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Abstract

Intensity histograms have been used extensively for recog-
nition and for retrieval of images and video from visual
databases. Intensity histograms of images at different indi-
vidual resolutions have also been used for indexing. They
suffer, however, from the inability to encode spatial image
information. Spatial information can be incorporated into
histograms simply by taking histograms of an image at multi-
ple resolutions together to form a multiresolution histogram.
Multiresolution histograms can also be computed, stored,
and matched efficiently. In this work we analyze and quantify
the relation and sensitivity of the multiresolution histogram to
spatial image information as well as to properties of shapes
and textures in an image. We verify the analytical results ex-
perimentally. We demonstrate the ability of multiresolution
histograms to discriminate between images, as well as their
robustness to noise.

1. Introduction

Histograms have been used widely in object recognition
[9, 29, 30} and are an important tool for the retrieval of im-
ages and video from visual databases [1, 22, 34]. They have
many merits. For example, they are efficient, and robust to
local area preserving transformations [12]. They suffer, how-
ever, from the inability to encode spatial image information.

Several investigators have tried to incorporate spatial in-
formation into histograms by defining iocal rather than giobal
intensity histograms. Examples of this approach include er-
ror diffusion, the scale-imprecision space [11], and the lo-
cally orderless images [19]. In the context of indexing, in-
tensity histograms have been combined with other spatial
features that include edges, corners, textures, and regions
[21, 22]. Histograms have also been combined with addi-
tional pixel statistics to form multidimensional histograms
[24]. For example, co—~occurrence matrices [13], or correl-
ograms [15].

In addition, histograms of image features obtained by ap-
plying derivative filters to an image have been suggested [26].
Also, individual histograms of low image resolutions have
been used to expedite retrieval [20] as well as histograms of
multiple image resolutions for texture synthesis [5, 14]. Fur-
ther, a representation that also employs filtering, called flex-
ible histograms, has been applied both to object recognition
[4] and texture synthesis {5].

0-7695-1272-0/01 $10.00 © 2001 IEEE

L Ll d T

4

— |

i

W

Figure 1. The first row shows the image pyramid and the
second row the multiresolution histogram.
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The representation we analyze in this work, namely the
multiresolution histogram, implicitly includes spatial image
information. A multiresolution histogram is the set of inten-
sity histograms of an image at multiple resolutions. Note that
it is an image representation since multiresolution is applied
to the image. It is different from histogram representations
where multiresolution is applied directly to the histogram [8).
Itis a simple representation that can be computed, stored, and
matched efficiently. In figure 1 we show an example of a mul-
tiresolution histogram. The first row shows the image pyra-
mid and the second row the multiresolution histogram. In ad-
dition to the initial image histogram, the multiresolution his-
togram also captures spatial image information through the
histograms of lower resolutions. It is, however, invariant to
rotations and translations.

What spatial information is embedded in a multiresolu-
tion histogram, and how sensitive is the multiresolution his-
togram to this information? To analyze these questions we
quantify the dependence and sensitivity of the multiresolu-
tion histogram to spatial image information as well as to pa-
rameters of shapes and texels in an image. The shape and
texel parameters include their size, their elongation, their bor-
der complexity, and their placement pattern. For the purpose
of the analysis we exploit the equivalence between the his-
togram and the generalized image entropies [27], and extend
this equivalence to multiresolution histograms.

Since multiresolution histograms incorporate spatial in-
formation, they are able to discriminate between different im-
ages even if the images have identical histograms. We verify
the performance of multiresolution histograms experimen-
tally. The distance between two multiresolution histograms
is the sum of the distances between the histograms of all im-
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age resolutions. We use a database of synthetic images and a
database of natural textures in the experiments. We find that
multiresolution histograms are very robust to noise and that
they can discriminate between images with different spatial
patterns alone without the help of any other image features.

2. Approach

‘We use the Gaussian image multiresolution [18, 33]. Each
image resolution gives a different histogram. We analyze
how the rate of change of the histogram with image resolution
depends on spatial image information as well as on properties
of image shapes and textures. To achieve this we employ a
transformation of the histogram into the spectrum of general-
ized image entropies. This spectrum results by generalizing
the Shannon entropy into a parametric family. We extend this
transformation to multiresolution histograms.

