
  

  

Abstract— Planning radiotherapy and surgical procedures 
usually require onerous manual segmentation of anatomical 
structures from medical images. In this paper we present a 
semi-automatic and accurate segmentation method to 
dramatically reduce the time and effort required of expert 
users. This is accomplished by giving a user an intuitive 
graphical interface to indicate samples of target and non-target 
tissue by loosely drawing a few brush strokes on the image. We 
use these brush strokes to provide the statistical input for a 
Conditional Random Field (CRF) based segmentation. Since we 
extract purely statistical information from the user input, we 
eliminate the need of assumptions on boundary contrast 
previously used by many other methods, A new feature of our 
method is that the statistics on one image can be reused on 
related images without registration. To demonstrate this, we 
show that boundary statistics provided on a few 2D slices of 
volumetric medical data, can be propagated through the entire 
3D stack of images without using the geometric correspondence 
between images. In addition, the image segmentation from the 
CRF can be formulated as a minimum s-t graph cut problem 
which has a solution that is both globally optimal and fast. The 
combination of a fast segmentation and minimal user input that 
is reusable, make this a powerful technique for the 
segmentation of medical images. 

I. INTRODUCTION 
he time required for manual delineation of organ tissues 
by radiologists and radiation oncologists is a major 

bottleneck in the treatment planning process. Expert 
oversight, however, is a necessity due to the legal and moral 
implications of any error in the process. While reliable 
automatic segmentation is a long-term goal, a semi-
automatic method can have immediate and significant 
impact by improving productivity and consistency in the 
tasks. We present a semi-automatic segmentation approach 
to address these challenges. We focus on the case where the 
segmentation task is to separate normal organ tissue, 
referred to as the target, from non-target (background) 
tissue. User interactive input is used to extract statistics 
which determine an energy (cost) function with regional and 
boundary terms. The form of the energy function is based on 
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the probabilistic graphical model: Conditional Random 
Fields (CRF) [9, 10]. Maximum-A-Posterior (MAP) 
estimation inference is given by minimizing this energy 
function. The solution is determined by a graph min s-t cut 
algorithm that rapidly provides a globally optimal 
segmentation. Unlike work that makes simplified 
assumption on structure boundary (Greig et al. [6], Boykov 
at el. [2, 3] and Wu et al [13]) or work that is prone to 
boundary leakage due to boundary contrast (snakes [1, 7, 
14] and level set [12]) and sensitive to initialization of a seed 
point or contour, our work combines interactive expert user 
guidance to collect regional and boundary statistics in a 
probabilistic framework and a fast graph partition algorithm 
that provides a global solution for spatial consistency. 

II. METHODS 

A. User Inputs 
Initially the algorithm is provided training information 

from the expert user via a set of simple and intuitive brush 
strokes on one or a few of the images to be segmented 
trough an interactive GUI. As the user adjusts interactively 
and subsequently accepts a given segmentation, the training 
samples with observed image features are progressively 
collected. For subsequent slices to be segmented, the 
algorithm estimates the parameters of an energy function 
containing both boundary and regional components from the 
training samples as well as new brush strokes. The users can 
retrain the model at any time if the statistics is not 
applicable. The segmentation process is shown in Figure 1. 

B. Conditional Random Field (CRF) 
We begin by defining notation. We represent an image by 

a vector of random variables, Y = (Y1, Y2, …, Yn), where Yi is 
a random variable for the grey level intensity of the ith pixel. 
Let y denote an observed instance of Y with yi the measured 
feature vector at pixel i. We will use a single dimension 
feature - gray level in this work. The segmentation is 
described by a vector X = (X1, X2, …, Xn), Xi ∈{0, 1} of 
binary valued random variables. In any segmentation x pixel 
i must be classified as xi = 0, if it represents the target 
anatomical structure, and as xi = 1 if it is in the complement, 
a non-target tissue. The labeling sequence of X, given an 
observed image Y, can be modeled as a Conditional Random 
Field (CRF) [10] or more precisely, a Discriminative 
Random Field (DRF) [9]. The undirected graphical model is 
shown in Figure 2. CRF is a special type of Markov Random 
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Field (MRF) globally conditional on Y.  Using the 
Hammersley-Clifford theorem, the joint distribution over 
labels X, given image Y, is given by 
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yxp −= , where Z is a normalization 

