon EC2

instances (g2.2xlarge), each instance

is equipped with 8 vCPU (Intel Sandy

Bridge 2.6 GHZ), 15 GB memory, 60

GB SSD and an NVIDIA GPU with 4

GB graphics memory and 1,536

CUDA cores.

CentOS 6.5, Hadoop 2.5.0

from Cloudera CDH 5.2.0

97

5.1 Setup

For experiments running on a single node, we have prepared two workstations equipped with

multi-core CPUs and GPUs, and their specifications are listed as WS-1 and WS-2 in Table 3. For

experiments running on multiple nodes, we have prepared two clusters, one uses a single node

(WS-2), and the other is based on Amazon EC2 instances. The hardware and software

specifications are also listed in Table 3.

For data-parallel R-tree evaluation, we have adopted a benchmark dataset from [1], which is

designed to evaluate R-tree indexing. The specifications of the benchmark are listed at the top of

Table 4 (abs02, dia02, par02, and rea02) and the related queries are shown in Table 5. For

parallel spatial join evaluations including single-node and multi-node techniques, we have

prepared two datasets related to New York City taxi trip analysis, which is a real world point-in-

polygon test based spatial join application. The first dataset (taxi) has approximately 170 million

pickup locations in 2009 from New York City taxi trip data, which are in the format of latitude

and longitude. The other dataset (nycb) is a polygon dataset which is derived from NYC Census

2000 dataset
23

. The nycb dataset has about 40 thousand census block polygons with more than 5

million vertices. Aligning GPS locations to a street network is also widely used in taxi trip

analysis, which can be represented as nearest neighbor search based spatial join. As such, we

have derived a dataset (lion) from NYC street network (LION
24

) dataset, which has about 150

thousand polylines. In addition to the NYC taxi trip analysis, we have also prepared another

point-in-polygon test based spatial join application, which is joining species occurrence records

23

 http://www.nyc.gov/html/dcp/html/bytes/applbyte.shtml

24
 http://www.nyc.gov/html/dcp/html/bytes/dwnlion.shtml

98

of Global Biodiversity Information Facility (GBIF) repository (snapshot 08/02/2012, termed as

gbif) with a polygon dataset from World Wild Fund (WWF) global ecological region data

(termed as wwf). Different from the taxi trip analysis in which polygons are usually small, global

ecological regions are usually very large and require expensive geometry computation. In this

chapter, there are some experiments on certain systems and configurations fail to run on the full

datasets, so we also generate two sampled gbif datasets called G10M and G50M which contain

10,000,000 and 50,000,000 points, respectively.

For performance comparison with SpatialHadoop and HadoopGIS, we adopt datasets

provided by SpatialHadoop data portal
25

, namely edges and linearwater. We have also derived

three sampled datasets because not all experiments can run on the full datasets. The three

sampled datasets include 1 month data from the full taxi dataset (referred as taxi1m) and 10%

sample of the TIGER datasets (linearwater0.1 and edges0.1). All datasets that have been used in

this chapter are listed in Table 4.

25

 http://spatialhadoop.cs.umn.edu/datasets.html

99

Table 4 Datasets Sizes

 Dataset Type # of Records Related Sections

Benchmark abs02 MBR 1000000 5.2.1(R-tree)

dia02 MBR 1000000 5.2.1(R-tree)

par02 MBR 1048576 5.2.1(R-tree)

rea02 MBR 1888012 5.2.1(R-tree)

Real world

taxi Point 169,720,892

5.2.2(Grid-file),

5.3.1(SpatialSpark), 5.3.2(ISP),

5.3.3(LDE)

taxi1m Point 2,267,313 5.3.1(SpatialSpark), 5.3.2(ISP)

nycb Polygon 38,839

5.2.2(Grid-file),

5.3.1(SpatialSpark), 5.3.2(ISP),

5.3.3(LDE)

lion Polyline 147,012 5.3.1(SpatialSpark)

gbif Point 375,171,681

5.3.1(SpatialSpark), 5.3.2(ISP),

5.3.3(LDE)

wwf Polygon 14,485

5.3.1(SpatialSpark), 5.3.2(ISP),

5.3.3(LDE)

G10M Point 10,000,000 5.3.1(SpatialSpark), 5.3.2(ISP)

G50M Point 50,000,000 5.3.2(ISP), 5.3.3(LDE)

linearwater Polyline 5,857,442 5.3.1(SpatialSpark), 5.3.3(LDE)

edges Polyline 72,729,686 5.3.1(SpatialSpark), 5.3.3(LDE)

linearwater0.1 Polyline 585,809 5.3.1(SpatialSpark)

edges0.1 Polyline 7,271,983 5.3.1(SpatialSpark)

Table 5 Specs of Queries

 Query size Min # of

answers

Max # of

answers

Avg # of

answers

abs02-Q1 1,000,000 1 1 1

abs02-Q2 10,000 50 150 99.8

abs02-Q3 3,164 500 1,500 992

dia02-Q1 1,000,000 1 4 1.26

dia02-Q2 10,000 50 150 99.8

dia02-Q3 3,164 500 1,500 992

par02-Q1 1,048,576 1 10 2.11

par02-Q2 10,485 50 150 99.8

par02-Q3 3,318 500 1,500 992

rea02-Q1 1,888,012 1 9 1.2

rea02-Q2 18,880 50 162 101

rea02-Q3 5,974 501 1,514 999

100

5.2 Parallel Spatial Data Management on Single-Node

5.2.1 Data-Parallel R-tree Implementation

We have implemented data-parallel R-tree using parallel primitive library for both tree

construction and batch query. Both the multi-core CPU and GPU parallel versions are developed

for comparison purpose. We have evaluated our implementations using both WS-1 and WS-2,

which represent two different generations of commodity parallel hardware.

The major component in R-tree construction that dominates the overall performance is

the sorting phase (Section 3.2.3.2). We have used sort implementations in existing libraries such

as STL, TBB and Thrust. In this set of experiments, we empirically set R-tree fan-out to 4 and

use x-coordinates of MBR centroids as sorting keys. The experiment results are given as Figure

34A (using WS-1) and Figure 34C (using WS-2), where “CPU-serial” denotes CPU serial

implementation, “CPU-parallel” denotes the CPU parallel implementation, and, “GPU-

primitive” denotes the GPU implementation based on parallel primitives.

From Figure 34A we can observe that, when datasets are relatively small, parallel CPU

implementations outperform GPU implementations. One explanation is that GPU parallel

processing power is not fully exploited for small datasets and the overheads of utilizing parallel

library cannot be hidden. We also observe that the runtimes for GPU implementations increase

much slower than those of parallel CPU implementations which might indicate better scalability

of the GPU implementations. In particular, when datasets become large enough that can hide

library overheads, GPU implementations are several times faster than parallel CPU

implementations. Following this trend, we might be able to predict that GPUs are capable of

101

achieving better performance when bulk loading larger datasets. However, we should be aware

that GPU memory capacities are usually limited when compared with CPU memory capacities.

Therefore large datasets might not be able to completely reside in GPU memory. In this case,

however, we still can process such large dataset using data partition techniques which are left for

future work.

Comparing Figure 34C with Figure 34A, we can observe that the runtimes of both CPU

and GPU are lower on WS-2, this is because the hardware on WS-2 is newer and more powerful

than WS-1. Although the GPU of WS-2 has more cores than WS-1, the performance only

improves 20% which does not achieve the level of speedup as one might expect. By breaking

down the runtimes, we find that the sorting phase on WS-2 is 2X faster than that of WS-1.

However, the tree construction phase does not improve, which is primarily due to

underutilization of hardware resource. As such, the overall improvement for the newer GPU is

limited. On the other hand, the runtimes on WS-2 are about 2.7X lower comparing with WS-1 on

multi-core CPUs because of more powerful CPUs equipped on WS-2 (such as more cores, higher

frequency, larger cache size, etc.). This explains that the absolute speedups for GPU over CPUs

on WS-2 are lower than those on WS-1.

We have also implemented and evaluated the STR R-tree bulk loading algorithm (Section

3.2.3.2) on multi-core CPUs and GPUs and experiment them on both WS-1 and WS-2. The

results are given in the right chart of Figure 34 (B for WS-1 and D for WS-2) where “STR-CPU-

Parallel” denotes the multi-core CPU implementation and “STR-GPU” denotes the GPU

implementation. From the results, our GPU implementation has achieved about 4X speedup over

102

the multi-core CPU implementation on WS-1 and about 3X speedup on WS-2. Similar to low-x,

the speedup on WS-2 is lower because it has more powerful CPUs. Based on the results shown in

Figure 34, low-x bulk loading is faster than STR bulk loading for both CPU and GPU

implementations. The STR R-tree bulk loading, as discussed in Section 3.2.3, requires multiple

sorts at each level. Thus, as expected, the overall performance of the STR R-tree bulk loading

technique is not as fast as the low-x bulk loading technique that only sorts once. However, from

our query benchmark results, R-tree generated by the STR bulk loading technique usually has

better quality comparing with low-x bulk loading and results in faster query processing, a feature

that is desirable.