We use the transformed spectrum because the rates at
which generalized entropies change with image resolution
are given by functionals of the image. These functionals,
namely the generalized Fisher information measures, have
the desirable property that they depend on the image gradient.
Thus, they capture spatial image variation and parameters of
image shapes and textures. Therefore, the generalized Fisher
information measures link the rate at which the histogram
changes with image resolution to parameters of image shapes
and textures.

3. Multiresolution Histogram and Fisher Infor-
mation Measures

We assume that image £ has a continuous domain D with
spatial coordinates x = (z,y). The resolution of the image
is decreased linearly with & by convolving the image with
a Gaussian kernel G(o) [18, 33]. The convolution gives the
image £ * G(o) with histogram h(L % G(s)). The rate of
change of the image histogram with respect to image resolu-
tion is given by doh([l * G(a))

The histogram of an image is linearly related to the Tsallis
generalized entropies of an image (32]. More precisely, the
Tsallis generalized entropies of an image £ with a unit L;
norm and M graylevels are given by:

q
)hj 1)

/L "i‘ vj —v;
9_ q—l

Jj=0
where ¢ is a continuous parameter, and h; is the histogram
density of grayscale value v;. In the limit ¢ — 1 the Tsallis
generalized entropies reduce to the Shannon entropy.
Equation (1) can be used to express a vector of M different
Tsallis entropies S = [Sg, Sy, Sgu -+ Sgar.)T s a linear
function of the histogram h = [hg hy ha...hp_ I]T to give

S(£) = T h(L) @

where T is an M x M transformation. The derivation of
equation (2) is almost identical to the derivation provided by

qu)
g-—1

Sporring and Weickert in [27], who also show that the trans-
formation T is invertible.

The rate at which generalized image entropies change with
respect to image resolution, 245 Sq(LxG(0)), are given by the
generalized Fisher information measures J, [3, 25, 28]. More
precisely,

vL(x))?
£(x)

The * sharpness or spatial variation at a pixel is given by
[VLZ(x)/,C(x)[ . Hence, the average sharpness as can be
seen from equation (3) is J;, namely the Fisher information
[28]. In general, functional J, measures a weighted average
“sharpness” of an image.

To relate J; to the rate at which the histogram changes
with image resolution we differentiate equation (1) with re-
spect to resolution and substitute the first equality in equa-
tion (3) to get:

Ed;sq(ﬁ*g(a)) =Jy(L) = /D L£i(x)d?z. (3)

Mol e — 0.9\ dhs
Jo= (————”J s )——3 @
? JZ:(:) g-1 do
Therefore, Jg is a linear function of the rate at which the
histogram bins change with resolution.

The proportionality factors, shown in equation (4) within
the parentheses, are exponential functions of q. The propor-
tionality factors of J, weigh heavier the rate of change of the
histogram bins corresponding to large intensity values (re-
spectively small intensity values), for ¢ > 1 (respectively
g < 1) [25, 32]. The proportionality factors of the Fisher
information J; weigh approximately equally all histogram
bins. Hence, J; approximates the average rate of change of
histogram bins. In this work we primarily analyze the Fisher
information. '

Image Multiresolution Histogram  Change with respect to o
L > BlsGe) ———» L IrGE)
T § T
S(L*G(e)) --— > g—GS(L*G(G)) =17

Generalized Fisher Information
I

Shape and Texel Parameters

Generalized Entropies

Figure 2. Diagram of the approach. The derivative of the
histogram with respect to image resolution is transformed for
analytical purposes to the Fisher information measures.

The rate of <change of vector S =
[Sqo Sar Sgs -~ Sam_, 1T with respect to imagc resolution
is given by the M x 1 vector J = [Jg, Jq, Jg; +--Jgp_, )7
Vector J can be expressed using equation (4) as a linear
function of the rate at which histogram bins change. The

same result is obtained by differentiating equation (2) with
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respect to resolution o to get:

J(L) = TEd;h(C * G(0)). ©)]
As shown for the case of equation (2), transformation T is
invertible [27]. Therefore, the rate at which the histogram
changes can be expressed as a linear function of J. In turn,
. all J, depend on spatial image variation. Both J; and the
multiresolution histogram, however, are preserved by rota-
tions and translations of the image.

