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Abstract 

LARGE-SCALE SPATIAL DATA MANAGEMENT ON MODERN PARALLEL AND 

DISTRIBUTED PLATFORMS 

by 

SIMIN YOU 

Adviser: Dr. Jianting Zhang 

 

Rapidly growing volume of spatial data has made it desirable to develop efficient techniques for 

managing large-scale spatial data. Traditional spatial data management techniques cannot meet 

requirements of efficiency and scalability for large-scale spatial data processing. In this 

dissertation, we have developed new data-parallel designs for large-scale spatial data 

management that can better utilize modern inexpensive commodity parallel and distributed 

platforms, including multi-core CPUs, many-core GPUs and computer clusters, to achieve both 

efficiency and scalability. After introducing background on spatial data management and modern 

parallel and distributed systems, we present our parallel designs for spatial indexing and spatial 

join query processing on both multi-core CPUs and GPUs for high efficiency as well as their 

integrations with Big Data systems for better scalability. Experiment results using real world 

datasets demonstrate the effectiveness and efficiency of the proposed techniques on managing 

large-scale spatial data. 
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Chapter 1  Introduction 

Recently, the fast growing data volume brings significant challenges on managing datasets at 

very large scale. It motives the development of emerging “Big Data” techniques for managing 

and analyzing the data. As most of information over the web includes spatial components, it is 

desirable to develop efficient techniques for large-scale spatial data, or “Big Spatial Data”. For 

example, the increasingly available mobile devices have been generating tremendous amount of 

point data, such as locations collected using GPS. Advanced environmental observation and 

sensing technologies and scientific simulations have also generated large amounts of spatial data. 

For example, the Global Biodiversity Information Facility (GBIF
1
) has accumulated more than 

400 million species occurrence records and many of them are associated with a location. It is 

essential to map the occurrence records to various ecological regions to understand the 

biodiversity patterns and make conservation plans.  

On the other hand, parallel and distributed computing technologies have been developed 

to improve performance, including both hardware and software. The recent hardware 

developments include multi-core CPUs and emerging GPGPU (General Purpose computing on 

Graphics Processing Units) technologies. Also, memory capacity is getting larger, which 

motivates efficient in-memory processing techniques. On the software side, there are two major 

improvements over the recent decade. One improvement includes modern programming tools for 

multi-core CPUs and many-core GPUs, which make massive parallel computing power 

accessible for general public. The other improvement is the development of Big Data 

                                                 
1
 http://data.gbif.org 
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technologies, e.g., MapReduce [19] and its open source implementation Apache Hadoop
2
, which 

allows using simple computing models to process large-scale datasets on distributed computing 

systems without deep knowledge in parallel and distributed computing. However, these 

platforms are primarily designed for relational data and may not be efficient or even suitable for 

spatial data.  

Existing serial computing techniques for managing spatial data [82] usually focus on 

accelerating spatial data processing on single core CPUs, which are not suitable to process 

spatial data at very large scale especially when the data is beyond the capacity of a single 

machine. Although parallel techniques have been proposed for processing spatial data over the 

past few decades [82], most of them have not been able to take advantages of state-of-the-art 

parallel and distributed platforms. To alleviate the gap between the available computing power of 

parallel and distributed platforms and the practical needs on large-scale spatial data processing, 

we have developed techniques that can efficiently manage large-scale spatial data on modern 

parallel and distributed platforms. First of all, we have presented new parallel designs, including 

parallel spatial indexing and query processing techniques, for large-scale spatial data 

management. Second, we have investigated on how to implement such parallel designs using 

parallel primitives that are efficiently supported by many modern parallel platforms to achieve 

interoperability and productivity. Last but not least, we have developed relevant techniques to 

scale out spatial data processing to clusters that are increasingly available in Cloud Computing. 

                                                 
2
 http://hadoop.apache.org 
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The major contributions of this dissertation are as follows. First, we have identified 

practical challenges in large-scale spatial data management, especially in spatial indexing and 

spatial join processing. Second, we have developed parallel designs that are capable of taking 

advantages of state-of-the-art parallel and distributed platforms to address the practical needs of 

high performance computing for large-scale spatial data. Third, we have implemented prototype 

systems based our parallel designs to demonstrate the feasibility of the introduced designs. 

Finally, extensive experiments have been performed to demonstrate efficiency of the designs and 

implementations. Performance results of multiple reference implementations are discussed to 

understand the advantages and disadvantages of exploiting different modern parallel and 

distributed platforms in processing large-scale spatial data.  

The rest of this dissertation is organized as follows. Chapter 2 introduces background and 

related work of this dissertation. Chapter 3 presents designs and implementations of parallel and 

distributed spatial indexing techniques. Chapter 4 provides designs and implementations of 

large-scale spatial join, which scale up on single-node parallel platforms and scale out on multi-

node distributed platforms. Chapter 5 conducts extensive experiments for performance study on 

the implementations of the introduced designs. Finally, Chapter 6 concludes this dissertation and 

outlines potential future work. 
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Chapter 2  Background and Related Work 

2.1 Modern Parallel and Distributed Platforms 

The recent development of parallel computing technologies generally exploits two levels of 

parallel computing power. The first level is single-node parallelization that tightly couples 

multiple processors within a single machine, such as multi-core CPUs and GPGPUs, to deliver 

high computing power. The second level is multi-node parallelization that aggregates computing 

power from multiple loosely coupled machines in a distributed way. Figure 1 illustrates a typical 

architecture of modern parallel and distributed platforms that will be investigated in this 

dissertation.  

 

2.1.1 Single-Node Platforms  

Parallel techniques have been developed on a single machine to deliver higher performance. An 

effort of increasing computing power on a single machine is to add more cores on a single CPU 

multi-node cluster 
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L1 VPU 

Core 

L1 VPU 

Core 

L1 VPU 

Core 

L1 VPU 

L2 

L2 

L2 

L2 

L3 

CPU 

GPU 

Shared  

Global Memory 

Shared  Shared  Shared  Shared  

SM 

Figure 1 Parallel and Distributed Platforms 
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socket (referred as multi-core CPU techniques), so that multiple tasks can be processed 

concurrently. Another effort is to use co-processors that are capable of providing massive 

parallel computing power, such as GPUs for general purpose computing (referred as many-core 

GPU techniques). All parallel processing units on the machines share the same memory space 

and they are considered as shared-memory systems. 

2.1.1.1 Multi-core CPUs 

While clock frequency on a single CPU core is nearly reaching physical limit, in the past few 

years, manufactures start to pack multiple cores into a single CPU socket in order to continue 

increase single CPU performance [38]. Today, almost every commodity computer has at least 

one multi-core CPU, which brings parallel computing to general public. Even for mobile phones, 

it is not uncommon to have a multi-core processor. However, there is still a significant gap 

between hardware and software as many software packages have not fully taken advantage of 

parallel hardware yet. To alleviate the gap, various parallel programming models have been 

developed. A common approach to utilize multi-core systems is using thread model, such as 

those based on OpenMP
3
 and Intel Threading Building Blocks (TBB

4
) parallel libraries. In the 

thread model, computation is decomposed and distributed to all available cores in the form of 

software threads and all threads share the same memory space. This level of parallelism is 

termed as task level parallelism, where computation is divided into tasks and executed 

independently among threads.  

                                                 
3
 http://openmp.org 

4
 http://threadingbuildingblocks.org 
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In addition to multi-cores, current CPUs usually have specialized hardware components 

such as Vector Processing Unit (VPU) to provide Single-Instruction-Multiple-Data (SIMD) 

capability[38]. With VPUs, each instruction can process multiple data items simultaneously. For 

instance, a 256-bit VPU can process eight 32-bit words in parallel. Thread level parallelism is 

then further enhanced by utilizing the specialized VPUs, which leads to another level of 

parallelism. Assuming there are p cores in a multi-core computing system and each core can 

perform SIMD operation on v items, the maximum number of parallel processing units in such a 

system is p*v. While most of existing works on parallel spatial data management only focus on 

utilizing available processing cores in parallel and distributed systems, it is possible to take 

advantage of VPUs which can further improve the overall performance. For relational data 

management, there are several works [54, 77, 109] successfully demonstrated the efficiency of 

utilizing SIMD operations. However, using SIMD computing power for spatial data processing is 

challenging for two reasons. First, SIMD instructions are usually restricted, and it is nontrivial to 

Figure 2 Multi-core CPU Architecture 
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identify which portions of spatial data processing are suitable for SIMD execution. Second, the 

memory access mechanism of SIMD units requires careful designs; otherwise it will result in low 

performance. Thus, memory access pattern in spatial data processing needs to be considered in 

order to achieve good performance.  

Figure 2 shows an abstract architecture of multi-core CPUs including memory access 

hierarchy. Each core of the CPU has specialized SIMD units and private L1 and L2 caches, and 

there also exists shared L3 cache among CPU cores. The multi-level cache hierarchy aims to 

reduce expensive memory access time. The lower-left side of Figure 2 provides an example of 

adding up two arrays (A and B) and storing results to another array (C) using both threads and 

SIMD units. The workload is first divided into ranges, and each range is assigned to a thread for 

parallel processing. Then, within each thread, the range is further divided into batches which are 

processed by a SIMD unit in multiple rounds. Current CPUs also have limitations when used for 

large-scale spatial data management. First, memory access is expensive if memory hierarchy is 

not taken into consideration. When dealing with large-scale datasets, cache conscious data 

structures are critical for efficient memory access. For instance, dynamically allocated tree 

structures are very likely to result in significant cache misses during tree traversals. Second, 

irregular memory accesses can also result in serial executions on VPUs which is inefficient. 

Excessive use of memory gather/scatter operations might negatively impact SIMD performance 

as well. These challenges motivate us to develop data-parallel designs for large-scale spatial data 

processing that can be efficiently supported by current multi-core CPU platforms with SIMD 

capability.  
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2.1.1.2 GPGPUs 

Traditional GPUs are dedicated accelerators for visual computing such as computer graphics, 

video decoding and 3D games. Unlike CPUs, GPUs have a large number of processing units 

which can perform computation on many pixels in parallel. Special function units (e.g. sine, 

cosine, reciprocal, square root) are also provided in GPUs to accelerate floating point 

computation in computer graphics applications. Many modern GPUs are capable of general 

computing and GPGPU technologies are becoming increasingly available, e.g., NVIDIA’s 

Compute Unified Device Architecture (CUDA
5
) first appeared in 2007. Inheriting the advantage 

of using a large amount of processing units designed for graphical computing, GPGPUs can 

provide parallel computation by exploiting the general computing power of these parallel 

processing units. In this dissertation, we use GPU to refer to GPGPU unless otherwise explicitly 

stated.  

A single GPU device consists of a chunk of GPU memory and multiple Streaming 

Multiprocessors (SMs). Each SM has multiple GPU cores; for example, there are 192 GPU cores 

on a SM and 14 SMs on an NVIDIA GTX Titan GPU. In the CUDA programming model, the 

parallel portions of an application executed on the GPU are called kernels. A kernel consists of 

multiple computing blocks and each block has multiple threads. During an execution, a 

computing block is mapped to a SM and each thread is executed on a GPU core. Notice that 

CUDA thread is different from CPU thread. A GPU core is typically weaker than a CPU core 

with lower clock frequency and much smaller caches. As a group of GPU cores (currently 32 in 

                                                 
5
 https://developer.nvidia.com/what-cuda 
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CUDA) in a computing block, called a warp, is only allowed to perform SIMD operations, GPU 

cores in a warp behave similarly to VPUs rather than CPU cores. All GPU cores within a warp 

can be considered as a VPU with a larger SIMD length (32*32=1024 bits). In addition, GPU 

cores assigned to the same computing block can use shared memory to share data. Different from 

CPUs that use large caches to hide memory latency, GPUs have much smaller caches but can use 

large numbers of computing blocks/warps to hide memory latency. Suppose the number of SMs 

on a GPU is p and each SM consists of v GPU cores, the total number of parallel processing units 

is then p*v which is similar to multi-core CPUs. However, p*v processing units on GPUs is 

significantly larger than that of multi-core CPUs. For instance, NVIDIA GTX Titan GPUs have 

14 SMs and there are 192 GPU cores in a SM, which allows processing 14*192=2688 32-bit 

words simultaneously. In contrast, Intel X5405 CPUs only have 4 cores with 256-bit VPUs 

which can process 4*8=32 32-bit words in parallel.  

Parallel computing on GPUs also has some disadvantages. The major problem is that 

 

 
 

Thread Block 

Figure 3 GPU Architecture and Programming Model 

//kernel function on GPUs 

__global__ void addVector(int *A, int *B,int *C) 
{ 

    //using built-in variables (blockDim.x=N) 
    int id= blockIdx.x * blockDim.x +threadIdx.x;  

    //execute in parallel for all threads in a block 

    C[id]=A[id]+B[id];  
} 

 

int main() 
{ 

... 

//allocate A, B, C vectors on GPUs  

//transfer A/B to GPU from CPU 

//kernel call using M blocks and N threads per block  
addVector<<<M,N>>>>(A,B,C) 

//transfer C back to CPU if needed 
... 
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communication cost between CPU main memory and GPU memory is expensive. Currently 

GPUs are attached via PCI-E buses and data must be first transferred from CPU memory to GPU 

memory before performing computation on GPUs. Similarly, results need to be sent back to CPU 

memory for further processing after executions on GPUs. Because data transfer over a PCI-E bus 

is expensive (currently limited to 16GB/s for PCI-E 3 devices), the overall performance 

accelerated by GPUs might not be significant or even worse in some scenarios. In addition, 

GPUs typically have smaller memory capacity than CPUs, which can be a limiting factor in 

many applications. Even though GPUs can use pinned memory from CPU memory to virtually 

expand their memory capacities, the performance might be hurt due to data transfer overhead 

between CPU memory and GPU memory.  

Figure 3 illustrates a typical GPU architecture and programming model. The left side of 

the figure shows an example of adding up two vectors in parallel on GPUs (using the CUDA 

model). The data is first transferred from CPU memory to GPU memory as shown in the first 

few lines of the main function. After that, the workload is divided into M blocks and each block 

uses N threads for computation. In CUDA, a block will be assigned to a physical SM for 

execution where each thread corresponds to a GPU core of the SM. Within a computing block, 

an index can be computed to address the relevant vector elements for inputs/outputs based on its 

thread identifier (threadIdx.x) and block identifier (blockIdx.x), which are automatically assigned 

by the hardware scheduler, and block dimension (blockDim.x), which is defined when the kernel 

is invoked.  
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GPU technology has been adopted in relational data management to accelerate database 

operators in the past few years [8, 27, 32, 36, 37, 93, 105]. Even before the existence of general 

purpose computing on GPUs, Bandi et al. [9, 10] has developed spatial selection and join query 

processing on GPUs using graphics rendering. As general purpose GPU computing becomes 

rapidly available in the past few years especially the development of CUDA programming 

model, many spatial data management techniques [7, 34, 49, 58, 65, 78, 79, 89, 90, 99–101], 

including spatial indexing and query processing, have been developed on GPUs.   

2.1.2 Multi-Node Platforms  

While many supercomputers in High-Performance Computing (HPC) centers have adopted 

distributed computing architectures and supported distributed computing over multiple 

computing nodes, they typically require users to adopt a pre-installed software stack such as 

Message Passing Interface (MPI
6
) libraries to simplify development and operation. Restricted 

accesses to HPC resources and steep learning curves on software tools have limited the adoptions 

of using HPC for Big Data applications. In contrast, Cloud Computing technologies have made it 

possible to rent cluster computers on-demand and pay-as-you-go with affordable prices for 

general public. New distributed computing tools, such as MapReduce [20] and its open source 

implementation Apache Hadoop
7
, have made it much easier to develop and deploy parallel tasks 

on cluster computers provided by Cloud Computing vendors, such as Amazon EC2
8
. We next 

review two categories of distributed Big Data platforms, one is based on disk and the other 

                                                 
6
 http://www.mpi-forum.org 

7
 https://hadoop.apache.org/ 

8
 http://aws.amazon.com/ec2/ 
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further takes advantages of in-memory processing. Large-scale spatial data management on in-

memory platforms can be significantly more performant than disk-based platforms, especially 

when GPU hardware accelerations are incorporated. On the other hand, disk-based platforms 

have longer history than in-memory platforms and are typically more robust and better 

supported. They may still be preferable when computing resources on individual computing 

nodes are limited.  

2.1.2.1 Disk-based Platforms: MapReduce/Hadoop  

MapReduce [20] is a parallel computing framework that is developed for processing large-scale 

datasets on large computer clusters. Unlike traditional cluster computing frameworks that require 

user to take care every aspect of parallel computing, MapReduce simplifies a parallel process 

into two steps, namely map and reduce. The map step divides input into sub-problems and sends 

them among all available nodes for distributed processing. The reduce step collects results from 

distributed nodes and assembles them into the final output. Users only need to write customized 

map and reduce functions and distributed execution is automatically accomplished by 

MapReduce runtime. Comparing with traditional parallel frameworks on clusters such as MPI, 

MapReduce is relatively simple and hides details of task scheduling and communication. A 

typical representation of MapReduce is as follows: 

                                   

                                        
 

The user-defined map function converts the original problem into               representation, 

and then the pairs are shuffled and distributed among all processing units automatically. 
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Subsequently each processor applies operations on               in parallel and generates 

intermediate results, i.e., a list of               . Finally, the reduce function takes the 

intermediate results as input and reduces on        to form the final output        list.  

A popular and widely used MapReduce implementation is Apache Hadoop. The Hadoop 

platform provides a dedicated distributed file system on top of operating system’s file system, 

called Hadoop Distributed File System (HDFS). Data is stored in HDFS and is accessible to all 

computing nodes. MapReduce/Hadoop is a scalable system and has a relatively easy-to-use 

programming model. However, communication cost can be very high because data needs to be 

distributed to all computing nodes during the shuffling phase. For complex problems, 

decomposing the original problem using the MapReduce framework can be challenging due to 

the restrictive requirements of map and reduce operations. In order to utilize MapReduce, a 

problem may be decomposed in a suboptimal way that could potentially result in poor 

performance. The simplicity of MapReduce model brings scalability on large-scale data 

progressing; however, it may sacrifice expressive power and performance. Another issue of 

Hadoop based systems is that temporary results are written to HDFS, which sometimes can cause 

performance downgrade because of the excessive disk accesses which are very expensive.     

2.1.2.2 In-memory based Platforms: Spark and Impala 

As memory is getting significantly cheaper and computers are increasingly equipped with large 

memory capacities, there are considerable research and application interests in processing large-

scale data in memory to reduce disk I/O bottlenecks and achieve better performance. Existing 

applications based on MapReduce/Hadoop have been praised for high scalability but criticized 
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for low efficiency [6]. Indeed, outputting intermediate results to disks, although advantageous for 

supporting fault-tolerance, incurs excessive disk I/Os which is getting significantly more 

expensive when compared with floating point computation on modern hardware and is 

considered a major performance bottleneck. In-memory big data systems designed for high 

performance, such as Apache Spark [106] and Cloudera Impala [14], have been gaining 

popularities since their inceptions.  

From a user’s perspective, Spark is designed as a development environment that provides 

data parallel APIs (Application Programming Interfaces) on collection/vector data structures, 

such as sort, map, reduce and join, in a way similar to parallel primitives. Spark is built on the 

notion of RDD (Resilient Distributed Dataset) [106] and implemented using Scala, a functional 

language that runs on Java Virtual Machines (JVMs). Compared with Java, programs written in 

Scala often utilize built-in data parallel functions for collections/vectors (such as map, sort and 

reduce), which makes the programs not only more concise but also parallelization friendly. Keys 

of collection data structures are used to partition collections and distribute them to multiple 

computing nodes to achieve salability. By using actor-oriented Akka communication module
9
 for 

control-intensive communication and Netty
10

 for data-intensive communication, Spark provides 

a high-performance and easy-to-use data communication library for distributed computing which 

is largely transparent to developers. Spark is designed to be compatible with the Hadoop 

ecosystem and can access data stored in HDFS directly. While Spark is designed to exploit large 

main memory capacities as much as possible to achieve high performance, it can spill data to 

                                                 
9
 http://akka.io/ 

10
 http://netty.io/ 
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distributed disk storage which also helps to achieve fault tolerance. Although hardware failures 

are rare in small clusters [52], Spark provides fault tolerance through re-computing as RDDs 

keep track of data processing workflows. Recently, a Spark implementation of Daytona 

GraySort, i.e., sorting 100 TB of data with 1 trillion records, has achieved 3X more performance 

using 10X less computing nodes than Hadoop
11

.  

When comparing Spark with Hadoop, although both of them are intended as a 

development platform, Spark is more efficient with respect to avoiding excessive and 

unnecessary disk I/Os. MapReduce typically exploits coarse-gained task level parallelisms (in 

map and reduce tasks) which makes it friendly to adopt traditional serial implementations. Spark 

typically adopts parallel designs and implementations with fine-grained data parallelisms. The 

computing model adopted by Spark provides a richer set of parallel primitives not limited to map 

and reduce in MapReduce. The required efforts for re-designs and re-implementations of 

existing serial designs and implementations are very often well paid-off with higher 

performance, as programs expressed in parallel primitives based functional descriptions typically 

exhibit higher degrees of parallelisms and better optimization opportunities. With Spark, a 

problem represented by parallel primitives usually is less error-prone. A Spark cluster consists of 

a master node and multiple worker nodes. In runtime, the master node is responsible for 

coordination and dispatching workload to all worker nodes for execution.   

