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ABSTRACT  

The detection and monitoring of harmful algal blooms using in-situ field measurements is both labor intensive and is 

practically limited on achievable temporal and spatial resolutions, since field measurements are typically carried out at a 

series  of  discrete  points  and at  discrete  times,  with practical  limitations on temporal  continuity.  The planning and 

preparation of remedial measures to reduce health risks, etc., requires detection approaches which can effectively cover 

larger areas with contiguous  spatial resolutions, and at the same time offer a more comprehensive and contemporaneous 

snapshot of entire blooms as they occur. This is beyond capabilities of in-situ measurements and it is in this context that  

satellite Ocean Color sensors offer potential advantages for bloom detection and monitoring. In this paper we examine  

the applications and limitations of an approach we have recently developed for the detection of K. brevis blooms from  

satellite Ocean Color Sensors measurements, the Red Band Difference Technique, and compare it to other detection 

algorithm approaches, including a new statistical based approach also proposed here. To achieve more uniform standards 

of comparisons, the performance of different techniques for detection are applied to the same specific verified blooms  

occurring off the West Florida Shelf (WFS) that have been verified by in-situ measurements.

Keywords: Ocean optics, remote sensing, ocean color, harmful algal bloom, red tide, MODIS.

1. INTRODUCTION 

The detection and monitoring of harmful algal blooms using in-situ field measurements is both labor intensive and is 

practically limited on achievable temporal and spatial resolutions, since field measurements are typically carried out at a 

series  of discrete points and at  discrete times, with practical  limitations on  temporal  continuity.  The planning and 

preparation of remedial measures to reduce health risks, etc., requires detection approaches which can effectively cover 

larger areas with contiguous  spatial resolutions, and at the same time offer a more comprehensive and contemporaneous 

snapshot of entire blooms as they occur. This is beyond capabilities of in-situ measurements and it is in this context that  

satellite Ocean Color sensors offer potential advantages for bloom detection and monitoring. 

It is worthwhile to first consider the features of K. brevis blooms and their special optical characteristics which impact 

their detection from satellite Ocean Color observations. The toxic dinoflagellate Karenia brevis (K. brevis) formerly 

named Gymnodinium breve [1]  is the most common of the more than 40 species of toxic microalgae that live in the  

Gulf of Mexico.  Blooms of K. brevis  have been observed  throughout the Gulf of Mexico. Most frequently they occur 

along the WFS. A nearly annual event, they are usually observed between late fall and early spring.  K. brevis blooms  

have many negative impacts due to brevetoxin. This associated toxin causes death in fish, birds, and marine mammals  

[2].  It also can irritate human eyes and respiratory systems once it becomes airborne in sea spray [3, 4].   

The optical characteristics of K. brevis have been extensively studied [5-12].  It was observed by Cannizaro et al., (2008)  

[5] that K. brevis blooms typically exhibit  lower backscattering compared to other phytoplankton and that  this low 

backscattering  efficiency  was  related  to  its  large  size  (20-40 µm) and  low index  of  refraction  (~1.05)  [6].   Since 

backscattered light in ocean waters is typically dominated by that from submicron particles [13, 14], this would also 

suggest that the low backscatter associated with K. brevis blooms may also reflect lower associated concentration of 

submicron particles [15, 16].  It was further suggested by Schofield et al., (2006) [8] that the toxicity of K. brevis cells  



may also contribute to the lower concentration of non-algal  particles by directly  inhibiting bacterial  growth and/or 

altering the organic material available for heterotrophic consumption.  

These  characteristics  of  K.  brevis  impact  different  satellite  detection  approaches.  The  most  effective  means  in 

operational use is that proposed byStumpf et al., (2003) [17] using the magnitude of the difference between satellite 

chlorophyll concentration estimates and a background mean of chlorophyll estimates for the previous 0.5-2.5 months as 

an index for detecting bloom areas.  At NOAA NESDIS CoastWatch, this method is now used operationally to alert for  

possible blooms in West Florida.  Cannizzaro et al., (2008) [5] proposed another technique based on in situ data that uses  

the backscattering/chlorophyll ratio to discriminate between K. brevis and other blooms.  They determined that K. brevis 

has lower backscatter characteristics than blooms of other diatoms and dinoflagellate species.  Both of these methods are 

based on using the blue-green region of the spectrum. Unfortunately,  blue-green reflectance ratio algorithms [18-20] 

have been found to perform poorly in coastal waters due to increased absorption of colored dissolved organic matter  

(CDOM), increased particle scattering, inaccurate atmospheric corrections and shallow bottom reflectance.  Hu et al.,  

(2005) [21] used Fluorescence Line Height (FLH) to detect and monitor K. brevis bloom on the WFS.  However, our  

studies have shown that FLH, conventionally used, strongly overestimates the chlorophyll  fluorescence signal under 

high elastic scattering conditions, resulting in false positives [22-24]. 

