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Purpose: Contouring a normal anatomical structure during radiation treatment planning requires
significant time and effort. The authors present a fast and accurate semiautomatic contour delineation
method to reduce the time and effort required of expert users.
Methods: Following an initial segmentation on one CT slice, the user marks the target organ and
nontarget pixels with a few simple brush strokes. The algorithm calculates statistics from this in-
formation that, in turn, determines the parameters of an energy function containing both bound-
ary and regional components. The method uses a conditional random field graphical model to de-
fine the energy function to be minimized for obtaining an estimated optimal segmentation, and
a graph partition algorithm to efficiently solve the energy function minimization. Organ bound-
ary statistics are estimated from the segmentation and propagated to subsequent images; regional
statistics are estimated from the simple brush strokes that are either propagated or redrawn as
needed on subsequent images. This greatly reduces the user input needed and speeds up segmen-
tations. The proposed method can be further accelerated with graph-based interpolation of alternat-
ing slices in place of user-guided segmentation. CT images from phantom and patients were used
to evaluate this method. The authors determined the sensitivity and specificity of organ segmenta-
tions using physician-drawn contours as ground truth, as well as the predicted-to-ground truth sur-
face distances. Finally, three physicians evaluated the contours for subjective acceptability. Interob-
server and intraobserver analysis was also performed and Bland–Altman plots were used to evaluate
agreement.
Results: Liver and kidney segmentations in patient volumetric CT images show that boundary
samples provided on a single CT slice can be reused through the entire 3D stack of images to
obtain accurate segmentation. In liver, our method has better sensitivity and specificity (0.925
and 0.995) than region growing (0.897 and 0.995) and level set methods (0.912 and 0.985) as
well as shorter mean predicted-to-ground truth distance (2.13 mm) compared to regional growing
(4.58 mm) and level set methods (8.55 mm and 4.74 mm). Similar results are observed in kid-
ney segmentation. Physician evaluation of ten liver cases showed that 83% of contours did not
need any modification, while 6% of contours needed modifications as assessed by two or more
evaluators. In interobserver and intraobserver analysis, Bland–Altman plots showed our method to
have better repeatability than the manual method while the delineation time was 15% faster on
average.
Conclusions: Our method achieves high accuracy in liver and kidney segmentation and consider-
ably reduces the time and labor required for contour delineation. Since it extracts purely statistical
information from the samples interactively specified by expert users, the method avoids heuristic as-
sumptions commonly used by other methods. In addition, the method can be expanded to 3D directly
without modification because the underlying graphical framework and graph partition optimization
method fit naturally with the image grid structure. © 2012 American Association of Physicists in
Medicine. [http://dx.doi.org/10.1118/1.4728979]
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I. INTRODUCTION

In radiation treatment planning, one of the major tasks is man-
ual contour delineation of normal organs in order to design
a treatment that limits the dose delivered to critical normal
structures. This task can be very time consuming and labor
intensive due to the increasing complexity of radiotherapy
techniques. These techniques require more organs to be de-
lineated and increase the number of images to contour due
to an increase of number of slices and new modalities from
modern imaging technology. The time for contour delineation
can range from half hour to more than two hours per patient
depending on the number of structures segmented and plan
complexity. Another concern for manual delineation is uncer-
tainties from variability both between and within observers.
This variability is considerable1 and affects treatment plan
accuracy.

The segmentation methods commonly used for abdominal
regions can be categorized into two groups: image intensity
based and deformable model based. Image intensity-based
methods use image gray scale for classifying voxels by ap-
plying thresholds or, more commonly, by detecting the bound-
ary (e.g., region growing, active contour, level set, live-wire,
and graph cut). Threshold-based methods2, 3 require a priori
knowledge of the organ specific density distribution to gen-
erate a binary image/volume with discontinued regions. The
binary image is further processed with 2D or 3D morphologi-
cal operators to create a closed and connected contour. Region
growing4–6 finds a connected region by growing seed voxels
on the condition that a homogeneity criterion (e.g., mean in-
tensity or texture) remains unchanged when including a voxel
to the region. Active contour and level set methods7–9 evolve
an initial contour iteratively with a speed function usually
defined from gradient-based edge features which extract the
contour toward the boundary. A set of parameters for con-
trolling the shape of contour is also required in these contour
evolution approaches. Live-wire10, 11 and graph cut12, 13 meth-
ods employ graph theory in segmentation. Live-wire finds
the shortest path (the most likely boundary) between mouse
clicks. Graph cut finds the most cost-efficient partitions, i.e.,
partitions separating image voxels into target organ and back-
ground, by minimizing an energy function with both regional
and boundary terms. Like other boundary-based methods,
these methods also use gradient-based image features for de-
termining the cost of the edge for processing in the graphs.
Reliance on the image gradient for delineation can often result
in the target identified region leaking into nontarget territories
due to possible higher contrast of nearby tissues. Deformable
model-based methods14–17 model the shape of organs and use
a principal component analysis (PCA) to capture the major
modes (shape parameters) of variation in the shape observed
using external training data sets. Image profiles around the
training shape are also computed. The model then is automat-
ically deformed with adjusted model parameters in the image
to be segmented, in order to find a pose such that the image
profile best matches the one in the training set. This mini-
mizes the leakage issue in image-based methods. However, a
recent study of liver segmentation18 reports that reliability of

state of the art model-based methods is generally still inferior
to interactive methods due to the large variation of the shapes
of livers.