Different from Spark, Impala is designed as an end-to-end system for efficiently 

processing SQL queries on relational data. It is an efficient Big Data query engine, which is 

                                                 
11

 https://databricks.com/blog/2014/10/10/spark-petabyte-sort.html 
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considered as a replacement of Apache Hive
12

 (compiles SQL statements to MapReduce jobs for 

execution) for interactive queries. In Impala, a SQL statement is first parsed by its frontend to 

generate a logical query plan. The logical query plan is then transformed into a physical 

execution plan after consulting HDFS and Hive metastore to retrieve metadata, such as the 

mapping between HDFS files and local files and table schemas. The physical execution plan is 

represented as an Abstract Syntax Tree (AST) where each node corresponds to an action, e.g., 

reading data from HDFS, evaluating a selection/projection/where clause or exchanging data 

among multiple distributed Impala instances. Multiple AST nodes can be grouped as a plan 

fragment with or without precedence constraints.  

An Impala backend consists of a coordinator instance and multiple worker instances. One 

or multiple plan fragments in an execution plan can be executed in parallel in multiple work 

instances within an execution stage. Raw or intermediate data are exchanged between stages 

among multiple instances based on the predefined execution plan. When a set of tuples (i.e., a 

row-batch) is processed on a data exchange AST node, the tuples are either broadcast to all 

Impala work instances or sent to a specific work instance using a predefined hash function to 

map between the keys of the tuples and their destination Impala instances. Tuples are sent, 

received and processed in row batches and thus they are buffered at the either sender side, 

receiver side or both. While adopting a dynamic scheduling algorithm might provide better 

efficiency, currently Impala makes the execution plan at the frontend and executes the plan at the 

backend. No changes on the plan are made after the plan starts to execute at the backend. This 
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significantly reduces communication complexities and overheads between the frontend and the 

backend which could make Impala more scalable, at the cost of possible performance lose.  

As an in-memory system that is designed for high performance, the raw data and the 

intermediate data that are necessary for query processing are stored in memory, although it is 

technically possible to offload the data to disks to lower memory pressure and to support fault 

tolerance. An advantage of in-memory data storage in Impala is that, instead of using multiple 

copies of data in map, shuffle and reduce phases in Hadoop, it is sufficient to store pointers to the 

raw data in intermediate results, which can be advantageous than MapReduce/Hadoop in many 

cases, especially when values in (key, value) pairs have a large memory footprint. 

2.2 Spatial Indexing Techniques 

Spatial indexes are used by spatial databases to accelerate spatial queries. Various types of 

spatial indexes have been developed in the past few decades to support efficient spatial data 

access in many scenarios [30, 82]. In this section, we briefly introduce three major spatial 

indexes that are related to this research, i.e., Grid-files [70, 82], Quadtrees [28, 83] and R-trees 

[12, 35, 85, 103]. The major characteristics of the three categories of spatial indexes are 

tabulated in Table 1. The details will be discussed in the following subsections. As a common 

practice, for complex spatial objects such as polylines and polygons, instead of indexing on the 

exact geometry of spatial objects, Minimum Bounding Rectangles (MBRs) are used to 

approximate the geometry of spatial objects. As illustrated in Figure 4, MBRs are axis-aligned 

rectangles and can be efficiently derived from original objects.  
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Table 1 Summary of Spatial Indexes 

 Grid-file Quadtree R-tree 

Partition 

Strategy space-oriented space-oriented data-oriented 

Hierarchical 

Structure No Yes Yes 

Parallelization 

friendly Good Medium Poor 

Skewness 

Handling Poor Medium Good 

 

2.2.1 Grid-Files   

Grid-file [70] is a simple spatial data structure developed for efficient spatial data access and an 

example is shown in Figure 5a. To build a grid-file index, two parameters need to be specified 

first. One parameter is the extent of the indexing space which can be derived by scanning the 

input dataset being indexed. The other parameter is the size of grid cell, which is chosen 

empirically. After the initial parameter setup, MBRs are extracted from the original spatial 

objects. The MBRs are then mapped to the grid space according to the size of grid cell. If a MBR 

is larger than a single grid cell, it will be duplicated in all intersected grid cells. For example, 

object A in Figure 5a is duplicated in four grid cells (i.e., 1, 2, 5, 6). For range queries, the query 

processing is almost identical to index construction where the query window is mapped to the 

Figure 4 MBR Examples 

MBR 
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same grid space and all intersected MBRs are retrieved using the matched grid cells. Since 

MBRs may be duplicated in the index construction phase, an additional duplication removal 

phase is required.  

Based on how the space is decomposed, a grid-file can be categorized into non-uniform 

and uniform. For a non-uniform grid-file, the splitting points for each dimension are not 

uniformly distributed; so the splitting points need to be stored in order to locate each grid cell 

correctly. On the contrary, a uniform grid-file does not need to keep such information because 

the splitting points are uniformly distributed on each dimension and they can be derived from the 

extent of the space and the size of grid cells. In our research, we prefer uniform grid-file for 

simplicity. We will use grid-file to refer to uniform grid-file hereafter.  

Unlike tree based hierarchical structures such as Quadtree and R-tree, a grid-file uses a 

flat structure that simply splits the space into grid cells, where each grid cell is a subspace that 

contains overlapping objects. The flat structure of grid-file indexing makes it parallelization 

friendly, because each grid cell can be processed independently and no dependency and 

synchronization between grid cells which are usually inevitable in hierarchical structures. The 

simplicity of grid-file has demonstrated its efficiency on modern parallel hardware, comparing 

with tree based indexes [73, 87, 88]. One drawback of grid-file indexing is skewness handling, 

especially for the uniform grid-file indexing. Since grid cells are generated by equally splitting 

the space, the number of objects in each grid cell can be very different on skewed datasets. The 

skewness will degrade index pruning performance and also create uneven workload that leads 

load balance issue in parallel computing. One way to partially address such issue is to choose a 
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good resolution for the space. However, finer resolution will incur another object duplicate issue. 

The issue is that, if an object overlaps with multiple grid cells, such object will be assigned to all 

overlapping cells. As such, an additional duplicate removal step is required when using grid-file 

indexing. Meanwhile, larger duplication imposes higher memory pressure, which could be a 

potential problem for memory constraint systems. Therefore, a good resolution parameter can be 

crucial to overall performance. Previous works [45, 102] have shown that both index 

construction and query processing can be significantly improved by using grid-file indexing on 

GPUs. Both [45] and [102] optimized the ray-tracing application using grid-file index on GPUs. 

Unlike previous works that focus on visualization, we exploit the potentials of utilizing parallel 

grid-file indexing for spatial data management. We also develop data-parallel designs using 

parallel primitives for grid-file based indexing, especially for supporting spatial join processing 

(Section 2.3). Recent works [33, 34] have adopted the idea of utilizing grid-file on the GPU for 

managing trajectory data.  

  

2.2.2 Quadtrees 

Quadtree [28, 83] is a tree structure that is used for indexing spatial objects in 2-D space. It 

behaves similarly to binary trees in 1-D space. While there are many Quadtree variants, in this 

research, we use the term Quadtree to refer to Region Quadtree [82]. Region Quadtree follows 

Figure 5 Spatial Index Examples 

c) R-tree b) Quadtree b) Grid-file 

0030 
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space-oriented decomposition and decomposes the whole space to be indexed into subspaces 

recursively until a certain criterion (e.g., minimum number of objects in the subspace, or the 

minimum size of the subspace) is met.  Figure 5b illustrates an example of Region Quadtree, 

where each Quadtree node has four child nodes. Unlike R-tree to be introduced in the next 

subsection, Quadtree generates non-overlapping partitions that cover the whole space in a 

mutually exclusive and collectively exhaustive manner. Each node in the Quadtree, either leaf 

node or non-leaf node, is called a quadrant in Quadtree, which corresponds to a subspace. By the 

nature of Quadtree, each node is either decomposed into zero or four children. The four children 

are usually named NW (northwest), NE (northeast), SW (southwest) and SE (southeast) 

according to their relative locations. In a typical implementation of Quadtree on CPUs, each non-

leaf node has four pointers pointing to its four children. 

One feature of Quadtree is that each quadrant can be represented as a Morton code [82] 

which is a mapping based on Z-order [82]. The mapping can be realized by using 0, 1, 2, 3 to 

represent NW, NE, SW, SE nodes, respectively [31]. For example, the leftmost node in the last 

level of Figure 5b (enclosed in the dotted square) is represented as 0030. Such representation can 

be used to speed up range queries [2]. The regular splitting pattern of Quadtree is suitable for 

data-parallel designs. For example, the work in [39] took advantage of such feature to speed up 

spatial join processing. However, as Quadtree is a hierarchical data structure, there are 

dependencies between parent and child nodes. Comparing with grid-file indexing, it is 

technically challenging to develop a parallel Quadtree structure that can fully exploit parallelism. 

On the other hand, Quadtree splits the space using a threshold parameter that can alleviate the 

skewness issue as discussed in grid-file indexing. Even though dependency is an issue, it is still 
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attractive to use Quadtree indexing as a balance between parallelization and skewness handling. 

In this work, we will introduce data-parallel Quadtree construction and query algorithms on 

modern hardware such as multi-core CPUs and GPUs to support parallel spatial join processing.     

2.2.3 R-trees 

R-tree [35, 103] is a well known spatial indexing technique and has been widely adopted in 

many applications for indexing 2-D or higher dimensional spatial data. Similar to B-tree [18], an 

R-tree is also a balanced search tree but is adapted for multi-dimensional data. The key idea of 

R-tree is to group nearby objects and represent their aggregated spatial extent as a MBR. Unlike 

Quadtree that generates non-overlapping partitions, the spatial extents of R-tree nodes may 

overlap each other. On the other hand, R-tree typically follows data-oriented partition so that 

object duplication can be avoided. An example of R-tree is given in Figure 5c. In the example, 

we illustrate the R-tree with a fan-out of 2. The R-tree nodes are constructed from MBRs in the 

left of Figure 5c. For each entry in an R-tree node, a pair of MBR M and pointer P is stored, 

where the MBR M represents the union of all MBRs from its child node (e.g., R2 is the union of 

C and D) and the pointer P is used to access the child node corresponding to the entry.  

An R-tree can be constructed via dynamic insertion or bulk loading. Dynamic insertion 

means the tree is constructed while MBRs are inserted one by one, which is suitable for indexing 

dynamic datasets. For static datasets, bulk loading might be more efficient. In bulk loading, an 

R-tree is constructed from the whole dataset typically by sorting and hierarchically aggregating 

MBRs bottom-up [74]. Querying on an R-tree is just like classic tree traversal, where MBRs 

stored at each node are used for spatial pruning. The query processing can be categorized into 
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two types, Depth-First-Search (DFS) based and Breadth-First-Search (BFS) based. To parallelize 

DFS based batch query, it is straightforward to assign each query to a parallel processing unit to 

query the tree individually. In such a design, each DFS query needs to maintain a small stack to 

keep track of intersected tree nodes. However, using DFS based query may incur load unbalance 

as queries usually follow different paths. The access pattern for DFS based query is also not 

cache friendly and not coalesced, which are important for parallel hardware such as GPUs. 

Previous work [63] suggested BFS based query processing can be more efficient on parallel 

hardware especially GPUs. Other works [50, 104] used a hybrid approach, in which R-tree was 

first traversed and then followed by a parallel linear scan.  

In this work, we have improved parallel R-tree construction using parallel primitives 

(Section 3.2.3). The design is portable across multiple parallel platforms and improves the works 

reported in [63, 97]. We have also developed parallel primitive based designs for query 

processing which can serve as a module for efficient spatial join query processing.  

2.2.4 Distributed Spatial Indexing Techniques 

Most of the spatial indexing techniques developed in the past few decades focused on improving 

performance on a single computing node, and very few of them are developed for distributed 

environments [82]. Kamel and Faloutsos [47] proposed a parallel R-tree technique to support 

efficient range query. Observing that disk I/O was the dominating factor, they designed a parallel 

R-tree structure on a special hardware architecture which consisted of one CPU and multiple 

disks. In order to maximize throughput, R-tree nodes were distributed among all disks and linked 
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by cross-disk pointers. To answer a range query, R-tree nodes were loaded in parallel from disks 

and checked for intersection.  

Koudas et al. [51] developed a parallel R-tree technique on a shared-nothing system. 

Instead of distributing R-tree nodes to multiple disks in [47], their design de-clustered R-tree 

nodes to multiple computing nodes. Another parallel R-tree structure on shared-nothing system 

is called Master-client R-tree proposed by Schnitzer and Leutenegger [84]. A master R-tree 

resided in a master node and its sub-trees called client trees were distributed on all client nodes. 

When a query arrived, it was processed on the master node sequentially and then distributed on 

client nodes to continue search in parallel.  

Lai et al. [53] found that processing time on master node in [84] was a bottleneck and 

they proposed a different structure called upgraded R-tree which partitioned data space first and 

built an R-tree for each partition. By this means, the R-tree was distributed among all nodes and 

the bottleneck issue was solved. Mutenda and Kitsure [68] proposed a Replicated-Parallel-

Packed R-tree (RPP-R-tree) technique which tried to minimize communication cost. The idea 

was to replicate R-tree among all nodes (by assuming disk storage cost was negligible). The 

master node was dedicated for task assignment and workload balancing. They developed a 

parallel spatial join approach using the proposed RPP-R-tree technique and claimed that their 

RPP-R-tree was more efficient for static data compared with dynamic R-tree used in [16].  

The recent trend of distributed processing technologies, such as rapid development of Big 

Data platforms, motivates new designs and implementations of distributed spatial indexing 

techniques. Unlike earlier works introduced previously, the state-of-the-art distributed spatial 
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indexing techniques are designed for specific Big Data platforms (e.g., Hadoop). As those 

platforms usually provide restrictive data access models, most recently developed distributed 

spatial indexing techniques [3, 24, 98, 107, 108] are based on data repartition. In other words, 

spatial data are reorganized by spatial partitions where each partition contains a subset of the 

dataset. By performing a partition step, a spatial dataset is divided into a collection of 

independent subsets which can minimize unnecessary disk access and inter-node data transfer 

when processing a query.  The spatial locality is preserved by spatially storing nearby data within 

a partition, which can accelerate related spatial queries such as nearest neighbor query. 

 VegaGiStore [108]  was developed using the MapReduce model and running on top of 

Hadoop. In VegaGiStore, a global Quadtree based partitioning and indexing technique was 

provided, where each partition was represented as a quadrant of a global Quadtree and stored as 

a separate file with the calculated Morton code. Within each partition, a local index was saved as 

a file header and the rest of the file were spatial objects sorted according to Hilbert curve. 

Hadoop-GIS [96] provided several partition strategies that can spatially partition data into 

tiles. In their work, spatial partitioning techniques were developed to solve the data skewness 

problem, which can significantly improve spatial query performance with MapReduce. An 

efficient and scalable partitioning framework named SATO [96] based on Hadoop was proposed, 

and the framework was implemented in four main steps: Sample, Analyze, Tear and Optimize. 

Distributed spatial indexing is also supported in SpatialHadoop [24]. In the storage layer 

of SpatialHadoop, a two-level (including global and local) index structure was employed, which 

is similar to the idea of VegaGiStore. SpatialHadoop supported multiple spatial indexing 
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structures such as Grid-file, R-tree and R+-tree. The size of each partition was determined by 

HDFS block size, so that SpatialHadoop can achieve optimized disk access. The global indexing 

structure was physically stored as a master file on disk and can be loaded into memory while 

performing spatial query processing. Within each partition, SpatialHadoop stored a bulk-loaded 

local index at the beginning and it will be loaded while processing the particular partition.  

GISQF [69] is an extension of SpatialHadoop that is developed to manage geo-referenced 

event database. MD-HBase [71] is a location based data management system on top of a key-

value store, i.e., Apache HBase
13

. In their work, an additional multi-dimensional index layer was 

built for efficient data retrieval. Spatial objects (points) were encoded as bit strings according to 

Z-order, and queries were formalized as prefix matching. Li et al. [57] have developed Pyro, 

which is a spatial-temporal big data storage system also on top of HBase. However, different 

from MD-HBase, Pyro integrated spatial range query capacity into HBase system rather than 

making it an additional layer. Pyro also developed group based block replica placement that can 

preserve spatial locality for data storage. The shortcoming of both MD-HBase and Pyro is that 

they were developed for points rather than complex geometry objects, e.g., polygons. Since both 

systems relied on linearization, such as Z-order in MD-HBase and Moore encoding in Pyro [17, 

95], it can be more challenging to extend them for complex geometries. Van and Takasu [94] 

recently developed an R-tree based distributed spatial indexing technique also on top of HBase. 

In their work, they designed a distributed spatial index structure using a combination of 

                                                 
13

 http://hbase.apache.org/ 



27 

 

Geohash
14

 and R-tree. Fox et al. [29] developed distributed indexing for NoSQL database, i.e., 

Apache Accumulo
15

, where key-value store based design was adopted. 

Since most of the state-of-the-art distributed spatial indexing techniques rely on spatial 

partitioning, partition quality will directly impact the performance of distributed processing. We 

will review three partition strategies, i.e., Fixed-Grid Partition (FGP), Binary Split Partition (BSP) 

and Sort-Tile Partition (STP) [96], which are related to this work. Those techniques are also 

integrated in our partition based spatial join in Section 4.2.1. Examples are provided in Figure 6 

to illustrate the three spatial partition techniques, respectively.  

Fixed-Grid Partition (FGP) is the most straightforward way of space decomposition, 

where the whole space is divided into grid partitions with an equal size. This technique has been 

proposed and used in PBSM [76]. The choice of grid partition size heavily impacts the efficiency 

of FGP. When a large grid partition is chosen, fewer partitions will be generated. Using fewer 

partitions degrades the level of parallelism and also makes it difficult to process skewed data. To 
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Fixed-Grid Binary-Split Sort-Tile 

Figure 6 Partition Examples 
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increase parallelism and handle data skewness effectively, one solution is to use finer grid 

partitions. With the improvement, more grid partitions are generated which is able to provide 

higher level of parallelism. Also, the straggler effect will be reduced if finer grid partitions are 

adopted. However, if an object crosses the boundary of multiple grid partitions, the object needs 

to be duplicated in each overlapping partition to ensure correctness. A finer grid partition will 

generate a larger number of duplications, which requires more memory during runtime. To sum 

up, FGP replies on the choice of grid partition, which typically impacts the overall performance 

as a “U” curve. To determine a good grid size, one solution is to perform selectivity estimation, 

and develop a cost model considering both data skewness and object duplication. Alternative 

solutions that can tackle skewness, such as using adaptive grid partition or multilevel grid 

partition (instead of using fixed-grid partition) can also be considered.  

Binary Split Partition (BSP) is a partition strategy aims to produce balanced partitions, 

and partition boundaries are determined by data distribution rather than fixed in FGP. BSP first 

samples input data before splitting space into two subspaces and the process is done recursively. 

The splitting phase is very similar to the construction of K-D tree [13]. During an iteration step, a 

splitting dimension is chosen to split the space on the median point of the chosen dimension. The 

same procedure is recursively applied to the partitioned subspaces until the desired criterion is 

reached. The choice of splitting dimension can be based on the distribution of data as suggested 

in [96]. Meanwhile, a parameter defines the maximum number of recursive level, which controls 

the number of resulting partitions, needs to be introduced. In practice, constructing BSP from a 

large dataset can be time consuming. A single split needs a scan of the data for chosen dimension 

and a sort for calculating the splitting boundary. Even though single scan and sort could be 
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efficient on shared memory parallel platforms, multiple rounds of scan and sort operations 

require large amounts of data communication which may degrade performance in distributed 

computing environments. Besides, at each recursive step, the data will be reordered for the next 

iteration which also incurs significant data communication cost. One solution is to use a small 

portion of input dataset as a sample dataset to generate partitions on a single machine, if the 

sample is representative for the whole dataset. The BSP principle is also applicable to Quadtree 

based partition, which can be done by substituting the splitting phase with the Quadtree 

decomposition. More generally, the splitting phase can be replaced by any other recursive 

splitting approaches. Nevertheless, multiple rounds of scan and sort operations significantly 

lower the performance of BSP, which makes it less desirable for large datasets.  

Sort-Tile Partition (STP) is proposed to generate partitions more efficiently. The technique 

is similar to the first step of Sort-Tile-Recursive R-tree (STR R-tree) bulk loading [55]. Data is 

first sorted along one dimension and split into equal-sized strips. Within each strip, final 

partitions are generated by sorting and splitting data according to the other dimension. The 

parameters for STP are the number of splits at each dimension as well as a sampling ratio. STP 

can be adapted to strip-based partition by setting the number of splits on the secondary 

dimension to one, which essentially skips the second sort and split. Also, by first projecting data 

according to a space-filling curve (e.g, Z-order, Hilbert curve), using the same strip-based 

adaption can easily generate partitions based on the space-filling curve ordering. Different from 

BSP, STP at most sorts data twice and contains no recursive decompositions. Therefore, STP can 

be more efficient for large datasets. 
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2.3 Spatial Join Techniques 

In a “Big Data” era, large-scale data analysis tools are highly demanded to analyze huge volume 

of spatial data that are generated every day. For example, with the fast growing smart phone 

market, tremendous amount of spatial data are generated from smart phones in the forms of GPS 

points and trajectories. To analyze the data, spatial join is required. For instance, answering a 

query such as “find all smart phone users who are less than 100 meters to a movie theater” needs 

a spatial join based on the “within distance” spatial relationship. However, it is not a trivial task 

to join huge amount of such data, especially when the spatial data is complex (e.g. polygon). In 

this section, we will first define the spatial join problem and then review existing works that have 

been developed to address the problem.    

