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ABSTRACT
To efficiently use the limited bandwidth available on the downlink from satellite to ground station, imager data
is usually compressed before transmission. Transmission introduces unavoidable errors, which are only partially
removed by forward error correction, and packetization. In the case of the commonly used CCSD Rice-based
compression, it results in a contiguous sequence of dummy values along scan lines in a band of the imager data.
We have developed a method, which is capable of using the image statistics to provide a principled estimate of the
missing data. Our method outperforms interpolation yet can be performed fast enough to provide uninterrupted
data flow. The estimation of the lost data provides significant value to end users who may use only part of the
data, may not have statistical tools, or lack the expertise to mitigate the impact of the lost data. Since the
locations of the lost data will be clearly marked as meta-data in the HDF or NetCDF header, experts who prefer
to handle error mitigation themselves will be free to use or ignore our estimates as they see fit.

1. INTRODUCTION
Compression of space-based imager data is both necessary and desirable for making most efficient use of precious
bandwidth. Compression is particularly important for the limited bandwidth downlink from satellite to ground
station. Not only is this link the most bandlimited but it is also subject to unavoidable transmission noise. Such
noise will necessarily introduce errors into the raw data stream. To reduce the number of such errors, the data
is typically encoded with a forward error correcting code. This partially protects the data from error but it is
impossible to prevent all errors from finding their way into the data stream.

Compression both helps and aggravates the problem of protecting the data from error. It helps indirectly
because the reduced size of the compressed data stream allows for the extra room needed by forward error
correcting encoding. Compression directly aggravates errors because even single bit errors can cause many
more bits to contain errors after decompression. This processes is called error propagation. One way to limit
error propagation is to break the data into independently compressed packets. Breaking the data into packets
guarantees that the worst case scenario for a single bit error is the loss of a packet. This is the strategy used by
the CCSD Rice-based compression scheme developed by Pen Shu of NASA-Goddard, see .1

The packets in the CCSD Rice-based compression are usually defined by breaking the data up along scan-
lines. Thus a lost, or partially lost packet results in errors in starting at pixel and continuing forward along
the scan lines until the packet ends. While the true value of these corrupted pixels is lost, the identity of the
corrupted pixels is known. The CCSD standard calls for the corrupted pixels to be filled in with dummy values
upon decoding. It is often the case that locations of errors are also stored in the HDF or NetCDF header as well.

Leaving the data with dummy values is problematic for several reasons. It puts the burden upon the data
product consumers to estimate the missing data despite the fact that they may have little or no knowledge of
how to do that. It is important to note that many end users will often work with partial data, selected bands or
regions of interest. This both magnifies the impact of missing data and makes it harder to accurately compute
a principled estimate.

We will show that using a statistical regression, we can reconstruct the missing data with a high degree of
accuracy. We will show our approach outperforms either spatial or spectral interpolation. Because our estimation
will only be applied to the small amount of data, which would otherwise be lost, we will demonstrate that the
throughput of the algorithm should be fast enough to insure uninterrupted data flow. It is essential to note that
any estimated data will be indicated as such in the HDF or NetCDF header so it can be ignored if desired.
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2. RELATED WORK
In this section we review the field of digital image inpainting from the computer-vision literature which is closely
related to our problem of error correction of multispectral images. Inpainting is the art world’s term for what
researchers in image processing call “image interpolation”. The objective of inpainting algorithms is to restore an
incomplete image by filling in the missing parts based on the partial observations. Sapiro gave a detailed account
of the motivations and numerous applications of image inpainting and it was his group who first borrowed the
term inpainting from museum restoration artists.

Inpainting algorithms can roughly be grouped into three types: variational/partial differential equation
(PDE), statistical, and exemplar based methods. The variational/PDE based methods solve optimization prob-
lems constrained on the known data on the boundary of the hole. In variational methods the problem is defined
through a functional of the original image and the restored image. An inpainting solution is obtained by finding
the restored image which minimises the functional. This optimisation problem can be solved by using calculus
of variation leading to the specific Euler-Lagrange PDE which has to be solved numerically. A few examples of
this type of methods can be found in the work by Ballester et al. 2 and Chan et al. 3,4 There also exists PDE
based methods in which a PDE is defined directly .5,6 This type of methods are able to reconstruct regions with
evidence of large scale deterministic geometric structures at the boundary of the hole, such as an intensity edge
going through the hole. These methods generally work best on small sized regions. However, in the case where
the surroundings of the hole consist of stochastic textures, such methods tend to produce blurred reconstructions
and not to reproduce the texture.

