
1.1

Web Based Visualization Tool for Climate Data Using Python

Hannah Aizenman ⇤ and Michael Grossberg
Glasslab, City College of New York, New York, New York

David Jones and Nick Barnes
Climate Code Foundation, She�eld, United Kingdom

Jason Smerdon and Kevin Anchukaitis
Lamont-Doherty Earth Observatory, Columbia University, New York, New York

Julien Emile Geay
Department of Earth Sciences, University of South California, Los Angeles, California

ABSTRACT

Many scientists need to provide public visualization and exploration tools for the
datasets they create. For instance, the Common Climate Project’s (CCP) mission
of building a website for sharing climate data required a tool to visualize that data.
Unfortunately, although there are web sites that have custom built solutions, there
are no widely available simple, Open Source tools for deploying a web application to
facilitate exploring time series and spatial components of climate data online. So, as
part of a Google Summer of Code Project, we developed an Open Source web based
embeddable visualization application that extracts data from NetCDF files and then
displays it in a variety of user specified ways.
CCPviz has a highly modular architecture to maintain its flexibility because it was
designed to handle many di↵erent types of data (paleoclimate, proxy, reanalysis, etc),
and meant to be embedded in various websites. Data extraction, processing, and
visualization are handled separately in an underlying library that relies on NumPy,
SciPy, and Matplotlib. The server side code, which is written using the Pyramid web
framework, then provides a RESTful interface to this library so that each URL can
map to an image and so that the user has flexibility in how the images are generated.
The tool also provides a minimal HTML/JavaScript GUI interface so that scientists
can embed the viewer in their websites, but even the HTML, CSS, and JavaScript
are heavily separated so that the interface can easily be styled to fit within a larger
website. The software was developed using standard Open Source software tools on
hosted Internet servers, making new code easily and frequently available for review
and release. Python was used because the prevalence of Open Source libraries and
frameworks for scientific computing, data visualization, and web development greatly
simplified integrating the various layers of the project. Python was also used because
the diversity of Python software facilitates the incorporation of new features or tools
in the same family as CCPviz.
A demonstration of this tool is available at http://134.74.146.36/hannah/CCPviz.html

1. Introduction

Large datasets of climate and weather data are be-
ing produced from multiple sources. With cheaper and
increased computer power, and cheaper disk storage, it
is now possible to more easily create long model simula-
tions at higher resolutions. Increasingly high resolution
satellite data and reanalysis projects which blend both

model prediction and measurements create readily avail-
able large uniformly sampled spatio-temporal resolution
datasets. Measured data from networks of ground stations
and proxy data from trees, glaciers, oceans, corals, fossils,
and historical records are also becoming more accessible,
yielding sometimes irregularly sampled data that provides
a host of information on climate variability.

1



The great size of many of these data sets mean that just
providing a download link does not really make the data
accessible to the public or even other scientists. It is im-
portant for the scientists who produce the data to have a
way to make it explorable. Providing a visualization tool
through a web browser is one easy way to do this. Several
sites have developed custom tools for serving their data.
In some cases you can upload your data and then access a
web-based visualization tool on the site, but there are few
solutions if you want to serve and embed your data into
your web site with a visualization tool.
Our motivating example came from the need for the Com-
mon Climate Project’s mission to extend their web site
with a tool for sharing and visualizing climate data. A
requirement was that the tool should be easily embedded
into an existing web site, should be based on Open Source
technology, and be available under a BSD style type license.
It should be able to map a physical variables like pressure
or temperature, spatially, along with a color bar. It also
should be possible to easily create time series plots for par-
ticular locations. Whether the data is viewed temporally
or spatially, the domain of interest should be selectable by
the client. In addition, the tool should read a broadly used
climate data format standard NetCDF. No such technol-
ogy was available.
As a Google Summer of Code project, we have developed
a web application with a highly modular architecture. It
was designed to be flexible enough to handle many dif-
ferent types of data (paleoclimate, proxy, reanalysis, etc).
Data extraction, processing, and visualization are handled
on the server using the Python scientific and visualization
stack of NumPy, SciPy, and Matplotlib and written as a
library. This library is exposed as a RESTful interface us-
ing the Python Pyramid web framework. Thus one of the
great advantages of using Python is ease of software main-
tenance since only one programming language is needed
from the point data is read from disk through calculation
to the point the server produces a response.
The client side technology is a mixture of HTML, CSS, and
JavaScript so that scientists can embed the viewer in their
websites. The HTML, CSS, and JavaScript were modu-
larized so that the interface can easily be adapted to fit
within a larger website. The web framework can be run
with a web server like Apache, or a reverse proxy like Ng-
inx and we present the data through a RESTful API using
the JSON standard for serialization. As a result, the server
technology can be integrated into a site using PHP, Java
or any other server technology. Nevertheless, the Pyramid
web framework is a major Python web framework and can
also be used to build a more extensive tool.
In this paper we will describe the motivation, design and
process that was used to develop this software. The soft-
ware was developed as part of a Google Summer of Code
project. The code has been made available on Google