We also compare the performance of batch query processing on GPUs with multi-core

CPUs. The multi-core CPU implementations utilize all available cores in the system using

OpenMP where each core is responsible for a single query. As shown in Figure 35, our GPU

implementations have achieved about 10X speedup on average when compared with multi-core

CPU implementations for WS-1. For WS-2, the speedup is about 3X because more CPU cores

are used as we discussed previously. For queries labeled with Q1 which use small query

windows, GPU implementations do not show advantages over multi-core CPU implementations.

However, as the size of query results in each query window increases, GPU based

implementations outperform their counterparts significantly.

103

Figure 34 Performance of R-tree Construction (time in milliseconds)

0

50

100

150

200

250

300

abs02 dia02 par02 rea02

A

CPU-serial

CPU-parallel

GPU-primitive

0

100

200

300

400

500

600

abs02 dia02 par02 rea02

B

STR-CPU-Parallel

STR-GPU

0

10

20

30

40

50

60

70

80

90

abs02 dia02 par02 rea02

C

CPU-Serial

CPU-Parallel

GPU-Primitive

0

50

100

150

200

250

300

abs02 dia02 par02 rea02

D

STR-CPU-Parallel

STR-GPU

104

Figure 35 Speedups of GPU-based Implementations over Multi-Core CPU-based

Implementations for Spatial Window Query Processing

5.2.2 Grid-file based Spatial Join

We have implemented grid-file based spatial join on both multi-core CPUs and GPUs, which is

used to demonstrate the effectiveness of grid-file indexing and single node parallel spatial join

0

5

10

15

20

25

30

35

S
p

ee
d

u
p

WS-1

0

0.5

1

1.5

2

2.5

3

3.5

4

S
p

ee
d

u
p

WS-2

105

designs. The design of grid-file based filtering uses the batch query processing technique that has

been introduced in Section 3.2.2. We implement a point-in-polygon test based spatial join on

GPUs using the grid-file based parallel filtering. In this application, point quadrants are

generated first using the Quadtree index as introduced in Section 3.2.4 and only MBRs of point

quadrants are used for the filter phase. For the refinement phase, each GPU block is responsible

for processing a matched pair of point quadrant and a polygon. Within a GPU block, each thread

is assigned to process a point for the point-in-polygon test using the classic ray-casting algorithm

[82].

For comparison purposes, we have implemented the same spatial join using open source

GIS packages, i.e., libspatialindex
26

 to index polygon data using R-tree, and, GDAL
27

, which

implicitly uses GEOS, to perform point-in-polygon test. The CPU implementation assigns each

point to a thread which performs query against the indexed polygons. If the point falls within any

of the bounding boxes of polygons, the polygon identifiers will be returned for the subsequent

refinement phase. It is clear that, while the polygons do not spatially overlap, their bounding

boxes can overlap and a point query may return multiple polygons for point-in-polygon test in

the refinement phase. The CPU implementation performs the point-in-polygon test for each of

the polygons in the query result set and breaks if any of the test returns true. The performance of

our GPU implementation is an end-to-end runtime of 11.2 seconds on WS-1 and 7.7 seconds on

WS-2. In contrast, the serial CPU implementation takes 54,819 seconds (15.2 hours) on WS-1.

As such, a significant speedup of 4,910X has been achieved. Note that we have not included the

26

 http://libspatialindex.github.com/

27
 http://www.gdal.org/

106

disk I/O times to load the points and polygons as this is one-time cost and is not directly related

to the spatial join. Furthermore, as discussed before, these data are stored as binary files on disk.

With a sustainable disk I/O speed of 100 MB per second, the point and polygon data can be

streamed into CPU main memory in about 15 seconds. Since the disk I/O time is comparable to

the spatial join time, even if the disk I/O times are included, the order of speedup will not be

changed.

We attribute the 3-4 orders of improvements to the following factors. First, all the points,

polygons and auxiliary data are memory resident in our GPU implementation. In contrast, the

open source GIS packages are designed to be disk resident and data and indexes are brought to

CPU memory dynamically. While the sophisticated design is necessary for old generations of

hardware with very limited CPU memory, current commodity computers typically have tens of

gigabytes of CPU memory which renders the sophisticated design inefficient and unnecessary.

We also have observed that the open source packages use dynamic memory and pointers

extensively which can result in significant cache and TLB
28

 misses. Second, in our GPU

implementation, we have divided points into quadrants before we query against the polygons in

the filter phase using a GPU based grid file indexing structure. In the serial CPU implementation,

each point queries against the polygon dataset individually. While the polygon dataset is

indexed, each point query needs to traverse from the root of the R-tree of the polygon dataset to

leaf nodes, which is quite costly. Third, in addition to the improved floating point computation

on GPUs, the massively data parallel GPU computing power is utilized for all phases of the

28

 https://en.wikipedia.org/wiki/Translation_lookaside_buffer

107

spatial join process, including generating point quadrants, filtering quadrant-polygon pairs and

performing point-in-polygon test in computing blocks.

5.3 Parallel Spatial Data Management on Multi-Node

5.3.1 SpatialSpark

We have implemented SpatialSpark for both broadcast based and spatial partition based spatial

joins introduced in Section 4.2. In our preliminary implementation, JTS library is used for spatial

indexing (R-tree) and geometry operations. We have evaluated SpatialSpark for two spatial join

operations, including point-in-polygon test based spatial join and nearest-neighbor-search based

spatial join. In the point-in-polygon test based spatial join, we use taxi and nycb datasets. For the

nearest-neighbor-search based spatial join, we use taxi and lion datasets. All datasets are

formatted and stored as text files in HDFS with geometries (points, polylines and polygons)

represented in WKT format. In addition to the taxi point dataset, we also use the GBIF species

occurrence data (gbif) joining with wwf dataset. In this experiment, we only use G10M because

using the full dataset (gbif) takes too long to finish.

We have evaluated the performance of the four experiments on a 10-node Amazon EC2

cluster (see Table 3 for specifications) and the results are plotted in Figure 36. For taxi-lion

experiments, we empirically use 100 feet and 500 feet as search radius. We have also varied

instance numbers for scalability tests in the four experiments. We are not able to use fewer than 4

nodes for the experiments due to the memory limitation of the EC2 instances (15 GB per node).

In Figure 36, all four experiments scale linearly when the number of instances increases. As

such, SpatialSpark achieves very good scalability.

108

Figure 36 SpatialSpark Performance

 In order to demonstrate the efficiency of SpatialSpark, we have also conducted

performance comparison with existing works, i.e., Hadoop-GIS and SpatialHadoop. The first

experiment is designed to evaluate point-in-polygon test based spatial join, which uses taxi and

nycb. The second experiment is designed to evaluate polyline-with-polyline intersection based

spatial join using edges and linearwater. In addition to the full datasets, sampled datasets, i.e.,

taxi1m, linearwater0.1 and edges 0.1, are also used because not all experiment configurations are

successful on the full datasets. The performance of the sample datasets can provide an idea of the

relative performance among the three prototype systems when one or more systems cannot

handle the full datasets successfully. In the next two subsections, we will present evaluation

results on both the full datasets and the sampled datasets.

5.3.1.1 Results Using Full Datasets

The end-to-end runtimes (in seconds) for the two experiments (taxi-nycb and edge-

linearwater) under the four configurations on the three systems are listed in Table 6. The

reported runtimes include indexing the two input datasets and performing the distributed join,

0

500

1000

1500

2000

2500

3000

4 6 8 10

ru
n

ti
m

e
(

se
co

n
d

s)

of instances

G10M-wwf

taxi-lion-500

taxi-lion-100

taxi-nycb

109

i.e., end-to-end runtimes. It can be seen that HadoopGIS fail on all the experiments using the full

datasets; SpatialHadoop is successful in all the experiments while SpatialSpark is in between.

The top reason for HadoopGIS to fail is broken pipeline, which is typical in Hadoop Streaming

when the data that pipes through multiple processes is too big. The primary reason for

SpatialSpark to fail is out of memory due to Java heap size issue, which is expected to be solved

in the future releases of Spark. While SpatialSpark is successful for both the workstation and

EC2-10 configurations, it failed under EC2-8 and EC2-6 configurations. We note the workstation

has 128 GB memory and the aggregated memory capacity of the EC2-10 cluster is 150 GB,

which are sufficient for SpatialSpark to experiment on the full datasets. We also expect the new

release of Spark can handle the problem by taking advantages of external disk storage.

Table 6 End-to-End Runtimes of Experiment Results of Full Datasets (in seconds)

 WS-2 EC2-10 EC2-8 EC2-6

taxi-nycb HadoopGIS - - - -

SpatialHadoop 3,327 2,361 2,472 3,349

SpatialSpark 3,098 813 - -

edge-

linearwater

HadoopGIS - - - -

SpatialHadoop 14,135 5,695 8,043 9,678

SpatialSpark 4,481 1,119 - -

When the available memory capacity is sufficient, it can be seen from Table 6 that

SpatialSpark is significantly faster than SpatialHadoop. Under EC2-10 configuration,

SpatialSpark is 2.9X and 5.1X faster than SpatialHadoop for the two experiments, respectively.