Expert supervision of the segmentation process for radi-
ation treatment planning is vital, to guard against inaccura-
cies or errors that can lead to organ-at-risk overdosage or tu-
mor underdosage. While the fully automatic methods can be
done without human oversight, in clinical practice, the ex-
perts usually take more time to modify the initial results re-
turned from automatic methods.18 A more desirable approach
is one with an adaptive level of automation, with higher au-
tomation in anatomical regions for which automatic segmen-
tation is reliable, while allowing the expert to focus on those
regions where human judgment can resolve ambiguities. A
semiautomatic approach combines the complementary skills
of a human with that of a computer. Without eliminating
the human-in-the-loop, the computer can achieve segmenta-
tions matching manual segmentations but in a more efficient
way.

We present a statistical semiautomatic contour delineation
method that addresses the above characteristics. A key com-
ponent is that the user provides guidance after an initial seg-
mentation and is able to correct any errors with simple brush
strokes on the image. The algorithm learns from the correc-
tion and so continuously improves its accuracy. Our approach
is based on a graphical model called conditional random fields
(CRF, Lafferty et al.19–21) that defines an energy function to
be minimized for obtaining an optimal segmentation and em-
ploys the graph cut algorithm22 that rapidly provides a glob-
ally optimal solution. Probabilistic likelihood terms defined
in the energy function serve to describe statistical regional
and boundary information of an organ that is provided inter-
actively by the user. By using a statistical approach and re-
quiring less user interactions, the segmentation time and hu-
man fatigue are reduced without loss of accuracy and human
oversight.

II. METHODS

Although our framework is statistical, our method does not
necessarily need large external training data sets, instead one
can obtain training samples online. The user provides guid-
ance via an intuitive interface (Fig. 1). Similar to paint-by-
numbers, the user roughly draws some paint brush strokes
on the image to indicate the target and background regions
(region samples); the method calculates statistics from the
intensities of pixels under the brush strokes to obtain re-
gional information. The brush strokes are either propagated
[Fig. 1(c)] or redrawn as needed [Fig. 1(d)] on subsequent
images. Organ boundary statistics are estimated from the seg-
mentation on the initial image (boundary samples) and prop-
agated to subsequent images. By incorporating both local re-
gional and boundary statistical information, a tissue class as-
signment (represented by a random vector variable, described
in Sec. II.A) for all voxels on the image slice, which is glob-
ally optimal within a probabilistic framework, is therefore es-
timated from this statistical information.
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FIG. 1. (a) Illustration of semiautomatic segmentation process. (b)The user uses brush strokes of one color to identify the target structure, liver in this case, and
brush strokes of a different color for background. (c) Segmentation result is shown shaded so the user can review and modify the result with additional brush
strokes. (d) The brush strokes are automatically carried over to subsequent slices until they are no longer applicable, at which point the user can redraw the
brushes.

Many methods use the image gradient as an a priori as-
sumption on the boundary search and therefore suffer from
two kinds of leakage. One is the leakage caused by a diffuse
boundary and similar intensity profiles between organs. The
other is leakage due to the presence of nearby background
tissue with a stronger boundary than the target organ. One
major contribution of our work to overcome the latter type
of leakage is to introduce a probabilistic boundary term in
the CRF framework. The probabilistic boundary term, learned
from training samples, describes the possibility that there is a
boundary between a pair of two neighboring voxels and there-
fore has no preference for sharp gradient edges.

Two major components of our method are the use of the
formalism of undirected graphical models,also known as ran-
dom fields from probability theory to define an energy func-
tion, and the use of a graph partition algorithm, also known
as graph cut, in graph theory for minimization of the en-
ergy function. In this section, we first discuss these concepts
in the context of previous works (Secs. II.A and II.B), fol-
lowed by explanation of our method (Secs. II.C and II.D) and
how it is different than previous works in the problem domain
and/or the underlying framework from which these methods
are derived. A new contour interpolation method based on our
graphical framework is introduced (Sec II.E.) And the various
methods we use for the evaluation is discussed (Sec. II.F)

II.A. Random fields

Segmentation can be seen as a classification problem. For
an image with N pixels, let x = (x1, x2, . . . , xN) and y = (y1,
y2, . . . , yN) be the instances of random variables representing
a class assignment of image pixels and the observed image,
respectively. Here xi is set to 0, if pixel i ∈ the target object,
or 1, if pixel i ∈ background; yi are the pixel intensities.