Code and a demo is running at http://134.74.146.36/
hannah/CCPviz.html.

2. Prior Work

While there are many tools for visualizing climate datasets,
most of these are either desktop applications or websites
that provide tools for their locally hosted data. Some of
these websites aggregate datasets from many institutions,
such as Incorporated Research Institutions for Seismology
Data Management Center (2011) and EPIC, which was cre-
ated by Denbo et al. (2006). Other institutions provide a
tool to explore data they created, such as the Earth Sys-
tem Research Laboratory (2011), but since all these tools
are site specific, a researcher would either have to use the
datasets on the website or submit their datasets for upload-
ing (assuming their dataset meets the submission criteria
for an aggregation site).
For data on a local machine, a scientist also has the option
of using one of the many desktop applications available for
visualizing data. Tableau Software (2011) makes tools that
can create beautiful graphs and serve these visualizations,
but it is closed source commercial software which limits
the ability to extend and share. The CDAT suite of li-
braries, developed by the PCMDI Software Development
Group (2007), GrADS, Institude of Global Environment
and Society: Center for Ocean-Land-Atmosphere Studies
(2003-2011), and Ferret, Hankin et al. (1996), are Open
Source and optimized for climate data sets and provide
libraries and other tools for visualization. They are not
embeddable web apps and thus do not represent a com-
plete web based solution.
Live Access Server (LAS), created by Hankin et al. (2001),
and DChart, also created by Sirott (2006), are two Open
Source tools that serve data using openDAP and provide
simple visualization tools. DChart serves local data and
provides a web interface, but lacks customizable visual-
izations and interfaces. In many ways Live Access Server
extends DChart, allowing the user to fill in missing meta-
data, and customize visualizations and the user interface
through XML configuration files, and allowing the user to
request visualizations using XML messages. LAS is closest
in goal to our tool with some important technical distin-
guishing features. LAS is based on Java and XML, while
the tool we develop is based on Python and JSON. XML is
somewhat heaver and slower to parse, which is one factor in
it being displaced by JSON as a data serialization format.
In addition Python is displacing Java for web development
due to its greater ease of use, readability and compactness.
Finally LAS does not provide an open-source BSD license,
meaning it cannot be embedded as widely as our tool.

2



Fig. 1. Diagram of the architecture for the Common Cli-
mate Visualization Web Application (CCPviz). The figure
illustrates the three distinct sections of the tool: the data
extraction and visualization handled by the stand-alone cc-
plib library, the web framework layer that translates user
input into ccplib function calls, and the JavaScript/HTML
UI layer that sits in the users browser.

3. Software Architecture

To maintain a flexibility, CCPviz has a component based
architecture. As seen in figure 1, the tool has three main
pieces: a library for working with the data, a web frame-
work layer for transforming web based user input into li-
brary function calls, and a user interface that can be em-
bedded into any website. A component based architecture
was chosen so that any layer could be swapped out with a
di↵erent implementation as needed.

a. Shared Library: ccplib

The backend library that handles all the data process-
ing server side is called ccplib. The guiding principal in
creating this library was to use a highly modular design
so that individual functions can be changed without hav-
ing to rewrite everything. This library was also extensively
tested using the Python unit-test library since testing was
integral to our goal of building a robust application. We
stressed the importance of unit tests because it greatly re-
duced debugging time by separating individual functional-
ity, thereby highlighting what errors were occurring.