The results are different under the workstation configuration where SpatialSpark is 3.2X faster

for the edge-linearwater experiment but is only 1.07X faster for the taxi-nycb experiment. A

possible explanation is that the taxi-nycb experiment is much more disk I/O intensive than the

110

edge-linearwater experiment and the performance of the workstation is significantly limited by

its single-node disk I/O bandwidth. When disk I/O is not a limiting factor (either by using

distributed I/O or the experiment is more computing bound as in the edge-linearwater

experiment), the speedups of SpatialSpark over SpatialHadoop have clearly demonstrated the

efficiency of in-memory processing.

5.3.1.2 Results Using Sampled Datasets

The runtimes of the taxi1m-nycb and edge0.1-linearwater0.1 experiments are listed in

Table 7. Since the performance of the three EC2 configurations are roughly the same for all the

three systems (which may indicate poor scalability), we only show the results under the

workstation and EC2-10 configurations. We list the breakdown runtimes to provide a better idea

on the runtime distributions: column IA is the runtime for indexing the left side input dataset

(taxi1m and edge0.1), column IB is the runtime for indexing the right side input dataset (nycb

and linearwater0.1), column DJ is the runtime for distributed spatial join, and, column TOT is

the summation of the three.

Table 7 Breakdown Runtimes of Experiment Results Using Sample Datasets (in seconds)

 WS-2 EC2-10

 IA IB DJ TOT IA IB DJ TOT

taxi1m-nycb HadoopGIS 206 54 3,273 3,533 -

SpatialHadoop 227 52 230 482 647 187 183 1,017

SpatialSpark 216 67

edge0.1-linearwater0.1 HadoopGIS 1,550 488 1,249 3,287 -

SpatialHadoop 1,013 307 220 1,540 756 596 106 1,458

SpatialSpark 765 48

Although HadoopGIS still fail under the EC2-10 configuration for both experiments, it is

successful under the workstation configuration. This makes it possible to compare its

111

performance with SpatialHadoop and SpatialSpark directly. The runtimes for SpatialSpark are

end-to-end times as it is difficult to measure each individual step due to the asynchronous data

communication/computation in Spark. The results listed in Table 7 suggest that, while the

indexing times are comparable in both HadoopGIS and SpatialHadoop, SpatialHadoop is 14X

and 5.7X faster than HadoopGIS for distributed joins (as reported in the DJ column) in the two

experiments, respectively. While excessive disk I/O and string parsing might be important

factors in contributing to the low performance of HadoopGIS, our in-house experiments have

identified that the C++ based GEOS geometry library used in HadoopGIS can be several time

slower than the Java-based geometry library (i.e., JTS) used in SpatialHadoop and SpatialSpark,

which might be another major factor. We thus exclude HadoopGIS from further comparisons.

When comparing the end-to-end runtimes between SpatialHadoop and SpatialSpark

using the sampled datasets, SpatialSpark is about 2.2X faster under the workstation configuration

but is about 15X faster under the EC2-10 configuration for the taxi1m-nycb experiment. Similar

results, i.e., 2.0X and 30X under the EC2-10 configuration, can be observed in the edge0.1-

linearwater0.1 experiment. The result exceeds our expectation when compared with the

speedups using the full datasets. A careful investigation reveals that indexing times under the

EC2-10 configuration dominates in both experiments using the sampled datasets. These are quite

different from the full dataset experiment results that distributed join (DJ) consumes most of the

runtime, which are 1,950s out of 3,327s for taxi-nycb experiment under workstation

configuration, 1,282s out of 2,361s for taxi-nycb experiment under EC2-10 configuration, 9,887s

out of 14,135s for edge-linearwater under workstation configuration and 3,886s out of 5,695s for

edge-linearwater under EC2-10 configuration. An explanation is that, indexing under EC2-10

112

configuration involves significant data shuffling among the 10 distributed computing nodes

which can be very expensive for SpatialHadoop. In contrast, distributed joins under the EC2-10

configuration can be significantly sped up by distributed I/Os in SpatialSpark.

When comparing the distributed join times (DJ) only, SpatialHadoop takes only 220s in

edge0.1-linearwater0.1 experiment under the workstation configuration, which is significantly

lower than the indexing runtimes. This may indicate the Hadoop infrastructure overheads for

small datasets on a single computing node may be high. We note that the end-to-end runtime of

SpatialSpark (765s) is much larger than the distributed join (DJ) runtime but it is only half of the

total (TOT) runtime of SpatialHadoop. Under EC2-10 configuration, SpatialSpark is 2.7X and

2.2X faster than SpatialHadoop with respect to distributed join (DJ) runtimes for the two

experiments, respectively. The results are consistent with the experiments using the full datasets,

which are 1.8X (1282/712) and 3.5X (3886/1119) for the two experiments under EC2-10

configuration. It is clear that the speedups of SpatialSpark over SpatialHadoop are mostly due to

the ability to reduce unnecessary disk accesses by pipelining the process completely in memory

as the underlying algorithms are the same and they use a same geometry library (JTS).

5.3.2 ISP

We have conducted performance evaluation on two sets of experiments for ISP. The first

experiment is performed using taxi and nycb. The other experiment uses gbif and wwf, which

shows performance on complex polygons. We first report the performance of ISP-MC and ISP-

GPU on WS-2 and then report the performance of the standalone versions of the two prototypes

113

on the same machine to understand system overhead. Finally, the performance results on EC2

clusters are reported for discussions on scalability.

The single-node performance for the two experiments is listed in the first two columns of

Table 8. The runtimes are 96 seconds for taxi-nycb and 1,822 seconds for gbif-wwf for the ISP-

GPU implementation. ISP-MC performs slower than ISP-GPU but is still comparable: 130

seconds for taxi-nycb and 2,816 seconds for gbif-wwf. ISP-GPU is 1.35X (130/96) faster than

ISP-MC for taxi-nycb and 1.55X (2816/1822) faster than ISP-MC for gbif-wwf. The comparable

performance between ISP-GPU and ISP-MC is largely due to applying the same set of data

parallel deigns and parallel primitives based implementations, which are efficient on not only

GPUs but also multi-core CPUs. Similar to the experiment reported in the previous section, the

serial implementation using libspatialindex and can only achieve 138 points per second using a

subset of GBIF data with 10 million points on a single CPU core. In contrast, ISP-GPU has

achieved a rate of 206 thousand points per second using a single GPU which amounts to a

1,491X speedup. When comparing ISP-MC with the baseline implementation (965X speedup),

while the multiple CPU cores and higher CPU frequency may explain up to 21X speedups

(16*2.6/2.0), the rest of the speedups are largely due to our data parallel designs and better use of

memory capacity.

We have also implemented two standalone versions without Impala and run them on the

same workstation. The results are listed in the last two columns of Table 8. Clearly, the system

infrastructure overhead is quite significant for ISP-GPU: almost 50% (46s) in the taxi-nycb

experiment and 17% (324s) in the gbif-wwf experiment. The overheads are 20% and 8.3% for

114

ISP-MC, respectively. Although still significant, the infrastructure overheads are much smaller

for ISP-MC than for ISP-GPU in both experiments. As the experiments become more floating

point computing intensive where computation becomes dominate, we expect the system

infrastructure overheads continue to decline for both ISP-GPU and ISP-MC.

Table 8 ISP Performance on Single Node

ISP-

GPU

ISP-

MC

GPU-

Standalone

MC-

Standalone

taxi-nycb (s) 96 130 50 89

GBIF-WWF(s) 1822 2816 1498 2664

We have also conducted scalability tests on Amazon EC2 clusters with up to 10

instances. As the memory capacity of the instances is 15 GB, we are not able to run the taxi-nycb

workload with four or fewer nodes. Also due to the memory capacity constraint, we are not able

to experiment on the complete WWF dataset on the 10-node cluster. As such, we use the

sampled dataset G50M and label the experiment as G50M-wwf. The scalability results for taxi-

nycb and G50M-wwf experiments are plotted in Figure 37. For the taxi-nycb experiment, as the

number of computing nodes increases, the runtime decreases almost linearly that indicates good

scalability for both GPU and CPU implementations. For the G50M-wwf experiment, the

scalability of ISP-GPU is approximately linear until the number of nodes is increased to above 8.

Almost no performance gains are observed when the number of instances is increased from 8 to

10. On the other hand, ISP-MC scales up to 10 nodes, although the slope is flatter when the

number of instances is increased from 6 to 10 than from 2 to 6 (i.e., scalability becomes lower).

Overall, there is a 1.76X speedup for ISP-MC and 1.56X speedup for ISP-GPU when the number

of nodes is increased from 6 to 10 (1.66X) for the taxi-nycb experiment, which is very good. In

115

the G50M-wwf experiment, the speedups are 3.19X for ISP-MC and 2.57X for ISP-GPU when

the number of node is increased from 2 to 10 (5X), which is still decent with respect to

parallelization efficiency (defined as the ratio of performance speedup over increase of parallel

processing units).