Greig et al.,22 in order to denoise binary images, first mod-
eled p(x), the Bayesian prior for the class assignments, with
Markov random fields (MRF) so that the prior can be factor-
ized with local functions defined by neighboring pixels. To
obtain a smooth image, they define a delta function for any
pair of neighboring pixels (pair-wise interaction) to penalize
discontinuity if they are assigned to different classes. Using
Bayes’ rule and the logarithm of the probability, a maximum
a posteriori (MAP) estimation of the true noise-free image
x* = argx max p(x | y), is directly obtained by minimizing the
following energy function:

ξ (x, y) = −
N∑

i=1

ln(p(yi |xi)) + β

N∑

i=1

∑

j∈Ni

δ(xi, xj ), (1)

where Ni is set of neighboring pixels of pixel i and β is a con-
stant for weighting the penalty term δ, which is 1 if xi ̸= xj,
i.e., at the boundary between foreground and background. The
larger the β, the smoother is the estimated image. The mini-
mization is intended to obtain a classification assignment that
has as few disconnected regions as possible and thus removes
noise.

Following Greig’s work, Boykov et al.12, 13 redefined the
energy function in Eq. (1) for image segmentation. While the
log-likelihood remains the same as Eq. (1) and can be viewed
as the regional term, the constant β is replaced with λBij. Bij

is defined as

Bij = exp
(

− |yi − yj |2

2σ 2

)
· 1
dist(i, j )

. (2)

Bij is a new pair-wise function that represents the edge fea-
ture distribution in the form of an exponential controlled by
a constant σ and weighted by distance (dist) between two
neighboring pixels. It can be viewed as the boundary term,
weighted by a constant λ, for pixel i and j since it contributes
to the energy only when xi ̸= xj because of the δ function in
Eq. (1). The larger the difference of intensities the more likely
there is a boundary between them.

This image gradient term is a common edge feature that
has been widely used in other boundary-based segmenta-
tion methods based on active contour23, 24 and level set25, 26

and other graph-based methods.27 The major issue of using
this gradient-based term is the leakage problem: in situations
where the target organ’s boundary has lower contrast than
nearby tissue such as bone, it is more likely that the high
contrast boundary of the surrounding tissue is erroneously ex-
tracted as the target’s boundary.

With the introduction of y in Eq. (2), the pair-wise in-
teraction term Bij cannot model the prior p(x) and therefore
Boykov’s energy function does not have the statistical inter-
pretation in contrast to Greig’s energy function derived from
the MRF-MAP framework. The problem becomes how to de-
fine an energy function of x and y suitable for image seg-
mentation so that by minimizing the energy function the esti-
mated optimal segmentation x* maximizes P(x | y). This ques-
tion is answered with the formal introduction of the CRF
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(Refs. 19–21) that models the conditional probability P(x | y)
directly. We describe our method based on CRF in Sec. II.C
below.

II.B. Graph cut minimization

Greig et al.22 show that the minimization problem of
Eq. (1) can be solved by a graph minimum s-t cut. A 2D
image can be represented by a grid graph. A graph parti-
tion (or cut) separates the pixels into two groups, one be-
longing to the target object and the other to background,
while the cost of the cut is the minimum of the energy
function.

A graph G = (V, E) contains a set of nodes V correspond-
ing to pixels and a set of edges E that connects the nodes. Ad-
ditionally, there are two other nodes, called terminals. One is a
source, s, representing the target class and the other is a sink, t,
representing the background class. Each node is connected to
s and t as well as to its neighbors based on the neighborhood
system, for example, a 4-connected neighborhood system in
the 2D grid. A non-negative weight (cost) is assigned to each
edge. A cut separates the nodes around the terminals such that
nodes in one group remain connected to s after the cut, nodes
in the other group remain connected to t, and there is no edge
that connects the nodes across the groups after the cut. The
cost of a cut is the summation of weights of the edges being
cut. A minimum cut finds a solution such that the cost of the
cut is minimal.

Based on the energy function defined, the log-likelihood
term for the foreground at pixel i, −ln p(yi | 0), is the cost
assigned to the edge connected to t and the log-likelihood
term for the background at pixel i, −ln p(yi | 1), is the cost
assigned to the edge connected to s. The pair-wise interac-
tion term is assigned to the edge connected to its neighbors.
Figures 2(a) and 2(b) show the edge cost assignment for en-
ergy function defined by Greig et al.22 [Eq. (1)] and Boykov
et al.12, 13 [Eq. (2)], respectively.

The major advantage of using a graph minimum s-t cut
is that, unlike an iterative optimization scheme, the solu-
tion is globally optimal and computationally efficient.22 Kol-

mogorov and Zabih28 further showed the kind of energy func-
tions that can be minimized. Based on his theorem we defined
our energy function described in Sec. II.C.

II.C. Conditional random field framework and the
energy function

Here we briefly summarize the mathematical formulation
in our previous work for segmentation problems. We refer to
Hu et al.29 for a detailed description of the CRF framework
and how the energy function is derived from CRF.