Figure 2 shows an overview of the approach. The connec-
tion from J, to parameters of shapes and texels will be pre-
sented in the following two sections. We will mostly work
with the Fisher information J;.

4. Multiresolution Histograms of Shapes

A multiresolution histogram depends on spatial image
variation, which can be modeled as shape in many images.
We analyze this dependence using J,. For discrete images

with IV pixels J, is a convex function in an N dimensional .

space. The single minimum of J; is achieved for a radially
symmetric Gaussian image [7, 25, 32]. As an image departs
from Gaussian, the value of J, increases. Several classes of
transformations can lead the image along a path away from
the Gaussian in this /V dimensional space. We will exam-
ine the value of J, and its sensitivity to several such classes
of shape transformations and warps. Namely, elongations,
warps of the boundary from rounded to pinched, and changes
of the diffuseness of the intensities across the border from
smooth to abrupt. As mentioned earlier, translations and ro-
tations of an image do not affect J,.

We first examine the effect of stretching transformations,
which can elongate radially symmetric shapes. The his-
togram of an elongated shape changes faster with resolution
than that of a radially symmetric one. We examine the linear
diagonal transformations z — z./p, y — y/+/p, where p is
any positive number we call elongation. The relation of J,
to elongation p is quantified for the classes of shapes shown
in figure 3. The first column of figure 3 shows the shapes
to be analyzed. For these shapes p coincides with the ratio
- of the parameters along the axes, and k is the product of the
parameters along the axes. For example, for the Gaussian
p = 0z/oy and k = oy0y. In the second column we can
see Jy as a function of p and k. The expressions for J, are
computed using the integral in equation (3).

In the second column of figure 3 we plot J; as a function
of p for a fixed value of k. For all images the minimum value
of J, is achieved for radially symmetric or regular shapes,
whose ratio of axial parameters is one p = 1. Further, J,
increases strictly and non-linearly with elongation p. The
elongation of the shapes does not affect their histogram since
area and k remain invariant [12].

The value of J, for shapes also depends on how rounded
or complex the border is. The value of J, is larger when
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Figure 3. The values of J, for several images £ as a func-
tion of the elongation p, where p is the ratio of the param-
eters along the axes. The first column shows the images L.
The second column shows the plots of J4 as a function of the
elongation of the shapes. The product of the axial parameters
k is kept constant. The minimum value of Jj is obtained for
radially symmetric or regular shapes for which p = 1, and
increases strictly with elongation.

the border is complex. This is examined for the superquadric
shapes given by £ = (R — ¢ — )%, The intensity within
these shapes is almost flat because of the value of the expo-
nent, 0.15. The size of the shapes remains fixed by adjusting
the value of R. The family of the shapes is shown in figures 4
(a)-(e) which is: a pinched diamond for ¢ < 1, a diamond for
€ = 1, acircle for € = 2, and tends to a square for ¢ > 2. We
plot the values of Jy, J2, and J3 as functions of € in figures 4
(f), (g), and (h), respectively. They are computed directly
from the image by discretizing the integral of equation (3).

1-704



(@) e =0.56 (b)e = 1.00 (c)e = 1.48 (d) e = 2.00 (e) ¢ = 6.67

o n

(h) Jg vse

i

(f) JLVSE

g Jovse

Figure 4. The values and the minimum of J, Jz, and Js
for shapes with various borders. We use the superquadric
shapes £ = (R —z¢~y¢)®1%. The family of shapes with in-
creasing € consists of a pinched diamond, a diamond, a circle,
and finally a square. In (f), (g), and (h) we can see the plots
of Ji, J2, and Js, respectively, as a function of ¢. The min-
imum is attained for a circle shown in (d) for which ¢ = 2.
The values of Jy, J2, and J3 increase rapidly as the shape .
progresses from circular to pinched by decreasing €.