The lower speedups when the numbers of computing nodes become higher in the G50M-

wwf experiment might be largely due to the static scheduling policy imposed by Impala. By

examining the G50M point dataset in HDFS, we found that there were 14 HDFS data blocks,

which makes the end-to-end runtime about the same using 8-13 computing nodes, as it is

determined by the runtime of the computing nodes that process the most (two) blocks. Increasing

the number of blocks is likely to reduce load unbalancing to scale further. However, as discussed

earlier, as per-node work load decreases, GPUs will likely be underutilized and will negatively

hurt the overall performance. The small per-node workload on GPUs is also likely to incur load

unbalancing among GPU threads and thread blocks which may further decrease ISP-GPU

performance. Since the number of CPU cores is much smaller than the number of GPU cores, the

intra-node load unbalancing is less likely to be an issue for ISP-MC, which might explain its

better scalability than ISP-GPU in both experiments. When comparing ISP-GPU with ISP-MC

on the EC2 cluster, ISP-GPU is 1.43X to 1.63X faster for the taxi-nycb experiment and 2.74X to

3.24X faster for the G50M-wwf experiment, which are higher than the results on the workstation.

This is likely due to the fact that the CPUs equipped with WS-2 have 2X cores than those on

EC2 nodes while the differences among their GPUs are smaller (1.75X more CUDA cores and

1.5X GPU memory). The results may suggest that GPU acceleration is more profitable for

computing nodes with less powerful CPUs.

116

Figure 37 Scalability Test Results of ISP-GPU and ISP-MC for taxi-nycb (left) and G50M-

wwf (right) Experiments

5.3.3 LDE

We use real world datasets to demonstrate the feasibility and efficiency of the distributed point-

in-polygon test based spatial join technique on top of the lightweight distributed execution

engine (LDE). To demonstrate advantages of LDE, we use the datasets with complex polygons,

i.e., G50M for points and wwf for polygons. The same datasets have been used in ISP-based

experiments in the previous subsection. It is thus interesting to compare the performance of the

LDE engine on both multi-core CPUs (termed as LDE-MC) and GPUs (termed as LDE-GPU)

with ISP-MC and ISP-GPU, respectively. We note that being able to store non-relational data

(including geometry) and their indexes in binary format in HDFS has reduced the data volume

by several times in LDE than in ISP (as restricted by Impala), which is an important contributing

factor to the efficiency of LDE and high performance of the application with respect to the end-

to-end runtime.

0

10

20

30

40

50

60

4 6 8 10 12

ru
n

et
im

e
(s

ec
o

n
d

s)

of instances

ISP-GPU

ISP-MC

0

100

200

300

400

500

600

700

800

0 2 4 6 8 10 12

ru
n

et
im

e
(s

ec
o

n
d

s)

of instances

ISP-GPU

ISP-MC

117

We design two groups of experiments to test the efficiency and scalability of our LDE

engine. First, we experiment on the single-node performance and system infrastructure overhead

(incurred by the LDE engine) on WS-2 by comparing with a native implementation using the

same spatial join designs. Second, we experiment on the scalability of LDE-GPU and LDE-MC

by using 2-10 Amazon EC2 instances. All the performance results are measured in seconds and

compared with ISP when appropriate.

The standalone performance and the single-node performance for the two experiments

are listed in Table 9. Note that ISP and LDE have the same runtime when they run in the

standalone mode, which are 350 seconds on multi-core CPUs and 174 seconds on GPUs on the

workstation. The runtimes in the single-node mode, however, are different among the four

versions, which are 380 seconds for ISP on multi-core CPUs (ISP-MC), 377 seconds for LDE on

multi-core CPUs (LDE-MC), 241 seconds for ISP on GPUs (ISP-GPU) and 221 seconds for

LDE on GPUs (LDE-GPU). It is clear that the GPU implementation performs about 2X

(350/174) faster than the multi-core CPU implementation in the standalone mode. However, the

infrastructure overhead has reduced the speedup to 1.58X (380/241) for ISP and 1.71X (377/221)

for LDE. Nevertheless, by comparing Column 3 and Column 4 of Table 1 we can see that LDE

has lower infrastructure overheads than ISP on both multi-core CPUs (27s vs. 30s) and GPUs

(47s vs. 67s). The 20 seconds difference between LDE and ISP on GPUs have brought the

infrastructure overhead from 27.80% (for ISP-GPU) to 21.27% (for LDE-GPU), which clearly

demonstrates the efficiency of LDE design and implementations. It is also interesting to observe

that the GPU implementations have higher percentages of infrastructure overheads than the CPU

implementations. This is primarily because the floating point computing portion of the

118

experiment has been significantly sped up by GPU while the speedup is not as significant as on

multi-core CPUs. As the infrastructure overheads are typically difficult to scale up (intra-node),

the result agrees with the Amdahl's law well [38].

Table 9 Performance Comparisons between ISP and LDE in Standalone and Single-Node

Modes

 Standalone

Time (s) [A]

Singe-node

Time (s) [B]

Infrastructure

Overhead (%)

(1-A/B)

CPU ISP-

MC

350

380 7.89%

LDE-

MC 377 7.16%

GPU ISP-

GPU

174

241 27.80%

LDE-

GPU 221 21.27%

The scalability results using 2-10 Amazon EC2 nodes are plotted in Figure 38. We have

avoided reporting the performance on a single node as it requires at least two nodes to count

network communication overheads. When the number of nodes is increased from 2 to 10 (5X),

the runtime is sped up 4.17X on multi-core CPUs (668/160) and 3.71X on GPUs (205/55). The

speedups are higher than those in the ISP implementations, which are 3.19X (706/221) for multi-

core CPUs and 2.56X for GPUs (166/95). The LDE implementations also have achieved

significantly higher efficiency than the ISP implementations, ranging from 1.06X to 1.65X for

multi-core CPUs and 1.20X to 1.75X for GPUs. Using 10 nodes, LDE is 1.38X faster than ISP

for multi-core CPUs (221/160) and 1.72X faster for GPUs (160/55). While the runtime using 10

nodes virtually remains the same as using 8 nodes for ISP on GPUs (1.25X increase of nodes),

119

LDE is able to further achieve 1.20X (66/50) speedup, which is impressive. As a summary, LDE

has achieved both higher efficiency and higher scalability on both multi-core CPUs and GPUs

when compared with the ISP implementations.

In addition to broadcast based spatial join, we have also evaluated spatial partition based

spatial join implementation using the LDE framework. In this set of evaluation, we use two

additional large datasets, edges and linearwater. The sizes of the two datasets are 23.8 GB and

8.4 GB respectively. Since both datasets are large, the broadcast based spatial join cannot be

applied because neither can be broadcast and resident in memory. For comparison purpose, we

also include runtimes of SpatialHadoop using the same set of workloads. The end-to-end

runtimes (in seconds) for the two experiments (taxi-nycb and edge-linearwater) are listed in

Table 10. The taxi-nycb experiment performs point-in-polygon test based spatial join and the

edge-linearwater experiment performs polyline intersection base spatial join. Comparing with

706

538

370

284
221 244

166
135

96 95

668

334

228
172 160

204

105
77 66 55

0

100

200

300

400

500

600

700

800

2 4 6 8 10

ti
m

e
(S

ec
o
n

d
s)

of Nodes

ISP-MC+
ISP-GPU
LDE-MC
LDE-GPU

Figure 38 Scalability Comparisons between ISP and LDE on

Multi-core CPU and GPU Equipped Clusters

120

SpatialHadoop, the LDE implementations on both multi-core CPUs and GPU are at least an

order of magnitude faster for all configurations.

The improvements come in two folds. First, the LDE framework based on C++ is much

faster and lighter than general purpose JVM based frameworks such as Hadoop. The in-memory

processing of LDE is also an important factor where Hadoop is mainly a disk-based system.

With in-memory processing, intermediate results will not be written to disks. Second, the

dedicated local parallel spatial join module can fully exploit computing power of individual

computing nodes. Our data-parallel designs in the module, including both spatial filter and

refinement phases, can effectively utilize current generation of parallel hardware, i.e., multi-core

CPUs and GPUs. Based on the EC2 results, we could observe that decent scalability is achieved

from 6-node to 10-node. When replacing multi-core CPUs with GPUs, the performance can be

further improved, especially on EC2 instances where 2X speedup is achieved.