constant. E(x, y) is an energy function can be expressed in 
term of clique (maximum clique) potentials describing the 
local interactions in a neighborhood system. Here we use 4-
connected neighborhood system in the graphical model and 
let Ni denote the neighborhood of site i, then 
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where ri  and uij are unary and pair-wise potentials 
respectively and β is a constant weight . We call ri the 
regional term for association of a local site i with possible 
label class and uij the boundary term for potential of 
assigning xi and xj to different labels (a smoothness energy) 
when observing image y.  Let fi be a function that maps the 
observed image y to a feature vector at site i, that is fi(y) = yi. 
In this work we let the feature vector to be gray level value 
of image. We then choose 
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Here δ is a Kronecker delta function with 
1),( =ji xxδ if ji xx ≠ , and 0),( =ji xxδ  otherwise. The 

pair-wise interaction term uij is obtained from well known 
general Potts Model. Then (1) can be rewritten to 

∑ ∑
∑ ∑

∈

= =

≠

−−−=

i Njj
jiji

xi xi
ii

i

i i

xxyfyfp

yfpyfpyxE

,

0, 1,

)|)(),((ln                          

)1|)((ln)0|)((ln),(

β
 (4) 

C. Graph Cut 
MAP inference is given by minimizing E(x, y). Further, 

E(x, y) is graph representable [8] and thus we can solve the 
minimization problem using a graph min-cut/max-flow 
algorithm in polynomial time [4, 5]. By finding the 
minimum s-t cut, the cost of the cut (sum of the edges’ cost 
being cut) is the minimum value of the energy function E(x, 
y). The graph construction for solving the minimization is 
shown in Figure 3 and Figure 4 shows an s-t cut example. 

D. Probability estimation 
The major contribution of our method is not using a fixed 

value or any assumption on strength of the pair-wise 

Figure 1: The process of segmenting a stack of medical images in our method.  (1) On one of the images, the user 
specifies the seed pixels interactively by using brush strokes. At this time no statistics is available for segmentation. 
Once the initial result is satisfactory, pixels along the boundary are sampled. (2) On the subsequent image slices, the 
boundary term is estimated from the samples on the training slice. The regional term is also estimated from the new 
brush strokes on the image slice being segmented.  Note that the humane interactions (brush strokes) are significantly 
reduced. (3) Users can always re-train the model if the boundary statistics is no longer applicable.

(1) (2) (3) 

y=yiy2y3…yn 

xi xj 

Figure 2: The CRF graphical model for labeling x given 
2D image y, where {y, xi, xj} is one of the cliques. The 
conditional probability p(x | y) can be factorized by clique 
potentials. 

Figure 3: The edge cost assignment. The cost of the min s-t
cut in the graph minimizes our energy function E in (4). 
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interaction (boundary term) in CRF. The boundary term, as 
well as the regional term, is estimated from the observed 
samples specified by the user. We provide an interactive 
user interface similar to [2, 3] and [11.] The user specifies 
the seed pixels for the target and non-target by paint 
brushes.  

Once the user determines that an agreeable result is 
obtained, we first obtain regional statistics from the seeds 
for both target and non-target regions. For each pixel i, if i is 
a target seed then yi is added to the training set for target, 
otherwise if i is a non-target seed then yi is added to the 
training set for non-target.  We then sample along the 
boundary of segmented target accepted by the user for 
boundary statistics. Each pair of (yi, yj) where i, j are 
neighbors and i ∈ target, j ∈ non-target is added to the 
boundary training set. The sets of regional and boundary 
training samples are used for estimating the probabilities of 
ri and ui,j in (2) and (3) for the subsequence slices unless it is 
re-trained. 

III. RESULTS 

A.  Phantom 
To show the advantage of our method using estimated 

probability for the pair-wise potential function ui,j, we 
synthesize a phantom image and compare our method’s 
segmentation (referred to as graph cut with probability 
estimation, GCPE) with a method based on the assumption 
that favors a high contrast boundary (graph cut with high 
contrast, GCHC). The phantom image contains a rectangle 
target region and various surrounding regions. Some of the 
surrounding regions have higher contrast boundary than the 
target region.  This design reflects some real situations in 
medial images and GCHC will usually mislabel the 
surrounding regions with high contrast boundary as target 
(Figure 5(a), (d)) and extra manual corrections are required 
(Figure 5(b), (e)). Addition of some Gaussian noise to the 
phantom image shows that, even with region terms, i.e. 
likelihoods for intensity of the target and non-target regions, 
GCHC cannot achieve a clean segmentation due to the noise 
pixels that are picked up by using stronger regional terms 

(Figure 5(e)). Note that the GCPE requires much fewer seed 
pixels to obtain good segmentation results (Figure 5(c), (f)). 