As described in Sec. II.A, for medical image segmentation,
the task is to assign a tissue class label for each voxel in
the image. A MAP estimation of such an assignment is to
find an instance x that maximizes the posterior probability
P(x | y). CRF is the graphical model of this conditional
probability of the distribution of X conditional on Y with
Markov factorization property, that is, the joint probability
of all pixels’ class assignment can be factorized individually
for each pixel. Thus, we can define a global energy function
of x and y to be a summation of local potentials in the field
and the minimization of the energy is equivalent to MAP
estimation of x. The local potentials are defined over a voxel
i and its neighbors Ni in a neighborhood system, for example,
Ni = {j | dist(i, j) = 1}. For segmentation purposes, we define
the energy function ξ having unary potential r and pair-wise
interaction potential u:

ξ (x, y) =
∑

i

r(xi, yi) + β
∑

i

∑

j,j∈Ni

u(xi, xj , yi, yj ), (3)

where

r(xi, yi) = − ln p(yi | xi), (4)

u(xi, xj , yi, yj ) = − ln p(yi, yj | xi ̸= xj ). (5)

The interpretation of definitions above is straightforward:
the term r estimates how likely the voxel i is associated to a
tissue class based on its image feature (in this study the voxel
intensity) yi. We refer to r as a regional term. The term u
estimates how likely that there is a boundary between voxel

FIG. 2. The edge cost assignment of the graph to solve the minimization of three different energy functions using min s-t cut. A non-negative weight (cost)
is assigned to each edge. Min s-t cut is usually solved through a maximum flow algorithm.22 The arrow of an edge shows the direction of the flow. (a) Greig’s
energy function in Eq. (1) for image binary denoising. (b) Boykov’s energy function in which a heuristic boundary term Bij is defined in Eq. (2) for image
segmentation. In addition, seed points for the classes, labeled h for target and j for nontarget, can be indicated by users. For those seed nodes, either a very
large number K or zero is assigned to the cost of links to s and t to serve as hard constraints. (c) Our energy function, Eq. (3), derived from CRF, in which
the probabilistic boundary term Eq. (5) is defined for image segmentation and is used for cost of edges connecting neighboring voxels. (d) An example of a
minimum cut. Dashed lines indicate the edges being cut. The minimum cost of a cut to separate nodes 1, 2, and 3 into two separated groups is 2 + 4 + 8 + 2.
After the cut, node 1 and 2 remain connected to s and are classified as target while node 3 remains connected to t and is classified as nontarget.
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i and voxel j, i.e., xi ̸= xj, based on their image features yi

and yj. We refer to u as a boundary term. β is a weighting
constant as shown in Eq. (1).

It should be noted that the energy function in Eq. (3) is
similar to Greig’s equation (1) and Boykov’s equation (2). In
fact, Boykov’s boundary term Bij can be viewed as an alter-
native pair-wise interaction potential function uij in our CRF
framework. There is, however, a fundamental difference on
how the energy function is derived and whether there is an
underlying theoretical framework to show the statistical in-
ference. Greig’s method used Bayes’ rule: p(x | y) ∝ p(y | x)
p(x). Maximizing p(x | y), i.e., MAP, is equivalent to minimiz-
ing the negative logarithm of the right-hand part from which
the energy function is derived in Greig’s denoising applica-
tion. Boykov’s method changed the energy function to include
Bij [Eq. (2)] for image segmentation. By doing so, the en-
ergy function, however, lost its statistical inference. On the
other hand, we derive our energy from CRF. CRF models
p(x | y) directly, i.e., p(x | y) ≈ exp[−ξ (x, y)] where ξ is some
non-negative function defined based on the graphical struc-
ture in the random field. ξ becomes our energy function and
maximizing p(x | y) is equivalent to minimizing ξ . With ξ , we
can therefore define a statistical pair-wise interaction potential
function [Eq. (5)] that describes the energy for the boundary
in the application of image segmentation while maintaining
the framework’s statistical inference. This new boundary term
is not simply an edge detector favoring high contrast edges
but is learned from training samples, thus consequently min-
imizes the leakage problem to which gradient-based methods
are prone.

To exploit an efficient graph cut algorithm in order to min-
imize the energy function, we focus on two-class (target and
nontarget tissue) segmentation in this work.With the defini-
tion of Eqs. (4) and (5), since

u(0, 0, yi, yj ) + u(1, 1, yi, yj ) ≤ u(0, 1, yi, yj )

+ u(1, 0, yi, yj ), (6)

the energy function in Eq. (3) is graph representable28 and
can be minimized by a graph cut. We construct the graph
for min s-t cut similar to Greig’s and Boykov’s energy mini-
mization as we described in Sec. II.A. For the edge connect-
ing neighboring nodes, we assign our boundary term βuij as
the edge cost. Figure 2(c) shows the difference on how the
edge cost is assigned in our method. Figure 2(d) shows an
example of a cut.

II.D. Probability estimation

We do not rely on a priori knowledge of what models, e.g.,
Gaussian or Gaussian mixture, are appropriate for describ-
ing the target structure’s intensity distribution and boundary’s
pair-wise intensity distribution. Instead we use nonparametric
estimators of the probability density from samples for both
regional and boundary terms. In particular, we use the aver-
aged shifted histogram (ASH) method,30 which approximates
a kernel estimator when the bin size for weighted averaging
neighboring bins is sufficiently small. Regional samples are

collected from voxels under the paint brush strokes used by
the expert to identify portions of the target organ and back-
ground (Fig. 1). The brush strokes are automatically carried
over to subsequent CT slices to save interaction time. The
user can always redraw the brush strokes if they are no longer
suitable to the current slice. Since on the first slide there is
no initial boundary sample available, the suggested algorithm
uses a boundary term given by Eq. (2). Following this ini-
tial segmentation the user can use additional brush strokes to
correct the result until a satisfactory result is obtained. Al-
ternatively, the user can manually draw an initial contour for
the target organ. Once the user accepts this initial segmenta-
tion, the method collects pair-wise samples around the bound-
ary. These boundary samples are then used for estimating
our boundary term in the energy function for the subsequent
slices. The user can always retrain the method for the bound-
ary term using the current accepted segmentation.