Table 10 Partition-based Spatial Join Results (end-to-end, time in seconds)

 Workstation EC2-10 EC2-8 EC2-6

taxi-

nycb

SpatialHadoop
29

 1950 1282 1315 2099

LDE-MC 191 39 50 63

LDE-GPU 111 19 23 30

edge-

linearw

ater

SpatialHadoop 9887 3886 5613 6915

LDE-MC 554 219 260 360

LDE-GPU 437 97 114 135

29

 spatial join time only, excluding indexing time for the two input datasets

121

Chapter 6 Conclusions and Future Work

6.1 Summary of Contribution

This dissertation work identifies current challenges of large-scale spatial data management,

especially on how to accelerate large-scale spatial data processing on state-of-the-art parallel and

distributed platforms. Data-parallel designs of spatial indexing techniques have been developed

in this work, and the implementations and experimental studies reveal the performance impacts

of utilizing hardware accelerators, i.e., multi-core CPUs and GPUs. As spatial join operations are

crucial in many real world applications, this dissertation work develops efficient hardware

accelerated spatial join designs to fully exploit computing power of a single node. To address the

practical needs of the Big Data challenge, distributed spatial join has been studied in this work.

The optimized single-node parallel spatial indexing and spatial join techniques are scaled out to

multi-node environments that are capable of processing spatial data beyond the capacity of a

single node. This dissertation work successfully integrates Big Data technologies with current

generation of hardware accelerators (e.g., GPUs) for large-scale spatial data processing.

Prototype systems developed in this dissertation work have demonstrated performance

advantages against existing designs and implementations, which can address practical needs of

large-scale spatial data management.

6.2 Discussions and Future Work

6.2.1 Spatial Indexing Techniques

122

We have developed three major spatial indexing techniques for the current generation of parallel

hardware, especially on GPUs. Grid-file and Quadtree indexing techniques can be categorized as

space-oriented indexing, where the space is decomposed and indexed. This type of indexing

techniques suffers from large duplicates for objects on or near the partition boundaries. The

duplication incurs significant memory pressure, which may limit the indexing structure on

memory constraint systems, such as GPUs. Meanwhile, finding the optimal resolution parameter

and maximum decomposition level (for Quadtree) is also challenging. Choosing the resolution

parameter can be considered as a tradeoff between indexing quality and memory utilization. For

Grid-file indexing, the simple indexing structure makes it attractive for developing data-parallel

designs. In addition to its simplicity, it is also light-weight and effective. On the contrary, R-tree

indexing is categorized as data-oriented, which means the indexing structure relies on the data

rather than the space to be indexed. This makes R-Tree indexing both scalable and portable, and

it does not require tuning resolution parameters. Meanwhile, objects will not overlap with

partition boundaries so they are not duplicated in space-oriented indexing, because the partition

boundaries are not fixed and are generated from the distribution of data. This indicates that data-

oriented indexing structures require less memory than their counterparts. However, the irregular

decomposition in R-tree makes parallelization more difficult than space-oriented indexing

techniques. In this dissertation, we have developed both R-tree parallel bulk loading and data-

parallel tree traversal on the GPU.

There are several directions for the future work on spatial indexing. First, it is very useful

to study how to reduce memory footprint in space-oriented indexing techniques, e.g., Grid-file. A

possible solution is to develop cost models to determine the optimal configuration parameters for

123

space-oriented indexing techniques (such as [91]). Another possible solution is to develop multi-

level Grid-file techniques to extend the single-level Grid-file techniques, which can potentially

reduce memory footprint by aggregating grid cells in lower level into higher level grid cells.

Second, hybrid indexing technique that can combine both data-oriented and space-oriented using

data-parallel design can also be a future work direction. The hybrid indexing technique can

potentially take advantages of the two types of indexing techniques. Another future work

direction is to develop supports for more types of query processing, such as k-Nearest-Neighbor

query.

Partition strategies have been introduced and data-parallel designs and implementations

have been developed for spatial indexing in distributed computing environments. However, the

distributed indexing techniques developed in this work mainly focus on supporting efficient

distributed spatial join. For the future work, we would like to investigate on developing

distributed indexing techniques for additional Big Data platforms, such as Apache Spark and

Apache HBase. We also would like to extend our current designs to address the challenge in

order to support the practical needs of real world applications. Furthermore, our current design

mainly focuses on managing spatial data that are either static or infrequently updated. As such,

another future direction is to develop distributed indexing support that is capable of dealing with

dynamic data. The dynamic indexing techniques can be used to manage live streaming data with

spatial context, such as geo-tagged tweets.

6.2.2 Spatial Join Techniques

124

In this dissertation work, spatial join techniques have been developed to support large-scale

spatial data processing. Both single-node parallel spatial join and multi-node distributed spatial

join have been studied. The spatial join processing is first scaled up on a single node and then

scaled out across multiple nodes, which have achieved significant performance improvement. In

single-node spatial join, both spatial filter and refinement phases have been developed with data-

parallel designs to take advantages of existing parallel hardware, i.e., multi-core CPU and GPU.

For distributed spatial join, two frameworks, including partition based spatial join and broadcast

based spatial join, have been introduced for symmetric and asymmetric datasets.

For the future work, first, we would like to investigate on how to further improve the

efficiency of our spatial join techniques for large-scale spatial data processing on Big Data

platforms, including SpatialSpark and LDE. We believe there is still space to improve spatial

join processing in distributed environments. For example, incorporating selectivity estimation

into the spatial join framework can help generating better workload as well as scheduling for

distributed processing. Second, for practical applications, how to adapt general designs to

specific application is also very important. Different platforms may have different constraints

which can potentially break the assumption made by the design or even completely change the

design. As part of our future work, we would like to leverage our experiences to provide insights

and suggestions for designing large-scale spatial join processing for different platforms. Third,

our experiments show that broadcast based spatial join is more efficient than spatial partition

based spatial join in many cases. As such, another future direction can be developing a hybrid

approach that is able to take advantages of broadcast based spatial join but requires less memory

footprint.

125

Appendix A. Parallel Primitives

Parallel primitives refer to a collection of fundamental algorithms that can be run on parallel

machines. The behaviors of popular parallel primitives on one dimensional (1D) arrays or

vectors are well-understood. Parallel primitives usually are implemented on top of native parallel

programming languages (such as CUDA) but provide a set of simple yet powerful interfaces (or

APIs) to end users. Technical details are hidden from end users and many parameters that are

required by native programming languages are fine-tuned for typical applications in parallel

libraries so that users do not need to specify such parameters explicitly.

On the other hand, such APIs usually use template or generic based programming

techniques in a way similar to the well known C++ Standard Template Library (STL) so that the

same set of APIs can be used for many data types. Due to the nature of high-level abstractions,

the APIs may not be the most efficient ones when compared with handwritten programs using

native programming languages with fine-tuned parameters. However, the APIs usually provide

good tradeoffs between coding complexity and code efficiency. For example, most of the parallel

primitives provided by the Thrust library are very similar to their STL counterparts and are very

appealing to experienced STL users. The high level abstractions also bring significant portability.

This unique feature further makes parallel primitives based algorithm developments attractive

when compared with using native programming languages (e.g., CUDA) directly. In the rest of

this appendix, we will introduce several commonly used parallel primitives.

(1) scan. The scan primitive computes the cumulative sum of an array. Both the inclusive

and exclusive scans are possible. For example, exclusive_scan([3,2,0,1]) = [0,3,5,5] while

126

inclusive_scan([3,2,0,1]) = [3,5,5,6]. The Scan primitive can also take a user defined associative

binary function to replace the default plus/sum binary function.

(2) copy, copy_if, remove and remove_if. copy moves groups of elements from one

location to another location, typically in two different arrays. The copy_if primitive takes an

additional unary function as a parameter to tell whether the corresponding array element should

be copied to the output array or not. Similarly remove and remove_if remove groups of elements

within an array with or without an optional binary predict function. remove and remove_if are

typically applied in-place which means that the input arrays can be the same as output arrays to

save memory. Note that compacted arrays after applying remove and remove_if primitives can be

resized to reduce memory footprints.

(3) transform. The basic form of transform applies a unary function to each element of an

input array and stores the result in the corresponding position in an output array. transform is

more general than copy as it allows a user defined operation to be applied to array elements

rather than simply copying. In many other systems, the transform primitive is also called map,

such as map in MapReduce and map/flatMap in Spark.

 (4) scatter. scatter copies elements from a source range of an input array into an output

array according to a map. For example, scatter([3,0,2],[12,4,8],[*,*,*,*,*,*]) = ([4,*,8,*,12,*]).

Note * values are those unchanged in the third array. Clearly when there is a one-to-one map

between the inputs and outputs such as the Z-order transformation in our application, the output

array will have no * values.

127

(5) reduce. reduce is an aggregation operator that produces reduction based on a binary

function. For example, reduce([1, 2, 2, 1], +) = 6, where in this example, the plus operator is

applied and the final results is the sum of all four numbers. reduce_by_key is an improvement

over the original reduce operation. Instead of generating a single reduction result, only values

that have the same key will be reduced. For example, reduce_by_key([1, 1, 1, 2], [1, 2, 2, 1], +) =

[(1,5), (2, 1)]. The array of [1, 1, 1, 2] contains reduction keys and only those values have the

same keys will be added together.

128

Appendix B. Publication during PhD Study

1. [Refereed Workshop] Simin You, Jianting Zhang and Le Gruenwald (2015). Spatial Join

Query Processing in Cloud: Analyzing Design Choices and Performance Comparisons.