B. CT Liver 
An experienced physician manually delineated a complete 

liver of a patient. The delineated contours are used as 
ground truth. There are total of 65 CT slices that intercept 
the liver. Each 2D slice’s dimension is 512x512.  The single 
middle slice is first segmented with GCHC and the boundary 
of the resulting target region is sampled for training. Later 
this statistical information from this single slice is used by 
our method GCPE for estimating the clique potential for all 
other slices without retraining during the whole 
segmentation process for this case.  Once the training is 
done, the GCPE segmentation can be done in 6 seconds for 
each slice, excluding the time needed for users to specify the 
seed pixels. For comparison, we also segment the liver by 
our in house application that implements Region Growing 
(RG) and by Level Set (LS) methods provided by the 
MIPAV package from NIH.  Precision and Recall rates and 
F measure are calculated for each of the methods. The 
numbers are shown in Table 1 and Figure 7 shows some CT 
Slices with segmented contours along with the ground truth. 
Our analysis finds that most of the errors are from slices 
where the liver has several branches. The physician’s intent 
was to draw a contour that contained all the branches, rather 
than follow the boundary of individual branches, in order to 
consider the deformation and motion of the organ during the 
treatment (the lower left image in Figure 6.) In contrast to 
RG and LS, GCPE performs well on the slices where the 
liver boundary is not clearly defined (Figure 7.) On these 
slices, the precision is 0.99 and recall rate is 0.93 for GCPE 
while RG has precision 0.93 and recall 0.91 and LS has 
precision 0.79 and recall 0.93. The F-measure on these slices 
for GCPE, RG and LS are 0.96, 0.92 and 0.85 respectively. 

IV. CONCLUSION AND FUTURE WORKS 
We have proposed a purely statistical semi-automatic 2.5D 

medical image segmentation method that obtains MAP 
estimation of segmentation in Conditional Random Field 
framework. Results of the liver case have shown that the 
boundary statistics from a single slice can be reused for the 
entire image stack without retraining to achieve high 
accuracy. The liver case also shows that our method is not 
prone to boundary leakage as is the case with region 
growing and level set methods. This is due to the global 
optimal solution in the graph cut and the smoothness weight 
in the CRF.  By comparing our method to the original graph 
cut methods, the time required for manual interaction is 
significantly reduced. This is extremely important when the 
target anatomy volume is large and fast and accurate 
segmentation is very much desired. In our future work, we 
will extend our framework to 3D and explore more 
sophisticated image features to proved more accurate 
classification. 
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Figure 4: An s-t cut on a 3x3 image. White dots are target 
pixels and black dots are non-target pixels. The dotted lines 
are edges being cut. The cost of the cut is sum of the edges’ 
cost being cut. 
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(a) (b) (c)

(d) (e) (f)
Figure 5 Segmentation results from the phantom image. The first row is clean image and the second row is the same 
image with Gaussian noises. The target is inner rectangle. (a) GCHC. (b)(d) GCHC with extra brushes. (e) GCHC 
with regional term. (c)(f) Our method GCPE.

Table 1:  The quantified error of the segmentation results against ground truth for the CT liver case containing 65 slices.

 TP TN FP FN Precision Recall F(1) 

GCPE 525303 1871296 7365 58691 0.9862 0.8995 0.9408 
RG 522730 1815425 63236 61264 0.9656 0.8889 0.9256 
LS 519108 1860145 18516 64886 0.8921 0.8951 0.8936 

Figure 6 The contours extracted from our method (cyan) 
and the contours drawn by an experienced physician (red) 
from 9 of 65 CT slices segmented. The middle slice in red 
frame is the slice used for training and its statistics for 
boundary is used for all 65 slices. 

Figure 7 CT slices where the boundary of liver becomes 
blurred. Red: ground truth, Orange: RG, Blue: LS, Filled 
Cyan: GCPE. Boundary leakage is severe in RG and LS.
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