The statistically based methods,7–11 in which statistical models of the image content are constructed and
used for sampling a new image content in the hole. These methods are mainly based on techniques for texture
synthesis and as such work well for regions with stochastic and irregular textures. However, for regions with
large scale deterministic geometric structures, such methods have a tendency to fail or converge slowly toward a
good solution.

Exemplar based methods 12,13 search for similar image patches, usually in the image surrounding the hole,
and paste a filling of the hole using the found patches. For a specific point on the boundary, exemplar based
methods consider a patch consisting of neighboring pixels. The patch will consist of pixels which are either in the
hole or on the boundary and the surrounding image. A similarity measure is used for comparing the known part
of the current patch with other patches in the known image. The reconstructed data flows from the boundary
into the hole. Usually a filling or visiting order strategy is employed. Criminisi et al. 13 choose the filling order
based on a gradient measure on the boundary to the hole, which leads to an order where patches at high gradient
edges going into the hole are visited first. Exemplar based methods combining ideas from statistical texture
methods with search for exemplar patches also exist .14,15 Exemplar based methods can faithfully reconstruct
small regions with both stochastic texture and deterministic geometric structure. In the methods by Criminisi
et al. 13 and Efros et al. ,14,15 once a patch has been pasted into the hole the reconstructed data cannot be
changed at a later stage. The impact of this is that if a less optimal choice of patch is made, the algorithm can
never recover from it. This can for instance be seen in the case where an edge is being occluded by the hole.
In this case two edges will flow in from opposite sides of the hole, and this effect makes it difficult to obtain a
reconstruction where the two edges meet. This issue is especially visible for large holes with large scale structures
meeting at the middle, but it also occurs for small scale textures. This one-shot approach makes the choice of
filling order crucial in order to obtain a good result, however this choice is non-trivial to make.

The difficulty applying prior inpainting work to the current case is that it typically does not take into account
both spectral and spatial correlations. We attempted using available implementations of these methods using
purely spatial inpainting, for example the inpainting algorithms implemented in OpenCV. For our data and
the single line data loss scenario we consider, we found the performance of inpainting algorithms on a par with
standard interpolation. In order to achieve a high quality reconstruction of the lost data, we must use all the
spatial and spectral information the imager data provides.

3. MULTISPECTRAL IMAGER DATA
As a proxy for GOES-R we looked at imager data from the Meteosat Second Generation (MSG) satellite’s main
payload, an optical imaging radiometer called the Spinning Enhanced Visible and Infrared Imager (SEVIRI).



SEVIRI is a 50 cm-diameter aperture line-byline scanning radiometer which provides image data in four Visible
and Near-InfraRed (VNIR) channels and eight InfraRed (IR) channels. The 12 SEVIRI channels consist of 8
InfraRed (IR) detector packages (3 detectors each), 1 High Resolution in the Visible (HRV) channel (9 detectors),
2 Visible and 1 Near-IR (3 detectors each) channels. The spectral range for the 4 visible/NIR channels is 0.4-
1.6 µm, and for the 8 IR channels is from 3.9-13.4 µm. SEVIRI has unique capabilities for cloud imaging
and tracking, fog detection, measurement of the Earth-surface and cloud-top temperatures, tracking of ozone
patterns, and many other improved measurements. SEVIRI data granules were obtained through EUMETSTAT
(European Organisation for the Exploitation of Meteorological Satellites).

SEVIRI, like the future GOES-R, have passive sensors that detect and measure energy reflected and/or
emitted from the Earths surface in different wavelengths of the electromagnetic spectrum. Different spectral
bands are used to gain information about various materials on the Earths surface, such as water, vegetation and
soil, as well as the composition of the atmosphere. Because each material uniquely absorbs and reflects energy
throughout the spectrum, these materials produce their own distinct spectral responses or signatures. Since
these spectral responses correspond to a limited set of materials from the surface and atmosphere, the bands of
the imager exhibit strong spectral correlations.