To appear in High Performance Computing for Big Data Workshop (HPC4BD) 2015.

2. [Refereed Conference] Jianting Zhang, Simin You and Le Gruenwald. A Lightweight

Distributed Execution Engine for Large-Scale Spatial Join Query Processing. IEEE

International Congress on Big Data 2015.

3. [Refereed Workshop] Jianting Zhang, Simin You and Le Gruenwald (2015). Tiny GPU

Cluster for Big Spatial Data: A Preliminary Performance Evaluation. International

Workshop on High-Performance Big Data Computing (HPBDC) 2015.

4. [Invited Journal (non-refereed)] Jianting Zhang, Simin You and Le Gruenwald. Large-

Scale Spatial Data Processing on GPUs and GPU-Accelerated Clusters. ACM

SIGSPATIAL Special, 6(3), pp. 27-34.

5. [Refereed Workshop] Simin You, Jianting Zhang and Le Gruenwald. Large-Scale Spatial

Join Query Processing in Cloud. IEEE ICDE CloudDM International Workshop 2015.

6. [Refereed Workshop] Simin You, Jianting Zhang and Le Gruenwald. Scalable and

Efficient Spatial Data Management on Multi-Core CPU and GPU Clusters: A

Preliminary Implementation based on Impala. IEEE ICDE HardBD International

Workshop 2015.

7. [Refereed Journal] Jianting Zhang, Simin You and Le Gruenwald. Parallel Online Spatial

and Temporal Aggregations on Multi-core CPUs and Many-Core GPUs. Information

Systems (Elsevier journal), 2014.

8. [Refereed Workshop] Jianting Zhang, Simin You and Le Gruenwald. Data Parallel

Quadtree Indexing and Spatial Query Processing of Complex Polygon Data on GPUs.

VLDB ADMS International Workshop 2014.

9. [Refereed Conference] Jianting Zhang, Simin You and Le Gruenwald. High-Performance

Spatial Query Processing on Big Taxi Trip Data using GPGPUs. IEEE International

Congress on Big Data 2014.

10. [Refereed Journal] Jianting Zhang and Simin You. High-Performance Quadtree

Constructions on Large-Scale Geospatial Rasters Using GPGPU Parallel Primitives.

International Journal of Geographical Information Sciences (IJGIS) 2013.

11. [Refereed Workshop] Simin You, Jianting Zhang, and Le Gruenwald. GPU-based Spatial

Indexing and Query Processing Using R-Trees. ACM SIGSPATIAL BigSpatial

International Workshop2013.

12. [Refereed Conference] Jianting Zhang and Simin You. Constructing Natural Neighbor

Interpolation Based Grid DEM Using CUDA. COM.Geo Conference 2012.

129

13. [Refereed Workshop] Jianting Zhang, Simin You and Le Gruenwald. High-Performance

Online Spatial and Temporal Aggregations on Multi-core CPUs and Many-Core GPUs.

ACM CIKM DOLAP International Workshop 2012.

14. [Refereed Workshop] Jianting Zhang, Simin You and Le Gruenwald. U2STRA: High-

Performance Data Management of Ubiquitous Urban Sensing Trajectories on GPGPUs.

ACM CDMW International Workshop 2012.

15. [Refereed Workshop] Jianting Zhang and Simin You. CudaGIS: Report on the Design

and Realization of a Massive Data Parallel GIS on GPUs. ACM SIGSPATIAL IWGS

International Workshop 2012.

16. [Refereed Workshop] Jianting Zhang and Simin You. Speeding up Large-Scale Point-in-

Polygon Test Based Spatial Join on GPUs. ACM SIGSPATIAL BigSpatial International

Workshop 2012.

17. [Refereed Conference] Jianting Zhang, Simin You and Le Gruenwald. Parallel Quadtree

Coding of Large-Scale Raster Geospatial Data on GPGPUs. ACM SIGSPATIAL GIS

2011.

18. [Refereed Workshop] Simin You and Jianting Zhang. Efficient Histogramming of Large-

Scale Geospatial Rasters in Support of Web-Based Queries. ACM SIGSPATIAL HPDGIS

International Workshop 2011.

19. [Refereed Conference/Book Chapter] Jianting Zhang and Simin You. Supporting Web-

based Visual Exploration of Large-Scale Raster Geospatial Data Using Binned Min-Max

Quadtree. SSDBM Conference 2010.

20. [Refereed Conference] Jianting Zhang, Simin You and Le Gruenwald. Indexing Large-

Scale Raster Geospatial Data Using Massively Parallel GPGPU Computing. ACM

SIGSPATIAL GIS Conference 2010.

21. [Refereed Conference] Jianting Zhang, Simin You, Li Chen, and Cynthia Chen. A Hybrid

Approach to Segment-Type Coding of New York City Traffic Data. COM.Geo

Conference 2010.

22. [Refereed Conference] Jianting Zhang and Simin You. Dynamic Tiled Map Services:

Supporting Query-Based Visualization of Large-Scale Raster Geospatial Data. COM.Geo

Conference 2010.

130

Reference

[1] A Benchmark for Multidimensional Index Structures: http://www.mathematik.uni-

marburg.de/~rstar/benchmark/.

[2] Aboulnaga, A. and Aref, W. 2001. Window query processing in linear quadtrees.

Distributed and Parallel Databases. (2001).

[3] Aji, A. et al. 2013. Demonstration of Hadoop-GIS. Proceedings of the 21st ACM

SIGSPATIAL International Conference on Advances in Geographic Information Systems -

SIGSPATIAL’13 (New York, New York, USA, 2013), 518–521.

[4] Aji, A. et al. 2013. Hadoop GIS: a high performance spatial data warehousing system over

mapreduce. Proc. VLDB Endow. (2013).

[5] Alborzi, H. and Samet, H. 2007. Execution time analysis of a top-down R-tree

construction algorithm. Information Processing Letters. 101, 1 (Jan. 2007), 6–12.

[6] Appuswamy, R. et al. 2013. Scale-up vs scale-out for Hadoop. Proceedings of the 4th

annual Symposium on Cloud Computing - SOCC ’13 (New York, New York, USA, 2013),

1–13.

[7] Audet, S. et al. 2013. Robust and efficient polygon overlay on parallel stream processors.

Proceedings of the 21st ACM SIGSPATIAL International Conference on Advances in

Geographic Information Systems - SIGSPATIAL’13. (2013), 294–303.

[8] Bakkum, P. and Skadron, K. 2010. Accelerating SQL database operations on a GPU with

CUDA. Proceedings of the 3rd Workshop on General-Purpose Computation on Graphics

Processing Units - GPGPU ’10 (New York, New York, USA, 2010), 94.

[9] Bandi, N. et al. 2007. Fast computation of spatial selections and joins using graphics

hardware. Information Systems. 32, 8 (2007), 1073–1100.

[10] Bandi, N. et al. 2004. Hardware acceleration in commercial databases: A case study of

spatial operations. Proceedings of the Thirtieth international conference on Very large

data bases (2004), 1021–1032.

[11] Batista, V.H.F. et al. 2010. Parallel geometric algorithms for multi-core computers.

Computational Geometry: Theory and Applications. 43, 8 (2010), 663–677.

[12] Beckmann, N. et al. 1990. The R*-tree: an efficient and robust access method for points

and rectangles. ACM SIGMOD Record.

131

[13] Bentley, J.L. 1975. Multidimensional binary search trees used for associative searching.

Communications of the ACM. 18, 9 (Sep. 1975), 509–517.

[14] Bittorf, M. and Bobrovytsky, T. 2015. Impala: A Modern, Open-Source SQL Engine for

Hadoop. CIDR (2015).

[15] Brinkhoff, T. et al. 1993. Efficient processing of spatial joins using R-trees. Proceedings

of the 1993 ACM SIGMOD international conference on Management of data - SIGMOD

’93 (New York, New York, USA, 1993), 237–246.

[16] Brinkhoff, T. et al. 1996. Parallel processing of spatial joins using R-trees. Data

Engineering, 1996. Proceedings of the Twelfth International Conference on (1996), 258–

265.

[17] Chung, K.L. et al. 2007. Efficient algorithms for coding Hilbert curve of arbitrary-sized

image and application to window query. Information Sciences. 177, 10 (2007), 2130–

2151.

[18] Comer, D. 1979. Ubiquitous B-Tree. ACM Computing Surveys. 11, 2 (Jun. 1979), 121–

137.

[19] Dean, J. and Ghemawat, S. 2004. MapReduce - Simplified Data Processing on Large

Clusters. Proceedings of the 6th Symposium on Operating Systems Design and

Implementation (2004), 137–149.

[20] Dean, J. and Ghemawat, S. 2004. MapReduce: Simplified Data Processing on Large

Clusters. OSDI ’04 (2004), 137–150.

[21] Dieker, S. and Guting, R.H. 2000. Plug and play with query algebras: SECONDO, a

generic DBMS development environment. Proceedings 2000 International Database

Engineering and Applications Symposium (Cat. No.PR00789). (2000).