2)e=10"% B)e=0.5 ()e=1.0 (de=2.41 ()e=9

@Jl VS €

Figure 5. The Fisher information Ji, and the minimum of
the Fisher information for a shape of varying diffuseness. We
use the elliptic shapes £, shown in row (c) of figure 3. In (a)
to (e) we can see the diffuseness progression as € increases,
namely, step transition, hemispherical, paraboloidal, resem-
bling a Gaussian, and finally tending to an impulse. In (f) we
can see the Fisher information given in row (c) of figure 3
as a function of €. The minimum corresponds to the Gaus-
sian resembling image shown in (d). The Fisher information
increases rapidly as the difusseness progresses to a step tran-
sition by decreasinge.

The result of the numerical computations is that Jy, Jg, and
J3 are all minimized for a circle as shown in figure 4 (d) for
which € = 2. Furthermore, they increase rapidly as the shape
progresses from a circle to a pinched diamond by decreasing
€.

The value of J; also varies depending on the diffuseness
of the intensities within a shape. Shapes with smooth in-
tensity changes across their boundaries minimize the rate of
change of the histogram with resolution. The multiresolu-
tion histogram of shapes with abrupt intensity changes across
their boundary, however, change faster with resolution. This

dependence is examined for the elliptical shapes given in row
(c) of figure 3. We fix the size of the shapes by fixing R and
vary the diffuseness by varying exponent €. The progression
of the diffuseness with increasing ¢ is shown in figures 5 (a)-
(e) which is: a step transition for ¢ = 0, a hemispherical for
€ = 0.5, a paraboloidal for ¢ = 1.0, resembling a Gaussian
for € > 1.0, and tending to an impulse as € increases further.

The Fisher information for the elliptical shapes shown in
row (c) of figure 3 is plotted as a function of diffuseness € in
figure 5 (f). Its minimum for all elongations is attained for an
image with diffuseness similar to that of a Gaussian as shown
in figure 5 (d) for which € = 2.41. As the elliptical shape
progresses from a Gaussian to a step boundary by decreasing
¢ the Fisher information increases rapidly.

From the different examples we can see that J; is min-
imized for shapes with rounded borders and increases with
elongation. It increases even faster with warps that create
spikes along the border. Linear transformations of J, give the
rate at which histogram bins change with resolution. There-
fore, the results about the values of J; also hold for the rate
of change of histogram bins. Moreover, J; is minimized
for smooth intensity transitions across the boundary, and in-
creases for abtupt intensity transition across the shape bound-
ary. The value of J; approximates the average rate of change
of the histogram bins with resolution.

5. Multiresolution Histograms of Textures

We analyze the dependence of the multiresolution his-
togram on texture parameters using J,. Several investigators
have observed experimentally that the increase in entropy de-
pends on the coarseness of the initial image [23, 31], the type
of textures [27, 31], and the size of image regions [16). In
this work we quantify the dependence of J,; on the size of the
texels, the extend at which neighboring texels overlap, and
the placement pattern of the texels that can be regular or ran-
dom. The models used for the texels are the shape models
discussed in the previous section.

First, we examine the dependence of J; on the number of
texels within a texture of fixed size. We expect J, to increase
with the number of texels in a fixed area, since smaller tex-
els are also “sharper’. Consider a simple texture model of
p x pidentical texels. Such textures result from tiling a texel
r = p? times. To preserve the size of the texture, the texels
are also contracted by a transformation A with determinant
detA = 1/p%.

In the appendix we show that tiling a texel r times multi-
plies J, by the factor r~9*! and contracting a texel by trans-
formation A multiplies J; by the factor (detA)~?. Hence,
the overall factor multiplying the value of J,; for the shape
to give the value of J, for the texture is r~9%1.(det4)~¢ =
p®. Such textures have the same histogram for all p since
(detA)r = 1, which preserves area [12].

Figures 6 (a) and (c) show two shapes and the textures
formed by contracting and tiling them. Figures 6 (b) and (d)
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Figure 6. The Fisher information as a function of the
tiling parameter p of the textures. In (a) and (c) we can see
two shapes and the textures resulting by minifying and tiling
them. In (b) and (d) we can see the Fisher information as
a function of tiling parameter p for (a) and (c), respectively.
Each plot shows the data obtained directly from the images
as well as the quadratic fit. The two almost coincide as ex-
pected.

show their Fisher information, respectively, as a function of
p. Each of the plots shows the Fisher information computed
directly from the image as well as the quadratic fit. The fits
almost coincide with the data as expected.