(i) Data Extraction

SciPy (Jones et al. (2001)) provides an input/output
module that our module uses to pull the data out of NetCDF
files because the SciPy library provides many tools for
analysing scientific data, but support for NetCDF4 using
netcdf4-Python, written by Whitaker (2008), is planned
for the next version of the tool. The excellent PyNIO li-

brary developed by Computational And Information Sys-
tems Laboratory at the National Center for Atmospheric
Research (2011) was not used because we could not find a
way to install the library using a Python package manage-
ment system, such as PIP (PIP development team (2011)).
We placed a lot of importance on having a scriptable in-
stall because we wanted deployment to require as few steps
as possible. Translating between times and indices in the
file is handled using the coards-0.2.2 library written by
Almeida (2007). All the extraction functions are grouped
into the datahandlers module where each file type gets its
own file and the module returns a data object containing
the attributes of the data (which are extracted from the
NetCDF files) and methods for extracting temporal and
spatial slices of the data.

(ii) Data Processing

This object is then passed to the algorithms module,
which is really just a placeholder that processes the data
object—for example by extracting the data and masking
missing values—so that the data can be pushed into some
algorithm provided by NumPy, SciPy, or any other library
the user chooses to incorporate. The algorithms module
exists to support locally customized data processing actions
through the data object.

(iii) Visualization Module

The graphs are created using the visualization library,
which relies on Matplotlib (Hunter (2007)) for generating
the figures. The library contains a parent graph object
that handles boilerplate such as rendering a figure and
labeling it, and then uses children objects to create spe-
cific types of graphs, such as spatial and temporal graphs.
The Basemap Matplotlib Toolkit, also written by Whitaker
(2011), is used to generate all the spatial graphs because it
handles numerous map-projections and is integrated with
Matplotlib. The visualization module breaks out the dif-
ferent types of graphs so that support for other types, such
as skew or 3d scatter can be added on without having to
modify much of the existing code.

b. Pyramid Based Web Service

The layer of the application that turns CCPviz into web
service was written using the Pyramid Python Web Frame-
work (Pyramid Development Team (2010)). Pyramid was
chosen because it is can be used to write fairly lightweight
applications. The Pyramid layer takes URLs and parses
them into arguments for some of the functions in ccplib
and then returns an image based on that URL. This en-
sures that computed images are addressable resources with
their own unique URL. Besides being part of RESTful best
practices, this makes it easier to cache, decreasing server
load. The URL mapping is based on the Pyramid traversal

3



Fig. 2. Diagram of CCPviz’s traversal architecture

model wherein every site can be modeled as tree. As seen
in figure 2, the dataset is the root of the tree, then the
next node is either an algorithm or a graph type, and the
last node is always a graph. New datasets are added using
INI style configuration files, which at a minimum need to
know the location of the data on a local or network drive
(support for remote data is planned) but can also contain
various settings for visualizing the data. The remaining
URL defines what the graph looks like and is parsed us-
ing regular expressions into arguments that are passed into
ccplib.

c. Web Client

The user interface is essentially independent of the Pyra-
mid and ccplib layers of the web application and was de-
signed to be embedded inside a web page as seen in figure 3.
The user interface is written in HTML and JavaScript and
works by constructing URLs that Pyramid parses from the
input fields. That URL returns a graph which is then dis-
played on the page. The user interface was designed to float
on top of the other two layers so that the interface could be
designed based on the audience. This also means that an
organization could create multiple interfaces for the same
datasets, for example a simple one with rough controls for
their educational website and a complicated one with as
many options as the dataset allows for their research site.
The visualization was done in Matplotlib rather than one
of the JavaScript visualization libraries—such as d3 (Stan-
ford Visualization Group (2011)), protovis (Stanford Vi-

Fig. 3. This wireframe diagram of the GUI illustrates how
it embeds into a website without disrupting the content on
the site.

sualization Group (2010)), dygraph (Vanderkam (2008)),
and infovis (SenchaLabs (2011))—because the size of the
datasets meant that it was much more e�cient to do the
visualizations server side. However, the RESTful API gives
the user the freedom to write an interface that creates the
visualizations client side with little extra work.