[22] Dittrich, J.-P. and Seeger, B. 2000. Data redundancy and duplicate detection in spatial join

processing. Proceedings of 16th International Conference on Data Engineering (Cat.

No.00CB37073). Icde (2000), 535–546.

[23] Eldawy, A. et al. 2013. CG_Hadoop. Proceedings of the 21st ACM SIGSPATIAL

International Conference on Advances in Geographic Information Systems -

SIGSPATIAL’13 (New York, New York, USA, 2013), 284–293.

[24] Eldawy, A. et al. 2015. Spatial Hadoop : A MapReduce Framework Supporting Spatial

Data. IEEE International Conference on Data Engineering, ICDE 2015 (2015).

132

[25] Eldawy, A. and Mokbel, M. 2013. A demonstration of spatialhadoop: an efficient

mapreduce framework for spatial data. Proceedings of the VLDB Endowment. 6, 12

(2013).

[26] Eldawy, A. and Mokbel, M.F. 2014. Pigeon: A spatial MapReduce language. 2014 IEEE

30th International Conference on Data Engineering. (Mar. 2014), 1242–1245.

[27] Fang, R. et al. 2007. GPUQP: Query Co-Processing Using Graphics Processors.

Proceedings of the International Conference on Management of Data (SIGMOD). (2007),

1061–1063.

[28] Finkel, R.A. and Bentley, J.L. 1974. Quad trees a data structure for retrieval on composite

keys. Acta Informatica. 4, 1 (1974), 1–9.

[29] Fox, A. et al. 2013. Spatio-temporal indexing in non-relational distributed databases. 2013

IEEE International Conference on Big Data (Oct. 2013), 291–299.

[30] Gaede, V. and Günther, O. 1998. Multidimensional access methods. ACM Computing

Surveys. 30, 2 (Jun. 1998), 170–231.

[31] Gargantini, I. 1982. An effective way to represent quadtrees. Communications of the

ACM. 25, 12 (Dec. 1982), 905–910.

[32] Govindaraju, N.K. et al. 2004. Fast computation of database operations using graphics

processors. Proceedings of the 2004 ACM SIGMOD international conference on

Management of data - SIGMOD ’04 (2004), 215.

[33] Gowanlock, M. and Casanova, H. 2014. Distance threshold similarity searches on

spatiotemporal trajectories using GPGPU. 2014 21st International Conference on High

Performance Computing (HiPC) (Dec. 2014), 1–10.

[34] Gowanlock, M. and Casanova, H. 2015. Indexing of Spatiotemporal Trajectories for

Efficient Distance Threshold Similarity Searches on the GPU. IEEE IPDPS (2015).

[35] Guttman, A. 1984. R-Trees: A Dynamic Index Structure for Spatial Searching.

Proceedings of the 1984 ACM SIGMOD international conference on Management of data

- SIGMOD ’84 (New York, New York, USA, Jun. 1984), 47.

[36] He, B. et al. 2008. Relational joins on graphics processors. Proceedings of the 2008 ACM

SIGMOD international conference on Management of data - SIGMOD ’08 (New York,

New York, USA, 2008), 511.

133

[37] He, B. et al. 2009. Relational query coprocessing on graphics processors. ACM

Transactions on Database Systems. 34, 4 (Dec. 2009), 1–39.

[38] Hennessy, J.L. and Patterson, D.A. 2006. Computer Architecture, Fourth Edition: A

Quantitative Approach. Morgan Kaufmann Publishers Inc.

[39] Hoel, E. and Samet, H. 1994. Data-Parallel Spatial Join Algorithms. 1994 International

Conference on Parallel Processing (ICPP’94) (Aug. 1994), 227–234.

[40] Hormann, K. and Agathos, A. 2001. The point in polygon problem for arbitrary polygons.

Computational Geometry. 20, 3 (Nov. 2001), 131–144.

[41] Hu, Y. et al. 2012. Topological relationship query processing for complex regions in

Oracle Spatial. Proceedings of the 20th International Conference on Advances in

Geographic Information Systems - SIGSPATIAL ’12. 1 (2012), 3.

[42] Huang, Y. et al. 1997. Spatial joins using R-trees: Breadth-first traversal with global

optimizations. VLDB ’97 Proceedings of the 23rd International Conference on Very Large

Data Bases (1997), 396–405.

[43] Jacox, E.H. and Samet, H. 2003. Iterative spatial join. ACM Transactions on Database

Systems.

[44] Jacox, E.H. and Samet, H. 2007. Spatial join techniques. ACM Transactions on Database

Systems. 32, 1 (Mar. 2007), 7–es.

[45] Kalojanov, J. and Slusallek, P. 2009. A parallel algorithm for construction of uniform

grids. Proceedings of the 1st ACM conference on High Performance Graphics - HPG ’09

(New York, New York, USA, 2009), 23.

[46] Kamel, I. and Faloutsos, C. 1993. On packing R-trees. Proceedings of the second

international conference on Information and knowledge management - CIKM ’93 (New

York, New York, USA, Dec. 1993), 490–499.

[47] Kamel, I. and Faloutsos, C. 1992. Parallel R-trees. Proceedings of the 1992 ACM

SIGMOD international conference on Management of data - SIGMOD ’92 (New York,

New York, USA, Jun. 1992), 195–204.

[48] Khlopotine, A.B. et al. 2013. A Variant of Parallel Plane Sweep Algorithm for Multicore

Systems. IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems. 32, 6 (Jun. 2013), 966–970.

134

[49] Kim, J. et al. 2012. A Performance Study of Traversing Spatial Indexing Structures in

Parallel on GPU. 2012 IEEE 14th International Conference on High Performance

Computing and Communication & 2012 IEEE 9th International Conference on Embedded

Software and Systems (Jun. 2012), 855–860.

[50] Kim, J. et al. 2013. Parallel multi-dimensional range query processing with R-trees on

GPU. Journal of Parallel and Distributed Computing. 73, 8 (Apr. 2013), 1195–1207.

[51] Koudas, N. et al. 1996. Declustering spatial databases on a multi-computer architecture.

Advances in Database Technology — EDBT ’96. 8958546, (1996).

[52] Kumar, K.A. et al. 2014. Optimization Techniques for “ Scaling Down ” Hadoop on

Multi-Core , Shared-Memory Systems. EDBT (2014), 13–24.

[53] Lai, S. et al. 2000. A Design of Parallel R-tree on Cluster of Workstations. Databases in

Networked Information Systems. (2000), 119–133.

[54] Lemire, D. and Boytsov, L. 2013. Decoding billions of integers per second through

vectorization. Software - Practice and Experience.

[55] Leutenegger, S.T. et al. 1997. STR: a simple and efficient algorithm for R-tree packing.

Proceedings 13th International Conference on Data Engineering (1997), 497–506.

[56] Li, J. et al. 2007. Point-in-polygon tests by convex decomposition. Computers &

Graphics. 31, 4 (Aug. 2007), 636–648.

[57] Li, S. et al. 2015. Pyro: A Spatial-Temporal Big-Data Storage System. 2015 USENIX

Annual Technical Conference (USENIX ATC 15) (2015), 97–109.

[58] Lieberman, M.D. et al. 2008. A Fast Similarity Join Algorithm Using Graphics Processing

Units. 2008 IEEE 24th International Conference on Data Engineering (Apr. 2008), 1111–

1120.

[59] Liu, E.S. and Theodoropoulos, G.K. 2009. An Approach for Parallel Interest Matching in

Distributed Virtual Environments. 2009 13th IEEEACM International Symposium on

Distributed Simulation and Real Time Applications. (2009), 57–65.

[60] Lo, M.-L. and Ravishankar, C. V 1996. Spatial hash-joins. Proceedings of the 1996 ACM

SIGMOD international conference on Management of data - SIGMOD ’96 (New York,

New York, USA, 1996), 247–258.

135

[61] Lu, J. and Guting, R.H. 2012. Parallel Secondo: Boosting Database Engines with Hadoop.

2012 IEEE 18th International Conference on Parallel and Distributed Systems. (Dec.

2012), 738–743.

[62] Luo, L. et al. 2010. An effective GPU implementation of breadth-first search. Proceedings

of the 47th Design Automation Conference on - DAC ’10 (New York, New York, USA,

2010), 52.

[63] Luo, L. et al. 2012. Parallel implementation of R-trees on the GPU. 17th Asia and South

Pacific Design Automation Conference (Jan. 2012), 353–358.

[64] McCool, M. et al. 2012. Structured parallel programming patterns for efficient

computation. Morgan Kaufmann Publishers Inc.

[65] McKenney, M. et al. 2011. Geospatial overlay computation on the GPU. Proceedings of

the 19th ACM SIGSPATIAL International Conference on Advances in Geographic

Information Systems - GIS ’11. (2011), 473.

[66] McKenney, M. and McGuire, T. 2009. A parallel plane sweep algorithm for multi-core

systems. Proceedings of the 17th ACM SIGSPATIAL International Conference on

Advances in Geographic Information Systems GIS 09. (2009), 392.