 

2.3.1 Problem Definition 

Spatial join can be formalized as follows. Given two spatial datasets   and  , the result of spatial 

join over   and   is, 

                                              , 

 

(a) Point to Nearest Polyline     (b) Point to Nearest Polygon      (c) Point in Polygon  

Figure 7 Spatial Join Examples 
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 where relation is a spatial relationship (usually a spatial predicate) between two spatial objects. 

Figure 7 gives three examples of spatial join based on point-to-nearest-polyline search, point-to-

nearest-polygon search and point-in-polygon test, respectively. A naïve implementation of a 

spatial join is first to pair all objects from R and S and then to remove pairs that do not satisfy the 

spatial relationship in the spatial join. The naïve approach incurs a total complexity of       

    . However, spatial datasets are usually non-uniform and clustered and the naïve approach 

can be very inefficient. For example, in Figure 8, the naïve approach requires twelve intersection 

tests. However, if the space is indexed as partitions in advance and only objects in the same 

partition are paired, the number of intersection tests can be reduced to one. An intuition is that, if 

pairs can be pruned with little overhead before performing expensive geometric computation in 

testing spatial predicates, the overall performance can be improved. For this reason, filter-and-

refinement strategy is adopted in most of existing spatial join techniques [43, 44]. 

The filter-and-refinement strategy divides spatial join processing into two phases, i.e., 

filter and refinement. In the filter phase, spatial objects are first approximated by axis aligned 

MBRs, and then stored in the form of             Here     is a pointer to the original spatial 

object and     refers to the extent of the spatial object. The approximated MBR representation 

Figure 8 Intersection based Spatial Join Example 
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saves expensive geometric computation on the exact original spatial objects. For instance, the 

complexity of point-in-polygon test using the classic ray-casting algorithm is      where n is the 

number of vertices of the polygon being test. However, determining whether a point is in the 

MBR of a spatial object is only     . Candidate pairs are generated and pruned with the MBR 

representation. Spatial access structures such as spatial indexes are usually used to reduce 

unnecessary candidate pairs and accelerate the pairing process. Denoting       and       as 

pointers to original spatial objects in R and S, the output of the filter phase can be represented as 

a list of             .  

For the filter phase, the most common spatial predicate on which prior works have 

studied extensively is MBR intersection, where two MBRs are checked on whether they spatially 

intersect each other. A running example of intersection based spatial join is given in Figure 8. 

Many other spatial relationship operators can be transformed into spatial intersection test. For 

example, the spatial join query operators such as “within d” and “nearest neighbor within d” 

can be realized by extending MBRs with distance   and subsequently performing spatial 

intersection join, as illustrated in Figure 9.  

R1 

R2 

S1 

d 

d 

Figure 9 Spatial Join of WITHIN d 
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The filter phase prunes pairs that do not satisfy a spatial relationship but allows false 

positives because MBRs are used to approximate complex spatial objects. The refinement phase 

completely removes all false positives from the previous phase by testing the spatial relationship 

between two spatial objects based on their exact geometry. During the refinement phase, the 

exact geometric data are loaded using the      and      pointers. Spatial relationships are 

evaluated on the spatial objects by performing relevant geometric computation, such as point-in-

polygon test. Due to expensive geometric computation as well as I/O costs of loading original 

objects, the false positive rate of the filter phase significantly impacts the overall performance of 

a spatial join. As such, most existing research has focused on optimizing the filter phase in order 

to minimize false positives.  

Table 2 Summary of Spatial Join Techniques 
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For the rest of Section 2.3, we will discuss four leading spatial join techniques, including 

plane-sweep, indexed nested-loop, synchronized index traversal and partition-based. We will 

focus on parallelisms in discussing these spatial join techniques to set the context of this research 

on parallel spatial joins in Section 4.1 while refer to [44] for a more comprehensive survey on 

spatial joins. As a summary, Table 2 tabulates major characteristics of the four spatial joins that 

are relevant to our discussion. They will be detailed in the rest four subsections of Section 2.3.  

2.3.2 Plane-Sweep based Spatial Join 

The classic plane-sweep algorithm [86] reports all intersections from two sets of rectangles 

(MBRs in spatial joins) efficiently and has been widely used in spatial databases and 

Geographical Information System (GIS). The algorithm first sorts rectangles by their boundaries 

along one dimension (e.g., x axis). A vertical line then scans through the sorted list from left to 

right (or top to bottom). At any instant, a rectangle is considered active when it intersects with 

the sweep line. The key idea of this algorithm is, during the scan, a set of active rectangles are 

maintained and searched for reporting intersected pairs. To this end, the algorithm maintains a 

data structure, called sweep structure, to store active rectangles. Each time the sweep line meets 

a new rectangle, the sweep structure is updated where inactive rectangles are evicted and new 

active rectangles are inserted. Intersected pairs are then reported by searching on active 

rectangles. Various data structures, such as simple linked list, interval tries, interval tree and 

segment tree [44], have been adopted to support plane-sweep based spatial joins. Due to the 

initial sort before scan, the complexity of sweep plane implementations is at least           , 

where n denotes the sum of the sizes of the two joining datasets. In the classic plane-sweep 
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algorithm, data are required to be loaded into memory first which restricts the scalability of 

plane-sweep based spatial joins.  

To parallelize plane-sweep algorithm, a straightforward way is to divide the space to be 

swept into strips and apply plane-sweep algorithm on each strip. The parallelization of plane-

sweep is known to be difficult as discuss in [66]. The authors attempted to implement parallel 

plane-sweep on multi-core systems by partitioning the space into multiple strips. In their design, 

pre- and post-processing steps were required to divide search space and merge results. During 

pre-processing, a scan was initiated to split input data into   strips. The   strips then ran plane-

sweep algorithm individually in parallel. Finally, results were merged from all strips. There are 

several shortcomings in strip based parallel plane-sweep. First of all, choosing an optimal strip 

division is difficult. Using equal intervals on non-uniform distributed dataset usually results in 

unbalanced workload, which leads to poor performance. However, finding the optimal division is 

likely to impose more overhead of pre-processing, which might break the assumption that pre-

processing overhead is negligible [66]. Second, parallel strip based approaches are limited in 

scalability. The parallelism for strip based plane-sweep is determined by the number of strips 

that can be processed in parallel. To maximize the performance, the number of strips needs to be 

at least equal or larger than the number of processing units. As the number of strips increases, 

post-processing overhead will also increase. From the analysis in [66], the complexity of post-

processing is            and it becomes inefficient when the number of strips ( ) becomes 

large. Thus, strip based parallel plane-sweep is more suitable for processing small datasets or as 

a component in a larger  framework (e.g. in [107]). Finally, the sequential scan in each strip 

restricts the granularity of parallelism, because such scan has dependencies which cannot be 
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broken down for finer granularity. Although there are many other parallel algorithms [11, 48, 59] 

have been developed for the plane-sweep problem, the intrinsic of plane-sweep algorithm limits 

its application in parallel spatial join domain. This characteristic is reflected in the last row of 

Table 2. 

2.3.3 Indexed Nested-loop Spatial Join 

Given two datasets R and S, if dataset   is indexed, indexed nested-loop join uses the other 

dataset S as a batch of queries on R to generate the join results. In the batch query, each element 

in S searches on the index of R with the desired spatial relationship and candidate pairs are 

reported if the relationship is met. For example, rectangle intersection based spatial join can be 

modeled as using one dataset as query windows to query the index of the other dataset. Given 

one dataset R with R-tree index and the other dataset S, and assuming the complexity for an 

element in S searching on the R-tree of R is           , then the complexity of indexed nested-

loop join on R and S is                where   is the additional overhead of generating 

intersection pairs. In many scenarios, spatial datasets have already been indexed using techniques 

such as R-trees and Quadtrees to boost spatial queries. Therefore, indexed nested-loop join can 

be realized relatively easily and no additional data structures are required. Figure 10 is the 

algorithm sketch of the indexed nested-loop join. Clearly, indexed nested-loop join is highly 

parallelizable (last row of Table 2) by assigning a data item in S to a processing unit and process 

all the items in parallel. 
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Luo et al. [63] implemented R-tree based batch query on GPUs. Their design supported a 

batch of window queries on an R-tree in parallel on GPUs, where each GPU computing block 

handled a single query in a Breadth-First-Search (BFS) manner [62]. The other approach of 

parallelizing indexed nested loop join is to use spatial indexes designed for parallelizing range 

queries. Kamel and Faloutsos [47] proposed parallel R-tree to support efficient range query. 

Observing that disk I/O was the dominating factor, they designed a parallel R-tree structure on a 

special hardware architecture which consisted of one CPU and multiple disks. To answer a range 

query, R-tree nodes were loaded in parallel from disks and checked for intersection. Koudas et 

al. [47] developed a parallel R-tree based on spatial join technique on a shared-nothing system. 

Instead of distributing R-tree nodes to multiple disks in [47], their design de-clustered R-tree 

nodes to multiple computer nodes. Another parallel R-tree structure on shared-nothing system 

called Master-client R-tree was proposed by Schnitzer and Leutenegger [84], where a master R-

tree resided in a master node and its sub-trees called client trees were distributed on all client 

nodes. When a query arrived, the technique first processed it on the master node sequentially and 

then distributed it to client nodes to continue search in parallel. Lai et al. [53] found that 

processing time on the master node in [84] was a bottleneck and they proposed a different 

Indexed_Nested_Loop_Join (   ) 

1. begin 

2.            Create_Index( ) 

3.   foreach     do 

4.                Index_Search(      ,  ) 

5.      Report                    
6.   end 

7. end 

Figure 10 Indexed Nested-Loop Join Algorithm 
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structure called upgraded R-tree which partitioned data space first and built an R-tree for each 

partition individually. As a result, the whole R-tree was distributed among all nodes and the 

bottleneck issue was solved. In Hadoop-GIS [4], the authors also adopted R-tree based nested 

loop spatial join. The technique first partitioned the input datasets by sampling, and then, 

shuffled the datasets according to the generated partitions [96]. Each partition thus had a subset 

from both of the input datasets. Subsequently the indexed nested-loop join technique was applied 

within a partition while the whole spatial join can be parallelized at the partition level. 

2.3.4 Synchronized Index Traversal based Spatial Join 

When both datasets are indexed using tree based index, synchronized index traversal based 

spatial join can be used. Brinkhoff et al. [15] proposed using existing R-trees to speed up spatial 

joins by synchronized traversals from the roots of both R-trees, and nodes at same level were 

examined for spatial intersection. At each tree level during the traversal, a plane-sweep algorithm 

was used to report spatial intersections. Subsequently, intersected nodes were expanded and 

traversed until leaves were reached. If two trees did not have a same height, leaf nodes of the R-

tree with lower height continued range queries on the rest sub-trees of the other R-tree. Huang et 

al. [42] optimized the original R-tree join in [15] using BFS traversal that achieved better 

performance; however, it had a drawback on controlling the priority queue size during the 

traversal.  

Brinkhoff et al. [16] extended the sequential R-tree based join [15] to a shared-nothing 

parallel system. Similar to the sequential version, synchronized hierarchical traversal was used 

but sub-trees were sent to processors for parallel processing. On shared-nothing parallel systems, 
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in addition to CPU and I/O costs, network communication cost is also a crucial factor. A 

challenge identified in [15] was how to balance workload among processors during the execution 

with minimal communication overhead. Another parallel R-tree join technique on shared-nothing 

system was proposed by Mutenda and Kitsure [68]. They tried to minimize communication cost 

by proposing Replicated-Parallel-Packed R-tree (RPP-R-tree) as the spatial index. The idea was 

to replicate R-tree among all nodes (by assuming the disk storage cost was negligible). A master 

node was dedicated for task assignment and workload balancing. SpatialHadoop [24] 

implemented an R-tree based synchronized spatial join on Hadoop. When two datasets were 

indexed by R-tree, SpatialHadoop first generated the intersected partitions using a global R-tree. 

For each partition pair, synchronized spatial join was applied. For parallel R-tree joins on shared-

memory systems, Yampaka and Chonstivatana [101] described a GPU based spatial join using 

R-tree. They used the same design from [16] but distributed the MBR intersection tests on GPUs 

instead of CPUs. During the spatial join, R-trees were bulk loaded before synchronized DFS 

traversals on the two R-trees. The traversals continued until leaf nodes were reached.   

Besides R-trees, Quadtrees have also been adopted in parallel spatial joins. Hoel and 

Samet [39] developed a data parallel spatial join using PMR-Quadtree [82] on a hypercube 

machine. Starting from the root of two input datasets, nodes from the source and the target 

Quadtrees were matched and pairs were examined for spatial intersection in parallel. They 

demonstrated joining two polyline datasets based on the design. Hoel and Samet [39] also 

implemented R-tree based spatial join using the same hierarchical traversal design. Experiment 

study on both Quadtree and R-tree implementations showed that the Quadtree version 

outperformed the R-tree version significantly. The primary reason is that, on a data-parallel 
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computing platform, manipulating R-tree nodes, which are irregularly decomposed and are 

spatially non-disjoint, is more expensive than manipulating Quadtree nodes, which have non-

overlapping spaces and a fixed number (i.e., four) of children. 

As shown in the last row of Table 2, we rate the support for parallel designs in 

synchronized traversal based spatial join as “difficult”, mostly due to irregular data accesses on 

trees and the complexity in synchronizing the traversals on both trees.  

2.3.5 Partition Based Spatial Join  

Partition Based Spatial-Merge Join (PBSM) was proposed by Patel and Dewitt [76]. Similar to 

other spatial join algorithms, PBSM included the filter and refinement phases. However, PBSM 

did not build indexes if input datasets were not indexed. The data space was divided into 

partitions with a spatial partition function and each partition was assigned to a virtual processor 

to perform plane-sweep algorithm. If a MBR overlapped with multiple partitions, the MBR was 

duplicated and inserted into all overlapping partitions. Choosing a good spatial partition function 

was crucial for the performance. For example, as shown in the left side of Figure 11, partition 0 

Partition 0 Partition 1 

Partition 2 Partition 3 

Figure 11 Tile-to-Partition and Skewed Spatial Data 
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and partition 1 are denser than other partitions. To address this issue, PBSM suggested a tile-to-

partition mapping strategy. As illustrated in the right side of Figure 11, PBSM first divided space 

into tiles with finer granularity and then grouped them into coarser partitions to overcome 

unbalanced division. The space was first decomposed into     tiles where     was greater 

than P. Subsequently the tiles were assigned to partitions in a Round-Robin manner (or using 

hashing). After the filter phase, MBR pairs              were generated for the refinement 

phase. As duplicated MBRs were generated during partitioning, they could also be generated in 

the filter phase and needed to be removed. This could be realized by sorting or Reference Point 

Method (RPM) technique suggested in [22]. With RPM, duplicate pairs could be removed by 

checking whether the reference point fell within the partition without sorting which could be 

expensive. 

Although the PBSM algorithm was developed for serial computing on a single CPU, the 

idea of using virtual processors can be naturally adapted to parallel computing. The 

implementation of Parallel PBSM (PPBSM) is straightforward by assigning each partition to a 

processor in a shared-nothing parallel environment. Patel and Dewitt [75] proposed two spatial 

join algorithms, clone join and shadow join, which are  considered as improved versions of 

PPBSM. Clone join was identical to the spatial partition function used in the original PBSM, i.e., 

MBRs intersected with tiles were replicated and assigned to all intersecting tiles. Observing that 

there were large numbers of duplication generated in clone joins, finer object approximations 

were used in shadow joins in [75]. Instead of using a single MBR, a spatial object was 

approximated using multiple fragment boxes, where each fragment box was the MBR of the 

overlapped portion of the object and a tile. This design minimized the size of duplication by 
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creating partial surrogates. However, additional steps were required to eliminate partial 

surrogates to form candidate pairs for the refinement phase in shadow joins.  

Niharika [80] is a parallel spatial data analysis infrastructure developed for Cloud 

environments which aims to exploit all available cores in a heterogeneous cluster. Niharika first 

uses a declustering technique that creates balanced spatial partitions and then dispatched 

workload to multiple workers. SPINOJA [81] is a system developed for in-memory parallel 

spatial join processing. In SPINOJA, a technique called MOD-Quadtree (Metric-based Object 

Decomposition Quadtree) is developed to handle skewness in order to produce better workload. 

Zhou et al. [111] have implemented PBSM on a dedicated parallel machine. They improved the 

original PBSM partition function by using Z-order curve [82] instead of the original Round-

Robin assignment. The Z-order curve partition preserved better locality and achieved better 

performance according to their experiments. Zhang et al. [107] developed a variant of PPBSM 

called SJMR based on the MapReduce framework. SJMR adopted duplication avoidance 

technique named reference tile method, which considered checking whether the reference point 

fell within tiles rather than in partitions [22]. Zhong et al. [108] also implemented parallel spatial 

join on MapReduce platform using two-tier index which actually served as a partition function. 

To perform spatial join in the two-tier structure, overlapping partitions were matched and loaded 

through their filenames. In each partition, intersecting pairs were generated using an in-memory 

spatial join technique based on Hilbert Space Filling Curve [82]. Parallel SECONDO [61] 

introduced by Lu and Guting is another Hadoop-based solution which extends SECONDO [21] 

from a single machine to a Hadoop cluster.  
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In order to handle skewness, PBSM divides space into a large number of tiles. However, 

it is possible to group non-continuous tiles into a same partition (see the right side of Figure 11). 

Lo and Ravishankar [60] suggested the Spatial Hash Join (SHJ) technique to address this issue. 

Instead of decomposing space into regular gird tiles, SHJ generated buckets from one dataset, 

termed inner dataset. The other dataset, termed outer dataset, was overlaid on top of the inner 

buckets to pair MBRs from the outer dataset with the overlapping inner buckets. A recent 

technique called TOUCH [72] used an idea similar to SHJ. In TOUCH, an in-memory data 

structure similar to an R-tree was created from one dataset. MBRs from the other dataset were 

pushed down to the tree structure and assigned to different buckets. Unlike SHJ that retrieved all 

intersecting buckets for the query MBR, TOUCH found the minimal enclosing node and used all 

MBRs from the node as candidates. Even though larger false positives were generated, TOUCH 

avoided duplication and performed well due to contiguous memory access on modern hardware. 

THERMAL-JOIN [92] is another in-memory spatial join which is similar to TOUCH but yields 

better performance. The major improvement in THERMAL-JOIN comparing with TOUCH is 

the indexing structure. Instead of using tree structure in TOUCH, the new design adopted grid 

file based indexing, namely T-Grid and P-Grid, and it demonstrated significant speedup over 

TOUCH on dynamic workload. Partition based methods are also adopted by distributed systems 

such as Hadoop. Both Hadoop-GIS [3, 4, 96] and SpatialHadoop [23–26] adopted a two-step 

approach for distributed spatial join where the first step was dedicated to pairing spatial 

partitions. Different from Hadoop-GIS that used indexed nested loop in the second step within a 

partition as discussed in Section 2.3.3, SpatialHadoop also supported plane-sweep and 

synchronized index traversal. 
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With respect to supporting parallel designs, the parallelisms at the partition level in partition 

based spatial join are obvious and there are parallelization opportunities within partitions. Unlike 

indexed nested-loop spatial join where load balancing can be relatively easy achieved, it requires 

more efforts to avoid/remove duplicates and achieve load balancing in spatial partition based 

spatial join. For this reason, as indicated in the last row of Table 2, we rate the level of support 

for parallel designs in spatial partition based spatial join as “Medium”.  
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Chapter 3  Parallel and Distributed Spatial Indexing 

3.1 Overview 

We develop parallel designs of spatial data management at two levels. First, we would like to 

fully exploit the parallel computing power on a single computing node using commodity 

hardware such as multi-core CPUs and GPUs. We investigate on data structures and parallel 

algorithm designs for the new hardware, which can scale up spatial data processing on a single 

node. The second level is to scale out the single node parallel designs to multiple computing 

nodes, which provides scalable data management capabilities for larger scale spatial data. By 

achieving both efficiency and scalability, we expect our parallel and distributed techniques can 

significantly speed up processing large-scale spatial data using existing software packages, 

which are mostly designed for uniprocessors and disk-resident systems based on a serial 

computing model. 

3.2 Parallel Spatial Indexing on Single-Node 

In this section, we will introduce our designs on parallel spatial indexing on a single node. First, 

we will discuss our proposed spatial data layout that is efficient on both multi-core CPUs and 

GPUs. We will then introduce our parallel designs on three well-known spatial indexes, i.e., 

Grid-file, Quadtree and R-tree. While parallel designs of spatial indexes are mainly focused on 

single-node parallelization that utilizes multi-core CPUs and GPUs, they can be used as building 

blocks for distributed computing to be presented in Section 4.2.  

3.2.1 Data Parallel Geometry Layout 
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Although several geometry representation formats such as Well-Known Text (WKT)
16

 have been 

adopted in many existing software libraries, they were not designed for data-parallel operations 

and are not efficient on the current generation of parallel hardware, such as SIMD enabled 

processors. We have developed novel spatial data layout designs for efficient in-memory 

geometry operations, which are cache friendly and effective for data-parallel operations on both 

multi-core CPUs and GPUs.  