II.E. Graph-based contour interpolation

It is common practice for physicians to avoid delineating
contours on every slice in a 3D image stack. Instead they may
draw contours on every other slice and rely on interpolation
of the drawn contours for the remaining slices. Conventional
contour interpolation from surface tiling has difficulty with
solving organ branching as the topology of contours changes
on adjacent slices. Our method solves the branching problem
by means of the graph partition.

We propose a graph-based interpolation method that
reuses the graphs from the already segmented adjacent slices
(Figure 3). Let slice q be the slice where the contour is
to be interpolated and slices p and r be the two adjacent
slices directly above and below. A node is deemed to require
re-estimation if its adjacent nodes on slices p and r are as-
signed to two different classes by our graph cut segmentation.
For a node requiring re-estimation, the edge costs are esti-
mated from the sample as regular ones in full segmentation.
For a node i on slice q that does not need re-estimation, that
is, its adjacent nodes directly above and below are assigned

FIG. 3. Graph-based interpolation. The solid line contours are segmented
from our graph cut method on the two slices p and r. On the slice q being
interpolated, the nodes in black do not need re-estimation since their adja-
cent nodes on slice p and r are assigned to the same class. Their edge costs
are interpolated as Eq. (7) from slices p and r. The node in white needs re-
estimation since its adjacent nodes on slice p and r are assigned to two dif-
ferent classes. A graph min-cut is then applied to the partially interpolated
graph on slice q for segmentation.
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to the same class, we calculate the interpolated edge costs w
for node i directly from its adjacent nodes above and below
on slice p and r as follows:

w
q
i = dpq

dpq + dqr

wr
i + dqr

dpq + dqr

w
p
i , (7)

where dpq and dqr are the distances from slice q to slice p, and
slice q to slice r, respectively. The interpolated graph then is
used to calculate the min s-t cut and obtain the contour.

II.F. Evaluation

We refer to our method as semiautomatic adaptive statisti-
cal segmentation, or SAASS in our comparison studies.

II.F.1. Phantom

To illustrate the advantage of our proposed probabilistic
pair-wise interaction function ui,j [Eq. (4)] for the bound-
ary energy, we synthesize a phantom image containing ver-
tebral structures of the human body using the NCAT phan-
tom software.31 We compare SAASS with Boykov’s graph
cut method12, 13 which uses a boundary term defined in
Eq. (5) that favors a high contrast boundary. Gaussian noise
of 4% standard deviation is added to the image for testing the
sensitivity to noise. The result is compared visually.

II.F.2. Clinical cases

For clinical cases, liver segmentation of ten previously
treated patients and left kidney segmentation of eight pre-
viously treated patients with contrast-enhanced CT images
were examined. In our study, the clinical contours of liver and
kidney, drawn manually the physicians, served as the ground
truth. We set β in Eq. (3) to Eq. (2) in this study for SAASS.

II.F.2.a. Accuracy. To evaluate the accuracy of our seg-
mentation method in clinical cases, we used two objective
evaluations for quantified comparison to other methods. The
two objective evaluations are (i) overlay analysis to measure
agreement between SAASS-predicted and manually drawn
(ground truth) segmentations and (ii) surface distance be-
tween SAASS-predicted surface and ground truth.

For the overlay analysis, the terms true positive (TP), true
negative (TN), false positive (FP), and false negative (FN)
are used to compare the SAASS classification label assign-
ment with that from ground truth. In the context of liver
segmentation, for example, TP is the number of predicted
liver voxels that are also inside the ground truth segmenta-
tion and FP is the number of predicted liver voxels outside
ground truth. By definition, sensitivity is TP/(TP+FN), speci-
ficity is TN/(TN+FP) and dice similarity coefficient (DSC) is
2×TP/(TP+FN+TP+FP). Evaluation of the accuracy of the
boundary from contour delineation is particularly important
to radiation treatment planning, as it affects the reliability of
the treatment plan in limiting dose to normal tissues. To mea-
sure how far the two surfaces are from each other, we use
the concept of the two-sided Hausdorff distance.32 For each
voxel on the surface of the predicted segmentation, we cal-

culate the distance to the nearest voxel on the surface of the
ground truth. We then repeat in reverse order from the ground
truth to the predicted surface. Defining the two average dis-
tances per surface voxel as ds→g and dg→s, respectively, the
larger of the two average surface distances, i.e., max{ds→g,
dg→s}, is chosen as the surface distance metric.