In this paper we examine the applications and limitations of the Red Band Difference (RBD) technique and a related  

selective K. brevis bloom classification index (KBBI) recently reported by us for bloom detection and classification of 

K. brevis blooms in the WFS  from satellite Ocean Color Sensors measurements [25], and compare it to other detection 

algorithm approaches,  including  a  new statistically  based approach  also proposed  here.  To achieve  more uniform 

standard of comparisons, the performance of different techniques for detection are applied to the same specific blooms 

occurring off the West Florida Shelf (WFS) that have been verified by in-situ measurements. While this may limit the  

generality of the conclusions, we believe it helps reduce ambiguities and highlight some important common criteria 

impacting efficacies of different approaches.  For these illustrations, data is used from both the Moderate Resolution  

Imaging Spectroradiometer (MODIS) ocean color sensor which has several bands in the red and near-infrared (NIR) 

regions and the Medium Resolution Imaging Spectrometer (MERIS) sensor.    

In Section 2 that follows, the procedures for obtaining satellite imagery are briefly described.  In Section 3, we briefly  

review the background of the RBD technique, present simulations of remote-sensing reflectance spectra ( )(λrsR ) for K. 

brevis and non-K. brevis blooms, review RBD detection and classification techniques and discuss their backgrounds.  

Section  4  applies  these  techniques  to  satellite  ocean  color  data  and  shows  examples  of  detection,  tracing,  and 

classification of K. brevis blooms.  We also compare the RBD detection and FLH techniques, and discuss possible  

modifications of processing procedures to FLH to improve K. brevis bloom detection, and carry out an analysis of the 

impacts of atmospheric correction algorithms on the RBD and KBBI techniques.  Section 5 discusses a statistically 

based approach for the detection of K. brevis bloom and examines its application in the WFS and compares its results to  

RBD. Section 6 summarizes the results of the comparison of different bloom detection techniques.    

2. SATELLITE DATA AND IMAGE PROCESSING  

MODIS imagery of WFS was obtained for different K. brevis blooms recorded in the literature dating from 2001 to 2006 

from the NASA Ocean Color Website [26] and processed to obtain the normalized water-leaving radiance ( )(λnLw ) for 

visible and NIR bands, and FLH using SeaDAS version 6.0.   The top of the atmosphere signals were corrected for the  

atmosphere using the standard NIR [27] method.  The data was processed with a pixel size of 1km equal to the nominal  

pixel size of the sensor’s ocean color bands.

3. RBD TECHNIQUE

3.1 Background of RBD Detection and KBBI Classification Algorithms

The essence of our approach is that the water-leaving radiance spectra of K. brevis and non-K. brevis blooms have 

distinctive features in the red region of the spectrum which can be used to detect and classify K. brevis blooms.  The red  



spectral  region is particularly attractive since it  is  less contaminated by CDOM and bottom reflectance,  and is less  

susceptible to atmospheric correction difficulties than the blue-green region.  As a consequence, uncertainties in bloom 

detection algorithms are reduced if this spectral  region is used instead of the blue-green region.  The distinguishing  

optical  features  of  K.  brevis  and  non-K.  brevis  blooms are  demonstrated  in  Fig.  1,  obtained  from simulations  of 

reflectance,  and described  in  [25].  The simulated elastic  reflectance )(λrsR ,  without  chlorophyll  fluorescence  (green 

spectra)  shows  a  trough  around  675nm due  to  the  absorption  of  chlorophyll  for  both  types  of  blooms.   When a 

fluorescence signal is included in the simulation (red spectra), the trough of the K. brevis bloom shifts toward shorter  

wavelengths around 667nm, or less, depending on chlorophyll concentrations and its quantum yield while the trough of 

non-K. brevis bloom remains around 675nm.  The shift in the K. brevis spectra is due to the fact that K. brevis exhibit  

lower backscattering efficiency, so the fluorescence signal dominates the red reflectance spectral region.  Because of the  

overlap  of  the  phytoplankton  absorption  and chlorophyll  fluorescence  emission,  when fluorescence  is  a  significant 

portion of the reflectance signal, the trough in the red region shifts towards shorter wavelengths, which is the case for K.  