In the texture model shown in figure 6 adjacent texels were
separated. We now examine cases where neighboring tex-
els overlap. In particular, we examine how the Fisher in-
formation changes as the-overlap among adjacent texels in-
creases. We expect such textures to be less “sharp” and have
a smaller Fisher information. Analytically, Gaussian filtering
monotonically increases the size of texels and decreases their
Fisher information (2, 17]. This is verified for textures con-
sisting of mixtures of Gaussians of linearly increasing stan-
dard deviation shown in figure 7 (a). Figure 7 (b) shows
that their Fisher information monotonically decreases with
texel width, which in this case is the standard deviation of
the Gaussians. Figure 7 (c) shows another texture with texels
of linearly increasing width. Their Fisher information shown
in figure 7 (d) also monotonically decreases with texel width.

In the previous texture models the texel placement was
regular. We continue with textures whose texel placement
is random. Randomness, on average, monotonically in-
creases entropy and monotonically decreases Fisher informa-
tion[2, 7, 17]. In figures 7 (e) and (g) we can see two textures
with increasingly larger Gaussian noise perturbing the texels
from their regular positions. In figures 7 (f) and (h) we can
see the Fisher information as a function of the standard devi-
ation of the Gaussian noise in pixel placement. In both cases,
the Fisher information is monotonically decreasing with ran-
domness.

Overall, the values of J,; for a texture of fixed size in-
crease linearly with the number of texels. Hence, the rate at

— Texel width ]
1
..... ! S
(a) (b)
— Texel widt ]
1]
1 "t B S ™ N )
8l Texel width
)

—> St. dev. of perturbation

I

St dev. of perturbation.

) @

— St. dev. of perturbation

[

;! St. dev. of perturbation
&) (h)

Figure 7. The Fisher information as a function of the width
of overlapping texels and the randomness in the placement of
texels. In (a) and (c) we can see two textures with texels of
increasingly larger width. The plots in (b) and (d) show the
Fisher information as a function of the texel width, respec-
tively. In both cases the Fisher information decreases mono-
tonically. In (e) and (g) we can see two textures with increas-
ingly larger randomness in the placement of the texels. In (f)
and (h), respectively, we can see plots of the Fisher informa-
tion as a function of the standard deviation of the Gaussian
noise in pixel placement. In both cases the Fisher informa-
tion decreases monotonically.

which histogram bins change with resolution also increases
with the number of texels. The value of J;, however, de-
creases with texel overlap and randomness in the placement
of texels. Therefore, overlap and randomness decrease the
average rate at which histogram bins change with resolution.

6 Experimental Verification

In the previous sections we have shown that the multires-
olution histogram encodes spatial image variation. We now
test directly its ability to discriminate between synthetic im-
ages with identical histograms and between natural textures
that were histogram equalized. Note that J,; were only used
to show the dependence and sensitivity of the multiresolution
histogram on spatial image variation and are not computed
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Figure 8. Several samples from the database of synthetic
images. All the images in this database have the same his-
togram. Some of the images consist of texels that are dots,
geometric shapes, and shapes of several other mathematical
functions. In some cases the placement of the texels was reg-
ular and in others random.

for matching.

We construct a multiresolution image using four levels of
the Burt—Adelson pyramid [6]. Each level is obtained by fil-
tering with a Gaussian kernel and subsampling. Then, we
compute the histogram of each of the four pyramid levels.
The distance between two multiresolution histograms is the
sum of the four individual L distances between pairs of his-
tograms corresponding to the same pyramid levels. The cost
of computing the pyramid, the histograms, and the distance
is of the order O(N+/F), where N is the number of pixels,
and F is the support of the separable Gaussian filter.

We first test the multiresolution histogram with a database
of synthetic images. Many of the images in the database con-
sist of texels and texel placements that were analyzed in the
previous sections. More precisely, the texels include dots,
circles, squares, several types of superquadrics, several types
of triangles, and mathematical functions. Moreover, in some
images the placement of the texels was regular and in others
random. The database has 108 images of size 320 x 320 and
256 graylevels. Some images from the database are shown
in figure 8. All the images have the same histogram, consist-
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Figure 9. Matching of synthetic images using multiresolu-
tion histograms. The test images are shown in the columns
marked Test Image and are corrupted with Gaussian noise of
standard deviation 15 graylevels. The best match and second
best match are shown in consecutive columns.

ing of 40% pixels with graylevel 25, and 60% of pixels with
graylevel 230.