Since Open Geospatial Consortium Simple Feature Specification (OGC SFS
17

) has been 

widely adopted by the Spatial Databases and GIS communities, our in-memory data structures 

for geometries are designed to support the standard. Taking polygon data as an example, 

according to the specification, a polygonal feature may have multiple rings and each ring 

consists of multiple vertices. As such, we can form a four level hierarchy from a dataset 

collection to vertices, i.e., dataset  feature  ring  vertex. In our design, five arrays are used 

for a large polygon collection. Besides the x and y coordinate arrays, three auxiliary arrays are 

used to maintain the position boundaries of the aforementioned hierarchy. Given a dataset ID 

(0..N-1), the starting position and the ending position of features in the dataset can be looked up 

in the feature index array. For a feature (polygon) within a dataset, the starting position and the 

ending position of rings in the feature can be looked up in the ring index array. Similarly, for a 

ring within a feature, the starting position and the ending position of vertices belong to the ring 

can be looked up in the vertex index array. Finally, the coordinates of the ring can be retrieved 

by accessing the x and y arrays. We note that for a single polygon dataset, the feature index array 

                                                 
16

 https://en.wikipedia.org/wiki/Well-known_text 

17
 http://www.opengeospatial.org/ 
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can be replaced by a constant to simplify the structure. Similarly, for polygons with a single ring, 

the ring index array can be skipped. Polyline datasets can follow similar designs where rings 

correspond to line segments. Point datasets can simply use the x and y arrays without the 

auxiliary arrays for polylines and polygons. 

It is easy to observe that retrieving coordinates of single or a range of polygon datasets, 

features and rings can all be done by sequentially scanning the arrays in a cache friendly manner. 

It is also clear that the number of features in a dataset, the number of rings in a feature and the 

number of vertices in a ring can be easily calculated by subtracting two neighboring positions in 

the respective index array. As such, the array representation is also space efficient. Clearly, 

polygons using our proposed data layout are represented as Structure of Arrays (SoA) instead of 

Array of Structures (AoS), which is used in most of existing geometry representation including 

WKT. The use of SoA is potentially more efficient on modern parallel hardware because same 

data types are grouped together and exposed for better vectorization, especially on SIMD 

enabled devices such as VPUs and GPUs. Figure 12 gives an example of the SoA layout of a 

polygon collection. In the example, a polygon with identifier 50 stores ending positions (73, 

78, …, 100) of its rings in the ring index array. Therefore, we are able to locate all rings belong 

to the polygon, which starts right after the last ring of the previous polygon (e.g., 70 in ring index 

array) and ends at the last ring (e.g., 100 in the ring index array). The ending vertex position of 

each ring is stored in the vertex index array. For example, the first ring of polygon 50 (73 in the 

ring index array) has an ending position of 913 in the example. By using the ending position 

from each vertex range, x/y coordinates are retrieved from the coordinate arrays.  
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In addition to the exact representation of geometry objects, approximate representation 

such as MBR is also important because it is widely adopted in spatial indexing. We represent 

MBRs using four arrays to store the lower-x, lower-y, upper-x and upper-y coordinates, 

respectively. Extracting MBRs from the original geometry objects is embarrassingly 

parallelizable. The whole MBR extraction procedure can be easily implemented by using a single 

reduce_by_key parallel primitive (see Appendix A) with the vertex array as one input and the 

MBR id array as another input to specify keys. Figure 13 is an example of utilizing parallel 

primitives to extract MBRs from the spatial data layout we have developed. First, an auxiliary 

identifier array is allocated with the same length of the x or y array. The array is filled out by 

using a scatter and a scan primitive. The scatter primitive writes polygon identifiers to the newly 

allocated identifier array using the starting positions of polygon vertices. The partially filled 

identifier array is then completed with a scan primitive, which copies every identifier to its right 

until another identifier is met. The process is illustrated in the upper right of Figure 13. After 

generating the identifier array, a reduce_by_key is performed by using identifiers as the keys and 

coordinate arrays (x and y) are the reduction values. In reduce_by_key, the reduction values with 

Polygon Dataset 

… … 

 

70 73 78 … 

 

100 … 

 

Ring Index 

… 

 

… 

 

885 913 959 989 

 

… 

 

… 

 

Vertex Index 

                    
X/Y Coordinates 

Figure 12 Spatial Data Layout Example 
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the same key will be applied with a pre-defined binary and associative operation, such as min or 

max function. Finally, the results are saved into the four arrays as introduced previously.    

3.2.2 Parallel Grid-File based Indexing for MBRs 

We first introduce an in-memory grid-file based spatial index on parallel platforms using data-

parallel designs for MBRs of both polylines and polygons (Section 2.2). The designs are also 

applicable to points that can be considered as MBRs with a zero extent. The data-parallel grid-

file index is designed to support efficient parallel spatial queries (this section) and spatial joins 

(Section 4.1). There are three major components in developing the parallel grid-file based 

indexing technique. First, we design the index layout using simple linear arrays that are efficient 

on both CPUs and GPUs as discussed previously. Uniform grid is chosen for simplicity and 

efficiency. Second, we develop a query strategy using binary search that is both efficient and 

requires no extra space. Third, for all the stages of index construction, our introduced data-

parallel designs can be implemented using parallel primitives, which not only simplifies code 

complexity but also makes it portable across multiple parallel platforms.  

Figure 13 Extracting MBRs using Parallel Primitives 
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The parallel grid-file indexing technique is based on the decomposition of a set of MBRs 

according to a uniform grid space whose resolution is chosen empirically. The grid-file index is 

constructed through projecting the input MBRs on the grid space followed by an aggregation 

operation. The projection is parallelizable by decomposing MBRs to grid cells in parallel by 

chaining a few parallel primitives, which will be illustrated using an example. The aggregation 

can be regarded as a parallel reduction operation where the grid cell ids are keys. We store grid-

file index using simple arrays, including grid cell ids, MBR ids and an additional position array. 

The position array stores the ending positions of rasterized MBRs and links grid cell ids and 

MBR ids. In our design, only grid cells that intersect MBRs are stored for space efficiency.  

The middle part of Figure 14 illustrates the procedure of constructing a grid-file index 

from two input MBRs. First, two MBRs (P1 and P2) are first projected to the grid space and the 

output sizes for the MBRs are calculated. A scan is performed on the output size array in order to 

compute the starting position of each MBR. With the starting positions and output sizes, each 

MBR is decomposed into cell id and MBR id pairs, which are stored in arrays PC and PQ, 

Figure 14 Parallel Grid-File based 
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respectively. Finally, the pairs are sorted by the cell id array. A reduce_by_key parallel primitive 

is applied to transform the cell id array from a dense representation into a sparse representation 

by keeping only the unique cell ids (PC’) and the numbers of duplicated cells (PN) which 

represent the numbers of MBRs that intersect with cells. Note that, in the middle of Figure 14, 

array PQ’ is the sorted copy of PQ; array PN, which keeps track of the connection between PC’ 

and PQ’, is skipped to simplify the illustration. 

We also design parallel batch query processing using the grid-file based indexing, where 

a batch of range queries (i.e., window queries) are performed in parallel and intersected pairs are 

returned. Using the example shown in Figure 14, we assume that {P1, P2} and {Q1, Q2} are the 

indexed MBRs and query MBRs, respectively. Without using spatial index, the query needs to 

cross compare on all pairs, which is very expensive. To efficiently find the P-Q pairs that 

spatially intersect using the grid-file index, as illustrated in the right part of Figure 14, first, P1 

and P2 are projected onto a grid space and indexed by arrays PC’ and PQ’ using the previously 

introduced procedure. Second, the query MBRs (i.e., Q1 and Q2) are projected to the same grid 

space and the results are stored in arrays QC and QQ. QC and QQ represent query MBRs and the 

order of the arrays will not affect the results. As such, for efficiency purpose, it is not necessary 

to sort and reduce QC or QQ to generate QC’ and QQ’. Finally, the query is performed by 

matching the cell ids from the two sets of MBRs and the result pairs are generated based on 

matched cell ids. The details on matching are given next. 

In classic designs based on serial computing, the matching process can be done by 

maintaining a hash-table for indexed MBRs with their cell ids. In contrast, our data-parallel 
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design chains several parallel primitives for the purpose. Since both the index MBRs and query 

MBRs are projected to the same space, we can link them using cell ids which can be 

implemented as a parallel binary search of all the elements in QC on PC’. For example, in the 

right part of in Figure 14, the query pair (3, 1) in QC and QQ array locates the corresponding cell 

in the index arrays (PC’ and PQ’). Since the index arrays are sorted, the matching is done by 

performing a binary search on PC’ for each query cell from QC. To speed up the process, we 

assign each query cell from QC to a thread so that the matching can be done by a parallel binary 

search. After the parallel binary search, each query cell is associated with a matched cell 

identifier from PC’. In the example, the query pair (3, 1) is matched with 3 in PC’ and then 

identifiers 1 and 2 are retrieved from PQ’ by using an auxiliary array that links PC’ and PQ’. By 

performing parallel binary search on the sorted PC’ array, each cell identifier from QC can be 

matched with a cell identifier in PC’. Then, identifiers from PQ’ and QQ are further paired since 

they are directly connected with PC’ and QC. As all the involved operations, i.e., sort, search 

and unique, can be efficiently parallelized in quite a few parallel libraries including Thrust
18

 (that 

comes with CUDA SDK), batch spatial query using grid-file indexing can be relatively easily 

implemented on GPUs.  

The process of grid-file based query processing transforms a spatial query problem (MBR 

intersection) into a non-spatial problem (binary search) that can be easily parallelized. However, 

the MBRs intersecting with multiple grid cells will be duplicated in each grid cell, which 

imposes additional memory pressure that can be a significant limiting factor on devices with 

                                                 
18

 https://thrust.github.io/ 
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limited memory, such as GPUs. This issue can be partially addressed by tuning grid cell sizes. 

Clearly using larger grid cells will have smaller number of pairs but produce more false 

positives. Compared with the R-tree based spatial indexing to be introduced next, while parallel 

grid-file is simple in design and easy to implement, it typically requires larger memory footprint 

and should be used with caution.  

3.2.3 Parallel R-tree based Indexing for MBRs 

3.2.3.1 Data-Parallel R-tree Layout 

Instead of using classic pointer based tree structure, we design simple linear array based data 

structures to represent an R-tree. As discussed previously, the simple linear data structures can be 

easily streamed between CPU main memory and GPU device memory without 

serialization/deserialization and are also cache friendly on both CPUs and GPUs. In our design, 

each non-leaf node is represented as a tuple {MBR, pos, len}, where MBR is the minimum 

Figure 15 Illustration of Linear R-tree Node Layout 
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bounding rectangle of the corresponding node, pos and len are the first child position and the 

number of children, respectively. The tree nodes are serialized into an array based on the 

Breadth-First-Search (BFS) ordering. The design is illustrated in Figure 15.  

Compared with a previous work reported in [63] that stored entries for all children in 

non-leaf nodes, our design is more memory efficient. The decision to record only the first child 

node position instead of recording the positions of all child nodes in our approach is to reduce 

memory footprint. Since sibling nodes are stored sequentially, their positions can be easily 

calculated by adding the offsets back to the first child node position. In addition to memory 

efficiency, the feature is desirable on GPUs as it facilitates parallelization by using thread 

identifiers as the offsets. As discussed in Section 2.2.3, an R-tree can be constructed through 

either dynamic insertions or bulk loading. In our targeting applications, as the datasets (such as 

administrative boundaries) are usually static or infrequently updated, we focus on bulk loading 

which allows simple and elegant implementations using parallel primitives.  

3.2.3.2 Parallel R-tree construction 

Figure 16  Parallel R-tree Bulk Loading  

Input: fan-out d; dataset D 

Output: packed R-tree  

1. sort D using 1-D ordering (e.g. low-x) 

2. for level            decrease to 1 

3. if (level is last level) 

4.   reduce  from original data D 

5.  else  

6.    reduce from lower level  

     

Input: fan-out d; dataset D 

Output: packed R-tree 

1. while (true) 

2. if (     ) 

3.    root  pack   MBRs 

4.    break; 

5.  else 

6.    sort_by_key  on x-coordinates 

7.    sort_by_key  on y-coordinates for each slice 

8.    reduce_by_key packed every d MBRs 

9.        
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In this study, we have developed data parallel designs based on both low-x packing (used in [63]) 

and Sort-Tile-Recursive (STR) packing [5, 55] to construct bulk-loaded R-trees. For the low-x 

packing approach, the initialization step first sorts the original data (MBRs) by applying a linear 

ordering schema (sort based on low-x in this case, other linear order may also apply). An R-tree 

is constructed in the main step by packing MBRs bottom-up, and the parallel design using 

parallel primitives is illustrated in the left part of Figure 16. Line 1 sorts the original dataset 

using low-x ordering. From Lines 2 to 6, an R-tree is iteratively packed from lower levels. In 

Line 4 and 6, keys with the same identifiers need to be generated every d items for parallel 

reduction purpose. The MBRs, first child positions and numbers of children are computed from 

the data items at the lower levels as follows. For the d items with a same key, the MBR for the 

parent node is the union of MBRs of the children nodes. For each R-tree node, the first child 

position (pos) is computed as the minimum sequential index of lower level nodes and the length 

(len) is calculated by counting the number of child nodes. Figure 17 is an example of R-tree bulk 

loading with fan-out set to 3. Objects (O1, O2, O3, …) are first sorted by low-x coordinates. Then 

the R-tree is constructed by recursively packing from lower levels until reaching the root. For 

example, O1, O2 and O3 are first packed and represented as {MBR1, 0, 3} in a higher level, where 

MBR1 is the union extent of O1, O2 and O3, 0 is the index of O1 and 3 represents that there are 

three items in this node. Similarly, {MBR2, 3, 3} and {MBR3, 6, 3} are generated. Finally, the 

root of the tree ({MBR0, 1, 3}) is generated by packing all three nodes from the previous step.  
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We note that the linear ordering of MBRs will directly impact the qualities of constructed 

R-trees and subsequently impact the query performance on R-trees [46, 55]. This is because 

spatial adjacency in 2-D may not be well preserved in 1-D, an issue that has been intensively 

studied in spatial databases [67]. In addition to low-x packing, we have also developed the STR 

R-tree bulk loading algorithm, which can preserve spatial locality better. The algorithm is 

developed using parallel primitives as follows. First, MBRs are sorted along one direction, i.e., 

using x coordinates from lower left corners, which can be implemented by using a sort primitive. 

Then the space is divided into slices according to the predefined fan-out d, and each slice is 

sorted along the other direction, such as y-coordinates. Finally every d MBRs in a slice are 

packed as parent nodes which will be used as the input for the next iteration. This process is 

iteratively executed until the root of the tree is constructed. The right part of Figure 16 outlines 

the STR R-tree construction algorithm. Lines 2 to 4 check whether the number of MBRs is 

smaller than the fan-out d. If this is the case, the MBRs will be packed as the root node and the 

{MBR3, 6, 3} {{MBR2, 3, 3} {MBR1, 0, 3} 

{MBR0, 1, 3} 

Figure 17  Low-x R-tree Bulk Loading Example 

Sorted by low-x coordinates  

O1 …… O2 O3 
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iteration is terminated. Otherwise, the MBRs are first sorted using low-x coordinates (Line 6), 

and N MBRs are divided into      slices where each slice is sorted according to low y-

coordinates (Line 7). After sorting on each slice, parent nodes are generated via packing every d 

MBRs (Line 8). Finally,     nodes are used as the input for the next iteration (Line 9). The first 

sort can be easily implemented by sorting data using x-coordinates as the key. To implement the 

second sort where each slice is sorted individually, an auxiliary array is used to identify items 

that belong to the same slice. This is achieved by assigning the same unique identifier for all 

items belong to the same slice, i.e., a sequence identifier is assigned for each slice and stored in 

the auxiliary array. With the help of the auxiliary array, Line 7 can be accomplished by 

performing sort on two keys, where the primary key is y-coordinates and the secondary key is the 

unique identifiers in the auxiliary array. Line 8 is the same as the packing phase of low-x packing 

introduced previously (Lines 4 and 6 in the left of Figure 16). The difference between the two 

packing algorithms is that the low-x packing algorithm only sorts once while the STR packing 

algorithm requires multiple sorts at each level. Figure 18 shows a running example of the sorting 

and tiling process. First, all MBRs are sorted by x and divided into three strips (left of Figure 18). 

Then, within each strip, MBRs are sorted on the y direction (middle of Figure 18). Finally, tiles 

are generated by further dividing each strip as shown in the right of Figure 18. During tree 

construction, the same process is recursively called until the root is reached. 
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3.2.3.3 Parallel Batch Query on R-tree 

After introducing the parallel design of R-tree construction, we next introduce our parallel design 

for batch spatial range queries on R-trees. As we have introduced in Section 2.2.3, Luo et al. [63] 

proposed a BFS based batch query technique on GPUs, where multiple queries are assigned to a 

block and a queue is maintained for the whole block. With such a design, a better intra-block 

load balance can be achieved and GPU shared memory can be used to further speed up the query 

processing. The authors addressed the queue overflow issue by adding another step to re-run 

overflowed queries repetitively until completion. However, their design was tied to specific 

hardware (i.e., GPU) and may not be suitable for other parallel platforms. Meanwhile, workload 

balance in [63] was limited to a block. In contrast, our design uses a global queue for all queries 

instead of multiple queues in [63], which generally leads to better load balancing. In addition, 

our design not only works on GPUs but also can be easily ported to other parallel platforms such 

as multi-core CPUs. 

Figure 18 STR R-tree Bulk Loading Example 
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The left side of Figure 19 outlines our parallel primitives based design. First, a global 

queue is maintained and it is initialized using the root of the R-tree for each query. Second, all 

queries are checked for intersection with its corresponding R-tree node in parallel using a 

transform primitive which applies the intersection test operator for all the pairs. Third, non-

intersected pairs are removed from the queue and the queue is compacted. Fourth, intersected 

nodes are then expanded to prepare for the next iteration. This step is a combination of several 

parallel primitives such as scan, scatter and transform. The iteration terminates when the queue 

is empty or the last level of the R-tree is reached. Finally, query results are copied from the 

queue to an output array. A running example is illustrated in the right side of Figure 19. Two 

queries and their execution traces are illustrated in bold and dashed lines, respectively. At the 

beginning, the queue is initialized with pairs of the root node (A) and query id (1 and 2). After 

that, the R-tree nodes are checked and expanded to the next level R-tree nodes (B, C and D). 

Finally, the iteration terminates and the queue represents query results (F1, G1, I2 and J2).  

Iterate until queue is empty 

or reaches leaves 

scan+scatter+

transform 

 Initialization Check 

intersection 

Remove 

non-

intersected  

Queue is 

initialized to 

{qid, root}  

transform transform partition 
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Figure 19 Parallel Primitive based BFS Batch Query 
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We note that there are two potential issues in our design. First, the queue is maintained 

globally without considering specific hardware features such as fast shared memory on GPUs. At 

each level, the expansion of the current nodes requires global memory accesses, which can be 

more expensive than accessing shared memory on GPUs and may lower its performance. 

Second, the parallel primitives based implementation imposes additional overhead by parallel 

primitive libraries when compared with using native parallel programming languages such as 

CUDA. However, as shown in Section 5.2.1, despite the disadvantages, the simple and portable 

design has achieved reasonable performance and represented a good balance between code 

efficiency and portability and development productivity.  

3.2.4 Parallel Quadtree based Indexing for Points 

Although point datasets can be indexed using parallel indexing techniques for MBRs introduced 

previously by treating a point as a MBR, it is not efficient for large point datasets which is 

typical in practice. As such, we develop a parallel Quadtree indexing technique to index large-

Figure 20 A Running Example to Illustrate the Process of Generating Point Quadrants  
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scale point data, which can be used to support spatial range queries and spatial joins. There are 

two steps in the introduced Quadtree based indexing technique for point data: step 1 generates 

non-leaf quadrants with each quadrant has at most K points, and step 2 assembles the leaf 

quadrants into a tree structure. Both steps are based on parallel primitives.  

We present the following data parallel design for generating leaf quadrants from point 

dataset and the idea is illustrated in Figure 20 using an example. The strategy is to partition the 

point data space in a top-down, level-wise manner and identify the quadrants with a maximum of 

K points at multiple levels. While the point quadrants are being identified level-by-level, the 

remaining points get more clustered, the numbers of remaining points become smaller, and the 

data space is reduced. The process completes when either the maximum level is reached or all 

points have been grouped into quadrants. The maximum number of points in a quadrant (K) and 

the maximum level are set empirically by users.  

Input: point dataset P, max level M, min number of points NP 

Output: re-arranged point dataset P’, quadrant key vector Q,  

               vector of numbers of points falling within quadrants Len, 

               vector of numbers of starting positions of points in quadrants Pos  

1. for k from 1 to M  levels: 

2.   Key ← Z-order(P, k) 

3.   sort by Key on P 

4.   reduce by Key and count number of points Num_Pts for each key 

5.   for each key in Key: 

6.      if num_pts ≤ NP: 

7.         copy quadrant and points to P’ and Q, and generate Len and Pos  

8.         remove the copied subset from P 

9.   prepare P for next iteration 

Figure 21 Algorithm of Parallel Point Quadrant Generation 
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The algorithm of generating point quadrants is listed in Figure 21. Starting from level 1 to 

M of the Quadtree, quadrants are recursively generated from points. Line 2 generates Z-order 

code as the sort key, which can use a transform primitive. The current level k is used for 

generating quadrant keys for the current level. For example, at the first level only the first two 

bits of the Z-order code are used as the key. As a result, all points within the same quadrant will 

have the same key and stored consecutively due to the sort in Line 3. Line 4 counts the number 

of points for each key using a reduce primitive. Line 5-8 check the counts of quadrants, and 

move quadrants that meet the requirement to the output vectors. After that, the dataset is 

compacted and prepared for the next iteration.  