brevis.  On the other hand, non-K. brevis blooms (mostly dominated by diatoms) have higher backscattering efficiency,  

so reflection is dominated by the elastic backscattering component, and therefore the fluorescence signal represents a  

smaller portion of the total reflectance, and is too weak a contributor (compared to the backscatter signal) to result in any 

significant  overall  impact on the spectral  distribution in that range.  As a consequence,  the trough of non-K. brevis  

blooms reflectance remains around the maximum of the phytoplankton absorption spectra (Fig. 1).  

3.2 Detection Algorithm 

Based  on  the  above  observations  showing that  the  minimum of )(λrsR can  shift  from the phytoplankton  absorption 

maximum,  around  678nm,  to  shorter  wavelengths,  around  667nm,  with  significant  chlorophyll  fluorescence 

contributions in the red spectral region, Fig. 1, we can define a bloom detection technique which we identify simply as  

the Red Band Difference (RBD) as follows:  

)667()678( nLwnLwRBD −=

Simulation shows that the positive RBD values (>
3

/1 mmg of Chlorophyll) are primarily due to the fluorescence signal 

which correlates strongly with the chlorophyll  concentration of the K. brevis.  Because of this strong correlation, it 

becomes  possible  to  quantify  K.  brevis  and  other  blooms  with  similar  characteristics  in  terms  of  the  chlorophyll 

concentrations  more  accurately  than  the  standard  reflectance  band  ratio  algorithms  [18-20]  by  developing  some 

empirical relationship between the RBD and the bloom (K. brevis and other low backscattering blooms) chlorophyll 

using in situ data.

Since the RBD technique may also be able to detect blooms of other species, particularly the low backscattering ones,  

we defined [25],  and discuss below, an additional K. brevis bloom classification technique, KBBI, to discriminate K.  

brevis  blooms  from  other  blooms  and  bloom like  features  such  as  CDOM plumes,  sediment  plumes  and  bottom 

reflectance. 

3.3 Classification Algorithm

We defined the K. brevis bloom index (KBBI) as follows:

 
)667()678(

)667()678(

nLwnLw

nLwnLw
KBBI

+

−
= (2)

The KBBI technique is primarily based on the fact  that total  particulate backscattering associated with K. brevis is 

different from that for non-K. brevis blooms. Since K. brevis bloom water is known to have lower total particulate 

backscattering [5- 8] than the non-K. brevis bloom waters,  the water-leaving radiance signal is much weaker for K.  

brevis blooms than for the non-K. brevis blooms since it is largely proportional to backscattering.  As a consequence, the  

denominator of Eq.2, which is just the sum of the two MODIS red bands (band 13 and band 14), becomes much larger  

for non-K. brevis blooms than for K. brevis blooms. Furthermore, the numerator of Eq.2, which is the RBD, is much  

more pronounced for K. brevis blooms than the non-K. brevis blooms. Therefore,  the KBBI values for K.brevis are 

usually higher than that of non-K. brevis, thus permitting the separation [25] of the two. In the WFS values of KBBI > 

0.3 RBD were found to distinguish K.brevis from other blooms [25].



Figure 1. Modeled remote sensing reflectance spectra for K. brevis cell concentrations (a) greater than lcells /10
4

 

(K.  brevis  bloom)  and  (b)  less  than  lcells /10
4

(non-K.  brevis-1  bloom)  for  the  
3

/3 mmgChl = and 

1
25.0)440(

−= madg  .  The solid green spectra are when chlorophyll fluorescence is excluded (“F OFF”) from the 

simulation and solid red spectra are when fluorescence is included (“F ON”) in the simulation assuming 0.75% 

quantum yield. Band 13 and 14 are MODIS bands centered at 667nm and 678nm respectively.

4. RESULTS

4.1 Detection of K. brevis Blooms

Using the RBD detection technique, we detected various K. brevis blooms in the Gulf of Mexico, and reported this in 

[25].  Figs. 2a and 2b show two examples of  K. brevis in the WFS detected by RBD and confirmed by in-situ data [21,  

30]. The RBD images are created for MODIS (Aqua) images November 13, 2004 and September 21, 2006 [21, 30].  