For comparison to other well-known boundary-based
semiautomatic methods, we also carried out liver and kid-
ney segmentations using region growing4 (RG) developed in-
house and state-of-art level set methods in ITK, a well-known
medical image processing toolkit supported by NIH. The ITK
level set methods are implemented in the MIPAV package33

from NIH (MIPAV-LS) and in Seg3D package34 from Univer-
sity of Utah (Seg3D-LS). The two packages are widely used
standards. RG is an implementation of the classic method.
The homogeneity criterion is the mean intensity value inside
the region. The threshold for determining a pixel to be in-
cluded in the region or not is chosen interactively so that the
best result is achieved. The MIPAV-LS is a real-time interac-
tive tool. The user moves the mouse around the target organ’s
boundary and the level set tool updates the contour automat-
ically in real-time as the cursor moves. No parameters need
to be specified. Similar to RG, we choose the best segmen-
tation visually when using MIPAV-LS. Seg3D-LS is an itera-
tive level set method that limits the region where the contour
evolves using thresholds. We use 600 iterations for liver cases
and 160 iterations for kidney cases. The threshold range is
mean ±3 standard deviation in image intensity for liver and
±2 standard deviation for kidney. Curvature, propagation and
edge weights are default values at 1, 1, and 0, respectively.

We compare our graph-based interpolation method
(Sec. II.E) with the mesh-based interpolation method35 de-
veloped in-house in our treatment planning system. DSC is
used for the comparison with manually drawn contours as the
ground truth.

II.F.2.b. Acceptability. Physicians subjectively evalu-
ated the accuracy of the semiautomatic contours. Three
radiation oncology physicians experienced in organ delin-
eation were recruited to review the SAASS contours of ten
liver cases. A score is assigned to each contoured slice:
3 = all the three experts agree that no modification is
required; 2 = modification is required by one expert; 1
= modification is required by two experts; 0 = modification
is required by all three experts. The scores are averaged over
the slices for each case.

II.F.2.c. Interobserver and intraobserver variation. One
physician and one resident were recruited to delineate left kid-
ney in five patient cases. In each case, the observer manually
drew the contour twice using the paintbrush tool in our in-
house treatment planning system and twice using our SAASS
tool. The contours from the first round were not visible to
the observers when they delineated the contours at the second
round. For interobserver variation, only the contours from the
first round were used for evaluation.36 The volumes of the
left kidneys from the segmentations as well as the difference
of the volumes between the segmentations are calculated for
plotting the well-known Bland–Altman plots37 to show the
agreement.
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FIG. 4. Segmentation results from the phantom image. (a) On noise-free
images, Boykov’s boundary term favoring high contrast [Eq. (5)] is prone
to leakage if a high contrast boundary is present in nearby tissue (arrow).
(b) Additional brush strokes are needed to exclude neighboring tissue.
(c) On an image with 4% Gaussian noise, using Boykov’s boundary term
and strongly weighted regional term results in an irregular boundary and pix-
els within the segmentation are excluded. (d) In contrast, our method SAASS
requires fewer brush strokes and preserves piece-wise continuity.

II.F.2.d. Time saving. We manually timed the first round
of the segmentations in interobserver and intraobserver vari-
ation study of five kidney cases for comparing the segmen-
tation time of using manual tool and SAASS. The timer
started at the first brush stroke and stopped at the last brush
stroke when the observer finished the whole left kidney.
The time includes all the GUI interaction. For each case,
the mean time per slice is calculated and then the mean
times and variations of five cases are averaged for each
observer.

III. RESULTS

III.A. Phantom

Figure 4 is a visual comparison to demonstrate the prob-
lem of gradient-based boundary term that favors high con-
trast in Boykov’s method [Eq. (2)] and the advantage of our
probability-based boundary term [Eq. (5)] in SAASS. The
target structure is the vertebra indicated by the red brush
strokes while the blue brush strokes indicate the background.
Figure 4(a) shows that Boykov’s method (λ = 10, σ = 6)
mislabeled the nearby rib structures due to their higher con-
trast. This mislabeling necessitated additional manual correc-
tions [Fig. 4(b)]. The addition of Gaussian noise to the phan-
tom image shows that, even with heavily weighted regional
terms (λ = 0.1), i.e., likelihood of the pixel intensity to be-
long to target and nontarget regions, Boykov’s method cannot
achieve a clean segmentation (piece-wise continuity) due to

FIG. 5. Liver segmentation of a patient. Typical image slices from superior
to inferior are shown. Physician-drawn contours in dark gray and SAASS
contours are in light gray.

noisy pixels [Fig. 4(c)]. In contrast, the SAASS requires fewer
brush strokes to obtain correct and clean segmentation results
[Fig. 4(d)].

III.B. Clinical CT images

Instead of using a training set, we trained our method in-
dividually with locally obtained samples (Sec. II.D) in each
case. For each study, a single slice in the middle of the 3D
stack is first segmented manually for boundary training. The
boundary samples from this training slice are used to estimate
the statistical boundary interaction potential for the remain-
ing slices without retraining. The single slice boundary sam-
ples provided sufficient accuracy in our study while saving
the time that would have been needed for rebuilding a 2D
ASH histogram on every slice. Regional statistics are obtained
adaptively from the seed voxels under the user specified brush
strokes.

Figures 5 and 6 show the contours from SAASS and
the contours drawn by physician for a liver case and a kid-
ney case, respectively. SAASS contours closely matched the
physician contours. The second image in the top row of the
liver case shows some discrepancy in the upper right region,
where the boundary contrast is low. SAASS handled the in-
tensity inhomogeneity of the kidney well due to the use of
regional statistics in our energy function.