A complete Quadtree can be subsequently constructed from leaf quadrants using the 

similar layout for R-trees as introduced in Section 3.2.3.1. However, since the number of 

children for Quadtree is either zero or four, we do not need the len array that has been used in R-

Input: leaf quadrants Qs where each item is (z_val, lev, p_id) 

Output: Quadtree T   

ParallelConstructQuadtree(Qs): 

1. sort Qs by z_val 

2. sort Qs by lev 

3.  (lev, lev_size) = reduce Qs by lev //count size of quadrants at each level 

4. lev_pos = exlusive_scan(lev_size) //get start position for each level 

5. copy last level quadrants from Qs to T 

6. current_lev = MAX_LEV 

7. while (current_lev > 0): 

8.    current_lev = current_lev – 1 

9.    transform and reduce quadrants in T at current_lev+1 to current_lev and save in 

TempQs 
10.    copy quadrants at current_lev from Qs to TempQs  

11.    sort and unique TempQs  

12.    copy TempQs to T  

13. return T 

 

Figure 22 Parallel Quadtree Construction from Leaf Quadrants 
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trees. We adopt a parallel primitive based design of constructing a complete Quadtree from its 

leaf quadrants, as listed in Figure 22. The input (Qs) is a vector of leaf quadrants with their 

corresponding identifiers to the points and the output will be the constructed Quadtree (T). We 

use z_val, lev and p_id to represent Morton code, level and the corresponding point identifier 

respectively. At the beginning, Lines 1-2 sort leaf quadrants with their Morton codes and levels. 

After this step, the level boundaries are extracted in Line 3 and 4, which will be used in the 

following for generating non-leaf quadrant at each level. We first copy last level quadrants to the 

tree (Line 5), and complete the tree in a bottom up manner (Line 7-12). To generate a new level, 

say current_lev, there are two major components. One component directly comes from leaf 

quadrants. With the pre-generated level information at Line 3 and 4, we can easily locate leaf 

quadrants at current_lev and copy them to a temporary space (TempQs). The other component 

should come from the reduction of lower level quadrants, in other words, the quadrants at 

current_lev+1. Those quadrants then are appended to TempQs. We note that, to maintain the 

link between two consecutive levels, the first child position (fc) must be set appropriately. This is 

achieved by performing a reduce operation where four child positions that belong to the same 

parent are applied by a min operator. The last step is to copy the TempQs to the tree structure T 

(Line 12). The iteration continues on a higher level until the root of the tree is reached. 

Using the constructed Quadtree, the batch query processing is almost identical to using R-

tree (Section 3.2.3.3) except that the MBR of a quadrant is implicitly stored in the format of a 

Morton code. We thus skip the details of spatial query processing on Quadtrees for point data. 

3.3 Multi-Node Distributed Spatial Indexing   
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To efficiently process large-scale spatial datasets on multiple machines (multi-node) with 

reasonable load balancing, one of the most important techniques is spatial partition to divide 

large-scale datasets into small pieces and each piece can be processed on a single machine. We 

have developed distributed spatial indexing based on spatial partitioning in order to support 

efficient large-scale spatial data processing on multi-node environments. The distributed spatial 

indexing structure is illustrated in Figure 23. The structure consists of an index file and a 

partitioned dataset, which is similar to VegaGiStore [108] and the distributed index in 

SpatialHadoop [24].  

Unlike existing works that are tightly coupled with their execution environment, we 

design the distributed indexing as a separate module which is independent from execution 

environments such as Hadoop. As shown in the figure, the index is stored as a separate file 

without adding additional information in the original dataset. The dataset is only re-organized 

according to one of the spatial partition strategies that will be introduced later. In the index file, 

we store metadata about the indexed dataset. For each partition we store the MBR of the partition 

as well as other metadata. A link is maintained for each partition in order to access the 

corresponding data block, which can be either a file location or an offset in the data file. Our 

distributed index works for any partition strategies, which is different from VegaGiStore that can 

only use Quadtree-like partition [108]. Meanwhile, we design the distributed indexing to be 

platform independent and the index is stored as a separate file so that other systems without the 

indexing module can still work on the raw dataset. The design is different from SpatialHadoop 

where local index is saved into the partitions, which makes it incompatible with other systems. 
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In this work, we have designed and implemented all the three partition strategies 

introduced in Section 2.2.4 using data-parallel primitives. As data-parallel primitives are well 

supported by parallel libraries as well as Big Data systems such as Spark, our implementations 

are easy to be implemented. The data-parallel designs are also applied to shared-memory systems 

such as multi-core CPUs and GPUs with data-parallel primitive libraries. Although Hadoop-GIS 

has a similar effort on spatial partitioning [96], their implementations were sequential and the 

design has not been developed for data-parallel environments. Unlike SpatialHadoop that stores 

the local index in each partition, we consider either storing local indexes to the index file or 

completely removing local indexes for partitions. The design of storing local indexes in the 

separated index file provides compatibility on different systems. On the contrary, datasets 

indexed by SpatialHadoop cannot be processed by other systems if the dedicated data loader is 

not implemented. Besides, local indexes may not be useful if random data access is not 

supported (such as functional operators in Apache Spark). In this case, using local indexes 

imposes additional IO overhead without benefiting system performance. On the other hand, 
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Figure 23 Distributed Spatial Indexing Structure 
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hierarchical spatial indexing structures such as R-tree may not be efficient on current generation 

of hardware due to irregular memory access and synchronization. Since a partition can be 

completely loaded in memory to process, performing parallel scan on the whole partition instead 

of traversing index can potentially be more efficient, especially when caching is taken into 

consideration. An alternative solution is to build on-demand local index using bulk-loading for 

expensive spatial operators such as spatial join. Our design guarantees the separation of indexing 

structure and original dataset, and only necessary data re-ordering is applied to the original 

dataset. 

3.4 Summary 

In this chapter, we have introduced parallel designs of spatial indexing techniques, including 

both space- and data-oriented indexing structures. Data-parallel designs of space-oriented data 

structures such as Grid-file and Quadtree have been presented. Since these two indexing 

structures regularly decompose the space to be indexed, the spatial problem (spatial query) can 

be transformed into a non-spatial problem (binary search) that is suitable for parallelization. For 

objects overlapping with indexing unit boundaries, such as grid cell boundaries in grid-file 

indexing, they are duplicated in each overlapping grid cell in order to ensure complete query 

results. Therefore, additional duplication removal step is used to generate unique results. 

Memory footprint can be a bottleneck because redundant information is required to store. The 

data-oriented partition can solve the duplication issue more effectively because the boundaries 

can be computed from the data. However, it brings challenges for parallelization due to irregular 

partitioning. We have developed data-parallel R-tree techniques, for both index construction and 

batch query processing. The data-parallel designs are GPU friendly so that we can take 
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advantages of promising hardware accelerator. In additional to parallel indexing on a single 

node, we have also discussed the design of distributed indexing that can be applied to distributed 

environments especially for big data platforms. Different from existing works such as 

SpatialHadoop, our design emphasizes on not only efficiency but also compatibility. Meanwhile, 

we have discussed parallel batch query processing using our parallelized spatial indexing 

structures in this chapter, which can be applied in spatial join processing in the next chapter.  
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Chapter 4  Parallel and Distributed Spatial Join 

To develop efficient spatial join designs on modern parallel and distributed platforms, we break 

down the problem into two levels. First, we develop parallel techniques that are used for 

accelerating single-node spatial join, which are able to exploit parallel computing power on a 

single machine. At the second level, we design spatial join techniques for distributed 

environments to achieve scalability. By combining the two levels of parallelism, we are able to 

perform spatial join effectively at very large scales.  
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4.1 Single-Node Parallel Spatial Join 

As introduced in Section 2.3, a spatial join typically has two phases, i.e., filter and refinement. 

When a spatial join is performed on a single node, the filter phase first generates candidate pairs 

by using approximated representations and the refinement phase completely removes false 

positives to produce exact results. The spatial filter phase shares several similarities with batch-

query on spatial indexes as discussed previously. However, it is possible that none of the input 

datasets in a spatial join is indexed. In this case, a spatial join needs to choose a proper filter 

strategy, including building indexes on-the-fly, to join the data items in the input datasets 

efficiently. In addition, while the number of spatial queries (represented as MBRs) in a batch can 

be large, it is typically smaller than the number of data items of the input datasets in a spatial 

join. More importantly, spatial refinement in a spatial join can dominate the whole process and 

its performance is critical for the end-to-end performance. As such, additional techniques sitting 

between filter and refinement phases that can further improve pruning power and reduce the 

number of tests of spatial predicates in the refinement phase are preferable. Although the spatial 

indexing and query processing techniques that we have developed in Section 3.2 are data-parallel 

and efficient, we would like to investigate on more techniques that can potentially improve 

spatial joins on large datasets and improve single-node efficiency for spatial join. The framework 

of our parallel spatial join technique on a single node is illustrated in Figure 24. 

4.1.1 Parallel Spatial Filtering 

We have developed lightweight on-the-fly spatial indexing for spatial join that involves point 

datasets, such as point-in-polygon test based spatial join. Recent studies [73, 87] have shown that 

using non-hieratical and simple spatial indexes on modern parallel hardware may produce better 
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performance than using classic hieratical spatial indexes (e.g., R-tree). Given that spatial join 

between a large and dynamic point dataset (e.g., taxi trip locations) and a relatively small and 

static polygon/polyline dataset (e.g. administrative zones) based on point-in-polygon test is one 

of the most popular types of spatial join, we next introduce a lightweight on-the-fly indexing 

technique for a large point dataset to be joined with a polygon/polyline dataset that is pre-

indexed using a grid-file (described in Section 3.2.2).  

Assuming a grid-file has been created by indexing the input polygon/polyline dataset, the 

idea is to create a grid-file for the input point dataset, which may have a high update frequency 

and may not be previously indexed. Clearly, it is desirable to use the same grid-file configuration 

of the input polygon/polyline dataset for the input point dataset, which is possible in spatial join 

as we are building a grid-file index on demand. The design of the lightweight indexing technique 

for point data using parallel primitives is illustrated in Figure 25. The transform primitive 

generates grid cell identifiers for all points; the sort primitive sorts points based on the cell IDs; 
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Figure 25 Light-weight Indexing for Point Dataset 
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the reduce (by key) primitive counts the number of points within each grid cell; and finally the 

(exclusive) scan primitive computes the prefix-sums of the numbers of points in all grid cells 

which are the starting positions of the points in the sorted point data vector.  

Compared with Quadtree based point indexing technique presented in Section 3.2.4, the 

design is indeed lightweight which makes it desirable for spatial joins. However, this is at the 

expense that the number of points in a cell can be potentially unbounded and may incur load 

unbalance in spatial refinement when the points in a cell is assigned to a processing unit in a 

naïve way. Fortunately, parallel libraries such as TBB on multi-core CPUs can tolerate load 

unbalancing to a certain degree by using algorithms such as work stealing [64]. Similarly, CUDA 

computing model also tolerates load unbalancing to a certain degree at the computing block level 

as GPU hardware assigns computing blocks to GPU cores in the units of warps dynamically. We 

plan to investigate techniques that can mitigate load unbalancing, such as merging cells with too 

few points and splitting cells with too many points.    

To further improve the efficiency of the point-in-polygon test based spatial join, we have 

added an intermediate step between the spatial filter phase (based on grid cell matching) and 

spatial refinement (based on point-in-polygon test) using cell-in-polygon test. The idea is 

illustrated in Figure 26. The motivation is that, if a cell is completely within/outside a polygon, 

then all the points that are indexed by the cell will be completely within/outside the polygon 

without needing performing the expensive point-in-polygon tests for the points individually. If 

the number of the points in the cell is large, it is likely that the overall performance can be 

significantly improved. For example, in the right side of Figure 26, point-in-polygon tests in cells 



72 

 

A, A’ and B can be saved since they are either completely outside or inside the polygon. We note 

that cell-in-polygon test can also adopt a data parallel design in a way similar to the design of 

parallelizing the point-in-polygon test design to be described next. We note that similar ideas can 

be also applied to other types of spatial joins which are left for our future work. 

 

4.1.2 Parallel Refinement 

The results of the filter phase are candidate pairs whose MBRs meet the spatial relationship but 

with false positives. Thus, a refinement phase is used to completely remove the false positives 

and generate the final results. The refinement phase usually involves geometric computations, 

such as point-in-polygon test, to determine the exact spatial relationship of candidate pairs. The 

geometry operations that we will be focusing on include distance based and topology based 

operations. The distance based operations are mainly used for nearest neighbor search based 

spatial joins that involve distance calculation. For topology based operations, we currently focus 

on intersection test based spatial join, such as point-in-polygon test.  

Figure 26 Cell-to-polygon Relationship 
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Geometry operations have been well studied in computational geometry and implemented 

in several general-purpose geometry libraries such as JTS
19

 and GEOS
20

. However, to our best 

knowledge, there is no existing geometry library that can fully take advantages of SIMD units on 

CPUs as well as GPUs. Unfortunately, using a general-purpose geometry library such as GEOS 

to perform geometry operations is very slow based on our in-house benchmarks. Thus, we have 

developed a specialized geometry engine that is parallelized on both CPUs and GPUs based on 

our columnar spatial data layout introduced in Section 3.2.1. The engine supports major spatial 

data types (including point, polyline and polygon and related distance based and topology based 

operations). The major challenge of developing the geometry engine is to design data-parallel 

geometry algorithms that can exploit SIMD parallel computing power. In the refinement phase of 

spatial join, the computation usually performs on a set of candidate pairs instead of a single pair. 

As such, we design the geometry engine to process a geometry operation in batches that can be 

mapped to multi-core CPUs (with VPUs) and GPUs for efficient SIMD processing. We next 

introduce our design using point-in-polygon test operation as an example. Other operations such 

as distance calculation of two spatial objects for nearest neighbor search can follow a similar 

design. 

 

                                                 
19

 http://www.vividsolutions.com/jts/JTSHome.htm 

20
 http://trac.osgeo.org/geos/ 
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During the refinement phase of point-in-polygon test based spatial join, we assign each 

pair of point-in-polygon test to one SIMD execution unit (i.e., thread in GPU and VPU lane in 

CPU). Using the classic ray-casting algorithm for point-in-polygon test [40], a point loops 

through all the vertices of its paired polygon on each SIMD execution unit. As nearby points 

have similar spatial coordinates, it is very likely that all execution units on all VPU lanes in a 

CPU core or a computing block on a GPU follow a same path. As discussed in the next two 

paragraphs, the design is efficient on CPUs due to cache locality and efficient on GPUs due to 

coalesced memory accesses. Although there exist point-in-polygon test algorithms in the 

complexity of O(log n) or even O(1) [40, 41, 56, 110], we argue that the ray-casting algorithm 

does not require additional pre- and post-processing on polygons, and the simplicity of its 

Figure 27 Point-in-polygon Refinement on CPU and GPU 
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implementation makes it robust. Meanwhile, the implementation of our point-in-polygon test 

directly manipulates data items in SoA, which is very efficient comparing with existing libraries 

that usually have significant abstraction overheads and are not cache friendly due to excessive 

dynamic memory allocations.  

The parallel designs of point-in-polygon test operation on both multi-core CPUs with 

VPUs and GPUs are further illustrated in Figure 27. For GPUs, we assign a group of points to a 

GPU computing block, in which all points within the group perform point-in-polygon tests on 

the same polygon. Each GPU thread loads a point and loop through all vertices of the targeting 

polygon in a lockstep manner. If the test result is positive, its corresponding indicator is set and 

saved to GPU global memory. Since points are stored consecutively, the global memory access is 

perfectly coalesced. As for polygons vertices, since all threads in a computing block access the 

same polygon vertex at a time, the vertex data can be broadcast to all threads in the warps of the 

computing block by GPU memory controller hardware, which is highly efficient on GPUs. The 

multi-core CPU design is very similar to the GPU design, where each test is assigned to a SIMD 

lane in VPUs instead of a thread in GPU. Since all SIMD lanes within the VPU of a CPU core 

are accessing vertices of the same polygon in the same order, it is efficient on memory accesses.  

The difference between GPU and multi-core CPU for the refinement is mainly on task 

decomposition and execution. A point-in-polygon test task on multi-core CPUs is divided into 

subtasks based on ranges of points and a micro batch with size equals to the number of SIMD 

lanes is assigned to the VPU on the CPU core to loop through all the points in the range. On 

GPUs, a range of points is assigned to a thread block for parallel processing and the GPU 
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hardware maps the threads to GPU cores in warps (Section 2.1.1.2). While CPUs may cache both 

points and polygon vertices to reduce memory access costs, GPUs mainly rely on coalesced 

memory accesses (for points) and broadcast memory accesses (for polygon vertices that are 

shared) among threads in warps to hide memory access latency.  

4.2 Multi-Node Distributed Spatial Join 

To perform spatial join on very large datasets, especially when the sizes of data exceed the 

capacity of a single machine, we need to develop efficient distributed spatial join techniques for 

multi-node computing environments, i.e., a cluster with multiple machines. We have developed 

two distributed spatial join designs based on the characteristics of input datasets. When both 

datasets are very large and at a similar scale, we call the two datasets symmetric. To process 

spatial joins on symmetric datasets (or symmetric spatial join), we have developed spatial 

partition based spatial join techniques, where data are divided based on a predefined spatial 

partition schema and processed individually in distributed computing nodes. However, the 

process of generating spatial partitions can be very expensive if the datasets are large. On the 

other hand, we have observed that in many spatial join applications the input datasets are 

asymmetric. This means, one of the two input datasets is relatively small comparing with the 

other one. For example, a point-in-polygon test based spatial join application involves a large 

number of GPS locations and a moderate size of administrative zone boundaries. As one side of 

the join inputs (boundaries) is relatively small comparing with the other side (GPS locations), we 

term the spatial join as asymmetric spatial join. For this type of spatial join, instead of 

performing expensive spatial partition that is necessary in spatial partition based spatial join, we 

have developed a more efficient approach by broadcasting the small dataset to all the partitions 
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of the large dataset for distributed executions. In this section, we will introduce spatial join 

implementations that take advantage of the state-of-the-art Big Data technologies, including 

several prototype systems.  

4.2.1 Spatial Partition based Spatial Join 

We have developed a spatial partition based spatial join technique to process symmetric spatial 

joins on multi-node platforms. The parallelization on a multi-node environment is different from 

single-node parallelization. For example, while random access is well supported on a single 

machine because of shared-memory architectures within single computing nodes, it is very 

expensive on shared-nothing cluster computers that involve data communication among 

distributed nodes. When designing parallel spatial join techniques on multiple computing nodes, 

it is necessary to minimize the expensive communication cost in order to improve end-to-end 

performance. On the other hand, in parallel computing, the overall performance is usually 

dominated by stragglers (slow nodes). A good parallelization design has to minimize the effects 

from stragglers. Therefore, the basic idea of our spatial partition based spatial join technique is: 

divide the spatial join task into small (nearly) equal-sized and independent subtasks and process 

those small tasks in parallel efficiently. The technical challenges are as follows: 1) how to divide 

a spatial join task into small non-overlapping tasks that can run in parallel with low 

communication cost, 2) how to divide a spatial join task in a way that achieves better load 

balance. We introduce spatial partition based spatial join techniques to address those challenges.  

Spatial partition based spatial join is designed in two phases, i.e., the partition phase and 

the local spatial join phase. In the partition phase, a partition schema is computed based on the 
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spatial distribution of either the whole or a sample of the input dataset and the input data are 

subsequently partitioned according to the partition schema. If both datasets have already been 

partitioned using one of the previous introduced strategies (such as FGP, STP or BSP in Section 

2.2.4), there are two methods to accomplish the partition phase. The first method is to repartition 

one dataset according to the existing partition boundaries from the other dataset. Another method 

is to match partition boundaries from both datasets and each matched pair is considered as a 

virtual partition that will be assigned to a computing node. After the partition phase, each 

partition contains objects from both sides and local parallel spatial join is performed using the 

techniques developed for single-nodes as introduced previously. By this means, we are able to 

achieve two levels of parallelism, i.e., inter-node parallelism and intra-node parallelism. As intra-

node parallelization has been discussed in the previous sections, we focus on inter-node 

parallelization in this section.  

An example of spatial partition based spatial join on non-indexed datasets is illustrated in 

the left part of Figure 28. First, a partition schema is generated by sampling the input datasets (A 

and B). After that, A and B are partitioned by the schema and each partition holds subsets of the 

original datasets, e.g., A1 and B1 are in partition 1. Finally, partitions (Partition 1, 2 and 3 in the 

figure) are assigned to a computing node for local spatial join processing. If input datasets have 

already been partitioned (indexed), an alternative approach is to match existing partitions instead 

of performing repartition. The approach is illustrated in the right part of Figure 28 which is 

almost identical to the previous one except that the partition phase is different. In this approach, 

instead of performing repartition in the first method, partition boundaries from both datasets are 

matched. Then, matched pairs are assigned to computing nodes. As discussed in previous works 
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[81, 96], a good partition schema may result in better performance. In this work, we have 

developed data-parallel designs and implementations of the three spatial partition techniques 

introduced in Section 2.2.4 for our partition based spatial join on modern parallel and distributed 

platforms. To our knowledge, this has not been addressed in previous works.  