According to [21] the November 13 bloom by mid-late November contained high concentrations ( lcells /10
5>  ) of K. 

brevis cells and caused higher mortalities of fish and dolphins. The bloom drifted southward and expanded to form a 

large curved patch around 25.5 ºN 82.5 ºW from early November to mid December, and in subsequent weeks the bloom 

moved further to the south and formed a continuous band parallel to the Florida Keys [21].  These results are found to 

match reasonably well with cell count data from in-situ measurements, obtained from [29] which were overlaid on top of 

the  images  in  Fig  2,  with  H (black)  and  L (magenta)  representing  lcells /10
6> and  lcells /10

5<  respectively.  Our 

analysis,  reported in [25] of satellite data coupled with simulated data [25] shows that using a threshold of RBD>  

srmmW ///15.0
2 µ readily identifies legitimate bloom areas. The simulations showed that to reach this RBD threshold  

value  may require  chlorophyll  as  high  as
3

/5 mmg with an assumed 0.75% fluorescence  quantum yield.  By using a

3
/1 mmgChl > to define a blooming condition [21], the simulation results show that an RBD threshold value lower than 

srmmW ///15.0
2 µ is possible. However this lower threshold will increase false positives from satellite data analysis. 

Thus a compromise between simulations and satellite data analysis was made to arrive at the  srmmW ///15.0
2 µ RBD 

threshold. Application of the KBBI > 0.3 RBD as discussed in [25] confirmd the blooms to be K.brevis, as shown in  

Figs 2c and 2d.



Figure 2. MODIS  (Aqua) images of the WFS (a) RBD ( srmmW ///
2 µ  ) image of 13 November 2004,  (b) RBD ( srmmW ///

2 µ ) of 

21 September 2006, (c) KBBI image of 13 November 2004, (d) KBBI image of 21 September 2006, (e) FLH ( srmmW ///
2 µ )image 

of 13 November 2004, (f) FLH ( srmmW ///
2 µ )image of 21 September 2006,(g) FLH ( srmmW ///

2 µ )image 13 November 2004 

filtered for low scattering pixels (h) FLH ( srmmW ///
2 µ )image 21 September 2006 filtered to eliminate high scattering pixels.

4.2 Comparison between RBD and FLH

Although FLH can sometimes be used to detect blooms [21], it breaks down in highly scattering waters, where high red 

peak values are primarily due to contributions from elastic scattering modulated by chlorophyll absorption rather than  

the  fluorescence,  thus  falsely  indicating  possible  blooms.   Thus,  as  the  concentration  of  NAP increases,  radiance 

generally raises as well, and the fluorescence peak becomes a less prominent component of increased total signal.  

In contrast, the RBD technique is found to easily differentiate between the two effects, giving positive values in truly 

bloomed waters and negative values in highly scattering waters.   The performance of MODIS FLH calculations can be  

assessed for turbid waters by comparing FLH values with true fluorescence values at 685nm.  Simulations show that the 

true fluorescence signal  at  685 nm decreases  as  a fraction of the total  signal  for  increasing concentration of NAP.  

However, MODIS FLH shows an opposite trend and a significant overestimation of the true fluorescence signal. The 

most dramatic effect is the overestimation of true fluorescence when chlorophyll is low and NAP increases. Similar  

results were found in [23, 24, 31].  Tomlinson, et al., (2008) [32] also pointed out that FLH was unreliable in the area  

surrounding the Florida Keys; giving elevated values in all of the images they examined which is in agreement with our  

analysis of satellite imagery for this region.  Clearly,  the FLH algorithm can breakdown for turbid waters and if used for  

K. brevis bloom detection would also flag pixels with turbid waters as possible K. brevis blooms.  On the other hand, the  

RBD technique only detects true blooms and gives negative or near zero values for highly scattering waters. It is further  

reinforced by the KBBI classification technique. .  This is more clearly illustrated in Fig. 3a, which shows the MODIS 

Aqua FLH bloom image from November 13, 2004 on the WFS, and is in contrast to Fig. 3b which shows equivalent 

RBD bloom image.  To examine whether the intense regions in the FLH image are due to blooms or highly scattering 

waters, we took three spectra from the three supposedly bloomed regions (bloomed, turbid-1, and turbid-2) as indicated 

by FLH (Fig. 3a) and plotted the resultant spectra in Fig. 3c. We see that the true K. brevis bloom spectrum (Fig. 3b; red) 

differs significantly from the other two spectra particularly in the blue-green region of the optical spectrum where they  

both give significantly higher values than the bloomed spectra.  So the spectra (Fig. 3c; green and blue) taken from 

turbid-1  and  turbid-2  region  of  Fig.  3a  are  due  to  highly  scattering  waters,  and  not  characteristic  of  K.  brevis.  