4. Devlopment Process

Because CCPviz was developed as part of Google Sum-
mer of Code, it was designed following the principals of
Open Source software development. Its design, functional-
ity, and implementation was discussed on a public mailing-
list for projects run by the Climate Code Foundation (CCF)
and now has its own list. The code is hosted on Google
project hosting, which provides mercurial access to the
code and a public bug and issue tracker. The code was
written following CCF standards so that there would be
some consistency to it and to keep it readable and under-
standable. The CCF mentors also encouraged code review,
which the code greatly benefited from.

5. Application: Temperature Models for the Com-

mon Climate Project

CCPviz was created for the Common Climate Project,
a group whose mission is to foster transparency in the cli-
mate reconstruction research community through the use
of open-source tools. CCP plans to facilitate the shar-
ing of climate research through use of a website where
data and analysis code can be uploaded and viewed, and
therefore needed a tool people could use to explore any
data uploaded to the site. So, CCPviz was designed with
a focus on climate data, and was therefore tested using
GISTEMP, described in Hansen et al. (2010), and NCAR

4



Fig. 4. This shows an example of the kind of map that
can be created with CPPviz tool. Note that any date,
collection of dates, or region on earth can be plotted.

CCSM1.4, described in Ammann et al. (2007). Since they
were both global temperature models, they were similar
enough to provide a good comparison. The di↵erences in
the datasets also led to a good understanding of the limita-
tions of CCPviz, especially in what kinds of timeseries and
grids it can handle. We decided to limit support to grid-
ded NetCDF data that follows the COARDS conventions
defined in Cooperative Ocean/Atmosphere Research Data
Service (1995) for the first version of the CCPviz because
many climate datasets are gridded, COARDS compliant,
and in NetCDF4, but it was designed so that adding sup-
port for more file types was possible.

a. Global Temperature Maps

Climate datasets are not all recorded using the same
grids and projections can change the interpretation of vi-
sual data, since some projections will diminish the poles
and others will stretch them. Because of this, CCPviz han-
dles multiple projections and changes the projection based
on what data is being requested, for example a region map
may need a di↵erent projection from a global map, and
multiple coordinate specifications because of the inconsis-
tency in how coordinates are encoded. Coloring can also
strongly a↵ect interpretation, so the vizualization module
switches between using an opposing color scheme for data
that has a mean of zero, as seen in figure 4, and a gradient
scheme of one color for most other types of data, though
all the user can set which colormaps they would like to use

Fig. 5. This shows an example of the kind of time series
that can be created with CPPviz tool. Note that any point
on earth and any variable can be plotted as specified by the
user.

based on what Matplotlib o↵ers.

b. Time-Series Plots

Climate datasets can span anywhere from days to cen-
turies, at resolutions anywhere from minutes to decades,
so CCPviz can plot various time resolutions and adjust to
changes in resolution based on zooming. The visualization
module does not try to fill in missing data, as seen in 5 and
instead just leaves out that time, because a major goal of
the project was to build a tool that shows the data as it is
on disk or only processed in ways the user specified.

c. Data Explorer

As seen in figure 6, the user interface provides the user
with fields so that they can select specific times, places, or
ranges of both to look out. All the fields are populated
using Ajax requests for content served using Pyramid, so
the lists of datasets and algorithms are created based on
information supplied by whoever deployed the application.
To simplify the task of choosing points, the text fields are
auto-complete search boxes populated based on the values
encoded in the file meta data. For example, the time search
box is filled with values, translated from COARDS to a
more readable format, from the time field in the NetCDF
file. There is also a text box containing the valid ranges
because users requested information on what values they
could enter.

5



Fig. 6. Screenshot of the web interface.

6. Conclusion

We have created an web embeddable tool that provides
a basic but complete solution for scientists who want to
make climate data accessible through a web site. Our web
application provides the data as both a region selectable
map and time series at any point. It is built with Open
Source standard web technology and licensed in a flexible
way for maximum re-use. Because it can be embedded in
many ways, the tool we developed can be extended, for ex-
ample, to provide one interface for scientific collaborators,
and—by changing some of the JavaScript and styling—a
very di↵erent one for an educational website for children.