 

In the first method, after an on-demand partition schema is generated, both input datasets 

need to be shuffled based on the schema so that local spatial join within each partition can be 

performed. Towards this end, each data object will be assigned a partition id based on the 

partition schema. For spatial objects with zero extent (such as points), the one-to-one 

correspondence is easy to calculate. However, for those spatial objects with non-zero extent (e.g., 

polygons and polylines), when they are on the partition boundaries, one object can intersect with 

multiple partitions and the object needs to be duplicated for each partition it intersects. When a 

spatial join involves buffered search, such as nearest neighbor search within a defined buffer 

Figure 28 Spatial Partition based Spatial Join 
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radius, a partition should include not only objects intersect with it but also objects that intersect 

with the buffered region (derived by expanding the object with the buffer radius). For FGP, the 

partition id can be directly calculated from the predefined grid size. However, this is not 

straightforward for other partition techniques because their partition boundaries can be irregular. 

We create a spatial index on the partition boundaries (e.g., using R-tree) and perform query 

processing for each data item so that the corresponding partition ids can be assigned. Since 

spatial objects are possibly duplicated in the process, an additional post-processing is required to 

remove the duplication and the easiest way is to sort. As both sort and scan can be performed on 

modern parallel hardware efficiently (in the orders of hundreds of millions per second), we sort 

the combined results and remove duplication via a full parallel scan on the results to reduce 

implementation complexity.  

In the second method where partitions are pre-generated, we assume partition boundaries 

Figure 29 Broadcast based Spatial Join 
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are saved as metadata. In the partition matching step, metadata (partition boundaries) from both 

partitioned datasets are loaded and matched. Usually, a master node is responsible for 

performing the partition matching and a list of matched pairs will be maintained. Since the 

number of partitions is relatively small, we can apply single-node parallel spatial join techniques 

to generate the matched pairs. Once the list has been generated, computing nodes can process on 

the partition pairs and generate the final results. For each partition pair, we apply the single-node 

parallel spatial join technique as we have adopted in the previous approach.  

4.2.2 Broadcast based Spatial Join 

In spatial partition based spatial join, the partition phase can be very expensive due to data re-

ordering as well as the additional partition matching phase. Transferring large amount of data 

may also degrade the overall performance significantly. This motivates us to develop an efficient 

spatial join technique for asymmetric spatial joins. Considering a spatial join whose left side is a 

large point dataset and the right side is a moderately sized polyline or polygon dataset, we can 

broadcast the right side to all the partitions of the left side and perform spatial join locally for 

better efficiency. The assumption for the broadcast based spatial join is that the small dataset can 

be fit in the memory of each machine which is typically valid in many applications. For example, 

a dataset of administrative boundaries of a city is usually in the order of tens of thousands and 

the data volume is no more than tens of megabytes, which can be easily stored in the main 

memory of current commodity computers.  

Our broadcast based spatial join technique works as follows. The first step is to broadcast 

the small dataset to all computing nodes; an optional on-demand spatial index may be created 
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during the broadcasting. As a result, each node owns a copy of the small dataset as well as the 

spatial index if applicable. In the second step, the large dataset is loaded from a distributed file 

system (such as HDFS) and equally distributed among the distributed nodes using range 

partition. Each node then performs local spatial join on its own portion of the large dataset. As 

the geometry objects of the small dataset are stored locally, the refinement phase can be 

performed without additional data transfer. Figure 29 provides an example of broadcast based 

spatial join. In the example, the small dataset B as well as an on-demand R-tree index is 

broadcast to all computing nodes. On the other side, the large dataset A is divided into chunks 

and processed independently by all computing nodes. 

The small dataset as well as the on-demand spatial index are read-only during the whole 

process. Therefore, no synchronization is involved and each local spatial join can run 

independently. Since each data item in the large dataset performs query on the same small 

dataset, the runtime of query data item is roughly the same during the filter phase. However, for 

the refinement phase, the workload can be very different because the intensity of geometry 

computation varies across partitions. One solution to address this problem is to adjust workload 

for each cluster node by using proper selectivity estimation metrics. By avoiding the expensive 

data re-ordering and spatial partition, broadcast based spatial joins for asymmetric datasets can 

potentially achieve much better performance than spatial partition based spatial joins. 

Furthermore, since no additional phase to remove duplication is needed, the already reduced 

workload is likely to be balanced, which is desirable. To sum up, the key advantage of broadcast 

based spatial join is avoiding expensive overheads of spatial partitioning and data re-ordering 
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while the major disadvantage is that broadcast based spatial join requires larger memory and may 

not be applicable for joining two large datasets.  

4.3 Large-Scale Spatial Data Processing Prototype Systems  

To demonstrate the feasibility and effectiveness of our parallel designs introduced previously, we 

have developed three prototype systems based on state-of-the-art Big Data technologies. The 

first two prototype systems, called SpatialSpark and ISP, are based on Spark [106] and Impala 

[14], respectively. The third one, called LDE, is a light-weight distributed processing engine, 

which does not rely on existing Big Data platforms (except HDFS that is used for distributed 

storage). We will introduce the details of the three prototype systems in the following. 

4.3.1 SpatialSpark 

Based on our designs, we have initiated an effort to develop efficient big spatial data processing 

engine using Spark, namely SpatialSpark. In SpatialSpark, we have implemented both broadcast 

and spatial partition based spatial joins. Since Spark is written in Scala, most of Java libraries can 

be used without any changes. Thus we could reuse the popular JTS library for spatial refinement. 

For example, testing whether two geometric objects satisfy a certain spatial relationship (e.g., 

point-in-polygon) or calculating a certain metric between two geometric objects (e.g., Euclidian 

distance). In addition to utilizing finer grained data parallelism to achieve higher performance, as 

all the intermediate data are memory-resident in Spark, excessive disk I/Os can be minimized 

which is a key to achieve the desired high-performance. For geometry representation, we choose 

WKT format for storing geometry data in HDFS, which is simple and can be stored as native 

string type.  
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For broadcast based spatial join, we take advantage of the broadcast mechanism in Spark, 

which can send a broadcast variable (which can be a dataset) efficiently to all computing nodes. 

JTS library is used to generate R-tree from the small input dataset and the geometries are 

associated with the leaf nodes of the R-tree. A broadcast variable is created from the generated 

R-tree, which can be accessed by all computing nodes. For large datasets, each data item 

performs its local spatial join individually. We use R-tree batch query to generate candidate pairs 

and all queries are executed in parallel. The spatial refinement phase also uses JTS library to 

evaluate the spatial relationship in the join for each candidate pair.  

The spatial partition based spatial join is more complex than the broadcast based spatial 

join in SpatialSpark. We have implemented all the three partition strategies introduced 

previously (Section 2.2.4) with both serial and parallel version variations on Spark. For fixed-

grid partition, the partition boundaries can be directly calculated based on the extent and grid 

partition size. The partition assignment phase can be realized by simply assigning each data item 
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with a partition id using the built-in Scala map primitive. For the other two partition techniques, 

after an R-tree is constructed, each item queries the R-tree in parallel to compute its partition ids 

Based on the partition ids, all data items are shuffled using the built-in join primitive. The 

partition assignment and data shuffle steps are typically time consuming due to the expensive 

data re-ordering as discussed previously (Section 2.2.4). After the shuffle phase, each partition 

contains two lists of spatial objects. Since the two lists are not indexed, we create an on-demand 

R-tree on one side and perform batch queries using the data items in the other side, for all 

partitions in parallel. This step can also be replaced with a local nested loop join or a plane-

sweep join. Each local spatial join is assigned to a single thread that runs sequentially. Finally, 

the output is combined and saved to HDFS. 

Another implementation of partition based spatial join on top of the new Spark SQL
21
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module using its DataFrame APIs. Instead of generating on-demand partitions and spatial 

indexes, spatial partitions and indexes are constructed and materialized as a separate table. Such 

design will be more useful if the spatial dataset will be reused for multiple queries and join 

processing. We adopt a two-level indexing structure where the first level partitions the dataset 

and the second level uses R-tree for each partition. The index structure is maintained as a table in 

Spark SQL. Each row of the table represents a spatial partition including a MBR for the whole 

partition and an R-tree for all objects belonging to this partition. The leaf nodes of the R-tree are 

identifiers that can be linked to the original dataset to retrieve the exact geometry 

representations. An example of the table layout is shown in Figure 30. In the figure, two 

partitions are stored in the index table where each row contains the MBR of the partition as well 

as an R-tree for all objects within the partition. The two tables are linked through partition 

identifiers. During the spatial join processing, the spatial indexes are first loaded and matched for 

the filter phase. After that, a list of candidate pairs is generated for the refinement phase, and 

each pair consists of two identifiers from both sides. The refinement phase performs a three-way 

join and exact geometry representations are retrieved for geometric operation. The benefit of 

using DataFrame is to take advantage of the optimizer and runtime code generation modules in 

Spark SQL, which can produce better performance than the raw RDD operations. In order to 

perform exact geometry refinement, intermediate results of the three-way join need to keep all 

geometry representations. When the sizes of joining geometry objects are getting large, the 

intermediate results of the three-way join can be very large due to duplication (a record from one 

side may have multiple join candidates from the other side), and they may exceed memory 
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capacity in processing computing nodes. When memory capacity is exceeded, Spark runtime will 

spill data from memory to disk, which can hurt performance significantly. 

As SpatialSpark is functionally equivalent to several existing packages such as Hadoop-

GIS and SpatialHadoop, it is also desirable to evaluate and compare the performance among the 

three platforms. We have conducted performance study for several real world spatial applications 

to gain insights. We have also tested the scalability of SpatialSpark in the Cloud to demonstrate 

its capability in processing large-scale datasets. The results are provided in Section 5.3.1.   

4.3.2  ISP 

In additional to SpatialSpark, we have also implemented broadcast-based spatial join on Impala 

which is another leading in-memory processing engine. The prototype system is called ISP, 

including a multi-core CPU version (ISP-MC) and a GPU version (ISP-GPU). Unlike Spark, 

Impala query processing backend is implemented using C++. As such, it is ideal to serve as the 

Figure 32 Point-in-polygon test based Spatial Join on ISP 
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base for further extensions when performance is critical. In particular, as currently Java has very 

limited support for exploiting SIMD computing power on either CPUs or GPUs, C/C++ 

language interfaces might be the most viable option to effectively utilize hardware accelerations. 

ISP is designed to fully take advantage of hardware accelerators. Figure 31 shows the 

architectural design of ISP. First, we have modified the Abstract Syntax Tree (AST) module of 

Impala frontend to support spatial query syntax. Second, we represent the geometry of spatial 

datasets as strings to support spatial data accesses in Impala (as in SpatialSpark) and prepare 

necessary data structures for GPU based spatial query processing. Third, we integrate our single-

node GPU-based spatial data management techniques with Impala to support large-scale spatial 

data processing on GPU-equipped clusters. We currently have implemented broadcast based 

spatial join due to its similarity with existing relational hash join implementation in Impala. For 

spatial partition based spatial join, we found its implementation using existing infrastructure is 

quite challenging. Unlike Spark that provides convenient parallel primitives, Impala is an end-to-

end system which makes it difficult to build custom applications. Although it is technically 

possible to implement partition based spatial join on top of Impala, the implementation will be 

tied to a specific version of Impala which makes it less attractive for general use.  

We next present a detailed design of the point-in-polygon test based spatial join 

accelerated by GPUs in ISP. In this design, we have developed broadcast based spatial join 

introduced previously. The process of a point-in-polygon test based spatial join using R-tree in 

ISP-GPU is illustrated in Figure 32. During the spatial join, the large table is first divided into 

row batches where each row batch consists of multiple rows and is processed on an Impala 

instance. Then, the small table is broadcast to all Impala instances and an on-demand R-tree is 
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created from the small table in an instance. We note that retrieving the small table from HDFS 

can be efficiently done using multi-threaded I/O supported by Impala. Meanwhile, the on-

demand R-tree can adopt our parallel design introduced in Section 3.2.3. After the broadcast 

step, we iterate through all the row batches that are assigned to an Impala instance to perform 

local spatial join.  

For each row batch, we use GPUs to parallelize tuple evaluations. Non-spatial sub-

expressions are evaluated first on CPUs before the spatial query is evaluated on GPUs using the 

on-demand R-tree. This is because spatial operations are typically more expensive and can 

benefit from filtering based on non-spatial criteria, in addition to GPU hardware accelerations of 

floating point computation. The geometry of a whole row batch is transferred to GPUs for 

parallel query against the GPU based R-tree built in the broadcast step. The query result is then 

transferred back to CPUs in the form of a vector of identifier pairs. Finally, tuples of the big table 

and the small table are located based on the identifier pairs and they are concatenated (possibly 

after applying a projection operator) before written to an output tuple buffer. The buffer will be 

consumed by upper level AST nodes for subsequent processing in row batches, e.g., 

aggregations (at the same level) and upper level SQL clauses (if a sub-query is involved).  

We have evaluated the scalability of ISP on both multi-core CPU and GPU equipped 

clusters to accelerate spatial join processing, including both filter and refinement phases. Similar 

to SpatialSpark, comparisons have been made with other existing works. The results and 

performance studies will be presented in the experiment chapter in Section 5.3.2. 

4.3.3 LDE 
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Based on the experiences of developing SpatialSpark and ISP, we have observed that the 

infrastructure overheads in distributed spatial join processing can be very expensive. Meanwhile, 

extending existing systems such as Impala is very challenging, because the spatial processing 

module is required to be tightly coupled with the underlining infrastructure in ISP. Even though 

Spark provides a framework that spatial extensions can be relatively easily developed, 

unfortunately, it is difficult to utilize hardware accelerators such as GPUs to further improve 

performance because of the restrictions of the underlining runtime system. As such, we have 

developed a lightweight distributed execution engine, namely LDE, to support efficient 

distributed large-scale spatial data processing. We design LDE by taking consideration of three 

key aspects. First of all, LDE is a lightweight framework that targets for domain specific 

applications, especially spatial data processing. Second, LDE runs on distributed environments 

so that large-scale datasets can be processed efficiently. Third, hardware accelerators such as 

Figure 33 LDE Architecture 
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multi-core CPUs and GPUs can be integrated in order to fully exploit computing power on 

individual computing nodes. 

The architecture of LDE is illustrated in Figure 33. As shown in the figure, our execution 

engine consists of a master node and a set of worker nodes. For both master and worker nodes, 

we use threads and queues to achieve non-blocking calls. We have adopted Apache Thrift
22

 to 

communicate among multiple machines, including serialization, data transfer and deserialization. 

Data is stored in a distributed file system such as HDFS so that all workers are able to perform 

random disk access. 

Given a particular application to be executed on LDE, based on the gathered dataset 

information, the indexer divides the original problem into multiple independent tasks and pushes 

the tasks into a task queue asynchronously (Step 1). The scheduler, which runs as a demon 

thread, consumes the task queue and dispatches available tasks to all workers for local 

processing (Step 2 and 3). The dispatch of tasks is designed to be non-blocking. On each worker 

node, a receiver thread is launched to accept tasks from the master node by listening to a 

predefined port. Received tasks are pushed into its own task queue (Step 4), where the capacity 

of the task queue is configured during system initialization. The worker task queue is initially 

filled by the master node based on the advertised capacity. Upon successfully completing a task, 

the worker node signals the master node to send a new task. A separate data loader thread 

periodically checks the status of the task queue and pops up a task when the task queue is not 

empty. When the worker task queue is not empty, the data loader thread consumes the task queue 
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 https://thrift.apache.org/ 
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and loads relevant data for each task from the distributed file system in the framework (Step 6). 

Loaded data are kept in memory and pushed into a data queue. Notice that the data loading is 

also designed in a non-blocking manner, so the expensive IO overhead can be minimized with 

asynchronous processing by a data processor thread (Step 7). Finally, the worker reports status 

back to the master and relevant output will be saved into the distributed file system (Step 8). 

We have developed both broadcast based and partition based spatial joins using the LDE 

framework. In broadcast based spatial join, the large dataset is divided into equal ranges and the 

small dataset is broadcast to all computing nodes. In the task queue of the master node, the task 

is defined as a pair of a range and the broadcast dataset. When worker receives the task, it loads 

the broadcast dataset from the underlying distributed file system (e.g., HDFS). The broadcast 

dataset will be persisted in memory on each node to avoid unnecessary disk access during the 

process. In this design, we do not load datasets from the file system on the master node. Instead, 

only file locations and corresponding offsets are sent from the master node to worker nodes. By 

this means, substantial disk IO can be avoided on the master node, and the data loading will be 

delayed until worker nodes start to process.  Meanwhile, loading data at each worker node can 

also benefit from the scheduling of distributed file system which may improve the performance 

of distributed IOs. On each worker node, similar to SpatialSpark and ISP, we apply our single-

node parallel spatial join techniques (see Section 4.1 for details). In LDE, a spatial index (such as 

R-tree or grid-file) is created and kept in memory to speed up local spatial join processing.  

In partition based spatial join, there are two design options in LDE. The first option is 

similar to SpatialSpark, where a partition schema is generated by sampling the input datasets and 

both datasets are repartitioned according the generated schema. Then, each partition is assigned 
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as an independent task in the LDE framework and processed using local parallel spatial join on a 

single computing node. Another option is to index both datasets before performing spatial join. 

The process is as follows. First, distributed indexes from both datasets are loaded in the master 

node. Then, a local spatial join is performed on the distributed indexes and matched pairs are 

assigned as tasks that will be processed in our LDE framework. Here, a matched pair refers to a 

pair of intersected partitions from the indexed datasets. The idea is similar to indexed distributed 

join developed in existing work SpatialHadoop [25]. However, our LDE framework is much 

simpler than Hadoop runtime and we have more control over the whole process. As such, we 

could potentially have better utilization of all available resources with less system overhead. 

Furthermore, we can benefit from in-memory processing and take advantages of state-of-the-art 

parallel hardware such as GPUs which are difficult when using existing JVM based systems.  

4.4 Summary 

We have introduced several designs for single-node parallel spatial join and multi-node 

distributed spatial join in this chapter. For single-node parallel spatial join, we have developed 

parallel designs for both filter and refinement phases. In this work, we assume the data is static 

or near-static, which means, the updates on the dataset is not very frequently. As a result, the 

spatial join techniques we have developed do not require maintaining dynamic indexing 

structures and indexing structures are generated via efficient bulk loading techniques. Even 

though our spatial join designs do not provide direct support for datasets with continuous 

updates, spatial joins with moderate update frequencies can be performed in a batch manner 

where the indexing structure can be re-generated. As the parallel bulk loading techniques we 

have developed are very efficient, regenerating indexing structures can be very fast. Meanwhile, 
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if only one side of a spatial join contains updates, lightweight indexing techniques can be 

applied, for example, the technique introduced in 4.1.1. 

In this chapter, we have also introduced techniques to improve the refinement phase 

using SIMD operations which has not been well studied in the past. By comparing with existing 

geometry libraries, our designs are capable of taking advantages of current generation of 

commodity parallel hardware. We have also introduced the design of intermediate filtering that 

computes coarse relationship for each candidate pair as an extension to the classic filter-

refinement framework for spatial join. 

 For very large scale datasets, they may be beyond a single node’s capacity in terms of 

memory and computation, which requires distributed spatial join processing. Our goal is to 

combine both single node parallel techniques such as GPU with state-of-the-art big data 

platforms, which will provide another level of parallelism. First, we have developed two spatial 

join designs, i.e., broadcast- and partition-based methods. The two designs are targeting at 

different applications according to the characteristics of input datasets. The spatial partition 

based method is a general approach by spatially dividing datasets into partitions, and no 

communication is needed between partitions so that they can be processed independently. For 

asymmetric input datasets, we have developed a broadcast based method which sends the small 

dataset to all nodes instead of performing expensive spatial partitioning. As a result, expensive 

data reordering can be saved and significant speedup has been achieved.  

In this chapter, we have introduced three prototype systems, i.e., SpatialSpark, ISP and 

LDE. These three implementations are built based on different platforms and representing 
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different needs of real world applications. For applications that are more concerned about 

compatibility and extendibility, SpatialSpark will be the choice even though it cannot effectively 

utilize hardware accelerators. LDE is a specialized implementation targeting on specific 

applications where performance is most crucial, as LDE can take advantages of existing parallel 

hardware and has least system overhead among the three systems. However, LDE is developed 

from scratch and robustness and usability are under active improvements. ISP is between 

SpatialSpark and LDE, which has both compatibility and efficiency. However, the development 

complexity and low extendibility of Impala limit its practical applicability to processing spatial 

data.  

 In summary, we have developed designs for single-node parallel spatial join and 

distributed spatial join. Evaluations and performance studies of the three prototype systems using 

real world datasets will be presented in Chapter 5.   
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Chapter 5  Evaluation and Performance Study  

To justify the feasibility and effectiveness of our designs introduced in the previous chapters, we 

have conducted evaluations and performance studies using both benchmark datasets and datasets 

from read world applications. In this chapter, we first present performance evaluations on single 

node techniques, including data-parallel R-tree and grid-file indexing, using both multi-core 

CPUs and GPUs. In the second part of this chapter, we conduct performance study on distributed 

designs for multi-node prototype systems, i.e., SpatialSpark, ISP and LDE, including 

performance comparison with SpatialHadoop and HadoopGIS.        

Table 3 Machine Specifications 

Name Hardware Software 

WS-1 

A workstation with two Intel E5405 

processors at 2.0 GHz (8 cores in 

total) and an NVIDIA Quadro 6000 

GPU with CUDA 5.0 

Ubuntu-10.04, GCC 4.6.3, Intel 

TBB 2.2, Thrust 1.6 

WS-2 

A workstation that has dual 8 core 

CPUs at 2.6 GHz, 128 GB memory, 8 

TB HDD and NVIDIA GTX Titan 

GPU with 6 GB graphics memory 

and 2,668 cores. 