Furthermore,   it is seen that the signals in the red bands of these spectra are also significantly different where the K.  

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)



brevis bloom spectra (Fig. 3c; red) has a positive slope from 667nm band to 678nm band while other two have negative  

slopes.  The slope is negative only when water is highly scattering.  Therefore, the region in Fig. 3a indicated by turbid-1 

and turbid-2 must be due to highly scattering waters and not K. brevis blooms.  Those false blooms signals based on 

FLH clearly disappear in the RBD image (Fig.  3b).  since the RBD value is not only below the  srmmW ///15.0
2 µ  

threshold for k.brevis bloom discussed above, but is actually negative, ie there is no bloom detection in these areas.

Figure  3.  MODIS (Aqua) bloom image  from 13 November  2004 for  the WFS  (a)  FLH ( srmmW ///
2 µ )  image,  (b)  RBD (

srmmW ///
2 µ  ) image and (c) Normalized-water leaving radiance spectra taken from the bloomed and turbid waters indicated by 

“circle” and “squares” respectively in the FLH image.  

Since it is the increased scatter encountered in coastal waters that results in false positives when using the FLH technique 

for KBrevis retrievals, it may be possible to achieve similar results using FLH  as obtained by using RBD, since the  

latter essentially uses the fluorescence when the near IR peak legitimately represents the fluorescence signal and is not 

due to scattering. This can be achieved for the FLH approach if one sets a an upper limit on acceptable level of scattering  

contribution to the FLH peak, using the reflectance at 667 nanometers as a proxy. The impact of this can be seen in Fig 

2g, which has an upper limit filter of 1.2 srmmW ///
2 µ  on the 667 nm band, rejecting FLH for higher values. This 

reduces the FLH image to one very similar to the equivalent RBD image repeated as Fig 2a, and can be contrasted with  

the unfiltered FLH image Fig. 2e. In reality, this filtering out of high scatter values is similar to the stricture put on  

rejecting RBD values below 0.15 srmmW ///
2 µ  (However, it should be noted that RBD has additionally a self limiting 

feature, in that higher scattering values at 667 nm give negative values of RBD.). The same approach unfortunately does  

not  work  by putting the same stricture  on images  of  chlorophyll  in  the  same region  derived  using the blue  green  

algorithm, since the latter does not depend on a fluorescence measurement, and is further complicated by overlap of  

CDOM absorption/fluorescence in coastal waters. 



5. STATISTICAL APPROACH - CLASSIFIER FOR KARENIA BREVIS IN WSF

Florida's HAB historical database is one of the largest and longest continually recorded  electronic HAB databases in the  

United States [34]. The historic HAB data is provided by the Fish and Wildlife Research Institute and is available for  

free  download from  [35].  This  organization provides  a detailed GIS  point shape file  of  sampling locations for  the 

phytoplankton that causes  K.brevis. Sampling site dates range from August 1953 through the latest  available spatially 

verified data. The HAB shape file is a spatial representation of information gathered in the HAB Historical Database, 

and can be used to construct a classifier aimed at detecting the presence/absence of K.brevis from satellite imagery. The 

database contains over 64,053 records of concentrations of  K.brevis red tide in Florida waters, from 1954 to 2006.  

Containing data from over 78 agencies, institutes, universities, and researchers, the database has widely varying numbers 

of observations, years of collection, spatial or specific areas of collection, and sampling efforts. The variables available 

for  analysis  are  spatial  location,  sampling  date,  collecting  agency,  depth  of  collection  (for  most  observations),  

temperature (for some observations), and either K.brevis counts or presence/absence data.

It has been shown [36] that the above data sets are too sparse in both time and space to directly address such questions as 

the overall WFS status and trends of K.brevis at a given time, or understanding of the life cycle of blooms (initiation,  

development, movement and deterioration). However in [36], some subsets of the data were found to be dense enough in 

both time and space to permit  analysis  based on the probability distribution of K.brevis.  In  this section we briefly 

describe our approach to construct a classifier for absence/presence of K.brevis. In this work we used variables from the 

historic  HAB  database:  location  (latitude/longitude),  time  (day)  and  the  degree  to  which  K.brevis  was  present.  