The best and second best matches for 16 test images cor-
rupted with noise of standard deviation 15 graylevels are
shown in figure 9. The rate of correct matches as a func-
tion of noise in the test images is shown in figure 12 (a). We
can see that the multiresolution histogram is very robust to
noise.

The multiresolution histogram was also tested with a
database of natural textures that is a subset of the CURET
database [10]. It consists of 305 images of size 100 x 100 and
of 256 graylevels. The database contains images of 61 phys-
ical textures with five instances of each physical texture. The
5 instances differ in the illumination and viewing conditions.
We equalized the histograms of all images in the database
so that matching is based exclusively on differences in spa-
tial image information rather than simply on differences in
intensity histograms. Some equalized images are shown in
figure 10. The best and second best matches for 12 equal-
ized test images corrupted with noise of standard deviation
15 graylevels are shown in figure 11.

The matching performance of multiresolution histograms

.computed from histogram equalized images was compared

to the performance of image intensity histograms computed
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Figure 10. A few samples from the database of natural
textures. It consists of 305 images of size 100 x 100. It
contains images of 61 physical textures, with five instances
of each physical texture for five different illumination and
viewing conditions. All the images are histogram equalized.

from non—equalized images. The comparison was performed
using the database of natural textures for noise of standard
deviation 2-37 graylevels. The results are shown in figure 12
(b). Clearly, the performance of multiresolution histograms
is far superior to that of image intensity histograms.

In figures 9 and 11 we can see that images with similar
shapes as well as similar texel shapes and placements were
correctly matched. The muitiresolution histogram performed
better under noise on natural textures than on synthetic im-
ages since natural textures have a larger contrast and “sharp-
ness”.

7. Discussion

We investigated the spatial image information embedded
in a multiresolution histogram as well as the sensitivity of the
multiresolution histograms to this information. We derived
that the rate at which histogram bins change with image res-
olution are linear transforms of the values of J;. In turn, the
values of J,; are measures of image “sharpness” or variation
that can encode shape and texel parameters. That is, we used
Jq to quantify the relation and sensitivity of the multiresolu-
tion histogram to shape and texel parameters.

We also experimentally verified the properties of the mul-
tiresolution histogram. We found that they are able to dis-
criminate between different images alone without the help of
other features or filters. Moreover they are efficient, rotation-
ally and translationally invariant, and robust to noise.

Appendix

Property: A uniform scaling transformation A multiplies
Jq by (detA)~9.
Proof: As a result of transformation A and renormaliza-

tion £ becomes L'(x) = 7‘&‘%1. The value of J, of image

Test TIst

Figure 11. Matching of natural textures using the multires-
olution histogram. The test images are shown in the columns
marked Test Image and are corrupted with Gaussian noise of
standard deviation 15 graylevels. The best and second best
matches are shown in consecutive columns.
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Figure 12. Matching rate of multiresolution histograms un-
der noise. The standard deviation of the noise varied from 2
to 37 graylevels. The plot in (a) is for the database of syn-
thetic images. The plot in (b) is for the database of natural
textures. In (b) we show the matching rate both of image his-
tograms and multiresolution histograms. The matching rate
of multiresolution histograms is very high in both (a) and (b).
Moreover, in (b) the rate is significantly higher than that of
intensity histograms.

L' (x) according to equation (3) is given by:

w(G8) < [l (L)) (482)" e

(detA)—9 f VL)L (x)d

I=

For isometries and uniform scalings |[VL(4x)]? =
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ﬁ;IVC(x)P’ which gives step 1 and the multiplicative fac-
tor. O

Property: Tiling an image r times multiplies J, by
poatl,

Proof: After tiling an image, £, r times it is necessary to
renormalize it to unit L; norm by diving it by = to get L'
Equation (3) for image £’ gives:

L£(x)\*?
(ﬁ) dz
r

()

= et / VL)L 2 (x)d2e

Jo(£'(x))

which gives the multiplicative factor. O
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