CentOS 6.5, Hadoop 2.5.0 

from Cloudera CDH 5.2.0, 

GCC 4.9.0, Intel TBB 2.2, 

Thrust 1.6 

 

EC2 

A cluster is built using Amazon EC2 

instances (g2.2xlarge), each instance 

is equipped with 8 vCPU (Intel Sandy 

Bridge 2.6 GHZ), 15 GB memory, 60 

GB SSD and an NVIDIA GPU with 4 

GB graphics memory and 1,536 

CUDA cores. 

CentOS 6.5, Hadoop 2.5.0 

from Cloudera CDH 5.2.0 
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5.1 Setup 

For experiments running on a single node, we have prepared two workstations equipped with 

multi-core CPUs and GPUs, and their specifications are listed as WS-1 and WS-2 in Table 3. For 

experiments running on multiple nodes, we have prepared two clusters, one uses a single node 

(WS-2), and the other is based on Amazon EC2 instances. The hardware and software 

specifications are also listed in Table 3.  

For data-parallel R-tree evaluation, we have adopted a benchmark dataset from [1], which is 

designed to evaluate R-tree indexing. The specifications of the benchmark are listed at the top of 

Table 4 (abs02, dia02, par02, and rea02) and the related queries are shown in Table 5. For 

parallel spatial join evaluations including single-node and multi-node techniques, we have 

prepared two datasets related to New York City taxi trip analysis, which is a real world point-in-

polygon test based spatial join application. The first dataset (taxi) has approximately 170 million 

pickup locations in 2009 from New York City taxi trip data, which are in the format of latitude 

and longitude. The other dataset (nycb) is a polygon dataset which is derived from NYC Census 

2000 dataset
23

. The nycb dataset has about 40 thousand census block polygons with more than 5 

million vertices. Aligning GPS locations to a street network is also widely used in taxi trip 

analysis, which can be represented as nearest neighbor search based spatial join. As such, we 

have derived a dataset (lion) from NYC street network (LION
24

) dataset, which has about 150 

thousand polylines. In addition to the NYC taxi trip analysis, we have also prepared another 

point-in-polygon test based spatial join application, which is joining species occurrence records 

                                                 
23

 http://www.nyc.gov/html/dcp/html/bytes/applbyte.shtml 

24
 http://www.nyc.gov/html/dcp/html/bytes/dwnlion.shtml 
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of Global Biodiversity Information Facility (GBIF) repository (snapshot 08/02/2012, termed as 

gbif) with a polygon dataset from World Wild Fund (WWF) global ecological region data 

(termed as wwf). Different from the taxi trip analysis in which polygons are usually small, global 

ecological regions are usually very large and require expensive geometry computation. In this 

chapter, there are some experiments on certain systems and configurations fail to run on the full 

datasets, so we also generate two sampled gbif datasets called G10M and G50M which contain 

10,000,000 and 50,000,000 points, respectively. 

For performance comparison with SpatialHadoop and HadoopGIS, we adopt datasets 

provided by SpatialHadoop data portal
25

, namely edges and linearwater. We have also derived 

three sampled datasets because not all experiments can run on the full datasets. The three 

sampled datasets include 1 month data from the full taxi dataset (referred as taxi1m) and 10% 

sample of the TIGER datasets (linearwater0.1 and edges0.1). All datasets that have been used in 

this chapter are listed in Table 4. 

 

 

 

 

                                                 
25

 http://spatialhadoop.cs.umn.edu/datasets.html 
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Table 4 Datasets Sizes 

 Dataset Type # of Records Related Sections 

Benchmark abs02 MBR 1000000 5.2.1(R-tree)  

dia02 MBR 1000000 5.2.1(R-tree) 

par02 MBR 1048576 5.2.1(R-tree) 

rea02 MBR 1888012 5.2.1(R-tree) 

Real world 

taxi Point 169,720,892 

5.2.2(Grid-file), 

5.3.1(SpatialSpark), 5.3.2(ISP), 

5.3.3(LDE) 

taxi1m Point 2,267,313 5.3.1(SpatialSpark), 5.3.2(ISP) 

nycb Polygon 38,839 

5.2.2(Grid-file), 

5.3.1(SpatialSpark), 5.3.2(ISP), 

5.3.3(LDE) 

lion Polyline 147,012 5.3.1(SpatialSpark) 

gbif Point 375,171,681 

5.3.1(SpatialSpark), 5.3.2(ISP), 

5.3.3(LDE) 

wwf Polygon 14,485 

5.3.1(SpatialSpark), 5.3.2(ISP), 

5.3.3(LDE) 

G10M Point 10,000,000 5.3.1(SpatialSpark), 5.3.2(ISP) 

G50M Point 50,000,000 5.3.2(ISP), 5.3.3(LDE) 

linearwater Polyline 5,857,442 5.3.1(SpatialSpark), 5.3.3(LDE) 

edges Polyline 72,729,686 5.3.1(SpatialSpark), 5.3.3(LDE) 

linearwater0.1 Polyline 585,809 5.3.1(SpatialSpark) 

edges0.1 Polyline 7,271,983 5.3.1(SpatialSpark) 

 

Table 5 Specs of Queries 

 Query size Min # of 

answers 

Max # of 

answers 

Avg # of 

answers 

abs02-Q1 1,000,000 1 1 1 

abs02-Q2 10,000 50 150 99.8 

abs02-Q3 3,164 500 1,500 992 

dia02-Q1 1,000,000 1 4 1.26 

dia02-Q2 10,000 50 150 99.8 

dia02-Q3 3,164 500 1,500 992 

par02-Q1 1,048,576 1 10 2.11 

par02-Q2 10,485 50 150 99.8 

par02-Q3 3,318 500 1,500 992 

rea02-Q1 1,888,012 1 9 1.2 

rea02-Q2 18,880 50 162 101 

rea02-Q3 5,974 501 1,514 999 
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5.2 Parallel Spatial Data Management on Single-Node 

5.2.1 Data-Parallel R-tree Implementation 

We have implemented data-parallel R-tree using parallel primitive library for both tree 

construction and batch query. Both the multi-core CPU and GPU parallel versions are developed 

for comparison purpose. We have evaluated our implementations using both WS-1 and WS-2, 

which represent two different generations of commodity parallel hardware. 

The major component in R-tree construction that dominates the overall performance is 

the sorting phase (Section 3.2.3.2). We have used sort implementations in existing libraries such 

as STL, TBB and Thrust. In this set of experiments, we empirically set R-tree fan-out to 4 and 

use x-coordinates of MBR centroids as sorting keys. The experiment results are given as Figure 

34A (using WS-1) and Figure 34C (using WS-2), where “CPU-serial” denotes CPU serial 

implementation, “CPU-parallel” denotes the CPU parallel implementation, and, “GPU-

primitive” denotes the GPU implementation based on parallel primitives.  

From Figure 34A we can observe that, when datasets are relatively small, parallel CPU 

implementations outperform GPU implementations. One explanation is that GPU parallel 

processing power is not fully exploited for small datasets and the overheads of utilizing parallel 

library cannot be hidden. We also observe that the runtimes for GPU implementations increase 

much slower than those of parallel CPU implementations which might indicate better scalability 

of the GPU implementations. In particular, when datasets become large enough that can hide 

library overheads, GPU implementations are several times faster than parallel CPU 

implementations. Following this trend, we might be able to predict that GPUs are capable of 
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achieving better performance when bulk loading larger datasets. However, we should be aware 

that GPU memory capacities are usually limited when compared with CPU memory capacities. 

Therefore large datasets might not be able to completely reside in GPU memory. In this case, 

however, we still can process such large dataset using data partition techniques which are left for 

future work.  

Comparing Figure 34C with Figure 34A, we can observe that the runtimes of both CPU 

and GPU are lower on WS-2, this is because the hardware on WS-2 is newer and more powerful 

than WS-1. Although the GPU of WS-2 has more cores than WS-1, the performance only 

improves 20% which does not achieve the level of speedup as one might expect. By breaking 

down the runtimes, we find that the sorting phase on WS-2 is 2X faster than that of WS-1. 

However, the tree construction phase does not improve, which is primarily due to 

underutilization of hardware resource. As such, the overall improvement for the newer GPU is 

limited. On the other hand, the runtimes on WS-2 are about 2.7X lower comparing with WS-1 on 

multi-core CPUs because of more powerful CPUs equipped on WS-2 (such as more cores, higher 

frequency, larger cache size, etc.). This explains that the absolute speedups for GPU over CPUs 

on WS-2 are lower than those on WS-1.    

We have also implemented and evaluated the STR R-tree bulk loading algorithm (Section 

3.2.3.2) on multi-core CPUs and GPUs and experiment them on both WS-1 and WS-2. The 

results are given in the right chart of Figure 34 (B for WS-1 and D for WS-2) where “STR-CPU-

Parallel” denotes the multi-core CPU implementation and “STR-GPU” denotes the GPU 

implementation. From the results, our GPU implementation has achieved about 4X speedup over 
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the multi-core CPU implementation on WS-1 and about 3X speedup on WS-2. Similar to low-x, 

the speedup on WS-2 is lower because it has more powerful CPUs. Based on the results shown in 

Figure 34, low-x bulk loading is faster than STR bulk loading for both CPU and GPU 

implementations. The STR R-tree bulk loading, as discussed in Section 3.2.3, requires multiple 

sorts at each level. Thus, as expected, the overall performance of the STR R-tree bulk loading 

technique is not as fast as the low-x bulk loading technique that only sorts once. However, from 

our query benchmark results, R-tree generated by the STR bulk loading technique usually has 

better quality comparing with low-x bulk loading and results in faster query processing, a feature 

that is desirable.  

We also compare the performance of batch query processing on GPUs with multi-core 

CPUs. The multi-core CPU implementations utilize all available cores in the system using 

OpenMP where each core is responsible for a single query. As shown in Figure 35, our GPU 

implementations have achieved about 10X speedup on average when compared with multi-core 

CPU implementations for WS-1. For WS-2, the speedup is about 3X because more CPU cores 

are used as we discussed previously. For queries labeled with Q1 which use small query 

windows, GPU implementations do not show advantages over multi-core CPU implementations. 

However, as the size of query results in each query window increases, GPU based 

implementations outperform their counterparts significantly.  
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Figure 34 Performance of R-tree Construction (time in milliseconds) 
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Figure 35 Speedups of GPU-based Implementations over Multi-Core CPU-based 

Implementations for Spatial Window Query Processing 
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designs. The design of grid-file based filtering uses the batch query processing technique that has 

been introduced in Section 3.2.2. We implement a point-in-polygon test based spatial join on 

GPUs using the grid-file based parallel filtering. In this application, point quadrants are 

generated first using the Quadtree index as introduced in Section 3.2.4 and only MBRs of point 

quadrants are used for the filter phase. For the refinement phase, each GPU block is responsible 

for processing a matched pair of point quadrant and a polygon. Within a GPU block, each thread 

is assigned to process a point for the point-in-polygon test using the classic ray-casting algorithm 

[82].  

For comparison purposes, we have implemented the same spatial join using open source 

GIS packages, i.e., libspatialindex
26

 to index polygon data using R-tree, and, GDAL
27

, which 

implicitly uses GEOS, to perform point-in-polygon test. The CPU implementation assigns each 

point to a thread which performs query against the indexed polygons. If the point falls within any 

of the bounding boxes of polygons, the polygon identifiers will be returned for the subsequent 

refinement phase. It is clear that, while the polygons do not spatially overlap, their bounding 

boxes can overlap and a point query may return multiple polygons for point-in-polygon test in 

the refinement phase. The CPU implementation performs the point-in-polygon test for each of 

the polygons in the query result set and breaks if any of the test returns true. The performance of 

our GPU implementation is an end-to-end runtime of 11.2 seconds on WS-1 and 7.7 seconds on 

WS-2. In contrast, the serial CPU implementation takes 54,819 seconds (15.2 hours) on WS-1. 

As such, a significant speedup of 4,910X has been achieved. Note that we have not included the 

                                                 
26

 http://libspatialindex.github.com/ 

27
 http://www.gdal.org/ 
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disk I/O times to load the points and polygons as this is one-time cost and is not directly related 

to the spatial join. Furthermore, as discussed before, these data are stored as binary files on disk. 

With a sustainable disk I/O speed of 100 MB per second, the point and polygon data can be 

streamed into CPU main memory in about 15 seconds. Since the disk I/O time is comparable to 

the spatial join time, even if the disk I/O times are included, the order of speedup will not be 

changed.   

We attribute the 3-4 orders of improvements to the following factors. First, all the points, 

polygons and auxiliary data are memory resident in our GPU implementation. In contrast, the 

open source GIS packages are designed to be disk resident and data and indexes are brought to 

CPU memory dynamically. While the sophisticated design is necessary for old generations of 

hardware with very limited CPU memory, current commodity computers typically have tens of 

gigabytes of CPU memory which renders the sophisticated design inefficient and unnecessary. 

We also have observed that the open source packages use dynamic memory and pointers 

extensively which can result in significant cache and TLB
28

 misses. Second, in our GPU 

implementation, we have divided points into quadrants before we query against the polygons in 

the filter phase using a GPU based grid file indexing structure. In the serial CPU implementation, 

each point queries against the polygon dataset individually. While the polygon dataset is 

indexed, each point query needs to traverse from the root of the R-tree of the polygon dataset to 

leaf nodes, which is quite costly. Third, in addition to the improved floating point computation 

on GPUs, the massively data parallel GPU computing power is utilized for all phases of the 

                                                 
28

 https://en.wikipedia.org/wiki/Translation_lookaside_buffer 
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spatial join process, including generating point quadrants, filtering quadrant-polygon pairs and  

performing point-in-polygon test in computing blocks. 

5.3 Parallel Spatial Data Management on Multi-Node 

5.3.1 SpatialSpark 

We have implemented SpatialSpark for both broadcast based and spatial partition based spatial 

joins introduced in Section 4.2. In our preliminary implementation, JTS library is used for spatial 

indexing (R-tree) and geometry operations. We have evaluated SpatialSpark for two spatial join 

operations, including point-in-polygon test based spatial join and nearest-neighbor-search based 

spatial join. In the point-in-polygon test based spatial join, we use taxi and nycb datasets. For the 

nearest-neighbor-search based spatial join, we use taxi and lion datasets. All datasets are 

formatted and stored as text files in HDFS with geometries (points, polylines and polygons) 

represented in WKT format. In addition to the taxi point dataset, we also use the GBIF species 

occurrence data (gbif) joining with wwf dataset. In this experiment, we only use G10M because 

using the full dataset (gbif) takes too long to finish.   

We have evaluated the performance of the four experiments on a 10-node Amazon EC2 

cluster (see Table 3 for specifications) and the results are plotted in Figure 36. For taxi-lion 

experiments, we empirically use 100 feet and 500 feet as search radius. We have also varied 

instance numbers for scalability tests in the four experiments. We are not able to use fewer than 4 

nodes for the experiments due to the memory limitation of the EC2 instances (15 GB per node). 

In Figure 36, all four experiments scale linearly when the number of instances increases. As 

such, SpatialSpark achieves very good scalability.   
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Figure 36 SpatialSpark Performance 
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i.e., end-to-end runtimes. It can be seen that HadoopGIS fail on all the experiments using the full 

datasets; SpatialHadoop is successful in all the experiments while SpatialSpark is in between. 

The top reason for HadoopGIS to fail is broken pipeline, which is typical in Hadoop Streaming 

when the data that pipes through multiple processes is too big. The primary reason for 

SpatialSpark to fail is out of memory due to Java heap size issue, which is expected to be solved 

in the future releases of Spark. While SpatialSpark is successful for both the workstation and 

EC2-10 configurations, it failed under EC2-8 and EC2-6 configurations. We note the workstation 

has 128 GB memory and the aggregated memory capacity of the EC2-10 cluster is 150 GB, 

which are sufficient for SpatialSpark to experiment on the full datasets. We also expect the new 

release of Spark can handle the problem by taking advantages of external disk storage. 

Table 6 End-to-End Runtimes of Experiment Results of Full Datasets (in seconds) 

  WS-2 EC2-10 EC2-8 EC2-6 

taxi-nycb HadoopGIS - - - - 

SpatialHadoop 3,327 2,361 2,472 3,349 

SpatialSpark 3,098 813 - - 

edge-

linearwater 

HadoopGIS - - - - 

SpatialHadoop 14,135 5,695 8,043 9,678 

SpatialSpark 4,481 1,119 - - 

 

When the available memory capacity is sufficient, it can be seen from Table 6 that 

SpatialSpark is significantly faster than SpatialHadoop. Under EC2-10 configuration, 

SpatialSpark is 2.9X and 5.1X faster than SpatialHadoop for the two experiments, respectively. 

The results are different under the workstation configuration where SpatialSpark is 3.2X faster 

for the edge-linearwater experiment but is only 1.07X faster for the taxi-nycb experiment. A 

possible explanation is that the taxi-nycb experiment is much more disk I/O intensive than the 
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edge-linearwater experiment and the performance of the workstation is significantly limited by 

its single-node disk I/O bandwidth. When disk I/O is not a limiting factor (either by using 

distributed I/O or the experiment is more computing bound as in the edge-linearwater 

experiment), the speedups of SpatialSpark over SpatialHadoop have clearly demonstrated the 

efficiency of in-memory processing. 

5.3.1.2 Results Using Sampled Datasets 

The runtimes of the taxi1m-nycb and edge0.1-linearwater0.1 experiments are listed in 

Table 7. Since the performance of the three EC2 configurations are roughly the same for all the 

three systems (which may indicate poor scalability), we only show the results under the 

workstation and EC2-10 configurations. We list the breakdown runtimes to provide a better idea 

on the runtime distributions: column IA is the runtime for indexing the left side input dataset 

(taxi1m and edge0.1), column IB is the runtime for indexing the right side input dataset (nycb 

and linearwater0.1), column DJ is the runtime for distributed spatial join, and, column TOT is 

the summation of the three. 

Table 7 Breakdown Runtimes of Experiment Results Using Sample Datasets (in seconds) 

  WS-2  EC2-10 

  IA IB DJ TOT IA IB DJ TOT 

taxi1m-nycb HadoopGIS 206 54 3,273 3,533 - 

SpatialHadoop 227 52 230 482 647 187 183 1,017 

SpatialSpark 216 67 

edge0.1-linearwater0.1 HadoopGIS 1,550 488 1,249 3,287 - 

SpatialHadoop 1,013 307 220 1,540 756 596 106 1,458 

SpatialSpark 765 48 

 

Although HadoopGIS still fail under the EC2-10 configuration for both experiments, it is 

successful under the workstation configuration. This makes it possible to compare its 
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performance with SpatialHadoop and SpatialSpark directly. The runtimes for SpatialSpark are 

end-to-end times as it is difficult to measure each individual step due to the asynchronous data 

communication/computation in Spark. The results listed in Table 7 suggest that, while the 

indexing times are comparable in both HadoopGIS and SpatialHadoop, SpatialHadoop is 14X 

and 5.7X faster than HadoopGIS for distributed joins (as reported in the DJ column) in the two 

experiments, respectively. While excessive disk I/O and string parsing might be important 

factors in contributing to the low performance of HadoopGIS, our in-house experiments have 

identified that the C++ based GEOS geometry library used in HadoopGIS can be several time 

slower than the Java-based geometry library (i.e., JTS) used in SpatialHadoop and SpatialSpark, 

which might be another major factor. We thus exclude HadoopGIS from further comparisons.  

When comparing the end-to-end runtimes between SpatialHadoop and SpatialSpark 

using the sampled datasets, SpatialSpark is about 2.2X faster under the workstation configuration 

but is about 15X faster under the EC2-10 configuration for the taxi1m-nycb experiment. Similar 

results, i.e., 2.0X and 30X under the EC2-10 configuration, can be observed in the edge0.1-

linearwater0.1 experiment. The result exceeds our expectation when compared with the 

speedups using the full datasets. A careful investigation reveals that indexing times under the 

EC2-10 configuration dominates in both experiments using the sampled datasets. These are quite 

different from the full dataset experiment results that distributed join (DJ) consumes most of the 

runtime, which are 1,950s out of 3,327s for taxi-nycb experiment under workstation 

configuration, 1,282s out of 2,361s for taxi-nycb experiment under EC2-10 configuration, 9,887s 

out of 14,135s for edge-linearwater under workstation configuration and 3,886s out of 5,695s for 

edge-linearwater under EC2-10 configuration. An explanation is that, indexing under EC2-10 
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configuration involves significant data shuffling among the 10 distributed computing nodes 

which can be very expensive for SpatialHadoop. In contrast, distributed joins under the EC2-10 

configuration can be significantly sped up by distributed I/Os in SpatialSpark.  

When comparing the distributed join times (DJ) only, SpatialHadoop takes only 220s in 

edge0.1-linearwater0.1 experiment under the workstation configuration, which is significantly 

lower than the indexing runtimes. This may indicate the Hadoop infrastructure overheads for 

small datasets on a single computing node may be high. We note that the end-to-end runtime of 

SpatialSpark (765s) is much larger than the distributed join (DJ) runtime but it is only half of the 

total (TOT) runtime of SpatialHadoop. Under EC2-10 configuration, SpatialSpark is 2.7X and 

2.2X faster than SpatialHadoop with respect to distributed join (DJ) runtimes for the two 

experiments, respectively. The results are consistent with the experiments using the full datasets, 

which are 1.8X (1282/712) and 3.5X (3886/1119) for the two experiments under EC2-10 

configuration. It is clear that the speedups of SpatialSpark over SpatialHadoop are mostly due to 

the ability to reduce unnecessary disk accesses by pipelining the process completely in memory 

as the underlying algorithms are the same and they use a same geometry library (JTS). 