Associated with each observation in the data base, there is a satellite product based observational vector. This vector is  

made up of the following variables: chlorophyll, normalized water leaving radiance at wavelengths 443, 551, and 667, 

and sea surface temperature, matching the time and location of the HAB database measurement. The HAB measured  

ground  truths  together  with  the  corresponding  observation  vector  values  are  used  as  training  set  to  train  a  binary 

classifier. Once trained, this classifier is used to predict the HAB or no HAB state from the satellite based observation 

vector alone.

That  allowed  us  to  build  a  training  data  set  for  a  binary  classifier  that  can  relate  K.brevis  presence  to   satellite  

observations, and therefore  use these to detect blooms. In this process, satellite observations, are tagged according to 

bloom or no bloom conditions. Each observation has a related 5 dimensional observational vector, obtained as a satellite  

product, which includes variables such as  chlorophyll, normalized water leaving radiances at wavelengths 443, 551, and 

667, and sea surface temperature, which can then be used as variables in a training set by matching up location and time  

from the HAB database, and used to train the classifier.

MODIS flies on board two satellites (Terra and Aqua, launched on December 1999 and May 2002, respectively). In this  

work we have used gridded Level 3 MODIS data provided by NASA. The data is stored in a representation of a global, 

equal-area grid cells which have resolution of 4.6 by 4.6km. Level 3 data can be obtained for the NASA's ftp site [37]. 

We decided to use Aqua satellite in this study since it has fewer overall number of pixels covered by clouds. The overall  

cloud coverage over the ocean for the period from 2002 to 2009 for both Aqua and Terra is shown in Figure 4.  Pixels  

with smaller values indicate less clouds during the considered period. All pixels corresponding to land have a flagged 

value 1. 



               Figure 4. Cloud coverage for Aqua (left) and Terra (right).  

Level 3 gridded data includes variables such as chlorophyll, normalized water leaving radiances at wavelengths 443, 

551, and 667, and sea surface temperature. Diagram demonstrating the data organization is shown on Figure 5. There are  

five subdirectories corresponding to each of the five variables. The next level of subdirectories correspond to the years  

from 2002 to 2009, each of which has 365 (or 366 for leap years) files containing 2 dimensional gridded global product.  

We can use these variables in our training set by matching up location and time from the HAB database. Dotted path on  

the Figure 5 shows the process of finding the values that are used in the training data set. 

Figure 5.  Block-diagram showing Level 3 MODIS data structure.  Dotted arrows specify the path of selecting one value for the 

training data set given the name of the variable, date and location.

The process of creating training data set is shown in Figure 6. First, we filter out entries in the HAB database spatially if  

they don't fall in the Florida coastal region, and temporally if they are for a date not available in MODIS Ocean Level 3  

product. Then the latitudes and longitudes are converted to the rows and columns, and then to file offset. The file offset,  

date, and variable name uniquely identify a pixel in the Ocean Level 3 dataset, which is read in. The whole image for the  

whole globe need not be read in because, given the row/column location, we can read individual pixels at an offset in the  

image, which significantly speeds up the process of creating the training database. Once the data for all the variables is  

gathered, observations that have been flagged as having cloud or land are filtered out, resulting in the final dataset used  

for training. If  HAB category is ``medium''  or ``high'',  it  is included in the positive case.  If  it  is ''not  present'',  it is  

included in the negative case. Other categories corresponding to less then 100,000 cells/liter were not included in this  

study. That resulted in 236 positive and 778 negative observations in this training dataset.

Figure 6. Block-diagram showing steps for obtaining Training Data Set. 

The initial dimensionality of the training set is 5, corresponding to five mentioned above variables available in the  

gridded format. We then decided to use a non-linear procedure known in machine learning as kernel trick. This is a  

standard method for using a linear classifier algorithm to solve a non-linear problem by mapping the original non-linear  

observations into a higher-dimensional  space,  where  the linear  classifier  is  subsequently used.  This makes a linear  

classification in the new space equivalent to non-linear classification in the original  space.  We have used quadratic  

mapping and a fast  algorithm known as  the Ho-Kashyap  learning rule  [38].  The diagram describing procedure  for 

finding the classifier is shown in Figure 7.