Figure 1. The above image shows the degree of correlation among the various channels of SEVIRI. It shows a greater
degree of correlation among channels that belong to the same group of channels. The groups that we are looking at are
the Infra-red (channels 1-6), near Infra-red (channel 7), visible (channels 8-9), and water vapor (channels 10-11).

Figure 2. The above graph shows the degree of spatial correlation in each of the Seviri channels, using 50×50 spatial
windows to compute the spatial correlation matrices. We found that our error correction algorithm works better when
we take spatial windows as our feature vectors, rather than just individual pixels.



Figure 1 shows the spectral correlation among the various channels. There is a noticeable correlation within
the 4 groups of channels and poor correlation across groups. The visible channels are negatively correlated with
the other groups and the near Infra-red channel is not correlated with other channels. Figure 2 shows the
spatial correlation for each individual channel. Figure 3 shows the degree of spatial cross-spectral correlation
in a representative channel from the IR, NIR, VIS, and WV group of channels with respect to the remaining
channels. As expected when two channels are poorly correlated, the spatial correlation of one channel with
respect to the mid-pixel of the second channel vanishes rapidly as one moves far from the mid-pixel.

(a) IR108 (b) NIR16

(c) VIS06 (d) WV62

Figure 3. The above graph shows the degree of spatial cross spectral correlation in a representative channel from the
IR, NIR, VIS, and WV group of channels with respect to the remaining channels. 50×50 spatial windows were used to
compute the spatial cross spectral correlation matrices.

4. PREDICTION ALGORITHM
When multispectral imager data is transmitted to the ground, the signal contains noise. Forward error correcting
encoding and packetization are often used to provide protection against loss during transmission. Despite this
precautions, there are occasions when a packet of data will be dropped. The data is transmitted in order of
spatial raster scans for each band. The consequence of the loss of a single packet is often the dropping of a scan
line in a single band. In fact, it is possible that more than one scan line may be dropped, or that multiple lines
in multiple bands are missing at different scan positions. Nevertheless, we make the simplifying assumption that
a single scan line is lost, and we restore pixels for all columns, except those a small distance (less than a window
width) from the left and right margins. These assumptions are not fundamental to the algorithm, and can also
be handled easily with the same framework, however the bookkeeping of pixel indices becomes more intricate.



We assume the imager produces a multi-spectral images with K bands, I scanlines, J columns. We represent
a discrete image as an integer-valued function g(i, j, k), with values in the range is [0, 2b−1], with b the bit-depth
of the instruments, and 1 ≤ i ≤ I, 1 ≤ j ≤ J , and 1 ≤ k ≤ K. With this representation, an image from the kth
band is the restricted function Gk(i, j) = g(i, j, k). From this point of view, G = {Gk}K

k=1 can be considered as
a stack of 2D images, one for each band k.

(a) (b)

Figure 4. Diagram of the spatial arrangement of pixels used for prediction (a) as well as a view multi-spectral/spatial
neighborhoods considered for prediction (b) The dark black line in the row i∗ shown in (a) is taken to be the row of lost
data. Windows of size s × s × K, with s = 2n + 1, centered along the lost line (shown as a gray strip) are considered to
decide how to fill in the missing value. Windows of the same size but with complete data (no loss) (a,b), and center at
(im, jm) within n scan lines of the missing line (a) are used fit a regression to predict the missing values along i∗.

The data loss takes the form of a fixed missing row Gk(i∗, j), for a fixed row denoted i∗, corresponding to
the missing packet. (cf. Figure 4 a). Given the strong correlations in both the spectral and spatial domain, our
approach is to predict each missing value g(i∗, j, k) along the row i∗ using a spatial and spectral neighborhood
surrounding the missing pixel. For computational simplicity and without loss of generality we assume the
neighborhood is a square window of width and height s pixels along i, j and includes all bands k. We take s to
be odd so that it can be written s = 2n+1 for a positive integer n. For notational convenience we can reorder the
bands, without loss of generality, so that the missing row appears in the first band image G1 in the considered
stack G. The multi-spectral window is shown as a block in Figure 4 b.

The statistical regression strategy works by collecting other windows in the granule, which do not include the
missing row to train the regression. Training on all windows in the granule is both computationally expensive
and does not yield good performance since a distant window may contain a substantially different scene. For
this reason we only consider images within a large but fixed number of pixels from the missing line.