[67] Mokbel, M.F. et al. 2003. Analysis of multi-dimensional space-filling curves.

GeoInformatica. 7, 3 (2003), 179–209.

[68] Mutenda, L. and Kitsuregawa, M. 1999. Parallel R-tree spatial join for a shared-nothing

architecture. Proceedings 1999 International Symposium on Database Applications in

Non-Traditional Environments (DANTE’99) (Cat. No.PR00496) (1999), 423–430.

[69] Naami, K.M. Al et al. 2014. GISQF: An Efficient Spatial Query Processing System. 2014

IEEE 7th International Conference on Cloud Computing (Jun. 2014), 681–688.

[70] Nievergelt, J. et al. 1984. The Grid File: An Adaptable, Symmetric Multikey File

Structure. ACM Transactions on Database Systems. 9, 1 (Jan. 1984), 38–71.

[71] Nishimura, S. et al. 2011. MD-HBase: A Scalable Multi-dimensional Data Infrastructure

for Location Aware Services. 2011 IEEE 12th International Conference on Mobile Data

Management (Jun. 2011), 7–16.

[72] Nobari, S. et al. 2013. TOUCH: in-memory spatial join by hierarchical data-oriented

partitioning. Proceedings of the 2013 ACM SIGMOD International Conference on

Management of Data. (2013).

136

[73] Olma, M. et al. 2013. BLOCK: Efficient Execution of Spatial Range Queries in Main-

Memory. EPFL-REPORT-190731 (2013).

[74] Papadopoulos, A. and Manolopoulos, Y. 2003. Parallel bulk-loading of spatial data.

Parallel Computing. 29, 10 (Oct. 2003), 1419–1444.

[75] Patel, J.M. and DeWitt, D.J. 2000. Clone join and shadow join. Proceedings of the eighth

ACM international symposium on Advances in geographic information systems - GIS ’00

(New York, New York, USA, 2000), 54–61.

[76] Patel, J.M. and DeWitt, D.J. 1996. Partition based spatial-merge join. ACM SIGMOD

Record. 25, 2 (Jun. 1996), 259–270.

[77] Polychroniou, O. and Ross, K. a. 2014. Vectorized Bloom filters for advanced SIMD

processors. Proceedings of the Tenth International Workshop on Data Management on

New Hardware - DaMoN ’14 (New York, New York, USA, 2014), 1–6.

[78] Prasad, S.K. et al. 2015. A vision for GPU-accelerated parallel computation on geo-spatial

datasets. SIGSPATIAL Special. 6, 3 (Apr. 2015), 19–26.

[79] Rauhe, H. et al. 2013. Multi-level Parallel Query Execution Framework for CPU and

GPU. 17th East European Conference, ADBIS 2013, Genoa, Italy, September 1-4, 2013

(2013), 330–343.

[80] Ray, S. et al. 2013. A parallel spatial data analysis infrastructure for the cloud.

Proceedings of the 21st ACM SIGSPATIAL International Conference on Advances in

Geographic Information Systems - SIGSPATIAL’13. (2013), 274–283.

[81] Ray, S. et al. 2014. Skew-resistant parallel in-memory spatial join. Proceedings of the

26th International Conference on Scientific and Statistical Database Management -

SSDBM ’14 (New York, New York, USA, 2014), 1–12.

[82] Samet, H. 2006. Foundations of Multidimensional and Metric Data Structures. Morgan

Kaufmann Publishers Inc.

[83] Samet, H. 1984. The Quadtree and Related Hierarchical Data Structures. ACM Computing

Surveys.

[84] Schnitzer, B. and Leutenegger, S.T. 1998. Master-client R-trees: a new parallel R-tree

architecture. Proceedings. Eleventh International Conference on Scientific and Statistical

Database Management (Jul. 1998), 68–77.

137

[85] Sellis, T.K. et al. 1987. The R+-tree: A Dynamic Index for Multi-dimensional Objects.

International Conference on Very Large Databases (VLDB) (1987), 507–518.

[86] Shamos, M.I. and Hoey, D. 1976. Geometric intersection problems. 17th Annual

Symposium on Foundations of Computer Science (sfcs 1976) (Oct. 1976), 208–215.

[87] Šidlauskas, D. et al. 2009. Trees or grids? Proceedings of the 17th ACM SIGSPATIAL

International Conference on Advances in Geographic Information Systems - GIS ’09

(New York, New York, USA, 2009), 236.

[88] Šidlauskas, D. and Jensen, C.S. 2014. Spatial joins in main memory: implementation

matters! Proceedings of the VLDB Endowment. 8, 1 (Sep. 2014), 97–100.

[89] Silvestri, C. et al. Computing Iterated Spatial Joins on GPUs. Technical Report

http://madalgo.au.dk/fileadmin/madalgo/OA_PDF_s/C337.pdf. X.

[90] Simion, B. et al. 2012. Speeding up Spatial Database Query Execution using GPUs.

Procedia Computer Science. 9, Wepa (Jan. 2012), 1870–1879.

[91] Tauheed, F. et al. 2015. Configuring Spatial Grids for Efficient Main Memory Joins. 30th

British International Conference on Databases, BICOD 2015 (2015), 199–205.

[92] Tauheed, F. et al. 2015. THERMAL-JOIN. Proceedings of the 2015 ACM SIGMOD

International Conference on Management of Data - SIGMOD ’15 (New York, New York,

USA, 2015), 939–950.

[93] Tu, Y. et al. 2013. Data management systems on GPUs. Proceedings of the 25th

International Conference on Scientific and Statistical Database Management - SSDBM

(New York, New York, USA, 2013), 1.

[94] Van, L.H. and Takasu, A. 2015. An Efficient Distributed Index for Geospatial Databases.

Dexa (Berlin, Heidelberg, 2015), 28–42.

[95] Venetis, P. and Gonzalez, H. 2011. Hyper-local, directions-based ranking of places.

Proceedings of the VLDB Endowment. 4, 5 (2011), 290–301.

[96] Vo, H. et al. 2014. SATO: A Spatial Data Partitioning Framework for Scalable Query

Processing. Proceedings of the 22nd ACM SIGSPATIAL International Conference on

Advances in Geographic Information Systems - SIGSPATIAL ’14 (2014).

[97] Wang, B. et al. Parallel R-tree search algorithm on DSVM. Proceedings. 6th International

Conference on Advanced Systems for Advanced Applications 237–244.

138

[98] Wang, F. et al. 2011. Hadoop-GIS: A High Performance Spatial Query System for

Analytical Medical Imaging with MapReduce. Technical report, Emory University.

(2011).

[99] Wang, K. et al. 2012. Accelerating pathology image data cross-comparison on CPU-GPU

hybrid systems. Proc. VLDB Endow. 5, 11 (Jul. 2012), 1543–1554.

[100] Ward, P.G.D. et al. 2014. Real-time continuous intersection joins over large sets of

moving objects using graphic processing units. The VLDB Journal. 23, 6 (Dec. 2014),

965–985.

[101] Yampaka, T. and Chongstitvatana, P. 2012. Spatial join with r-tree on graphics processing

units. 8th International Conference on Computing and Information Technology (2012).

[102] Yang, K. et al. 2007. In-memory grid files on graphics processors. Proceedings of the 3rd

international workshop on Data management on new hardware - DaMoN ’07. (2007), 1.

[103] Yi, K. 2008. Encyclopedia of Algorithms. Springer US.

[104] Yu, B. et al. 2011. Parallel Range Query Processing on R-Tree with Graphics Processing

Unit. 2011 IEEE Ninth International Conference on Dependable, Autonomic and Secure

Computing (Dec. 2011), 1235–1242.

[105] Yuan, Y. et al. 2013. The Yin and Yang of processing data warehousing queries on GPU

devices. Proceedings of the VLDB Endowment. 6, 10 (Aug. 2013), 817–828.

[106] Zaharia, M. et al. 2012. Resilient distributed datasets: A fault-tolerant abstraction for in-

memory cluster computing. NSDI’12 Proceedings of the 9th USENIX conference on

Networked Systems Design and Implementation. (2012), 2–2.

[107] Zhang, S. et al. 2009. Sjmr: Parallelizing spatial join with mapreduce on clusters. Cluster

Computing and Workshops, 2009. CLUSTER’09. IEEE International Conference on

(2009), 1–8.

[108] Zhong, Y. et al. 2012. Towards Parallel Spatial Query Processing for Big Spatial Data.

2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops

& PhD Forum (May 2012), 2085–2094.

[109] Zhou, J. and Ross, K.A. 2002. Implementing Database Operations Using SIMD

Instructions. International Conference on Management of Data. (2002), 145.

139

[110] Zhou, T. et al. 2013. Point-polygon topological relationship query using hierarchical

indices. Proceedings of the 21st ACM SIGSPATIAL International Conference on

Advances in Geographic Information Systems - SIGSPATIAL’13. (2013), 562–565.

[111] Zhou, X. et al. 1998. Data partitioning for parallel spatial join processing. GeoInformatica.

204, (1998), 175–204.