Figure 7. Block-diagram showing showing steps for training the HAB classifier.

Outputs obtained from the classifier described above are shown in the Fig.8. Locations where our algorithm detects  

presence of K. brevis are marked with yellow dots. The red and green dots respectively mark the positive and negative  

cases as specified in the historical database. The initial results of this approach appear promising. Fig 8 below matches 

blooms retrieved using this approach, against blooms detected by in-situ measurements covering the same time period,  

as well as in-situ measurements which showed an absence of blooms. 



Figure 8.  Results of the HAB classifier. Green and red dots correspond to ground truth as given by historical database. Yellow dots 

correspond to the detected locations of HAB by our classifier. For comparison, an RBD retrieval for 21 September, 2006 is shown 

adjacent to a statistical retrieval for the same date. There is a good match up between the two.

These  results  show that  there  is  generally  a  relatively  good  match  up  between  blooms  retrieved/detected  by  this  

technique and blooms measured by in-situ measurements. There are also relatively few, if any false positives, ie where 

the technique identifies blooms where it is known from in-situ field measurements that none exist. For comparison 

purposes, Fig 8 also shows RBD retrievals next to a statistical retrievals for the same date, showing good agreement  

between  the  two.  RBD  images  selected  were  based  on  rejection  of  any  negative  values  rather  than  RBD  < 

srmmW ///15.0
2 µ . It should be noted that these results represent a true test of the technique since the algal blooms shown 

in Fig. 8, and detected by the classifier technique as well as their related data were not part of the training sets.

6. Discussion & Conclusions

Chlorophyll retrieval from reflectance spectra remains a challenge in coastal waters, and may even be an impossible task 

in some cases, particularly when CDOM concentrations are high [33]. MODIS red bands 13 and 14 were designed with  

high  signal-to-noise  ratios  to  avoid  various  problems  including  CDOM  for  retrievals  of  fluorescence,  and  hence 

chlorophyll. However, in highly scattering waters, typical in coastal areas, the fluorescence component represents a only 

a small portion of the total reflectance peak observed in the red spectral region and it becomes difficult to distinguish the  

fluorescence component from the elastic component which them dominates the total signal. When low concentrations of 

NAP  and  low  scattering  conditions  exist,  the  peak  in  the  red  spectral  region  becomes  chlorophyll  fluorescence 

dominated.  Furthermore,  this  spectral  region  is  less  affected  by  CDOM,  shallow  bottom,  and  even  atmospheric 

correction  uncertainties  than  the  blue-green  region.  Since  the  K.  brevis  bloom  is  known  to  have  a  much  lower 

backscattering efficiency, and to co-exist with generally low scattering waters, the red signals from K. brevis blooms are  

usually  largely  dominated  by  the  K.  brevis  chlorophyll  fluorescence.  The  RBD technique  takes  advantage  of  this 

fluorescence dominated signal  to detect  these types of blooms. Normalization then makes it  possible for the KBBI 

technique to discriminate K. brevis from non-K. brevis blooms.  This approach was shown to be quite effective when 

applied to K.brevis bloom conditions in the WFS. 

Comparisons with FLH retrievals in the same waters with the same bloom conditions show that in contrast to RBD, 

many false positives are detected. These are primarily due to increased NAP scattering which enhances the FLH peak in 

the red spectral region, which is then erroneously correlated with fluorescence. This is in contrast to the RBD/KBBI 

technique where increased NAP scattering leads to unacceptable small or negative RBD values. This largely eliminates 

false positives for K.brevis detection in typical water conditions obtaining in the WFS bloom regions. It is possible to 

achieve nearly similar results for FLH as with RBD by applying a filter to FLH measurements. That is by using the 667  

nm reflection as a proxy for NAP scattering and filtering out all FLH measurements above a certain threshold value.

A statistical approach, still in its early stages, was tried using a K.brevis classifier for WFS waters, and making use of a  

large existing data base from the The Fish and Wildlife Research Institute [34]. This has extensive data over many years 

on actual blooms, their intensity and location in WFS. This was dense enough to permit development of probability  

distributions for the occurrence of K.Brevis, which were then correlated with MPDIS measurements from at the 453, 551 



and 667 nm bands. The initial results of this approach appear promising. They show relatively good detection of a actual 

blooms with few false positives, and a good match up with RBD for the same blooms. Both the statistical and RBD  

approaches warrant continued study, more rigorous testing and extension beyond the WFS region. 
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