Figure 7 shows CT slices where SAASS performs well
on the slices where RG, MIPAV-LS, and Seg3D-LS suffer
from leakage into surrounding tissue, due to the low-contrast
boundary between target organ and surrounding tissue or the
relative high contrast of the surrounding tissues. Both the
probabilistic boundary terms and the user guided approach
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FIG. 6. Kidney segmentation of a patient. Typical image slices from superior
to inferior are shown. Physician-drawn contours in dark gray and SAASS
contours are in light gray.

through interactive paint brushes contribute to the superior
performance of SAASS.

III.B.1. Overlay analysis

Figure 8 shows comparison of the sensitivity, specificity,
and DSC between the four methods in liver and kidney seg-
mentations. SAASS has the best DSC in both liver (94 ± 3%)
and kidney (93 ± 2%) among these methods.

III.B.2. Surface distance analysis

Figure 9 summarizes the mean Hausdorff surface dis-
tances (over boundary voxels) from SAASS as well as seg-
mentation from RG, MIPAV-LS, and Seg3D-LS methods in
liver and kidney. The mean±one-standard-deviation Haus-

FIG. 8. Overlay analysis for liver and kidney segmentation. SAASS has the
best DSC and smallest variation among the four methods compared.

dorff distances for SAASS are 2.13 ± 0.49 mm over the ten
liver cases and 1.40 ± 0.39 mm over the eight kidney cases,
which are smaller than the other methods.

III.B.3. Subjective measure-acceptability score

Table I shows the expert evaluation scores for ten liver
cases. Among a total of 639 slices, 83% required no modifica-
tion, 11% required modifications by any single physician, 5%
required modifications mutually agreed by any two physicians
and 1% required modification agreed by all three physicians.

FIG. 7. Comparison of liver segmentations: SAASS (dashed white), RG (black), MIPAV-LS (dark gray), and Seg3D-LS (light gray). RG, MIPAV-LS, and
Seg3D-LS segmentations show leakage (arrows) since they are sensitive to low-contrast boundary and surrounding high contrast tissues.
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FIG. 9. Mean Hausdorff distance comparison in ten liver cases and eight
kidney cases. Error bars show the minimum and maximum distances over the
cases.

III.B.4. Graph-based interpolation

Figure 10 compares the sensitivity, specificity, and DSC
between our graph-based interpolated method (Sec. II.E)
in SAASS and traditional surface mesh-based interpolation
method in five liver cases. Only the slices where the liver
topology changed from two lobes to three lobes are used for
comparison. Our method has higher DSC (93.3 ± 3.8%) than
mesh-based method (92.7 ± 3.9%). Figure 11 shows the slices
where SAASS shows its advantage over meshed-based meth-
ods. The top row of images shows a change in liver topology:
from one lobe in the left image to three lobes in the mid-
dle and right images. Our graph-based interpolation method
avoids the branching problem that is difficult to solve using
surface tiling interpolation (top middle image). Even without
a change of topology, our method still shows improved perfor-
mance over mesh-based methods which do not use image in-
formation (bottom middle image). Our method uses regional
information from the previously constructed graphs of the ad-
jacent slices as well as local regional information re-estimated
in the transitional area where the nodes of adjacent slices are
segmented into different tissue classes.

III.B.5. Interobserver and Intraobserver analysis

Figure 12 shows a Bland–Altman plot of interobserver
agreement in five kidney cases. The x axis is the volume
of kidney and y axis is the absolute difference in vol-
ume. SAASS has smaller variation compared to the manual
method. Figure 13 shows the Bland–Altman plots of intraob-

TABLE I. Scores of ten liver cases evaluated by three physicians. See text for
details of the scoring rules.

Liver case (number of slices)

Score 1(63) 2(71) 3(53) 4(62) 5(76) 6(68) 7(66) 8(45) 9(72) 10(63)

3 55 58 43 42 65 54 57 38 62 56
2 2 10 9 9 9 6 6 4 7 7
1 6 2 1 9 1 7 3 1 1 0
0 0 1 0 2 1 1 0 2 2 0

Average 2.78 2.76 2.79 2.47 2.82 2.66 2.82 2.73 2.79 2.89

FIG. 10. Sensitivity, specificity, and DSC measures comparison between
SAASS graph-based interpolation and mesh-based interpolation. Mean of the
measures in five liver cases are shown.

server agreement for Observer 1 and Observer 2. In both ob-
servers, SAASS has better agreement compared to the manual
method.

III.B.6. Time saving

Figure 14 shows mean time per slice for segmentations of
five kidney cases from the two observers. Compared to man-
ual segmentation, on average, SAASS performs faster, 12%
and 29% for Observer 1 and Observer 2, respectively, than
the manual delineation. Based on our recorded video, one ob-
server tended not to review the manual segments once they
were done, but did spend more time reviewing the SAASS
segments.