The correlations in nearby the spectral and spatial values the window centered at the location (im, jm) provide
correlations which can be used to predict center pixel as confirmed by looking at Figure 3 in the previous section.
We represent the local context as a window wim,jm defined by

wim,jm = {gi,j,k|i ∈ S0(im, n), j ∈ S(jm, n), 1 ≤ k ≤ K}, (1)

where (im, jm) represent a middle pixel, S(im, n) = {im − n : im + n} is an index set of 2n + 1 consecutive
integers ranging from im − n to im + n, S0(im, n) = S(im, n)\im is a set S(im, n) without middle index im, see
Figure 4 b.



Figure 5 illustrates another evidence that statistically based prediction can be effective for estimation of
missing pixels. It shows the first two principal components of vectors of values on the surrounding window
wim,jm along two horizontal axis and the value of g at (im, jm) along the vertical axis. The blue cloud of points
in the figure seems to form a 2-D surface with the green cloud as the projection in the first two components. This
indicates that if values in the surrounding pixels are known, for example a the red points in the plane formed by
the PCA components, up onto the blue surface, will give good predictions for the true mid-pixel values. More
formally, we use a linear regression scheme to discover that relationship based on the collection of windows from
the rest of the image, where the value of the middle pixel is available. We will denote the set of such windows by

{wi,j , i ∈ S(i∗, M)\I(i∗, n), j ∈ {J0 : J1}}, (2)

where M is a number of rows above and below the missing row i∗, and J0, J1 are the first and the last column
of the patch that will be used for estimation of the function in question.

Figure 5. The above graph illustrates evidence that statistically based prediction can be effective for estimation of missing
pixels. The Z axis corresponds to a value of a pixel of interest in an image where pixel loss is simulated from SEVIRI
data. The X and Y axis are projections in the two largest principal components of pixel values in a neighborhood of the
simulated lost pixel value. The point cloud along a surface indicates that given a training set modeling the surface, the
missing value (Z) can be modeled by projection of the known X and Y values onto the surface.

Given a set {gi,j ,wi,j , i ∈ S(i∗, M)\I(i∗, n), j ∈ {J0 : J1}} of middle pixels gi,j ’s and corresponding windows
wi,j ’s over the area that omits the strip of the width s = 2n + 1 around the missing row, we fit a least squares
best fit linear relationship between the value of the middle pixel gim,jm and the values of the window wim,jm in
the least square sense, i.e.

arg min
α

∑

imi∈S(i∗,M)\I(i∗,n)
jm∈{J0:J1}

|gim,jm − (α,wim,jm)|2, (3)

where (, ) is a dot product and α is a block of the mixing parameters:

α = {αi,j,k|i ∈ S0(n + 1, n), j ∈ S(n + 1 : n), 1 ≤ k ≤ K} (4)



that are arranged in the 3D block the same way as w(i, j)’s. The mixing parameters α are the solution of the
least squares problem that determine the prediction function. The values of the estimated parameters α depend
on the window size, as well as the the width M and length J1−J0 of the patch from which training windows are
chosen to do the least squares fit. The parameters we used were set experimentally. The restriction of windows
to a patch around the missing pixel is simply a heuristic. It is clearly possible to attempt to restrict the windows
based on a similarity function on the values surrounding the window. This will be considered in future work.

5. RESULTS
In this section we analyze the merits of the error mitigation algorithm that we have developed. In order to
compare our algorithm’s performance, we have run some standard interpolation schemes on the data by artificially
introducing some errors. The results are shown in Figure 6. Of the four schemes (linear, cubic, bilinear, and
spectral) we have tested, we found that the cubic interpolation scheme did the best in terms of the Root Mean
Squared error (RMSE).

(a) Linear, RMSE: mean=5.01, std=3.21 (b) Cubic, RMSE: mean=3.62, std=2.07

(c) Bilinear, RMSE: mean=8.24, std=5.68 (d) Spectral, RMSE: mean=63.56,
std=19.66

Figure 6. The above graphs show histograms of errors for various standard spatial and spectral interpolation schemes.
The results are shown on SEVERI images with simulated scanline drop. The results for spatial and spectral interpolation
alone show cubic interpolation has better results with respect to RMSE. It is important to note that in this case we only
considered a single dropped scanline.