5.3.2 ISP 

We have conducted performance evaluation on two sets of experiments for ISP. The first 

experiment is performed using taxi and nycb. The other experiment uses gbif and wwf, which 

shows performance on complex polygons. We first report the performance of ISP-MC and ISP-

GPU on WS-2 and then report the performance of the standalone versions of the two prototypes 
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on the same machine to understand system overhead. Finally, the performance results on EC2 

clusters are reported for discussions on scalability.  

The single-node performance for the two experiments is listed in the first two columns of 

Table 8. The runtimes are 96 seconds for taxi-nycb and 1,822 seconds for gbif-wwf for the ISP-

GPU implementation. ISP-MC performs slower than ISP-GPU but is still comparable: 130 

seconds for taxi-nycb and 2,816 seconds for gbif-wwf. ISP-GPU is 1.35X (130/96) faster than 

ISP-MC for taxi-nycb and 1.55X (2816/1822) faster than ISP-MC for gbif-wwf. The comparable 

performance between ISP-GPU and ISP-MC is largely due to applying the same set of data 

parallel deigns and parallel primitives based implementations, which are efficient on not only 

GPUs but also multi-core CPUs. Similar to the experiment reported in the previous section, the 

serial implementation using libspatialindex and can only achieve 138 points per second using a 

subset of GBIF data with 10 million points on a single CPU core. In contrast, ISP-GPU has 

achieved a rate of 206 thousand points per second using a single GPU which amounts to a 

1,491X speedup. When comparing ISP-MC with the baseline implementation (965X speedup), 

while the multiple CPU cores and higher CPU frequency may explain up to 21X speedups 

(16*2.6/2.0), the rest of the speedups are largely due to our data parallel designs and better use of 

memory capacity.  

We have also implemented two standalone versions without Impala and run them on the 

same workstation. The results are listed in the last two columns of Table 8. Clearly, the system 

infrastructure overhead is quite significant for ISP-GPU: almost 50% (46s) in the taxi-nycb 

experiment and 17% (324s) in the gbif-wwf experiment. The overheads are 20% and 8.3% for 
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ISP-MC, respectively. Although still significant, the infrastructure overheads are much smaller 

for ISP-MC than for ISP-GPU in both experiments. As the experiments become more floating 

point computing intensive where computation becomes dominate, we expect the system 

infrastructure overheads continue to decline for both ISP-GPU and ISP-MC. 

Table 8 ISP Performance on Single Node 

  
ISP-

GPU 

ISP-

MC 

GPU-

Standalone 

MC-

Standalone 

taxi-nycb (s) 96 130 50 89 

GBIF-WWF(s) 1822 2816 1498 2664 

 

We have also conducted scalability tests on Amazon EC2 clusters with up to 10 

instances. As the memory capacity of the instances is 15 GB, we are not able to run the taxi-nycb 

workload with four or fewer nodes. Also due to the memory capacity constraint, we are not able 

to experiment on the complete WWF dataset on the 10-node cluster. As such, we use the 

sampled dataset G50M and label the experiment as G50M-wwf.  The scalability results for taxi-

nycb and G50M-wwf experiments are plotted in Figure 37. For the taxi-nycb experiment, as the 

number of computing nodes increases, the runtime decreases almost linearly that indicates good 

scalability for both GPU and CPU implementations. For the G50M-wwf experiment, the 

scalability of ISP-GPU is approximately linear until the number of nodes is increased to above 8. 

Almost no performance gains are observed when the number of instances is increased from 8 to 

10. On the other hand, ISP-MC scales up to 10 nodes, although the slope is flatter when the 

number of instances is increased from 6 to 10 than from 2 to 6 (i.e., scalability becomes lower). 

Overall, there is a 1.76X speedup for ISP-MC and 1.56X speedup for ISP-GPU when the number 

of nodes is increased from 6 to 10 (1.66X) for the taxi-nycb experiment, which is very good. In 
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the G50M-wwf experiment, the speedups are 3.19X for ISP-MC and 2.57X for ISP-GPU when 

the number of node is increased from 2 to 10 (5X), which is still decent with respect to 

parallelization efficiency (defined as the ratio of performance speedup over increase of parallel 

processing units). 

The lower speedups when the numbers of computing nodes become higher in the G50M-

wwf experiment might be largely due to the static scheduling policy imposed by Impala. By 

examining the G50M point dataset in HDFS, we found that there were 14 HDFS data blocks, 

which makes the end-to-end runtime about the same using 8-13 computing nodes, as it is 

determined by the runtime of the computing nodes that process the most (two) blocks. Increasing 

the number of blocks is likely to reduce load unbalancing to scale further. However, as discussed 

earlier, as per-node work load decreases, GPUs will likely be underutilized and will negatively 

hurt the overall performance. The small per-node workload on GPUs is also likely to incur load 

unbalancing among GPU threads and thread blocks which may further decrease ISP-GPU 

performance. Since the number of CPU cores is much smaller than the number of GPU cores, the 

intra-node load unbalancing is less likely to be an issue for ISP-MC, which might explain its 

better scalability than ISP-GPU in both experiments. When comparing ISP-GPU with ISP-MC 

on the EC2 cluster, ISP-GPU is 1.43X to 1.63X faster for the taxi-nycb experiment and 2.74X to 

3.24X faster for the G50M-wwf experiment, which are higher than the results on the workstation. 

This is likely due to the fact that the CPUs equipped with WS-2 have 2X cores than those on 

EC2 nodes while the differences among their GPUs are smaller (1.75X more CUDA cores and 

1.5X GPU memory). The results may suggest that GPU acceleration is more profitable for 

computing nodes with less powerful CPUs. 
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Figure 37 Scalability Test Results of ISP-GPU and ISP-MC for taxi-nycb (left) and G50M-

wwf (right) Experiments 

5.3.3 LDE 

We use real world datasets to demonstrate the feasibility and efficiency of the distributed point-

in-polygon test based spatial join technique on top of the lightweight distributed execution 

engine (LDE). To demonstrate advantages of LDE, we use the datasets with complex polygons, 

i.e., G50M for points and wwf for polygons. The same datasets have been used in ISP-based 

experiments in the previous subsection. It is thus interesting to compare the performance of the 

LDE engine on both multi-core CPUs (termed as LDE-MC) and GPUs (termed as LDE-GPU) 

with ISP-MC and ISP-GPU, respectively. We note that being able to store non-relational data 

(including geometry) and their indexes in binary format in HDFS has reduced the data volume 

by several times in LDE than in ISP (as restricted by Impala), which is an important contributing 

factor to the efficiency of LDE and high performance of the application with respect to the end-

to-end runtime.  
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We design two groups of experiments to test the efficiency and scalability of our LDE 

engine. First, we experiment on the single-node performance and system infrastructure overhead 

(incurred by the LDE engine) on WS-2 by comparing with a native implementation using the 

same spatial join designs. Second, we experiment on the scalability of LDE-GPU and LDE-MC 

by using 2-10 Amazon EC2 instances. All the performance results are measured in seconds and 

compared with ISP when appropriate.  

The standalone performance and the single-node performance for the two experiments 

are listed in Table 9. Note that ISP and LDE have the same runtime when they run in the 

standalone mode, which are 350 seconds on multi-core CPUs and 174 seconds on GPUs on the 

workstation. The runtimes in the single-node mode, however, are different among the four 

versions, which are 380 seconds for ISP on multi-core CPUs (ISP-MC), 377 seconds for LDE on 

multi-core CPUs (LDE-MC), 241 seconds for ISP on GPUs (ISP-GPU) and 221 seconds for 

LDE on GPUs (LDE-GPU). It is clear that the GPU implementation performs about 2X 

(350/174) faster than the multi-core CPU implementation in the standalone mode. However, the 

infrastructure overhead has reduced the speedup to 1.58X (380/241) for ISP and 1.71X (377/221) 

for LDE. Nevertheless, by comparing Column 3 and Column 4 of Table 1 we can see that LDE 

has lower infrastructure overheads than ISP on both multi-core CPUs (27s vs. 30s) and GPUs 

(47s vs. 67s). The 20 seconds difference between LDE and ISP on GPUs have brought the 

infrastructure overhead from 27.80% (for ISP-GPU) to 21.27% (for LDE-GPU), which clearly 

demonstrates the efficiency of LDE design and implementations. It is also interesting to observe 

that the GPU implementations have higher percentages of infrastructure overheads than the CPU 

implementations. This is primarily because the floating point computing portion of the 
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experiment has been significantly sped up by GPU while the speedup is not as significant as on 

multi-core CPUs. As the infrastructure overheads are typically difficult to scale up (intra-node), 

the result agrees with the Amdahl's law well [38]. 

Table 9 Performance Comparisons between ISP and LDE in Standalone and Single-Node 

Modes 

  Standalone 

Time (s) [A] 

Singe-node 

Time (s) [B] 

Infrastructure 

Overhead (%) 

(1-A/B) 

CPU ISP-

MC 

350 

380 7.89% 

LDE-

MC 377 7.16% 

GPU ISP-

GPU 

174 

241 27.80% 

LDE-

GPU 221 21.27% 

 

The scalability results using 2-10 Amazon EC2 nodes are plotted in Figure 38. We have 

avoided reporting the performance on a single node as it requires at least two nodes to count 

network communication overheads. When the number of nodes is increased from 2 to 10 (5X), 

the runtime is sped up 4.17X on multi-core CPUs (668/160) and 3.71X on GPUs (205/55). The 

speedups are higher than those in the ISP implementations, which are 3.19X (706/221) for multi-

core CPUs and 2.56X for GPUs (166/95). The LDE implementations also have achieved 

significantly higher efficiency than the ISP implementations, ranging from 1.06X to 1.65X for 

multi-core CPUs and 1.20X to 1.75X for GPUs. Using 10 nodes, LDE is 1.38X faster than ISP 

for multi-core CPUs (221/160) and 1.72X faster for GPUs (160/55). While the runtime using 10 

nodes virtually remains the same as using 8 nodes for ISP on GPUs (1.25X increase of nodes), 
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LDE is able to further achieve 1.20X (66/50) speedup, which is impressive. As a summary, LDE 

has achieved both higher efficiency and higher scalability on both multi-core CPUs and GPUs 

when compared with the ISP implementations. 

In addition to broadcast based spatial join, we have also evaluated spatial partition based 

spatial join implementation using the LDE framework. In this set of evaluation, we use two 

additional large datasets, edges and linearwater. The sizes of the two datasets are 23.8 GB and 

8.4 GB respectively. Since both datasets are large, the broadcast based spatial join cannot be 

applied because neither can be broadcast and resident in memory. For comparison purpose, we 

also include runtimes of SpatialHadoop using the same set of workloads. The end-to-end 

runtimes (in seconds) for the two experiments (taxi-nycb and edge-linearwater) are listed in 

Table 10. The taxi-nycb experiment performs point-in-polygon test based spatial join and the 

edge-linearwater experiment performs polyline intersection base spatial join. Comparing with 
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SpatialHadoop, the LDE implementations on both multi-core CPUs and GPU are at least an 

order of magnitude faster for all configurations.  

The improvements come in two folds. First, the LDE framework based on C++ is much 

faster and lighter than general purpose JVM based frameworks such as Hadoop. The in-memory 

processing of LDE is also an important factor where Hadoop is mainly a disk-based system. 

With in-memory processing, intermediate results will not be written to disks. Second, the 

dedicated local parallel spatial join module can fully exploit computing power of individual 

computing nodes. Our data-parallel designs in the module, including both spatial filter and 

refinement phases, can effectively utilize current generation of parallel hardware, i.e., multi-core 

CPUs and GPUs. Based on the EC2 results, we could observe that decent scalability is achieved 

from 6-node to 10-node. When replacing multi-core CPUs with GPUs, the performance can be 

further improved, especially on EC2 instances where 2X speedup is achieved.  

Table 10 Partition-based Spatial Join Results (end-to-end, time in seconds) 

  Workstation EC2-10 EC2-8 EC2-6 

taxi-

nycb 

SpatialHadoop
29

 1950 1282 1315 2099 

LDE-MC 191 39 50 63 

LDE-GPU 111 19 23 30 

edge-

linearw

ater 

SpatialHadoop 9887 3886 5613 6915 

LDE-MC 554 219 260 360 

LDE-GPU 437 97 114 135 

  

                                                 
29

 spatial join time only, excluding indexing time for the two input datasets 
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Chapter 6  Conclusions and Future Work  

6.1 Summary of Contribution 

This dissertation work identifies current challenges of large-scale spatial data management, 

especially on how to accelerate large-scale spatial data processing on state-of-the-art parallel and 

distributed platforms. Data-parallel designs of spatial indexing techniques have been developed 

in this work, and the implementations and experimental studies reveal the performance impacts 

of utilizing hardware accelerators, i.e., multi-core CPUs and GPUs. As spatial join operations are 

crucial in many real world applications, this dissertation work develops efficient hardware 

accelerated spatial join designs to fully exploit computing power of a single node. To address the 

practical needs of the Big Data challenge, distributed spatial join has been studied in this work. 

The optimized single-node parallel spatial indexing and spatial join techniques are scaled out to 

multi-node environments that are capable of processing spatial data beyond the capacity of a 

single node. This dissertation work successfully integrates Big Data technologies with current 

generation of hardware accelerators (e.g., GPUs) for large-scale spatial data processing. 

Prototype systems developed in this dissertation work have demonstrated performance 

advantages against existing designs and implementations, which can address practical needs of 

large-scale spatial data management. 

6.2 Discussions and Future Work 

6.2.1 Spatial Indexing Techniques 
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We have developed three major spatial indexing techniques for the current generation of parallel 

hardware, especially on GPUs. Grid-file and Quadtree indexing techniques can be categorized as 

space-oriented indexing, where the space is decomposed and indexed. This type of indexing 

techniques suffers from large duplicates for objects on or near the partition boundaries. The 

duplication incurs significant memory pressure, which may limit the indexing structure on 

memory constraint systems, such as GPUs. Meanwhile, finding the optimal resolution parameter 

and maximum decomposition level (for Quadtree) is also challenging. Choosing the resolution 

parameter can be considered as a tradeoff between indexing quality and memory utilization. For 

Grid-file indexing, the simple indexing structure makes it attractive for developing data-parallel 

designs. In addition to its simplicity, it is also light-weight and effective. On the contrary, R-tree 

indexing is categorized as data-oriented, which means the indexing structure relies on the data 

rather than the space to be indexed. This makes R-Tree indexing both scalable and portable, and 

it does not require tuning resolution parameters. Meanwhile, objects will not overlap with 

partition boundaries so they are not duplicated in space-oriented indexing, because the partition 

boundaries are not fixed and are generated from the distribution of data. This indicates that data-

oriented indexing structures require less memory than their counterparts. However, the irregular 

decomposition in R-tree makes parallelization more difficult than space-oriented indexing 

techniques. In this dissertation, we have developed both R-tree parallel bulk loading and data-

parallel tree traversal on the GPU.  

There are several directions for the future work on spatial indexing. First, it is very useful 

to study how to reduce memory footprint in space-oriented indexing techniques, e.g., Grid-file. A 

possible solution is to develop cost models to determine the optimal configuration parameters for 
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space-oriented indexing techniques (such as [91]). Another possible solution is to develop multi-

level Grid-file techniques to extend the single-level Grid-file techniques, which can potentially 

reduce memory footprint by aggregating grid cells in lower level into higher level grid cells. 

Second, hybrid indexing technique that can combine both data-oriented and space-oriented using 

data-parallel design can also be a future work direction. The hybrid indexing technique can 

potentially take advantages of the two types of indexing techniques. Another future work 

direction is to develop supports for more types of query processing, such as k-Nearest-Neighbor 

query. 

Partition strategies have been introduced and data-parallel designs and implementations 

have been developed for spatial indexing in distributed computing environments. However, the 

distributed indexing techniques developed in this work mainly focus on supporting efficient 

distributed spatial join. For the future work, we would like to investigate on developing 

distributed indexing techniques for additional Big Data platforms, such as Apache Spark and 

Apache HBase. We also would like to extend our current designs to address the challenge in 

order to support the practical needs of real world applications. Furthermore, our current design 

mainly focuses on managing spatial data that are either static or infrequently updated. As such, 

another future direction is to develop distributed indexing support that is capable of dealing with 

dynamic data. The dynamic indexing techniques can be used to manage live streaming data with 

spatial context, such as geo-tagged tweets.  

6.2.2 Spatial Join Techniques 
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In this dissertation work, spatial join techniques have been developed to support large-scale 

spatial data processing. Both single-node parallel spatial join and multi-node distributed spatial 

join have been studied. The spatial join processing is first scaled up on a single node and then 

scaled out across multiple nodes, which have achieved significant performance improvement. In 

single-node spatial join, both spatial filter and refinement phases have been developed with data-

parallel designs to take advantages of existing parallel hardware, i.e., multi-core CPU and GPU. 

For distributed spatial join, two frameworks, including partition based spatial join and broadcast 

based spatial join, have been introduced for symmetric and asymmetric datasets.  

For the future work, first, we would like to investigate on how to further improve the 

efficiency of our spatial join techniques for large-scale spatial data processing on Big Data 

platforms, including SpatialSpark and LDE. We believe there is still space to improve spatial 

join processing in distributed environments. For example, incorporating selectivity estimation 

into the spatial join framework can help generating better workload as well as scheduling for 

distributed processing. Second, for practical applications, how to adapt general designs to 

specific application is also very important. Different platforms may have different constraints 

which can potentially break the assumption made by the design or even completely change the 

design. As part of our future work, we would like to leverage our experiences to provide insights 

and suggestions for designing large-scale spatial join processing for different platforms. Third, 

our experiments show that broadcast based spatial join is more efficient than spatial partition 

based spatial join in many cases. As such, another future direction can be developing a hybrid 

approach that is able to take advantages of broadcast based spatial join but requires less memory 

footprint.  
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Appendix A. Parallel Primitives 

Parallel primitives refer to a collection of fundamental algorithms that can be run on parallel 

machines. The behaviors of popular parallel primitives on one dimensional (1D) arrays or 

vectors are well-understood. Parallel primitives usually are implemented on top of native parallel 

programming languages (such as CUDA) but provide a set of simple yet powerful interfaces (or 

APIs) to end users. Technical details are hidden from end users and many parameters that are 

required by native programming languages are fine-tuned for typical applications in parallel 

libraries so that users do not need to specify such parameters explicitly.  

On the other hand, such APIs usually use template or generic based programming 

techniques in a way similar to the well known C++ Standard Template Library (STL) so that the 

same set of APIs can be used for many data types. Due to the nature of high-level abstractions, 

the APIs may not be the most efficient ones when compared with handwritten programs using 

native programming languages with fine-tuned parameters. However, the APIs usually provide 

good tradeoffs between coding complexity and code efficiency. For example, most of the parallel 

primitives provided by the Thrust library are very similar to their STL counterparts and are very 

appealing to experienced STL users. The high level abstractions also bring significant portability. 

This unique feature further makes parallel primitives based algorithm developments attractive 

when compared with using native programming languages (e.g., CUDA) directly. In the rest of 

this appendix, we will introduce several commonly used parallel primitives.  

(1) scan. The scan primitive computes the cumulative sum of an array. Both the inclusive 

and exclusive scans are possible. For example, exclusive_scan([3,2,0,1]) = [0,3,5,5] while 
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inclusive_scan([3,2,0,1]) = [3,5,5,6]. The Scan primitive can also take a user defined associative 

binary function to replace the default plus/sum binary function.  

(2) copy, copy_if, remove and remove_if. copy moves groups of elements from one 

location to another location, typically in two different arrays. The copy_if primitive takes an 

additional unary function as a parameter to tell whether the corresponding array element should 

be copied to the output array or not. Similarly remove and remove_if remove groups of elements 

within an array with or without an optional binary predict function. remove and remove_if are 

typically applied in-place which means that the input arrays can be the same as output arrays to 

save memory. Note that compacted arrays after applying remove and remove_if primitives can be 

resized to reduce memory footprints.  

(3) transform. The basic form of transform applies a unary function to each element of an 

input array and stores the result in the corresponding position in an output array. transform is 

more general than copy as it allows a user defined operation to be applied to array elements 

rather than simply copying. In many other systems, the transform primitive is also called map, 

such as map in MapReduce and map/flatMap in Spark. 

 (4) scatter. scatter copies elements from a source range of an input array into an output 

array according to a map. For example, scatter([3,0,2],[12,4,8],[*,*,*,*,*,*]) = ([4,*,8,*,12,*]). 

Note * values are those unchanged in the third array. Clearly when there is a one-to-one map 

between the inputs and outputs such as the Z-order transformation in our application, the output 

array will have no * values.  
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(5) reduce. reduce is an aggregation operator that produces reduction based on a binary 

function. For example, reduce([1, 2, 2, 1], +) = 6, where in this example, the plus operator is 

applied and the final results is the sum of all four numbers. reduce_by_key is an improvement 

over the original reduce operation. Instead of generating a single reduction result, only values 

that have the same key will be reduced. For example, reduce_by_key([1, 1, 1, 2], [1, 2, 2, 1], +) = 

[(1,5), (2, 1)]. The array of [1, 1, 1, 2] contains reduction keys and only those values have the 

same keys will be added together.  
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