In the future we hope to expand our tool so that it
can be used to share a wider variety of climate data with
the public. In order to fullfill this goal, we would like to
add support more file types and sparsely and irregulary
gridded data. We would also like to further develop the
currently bare-bones client interface with richer HTML5
and JavaScript components. CCPviz is free to download
at https://code.google.com/p/ccp-viz-toolkit/.

Acknowledgments.

This project was jointly mentored by the Common Cli-
mate Project and the Climate Code Foundation (http:
//climatecode.org/) and was created for the Common
Climate Project as a part of for Google Summer of Code
2011. It is also somewhat based on code developed at

Glasslab at City College of New York.

REFERENCES

Almeida, R. D., 2007: coards 0.2.2. http://pypi.python.
org/pypi/coards.

Ammann, C., F. Joos, D. Schimel, B. Otto-Bliesner, and
R. Tomas, 2007: Solar influence on climate during the
past millennium: Results from transient simulations
with the ncar climate system model. Proc Nat Acad Sci
USA, (104), 3713–3718, doi:10.1073-pnas.0605064.103.

Computational And Information Systems Laboratory at
the National Center for Atmospheric Research, 2011:
Pyngl and pynio. http://www.pyngl.ucar.edu/.

Cooperative Ocean/Atmosphere Research Data Ser-
vice, 1995: Conventions for the standardization of
netcdf files. http://ferret.pmel.noaa.gov/Ferret/

documentation/coards-netcdf-conventions.

Denbo, D. W., N. N. Soreide, K. McHugh, J. Os-
bourne, J. Sirott, P. Sorvik, and W. Zhu, 2006: Epic
web browser. http://www.epic.noaa.gov/epic/ewb/

index.html.

Earth System Research Laboratory, P., 2011: Psd inter-
active plotting and analysis pages. http://www.esrl.
noaa.gov/psd/cgi-bin/data/getpage.pl.

Hankin, S., J. Callahan, and J. Sirott, 2001: The live access
server and dods: Web visualization and data fusion for
distributed holdings.

Hankin, S., D. E. Harrison, J. Osborne, J. Davidson, and
K. Obrien, 1996: A strategy and a tool, ferret, for closely
integrated visualization and analysis. Journal of Visual-
ization and Computer Animation, 149–157.

Hansen, J., R. Ruedy, M. Sato, and K. Lo, 2010: Global
surface temperature change. Rev. Geophys, 48, RG4004,
doi:10.1029/2010RG000345.

Hunter, J. D., 2007: Matplotlib: A 2d graphics environ-
ment. Computing In Science & Engineering, 9 (3), 90–
95.

Incorporated Research Institutions for Seismology Data
Management Center, 2011: Incorporated research insti-
tutions for seismology. http://www.iris.edu.

Institude of Global Environment and Society: Center for
Ocean-Land-Atmosphere Studies, 2003-2011: Grid anal-
ysis and display system (grads). http://www.iges.org/
grads/.

6



Jones, E., T. Oliphant, P. Peterson, et al., 2001: SciPy:
Open source scientific tools for Python. http://www.

scipy.org/.

PCMDI Software Development Group, 2007: Climate data
analysis tools. http://www2-pcmdi.llnl.gov/cdat.

PIP development team, 2011: PIP installs python. http:
//www.pip-installer.org/en/latest/index.html.

Pyramid Development Team, 2010: The pyramid
web application development framework. http://www.
pylonsproject.org/.

SenchaLabs, 2011: JavaScript InfoVis Toolkit. http://

thejit.org/.

Sirott, J., 2006: Dchart: A remote scripting web applica-
tion for in-situ opendap data. 22nd International Con-
ference on Interactive Information Processing Systems
for Meteorology, Oceanography, and Hydrology.

Stanford Visualization Group, 2010: Protoviz. http://

mbostock.github.com/protovis/.

Stanford Visualization Group, 2011: Data-driven docu-
ments. http://mbostock.github.com/d3/.

Tableau Software, 2011: Tableau software. http://www.
tableausoftware.com/.

Vanderkam, D., 2008: dygraphs javascript visualization li-
brary. http://dygraphs.com/.

Whitaker, J., 2008: netcdf4 0.9. http://pypi.python.

org/pypi/netCDF4/0.9.

Whitaker, J., 2011: Basemap matplotlib toolkit 1.0.2.
http://matplotlib.github.com/basemap/.

7