(a) Infra-red channel: IR108

(b) Visible channel: VIS06

Figure 7. The above figure shows the restored images using our algorithm assuming a missing scanline from the original
SEVIRI images. The diff images show the magnitude of the errors upon restoration.



Figure 7 shows the restored image and the diff image for a subimage of a SEVIRI granule. The mid-row of
this subimage is restored and compared with the original image. Though the restored image looks very similar
to the original image, small errors exist. It will be interesting to see the magnitude of RMSE for the restored
scanline for a large sample of images. Figure 8 shows histograms of errors for 4 different channels, each are
picked at random from the Infra-red, near Infra-red, Visible, and water vapor channel groups, respectively. We
have run our algorithm on 1000 sample subimages for each channel. The algorithm restores the water vapor
channels to perfection. However, it does poorly on the near Infra-red channel which is expected, since it is poorly
correlated with other channels.

(a) Infra-red, RMSE: mean=3.40, std=1.25 (b) Near Infra-red, RMSE: mean=6.22 , std=6.90

(c) Visible, RMSE: mean=2.94 , std=1.48 (d) Water Vapor, RMSE: mean=0.78 , std=0.10

Figure 8. The above graphs show histograms of errors for four sample channels that belong to IR, NIR, VIS, and WV
groups of channels using the linear regression algorithm. It can be seen that our algorithm fills the missing scanlines for
the water vapor channels to perfection and does significantly well than the standard interpolation schemes on the other
channels.

Furthermore, it should be interesting to see how the image struture affects restoration using our algorithm.
Figure 9 shows the errors of an image restored where each scanline is assumed to be a missing scanline and
restored sequentially. A sample SEVIRI image is restored using the cubic interpolation algorithm as well as the
linear regression algorithm. Figure 9 shows that the diff image with cubic interpolated restoration still has a lot
of structure left to be predicted, while, the diff image with linear regression restoration shows the algorithm has
predicted much of the image structure. Figure 10 shows the performance of our algorithm with varying window
size in terms of the RMSE measures. 7× 7 window size seems to be the optimal window size for our restoration
algorithm.



(a) Cubic: diff image (b) Linear Regression: diff image

(c) Original image

Figure 9. The above figure shows the errors of an image restored where each scanline is assumed to be a missing scanline
and restored sequentially. The mean RMSE and stdandard deviation across scanlines of the diff image produced by cubic
interpolation method are 6.16 and 1.73, respectively, and while using linear regression method are 1.79 and 0.35.

Figure 10. The figure shows the RMSE curve with respect to varying (square) window size. The figure shows that the
optimal RMSE is acheived at window size 7 × 7



Figure 11. The above figure shows the histogram of nearest neighbors across the rows from windows whose mid-pixel belong
to the center scanlines of a 1000 random 200×200 subimages of SEVIRI. The histogram looks zagged since SEVIRI has
three detectors onboard for Infra-red channels.

A local neighborhood is taken as database for the purpose of efficiently computing good representatives for
the missing patch in a probablistic sense instead of using the global image. We need to estimate the right size
of these local neighborhoods so that we find good representatives. Since we find our representatives using a
statistical-based approach we would like to know the distribution of distances from a window with a missing
pixel. Figure 11 shows the histogram of nearest neighbors across the rows from the center row of a given 200×200
subimage. One is least likely to find good representatives as one moves farther from the center scanline. Hence,
it suffices to choose a local neighborhood around the missing scanline for prediction.

6. CONCLUSION
We have presented a novel but elegantly simple algorithm which provides a good estimate of missing or corrupted
data. Our algorithm far outperforms the standard interpolation techniques currently used by NASA to fill in
missing detector scanlines in multi-spectral imagers such as MODIS. Also, unlike currently used spatial estimation
methods, the statistical regression method we proposed exploits the redundant information present in other
spectral bands of the imager. Due to the non-parametric nature of the estimator, we avoid image blurring
inherent in spatial interpolation methods, which have implicit smoothness priors. This method could be used
as a general algorithm to predict missing data in multi-spectral images used in scientific studies. Furthermore,
the computational efficiency of our algorithm is ideal for the purposes of error mitigation in large volume data
transmision. Further study needs to be done to evaluate the performance of our algorithm in presence of more
than one contiguous missing scanlines. In a future paper, we would like to evaluate our algorithm on other
existing multi-spectral imager data.
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