IV. DISCUSSION AND CONCLUSIONS

Manual delineation of organs and other structures in CT
is one of the most time consuming processes performed in

FIG. 11. (Top row) Image slices where liver topology changes. The light
gray contours in the middle slice are interpolated from the dark gray contours
in the adjacent slices on the left and right based on surface tiling method,
but suffer from topological change. The pale gray contours are result of our
graph-based interpolation method (Sec. II.E). (Bottom row) Even without
topological change, our method still shows improved performance over sur-
face tiling (middle), due the utilization of image information.
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FIG. 12. Bland–Altman plot of interobserver agreement in five kidney cases.
Absolute value of the difference is used in y axis. SAASS shows better re-
peatability and the difference is irrelevant to the size of volumes.

radiation treatment planning. It becomes more problematic
with greater amounts of image data produced by recent, as
well as future, advanced imaging devices. Researchers have
investigated various automatic and semiautomatic segmenta-
tion methods for radiation treatment planning. The clinical
usability of automatic methods, however, is commonly lim-
ited by speed due to the iterative convergence approach, espe-
cially for a large organ; by robustness due to poor model ini-
tialization, weak image features and large variation in organs;
or restricted due to application-, site-, and structure-specific
heuristics techniques that need special parameter tuning. The
goal of our work is to develop a method that avoids these
limitations so that the segmentation tool is easy to use with
high level of automation while maintaining human experts’
oversight.

We have proposed a purely statistical semiautomatic
2.5 D medical image segmentation method that obtains a
MAP estimation of image segmentation in a CRF frame-
work via a noniterative and rapid graph cut optimization. Our
method learns statistical boundary and regional information
from a few experts’ brush strokes to achieve accuracy similar
to manual segmentation but with less fatigue and time.

Results with clinical images indicate that the boundary
statistics from a single slice can be reused for the entire image
stack without retraining to achieve high accuracy. It should be
noted that the boundary training can also be adaptive, that is,
the boundary samples are accumulated from previously seg-
mented slices. This, however, needs further investigation on
the trade-off between accuracy improvement and the time ex-

FIG. 14. Comparison of performance of the manual method and SAASS.
Mean time per slice for segmentations of five kidney cases is calculated from
the two observers. The error bars show one standard deviation.

pense on updating the histogram. Results in liver also show
that our method is less prone to boundary leakage than region
growing and level set methods. This is due to the use of both
probabilistic regional and boundary terms in our energy func-
tion derived from CRF. Consequently, because of this statis-
tical framework, our method requires less brush strokes than
previous graph cut methods and manual methods thus the time
required for manual interaction is reduced. In interobserver
and intraobserver analysis, our method shows better agree-
ment than the manual method thus provides more consistent
contour delineation while the delineation time is considerably
reduced. This is extremely important when the target anatomy
volume is large and fast and accurate segmentation is highly
desired.

In the evaluation of clinical images, we have used
physician-drawn contours of liver and kidney as a ground
truth. Defining a ground truth in a medical context, however,
is not trivial. One of our referenced papers36 in the applica-
tion of liver transplants establishes true ground truth volume
by measuring the volume of surgically removed livers. Hu-
man delineations of medical images are not a true gold stan-
dard but are the most objective solution.18 We refer to Bouix
et al.38 for a comprehensive discussion on ground truth in
segmentations.

As we mentioned in Sec. II, for some organs the inten-
sity distributions of target organ and nearby nontarget tis-
sue are nearly identical and the boundary between them is
of low contrast, such as the liver left lobe and the apex of the
heart shown in Fig. 15(a). For such cases, all segmentation

FIG. 13. Bland–Altman plots of intraobserver agreement for Observer 1 and Observer 2. In both observers, SAASS has better agreement compared to the
manual method.
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FIG. 15. An example to demonstrate leakage. (a) The image shows blurred boundary between the liver left lobe and the apex of the heart. (b) Leakage of the
initial segmentation due to blurred boundary. (c) An additional brush stroke to remove the leakage. The ground truth contour is shown.

algorithms that are based on intensities, including ours, will
have leakage if there is no evidence in the intensity image for
a change from one tissue to the next. The algorithm classi-
fied part of the heart as liver, shown in Fig. 15(b). In such
cases extra information is needed to correctly separate the tis-
sues. Our algorithm naturally integrates this information from
expert intervention. The boundary is corrected with an addi-
tional brush stroke as shown in Fig. 15(c). The CRF frame-
work, however, allows the inclusion of an organ-specific prob-
abilistic atlas,39, 40 which will provide positional probability
estimation that works as a shape prior in addition to our prob-
abilistic regional and boundary terms for better control of the
leakage.

Our framework using CRF is extremely flexible. It is not
organ-specific or modality-specific. Preliminary work indi-
cates that the technique is also applicable to MR but an exten-
sive evaluation of other modalities is outside the scope of this
paper. Figure 16 shows examples of bladder and heart seg-

FIG. 16. Examples of segmentation on other organs and other modalities:
(a) bladder and (b) heart in CT; (c) brainstem and (d) parotid in MR images.
We note that MR inhomogeneity in pixel intensity should be corrected prior
to intensity-based segmentation methods.

mentations in CT, and brain-stem and parotid segmentation in
MR images.

Our current investigations are to extend this method to 3D
and explore more sophisticated image features, such as the
probabilistic atlas, within the same CRF framework that de-
fines the energy function and uses the graph cut optimization
scheme.
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